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Abstract

To macroscopically describe two-phase flows in porous media we need accu-
rate modeling of the drag forces between the two fluids and the solid phase.
In low-permeability porous media, where capillarity is often dominant, the
fluid-fluid drag force is treated similarly to the drag between fluids and solid
in the momentum transport equation. Two-phase flows in highly permeable
porous media, however, are often characterized by a larger interface area
between the two fluids and by thin films developing. In such cases, the fluid-
fluid drag is not necessarily negligible and may play an important role in
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the momentum transport equations. Here, we use computational methods to
study immiscible cocurrent two-phase flows in a microfluidic device made of
an array of cylinders squeezed between two plates in a Hele-Shaw cell. The
key idea is to solve 2D Stokes-Darcy equations integrated over the height
of the cell, allowing us to explore different permeability ranges by changing
the gap between the plates while keeping the 2D geometry in the cell plane
unchanged. We use this approach to ask whether the fluid-fluid drag forces
affect the pressure drop and how the flow confinement and the capillary
number affect the relative importance of the drag forces. We find different
behaviors depending on the gap thickness but, in all cases, the fluid-fluid
drag plays a significant role in the pressure drop across the cell.
Keywords: Porous media, Hele-Shaw, Drag forces, Pressure drop

1. Introduction1

An accurate description of two-phase flows in high-permeability porous2

media is of major importance for several practical applications. This in-3

cludes soil remediation in sandy or gravely soils (Fetter et al., 2017), nuclear4

safety (Clavier et al., 2017), and catalytic fixed-bed reactors (de Santos et al.,5

1991). However, most of the literature on two-phase flows in porous media fo-6

cuses on low-permeability porous media in the limit of creeping flows, where7

surface tension forces often dominate and the capillary, Bond, and Weber8

numbers are low. In that case, the fluid distribution is well described as two9

independent flow paths for each phase (Dullien, 1992). The two fluids are10

predominantly segregated with the non-wetting fluid flowing into the large11

pores and the wetting fluid flowing through the smallest pores. One con-12
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sequence is that the area of the fluid-fluid interface is small (Fig. 1 (a))13

and that there is little drag between the fluid phases. In contrast, flows in14

high-permeability porous media are characterized by a complex interaction15

between capillary, gravity, viscous, and inertial forces (Dullien, 1992; Blunt,16

2017; Davit and Quintard, 2018). Capillary effects may no longer dominate,17

and the capillary, Bond, and Weber numbers may be large. The distribution18

of fluids in the pore space can be schematically decomposed in two modes,19

even though the reality is often a lot more complex. Either the non-wetting20

fluid is continuous and flows in the center of the pores surrounded by the21

wetting fluid flowing as a thin film in contact with the solid (Fig. 1 (b)), or22

the non-wetting fluid is discontinuous and flows in the center of the pores as23

droplets or ganglias (Fig. 1 (c)). In both cases, the surface area between the24

fluids is large and the drag forces between the fluids may be non-negligible25

compared with the fluid-solid drag forces. This is in strong contrast with26

capillarity-dominated flow and it is of major importance since modeling of27

the drag forces is mandatory to build a comprehensive macroscopic model of28

the flow.29

1.1. Generalized Darcy law with coupling30

Models used to describe two-phase flows in porous media are often based31

on a direct extension of Darcy’s equations for one-phase flow (Wyckoff and32

Botset, 1936; Muskat, 1938). This generalization is based upon introducing33

relative permeabilities, which can be understood as describing the impact34

of the division of the pore space between the fluids. Each fluid phase acts35

as a supplementary ”solid” regarding the other one and no exchange be-36

tween the phases is taken into account explicitly (Dullien, 1992; Blunt, 2017).37
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Figure 1: Schematics of example distributions of fluids in a 2D porous network with
the solid phase in black, the non-wetting fluid (fluid 1) in light gray, and the wetting
fluid (fluid 2) in white, (a) the two fluids are flowing in different channels separated by
numerous meniscus and the fluid-fluid interface extent is small, (b) the wetting and non-
wetting fluids are flowing together in most of the pores as two continuous streams, and
(c) both fluids are flowing together in most of the pores and the non-wetting phase is
discontinuous - Figure adapted from Dullien (1992).

Consequently, it is commonly assumed that the relative permeability for a38

given fluid pair only depends on the saturation (Brooks and Corey, 1964;39

Van Genuchten, 1980), even though the relative permeabilities may also de-40

pend on the capillary number (Li et al., 2005), the flow regime (Avraam and41

Payatakes, 1995; Bianchi Janetti et al., 2017), the viscosity ratio (Yuster42

et al., 1951; Ehrlich, 1993; Yiotis et al., 2007) and other properties such as43

wettability (Morrow et al., 1973; Anderson et al., 1987; Li et al., 2005). Since44

the early 1980s, much work has aimed at improving the generalized Darcy45

equations on a sound physical basis. Using upscaling techniques, several46

authors have proposed additional coupling terms that correspond to drags47

at the fluid-fluid interface and yield coupling permeability tensors (Marle,48

1982; Auriault and Sanchez-Palencia, 1986; Whitaker, 1986; Lasseux et al.,49
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1996). The importance of these coupling terms in the overall flow process50

remains unclear (Ayub and Bentsen, 1999). These additional terms can be51

calculated analytically in a two-phase annular cocurrent flow in a cylindri-52

cal capillary tube and are of the same order of magnitude as the dominant53

relative permeabilities (Bacri et al., 1990). In this theoretical configuration54

the phase distribution does not depend on the tube radius, i.e., permeability.55

However, other studies considering more realistic configurations, for which56

the surface between fluids was smaller, concluded that coupling terms should57

not be as important (Scott et al., 1953; Rakotomalala et al., 1995; Ayodele,58

2006). As explained above, this can be linked to the capillarity effect be-59

ing important, and this effect may be related indirectly to the use of media60

with sufficiently low permeabilities. Zarcone and Lenormand (1994), Dullien61

and Dong (1996), and Ramakrishnan and Goode (2015) directly measured62

the coupling permeability terms in natural media by performing steady-state63

cocurrent two-phase flows. Rose (1988) proposed indirectly measuring the64

coupling relative permeability terms by performing two different types of ex-65

periments. This technique was also used for both cocurrent and counter-66

current experiments (Bourbiaux et al., 1990; Bentsen and Manai, 1993).67

These authors (apart from Zarcone and Lenormand) found that the cou-68

pling relative permeabilities are significant. Using two different experiments69

raises questions on interpretation, in terms of a unique set of relative perme-70

abilities and coupling terms, hence the existence of some confusion about the71

dependence of coupling terms with other physical parameters. In debris-bed72

cooling studies or flows in trickle-bed reactors, for which the porous media is73

highly permeable, several projects have shown that including closure terms74
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for the drag force between fluids can better predict measured pressure loss75

(Schmidt, 2007; Attou et al., 1999). Recently, Clavier et al. (2017) performed76

experiments of inertial two-phase flows in coarse non-consolidated porous me-77

dia and proposed constitutive models for the coupling. They were motivated78

to introduce coupling terms after observing that phases were both flowing79

within the same pore-space due to the medium’s high permeability. However,80

in most cases, it is impossible to know from the experiments which type of81

flow regime dominates at the pore-scale and therefore what is the exact link82

between the physics at the pore-scale and the macro-scale model.83

1.2. Hele Shaw cell84

Micromodels can be used to better understand the physics of two-phase85

flows in porous media (Karadimitriou and Hassanizadeh, 2012), for example,86

transitions between flow regimes or the onset and development of displace-87

ment instabilities (Lenormand et al., 1988; Zhang et al., 2011; Horgue et al.,88

2013). These apparatuses were used to measure the relative coupling perme-89

abilities for different flow regimes (Avraam and Payatakes, 1995) or study the90

impact of the fluid-fluid drag on the flow characteristics (Heshmati and Piri,91

2018; Roman et al., 2019). Rothman (1990) used numerical simulations in a92

2D micromodel geometry at large capillary numbers and found that coupling93

permeabilities are comparable in magnitude with the case of the annular flow94

in a capillary tube. Fig. 2 shows Rothman’s results along with some of the95

previously mentioned results on relative coupling permeabilities. Given the96

potential impact of permeability, i.e., characteristic pore length, on phase97

distribution and hence coupling terms, we also added to the legend of this98

figure the estimated order of magnitude of the permeability.99
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Hele-Shaw cells are one of the simplest examples of micromodels as they100

consist of two parallel plates forming a thin gap in which the fluids can flow.101

Many studies have focused on the displacement of bubbles and droplets in102

such cells (Maxworthy, 1986; Maruvada and Park, 1996; Kopf-Sill and Homsy,103

1988) and the stability of the fluid front during the displacement of a fluid104

by another less viscous fluid (Saffman and Taylor, 1958; Bensimon, 1986;105

Meiburg and Homsy, 1988; Jackson et al., 2017; Cueto-Felgueroso and Juanes,106

2014). The governing flow equations are analogous to Darcy’s equation,107

therefore several studies used Hele-Shaw cells to gain insight about two-phase108

flow in porous media (Stokes et al., 1986; Homsy, 1987; Liu et al., 2019).109

1.3. Outline of the study110

In this work, we focus on immiscible cocurrent flow in a modified Hele-111

Shaw flow cell with obstacles to better capture the physics of porous media112

flows. We study numerically the influence of the intrinsic permeability on the113

fluid-fluid and fluids-solid drags for different capillary numbers. To do so, we114

use a diffuse interface for interface resolving method (Level Set), validated115

against a Boundary Element Method (BEM) code. The key idea is to vary116

the thickness of the flow cell to change the permeability without affecting117

the in-plane geometry. The objective is to quantify the importance of the118

fluid-fluid drag in two-phase flows in microfluidic devices, and by extension in119

highly permeable porous media models. In particular, we focus on film-flow120

regimes; common in highly permeable porous media.121

The manuscript is organized as follows. The volume-averaged flow equa-122

tions are derived in Section 2, starting from the 3D flow equations, and then123

depth-averaged to exhibit a permeability-like term that allows to control the124
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Figure 2: Normalized relative permeabilities for coupling K⇤
ij as a function of the wetting-

fluid saturation Sw from experimental work (Dullien and Dong, 1996; Zarcone and Lenor-
mand, 1994), numerical simulations (Rothman, 1990; Li et al., 2005) and analytical solu-
tion for a steady-state annular two-phase flow in a circular capillary tube (dashed line)
(Bacri et al., 1990). The theoretical capillary tube case provides an upper limit in terms
of permeability and extent of the interfacial surface area between the fluids.

fluid-solid drag. In Section 3, the numerical method is introduced as well as125

the initial boundary value problem and the mesh convergence study. In Sec-126

tion 4, we present the results, the main ones concern the analysis of the drag127

forces at the different interfaces as a function of the gap thickness between128

the plates.129
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Figure 3: Schematic view of a cocurrent two-phase flow in a Hele-Shaw cell parallel to the
x � y plane with a solid obstacle of circular cross-section. L is the transverse dimension
of the cell and h is the gap between plates. The boundary between the wetting-fluid w

and the cylinder (in red) is noted �wc and the boundary between the two fluids (in blue)
is noted �ow. No dynamic films along the plates are considered here. ✓ stands for the
non-zero contact angle between the two fluids and the plates.

2. Pore-scale, depth-averaged and volume-averaged flow equations130

In this section, we present the derivation of the averaged flow equations131

for cocurrent two-phase flows in a Hele-Shaw cell with a solid-phase obstacle132

of circular cross-section (Fig. 3). We start from the three-dimensional Stokes133

equations. Then, we average the momentum equations spatially to derive the134

unclosed form of the macroscopic momentum transport equations.135
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2.1. Pore-scale flow equations136

Three-dimensional continuity and Stokes equations for a Newtonian fluid137

in the absence of external forces read, respectively,138

r⇤ · u = 0, �r⇤p+ µr⇤2u = 0, (1)

where the superscript * indicates that the derivative operators are three-139

dimensional.140

2.2. Depth-averaged flow equations141

The starting point is to consider an apparatus such as the one depicted142

in Fig. 3, for which h is very small compared to the transverse length of the143

cell. It follows that the z-component of the velocity can be neglected (Guyon144

et al., 1994), at least sufficiently far away from the obstacle. In consequence,145

the three-dimensional velocity is146

u = (u(x, y, z), v(x, y, z), 0)T = (ū(x, y)f(z), v̄(x, y)f(z), 0)T , (2)

where we introduce the depth-averaged, two-dimensional, velocity vector de-147

fined as ū ⌘ 1
h

R h/2

�h/2 (u(x, y, z), v(x, y, z))
T dz. The in-plane version of Eq. 1148

then reads149

r · ū = 0, �rp+ µ
�
r2ū+ ūf 00� = 0. (3)

where del is now used as a 2D operator. From the condition
R h/2

�h/2 f(z)dz = h,150

arising from the definition of the depth-averaged velocity, along with the no-151

slip boundary condition at z ± h/2, we find that f(z) = 3
2(1� 4 z2

h2 ). Then,152

r · ū = 0, µ
�
r2ū� k2ū

�
= rp, (4)
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are the continuity and momentum transport equations for the depth-averaged153

flow of one fluid with k =
p
12/h. Nagel and Gallaire (2015) showed that the154

velocity profile for a one-phase 3D flow in a rectangular channel is correctly155

reproduced with the depth-averaged model up to aspect ratios h/L = 1. We156

conducted a similar study in Appendix A, as the solid obstacles are likely157

to locally disturb the velocity field. We observed a slight deviation between158

depth-averaged 2D and 3D flows, even for small gaps, which can be attributed159

to the wall of the cylinders. This discrepancy does not increase with the gap,160

and the depth-averaged model is effective even for gaps as large as h/L = 2.161

These depth-averaged equations have to be written for each fluid, and162

boundary conditions at the fluid-fluid interfaces are required to close the163

problem. Continuity of the depth-averaged velocities across the interface164

and a jump of the interface normal stress are sufficient conditions if surface165

tension is constant along the interface. These conditions are expressed as166

(Park and Homsy, 1984)167

ūo � ūw = 0 at �ow, (5)

(�̄w � �̄o) · now = �

✓
⇡

4
k +

2

h
cos ✓

◆
now at �ow, (6)

where �̄i = �piI + µi(rūi + (rūi)T ) is the in-plane stress tensor of fluid i,168

now is the in-plane normal vector at the fluid interface pointing toward the169

fluid w, � is the surface tension, k is the in-plane interface curvature and ✓170

denotes the contact angle between the fluids interface and the plates (Fig. 3).171

The meniscus in the z-direction is approximated as a half-circle of radius h/2172

and the ⇡/4 correction for the in-plane curvature was derived by Park and173
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Homsy (1984). In Eq. 6, we neglected the additional terms that pertain to174

the formation of the dynamic film and scale non-linearly with the capillary175

number. We rather considered a non-zero contact angle, which minimizes176

the dynamic film left behind the meniscus.177

2.3. Volume-averaged flow equations178

Here, we proceed to the spatial averaging of the in-plane momentum179

transport equations, following the volume averaging method. This method180

has been largely employed for creeping two-phase flows at pore scale, either in181

its traditional acceptance (Whitaker, 1986; Lasseux et al., 1996; Chen et al.,182

2019) or with additional entropy relation, that is the thermodynamically con-183

strained averaging theory (TCAT) (Gray and Miller, 2005, 2014). We recall184

that all the flow variables and differential operators have components only185

in the transverse direction. According to the volume averaging framework186

(Whitaker, 1999) and recalling that Eq. 4 are two-dimensional, the tradi-187

tional averaging theorem for the depth-averaged quantity !̄i associated with188

the fluid i reads189

hr!̄ii = rh!̄ii+
1

S

Z

�ic

nic!̄i d�+
1

S

Z

�ij

nij!̄i d�, (7)

where,190

h!̄ii =
1

S

Z

Si

!̄i dS, (8)

is the superficial surface average and S is the surface of a representative ele-191

mentary cell. Applying the superficial surface average of Eq. 4 along with the192

averaging theorem and using traditional length-scale arguments (Whitaker,193

1999) we obtain194

r · hūii = 0, i = o, w, (9a)
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1

S

Z

�ic

nic ·
⇣
�piI+ µi

⇣
rūi + (rūi)

T
⌘⌘

d�+

1

S

Z

�ij

nij ·
⇣
�piI+ µi

⇣
rūi + (rūi)

T
⌘⌘

d��

µik
2hūii = "irhpiii + hpiiir"i, i, j = o, w, i 6= j, (9b)

where I is the 2⇥ 2 identity matrix and hpiii (hpiii = hpii/"i) is the intrinsic
surface average pressure of fluid i, with "i the volume fraction of fluid i. The
first integral is the drag force exerted upon the obstacle boundary by fluid
i and the second integral pertains to the drag force exerted upon fluid j by
fluid i. Here, we consider that the contour of the fluid-fluid interface in the
x � y plane can be identically translated along the z-direction, which is an
approximation since the meniscus is a half-circle for small h/L ratio. If the
variation of the saturation in space is negligible and acknowledging that, as
illustrated in Fig. 3, only the wetting fluid w is in contact with the obstacle,
a more compact form of Eq. 9b reads

0 = �"wrhpwiw � µwk
2hūwi+ dwc + dwo, (10a)

0 = �"orhpoio � µok
2hūoi+ dow, (10b)

where, dij (dij =
1
S

R
�ij

�i·nijd�) denotes the drag forces per unit surface area195

exerted upon phase j by phase i and which must be computed or modeled196

to obtain closed macroscopic equations.197

3. Direct numerical simulations198

In this section, we introduce the standard Level Set method to capture199

the moving free interface between the fluids, along with the flow equations,200
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Drag of...
upon...

Fluid o Fluid w

Plates �µohūoi 12h2 �µwhūwi 12h2

Obstacle - dwc

Fluid o - dwo

Fluid w dow -

Table 1: Summary of drag force terms involved in the averaged momentum transport
equation for two-phase flow in a Hele-Shaw cell (k =

p
12/h).

both solved with the finite element solver Comsol Multiphysics®. In the201

following, we are working on the direct calculation of each drag force terms202

summarized in Table 1.203

3.1. Equations204

The Level Set method is a Eulerian method that easily handles topological205

phase changes, in contrast with Lagrangian methods. Here, the fluid phases206

are identified with a phase color function that goes smoothly from 0 to 1207

across the fluid interface with the manifold defined as the iso-level � = 0.5.208

Transport of the level set function � is governed by209

@�

@t
+r · (ū�) = ⌧r ·

✓
 r�� �(1� �)

r�

|r�|

◆
, (11)

where ū is the depth-averaged velocity field and ⌧ and  are two numeri-
cal parameters that control the diffuse interface thickness and the amount
of initialization of � function, respectively (Olsson and Kreiss, 2005). The
same method has been used by Bashir et al. (2014) to reproduced the droplet
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generation in a 2D T-junction micromodel. We investigated the accuracy of
the implicit definition of the interface and the proper value of the initializa-
tion parameter by comparing the interface position to a boundary element
method (Nagel and Gallaire, 2015). We found that the inlet velocity is a
good value (it is often recommended to start with the maximum magnitude
of the velocity expected at the fluid-fluid interface as a first guess). We chose
for ⌧ a standard value (Olsson et al., 2007) depending on the maximum size
of mesh elements (i.e., ⌧ = max(�x)/2). The governing flow equations read

0 = r · ū (12a)

0 = �rp+ µ(�)

✓
r2ū� 12

h2
ū

◆
+ �

✓
⇡

4
r ·

✓
r�

|r�|

◆
� 2

h

◆
�(�)n, (12b)

where � is the Dirac delta function localized on the interface and n denotes210

the unit normal to the interface, respectively defined as,211

�(�) = 6 |r�| |� (1 + �)| , and n =
r�

|r�| . (13)

We introduce the following reference and dimensionless quantities,212

ū = ū0 ⇥ Ur, p = p0 ⇥ µrUr

L
, x = x0 ⇥ L, (14)

and the dimensionless continuity and momentum transport equations are

0 = r0 · ū0 (15a)

0 = �r0p0 +
µ(�)

µr

✓
r02ū0 � 12

(h/L)2
ū0
◆
+

�

µrUr

✓
⇡

4
r0 ·

✓
r0�

|r0�|

◆
� 2

h/L

◆
�0(�)n,

(15b)

with �0(�) = 6 |r0�| |� (1 + �)|. We therefore have three dimensionless num-213

bers: the viscosity ratio M(�) = µ(�)
µr

, the capillary number Ca�1 = �
µrUr

and214

the aspect ratio h⇤ = h/L.215
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3.2. Geometry, boundary conditions and simulation parameters216

Our macroscopic model is a Hele-Shaw cell with solid obstacles having217

cylindrical cross-section. This system is subdivided into seven unit-cell (UC)218

subdomains encompassing one obstacle, as depicted in Fig. 4. Seven were219

chosen to minimize computational costs based on the observation that, at220

steady-state, the impact of inlet and outlet boundaries is nearly limited to221

a single unit-cell, and that the phase distribution is quasi-periodic for the222

remaining unit cells (see Sec. 4.1). Taking advantage of the symmetry, we223

solved only for the upper half of a row. Each fluid flows from left to right (x-224

direction) and the inlet boundary conditions for both fluids are a constant225

normal inlet velocity ui. The outlet boundary condition for the flow is a226

reference pressure. These boundary conditions are summarized in Table 2.227

We choose the sum of the inlet velocity of both fluids as the reference velocity,228

so the dimensionless inlet velocities can be expressed as a fractional flow ff ,229

ff =
uw

Ut
, uo = 1� ff , with Ut = uw + uo. (16)

The non-wetting fluid’s viscosity was taken as the reference viscosity and the230

respective values of the dimensionless parameters are given in Tab. 3. Contact231

angle between fluid o (non-wetting) and the solid obstacles is ✓ = 0�. The232

initialization parameter value is equal to the maximum inlet velocity value,233

which yields maximum accuracy. As a reference, we conducted numerical234

simulations of one-phase flows and found that the gap range used in this235

study corresponds to intrinsic permeabilities between 1.5⇥104 and 40 darcy.236
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L

Figure 4: Schematics of geometry and initial conditions. We considered the upper half of
an array of seven cylindrical obstacles inside seven cuboids where both fluids are injected
from left to right. Initially, the model was saturated with wetting fluid (red), and the
width L of one Unit Cell (UC) is 5⇥ 10�4 m. Symmetry boundary conditions were used
on both length sides and the no-flow boundary condition was imposed at the obstacle
boundary.

Table 2: Boundary conditions for flow variables and the Level Set function (left) and
simulation parameters.

Boundary u p �

Outlet - 0 n ·r� = 0

Inlet o uo - 0

Inlet w uw - 1

17



Table 3: Parameters used for the direct numerical simulations.

Parameters Value Physical parameter

Ca = Utµo

� from 5⇥ 10�1 to 2.5⇥ 10�2 2.2⇥ 10�3 . � . 4.5⇥ 10�2 mN/m

Mw = µw

µo
1 µo = 10�3 Pa.s

ff = uw
Ut

1/4 Ut = 8⇥ 10�4 m/s

h⇤ = h/L from 5 to 1/20 and 2D case L = 5⇥ 10�4 m

3.3. Mesh sensitivity analysis237

Here, we study the mesh convergence of drag forces and averaged velocity.238

Three cases were investigated : (case A) Ca = 1.25 ⇥ 10�1, h⇤ = 1/4, (case239

B) Ca = 2.5⇥ 10�2, h⇤ = 1/10 and (case C ) Ca = 5⇥ 10�1, h⇤ = 5. Other240

parameters are kept constant, i.e., ff = 0.25 and M = 1. In Fig. 5 the results241

are normalized with respect to those obtained from the finest mesh and are242

given as a function of the relative number of mesh elements in the whole243

model, starting from 1000 triangular mesh elements as a basis. The fluid-244

fluid interface position for three different meshes is given in Fig. 5 (d) for245

the fourth unit-cell (UC4) and case B. We found that the drag terms are not246

very sensitive to the mesh density and that the interface between the fluids247

also converges relatively quickly. Therefore, in the following simulations, we248

use a mesh made of 4.3⇥ 104 elements.249

4. Results250

The results of the cocurrent two-phase flows in the aforementioned micro-251

model are organized as follows. We describe the flow regime observed with252

18



Figure 5: Mesh convergence study of (a) drag force exerted upon the obstacle, (b) intrinsic
average velocity of fluid o (c) drag force exerted upon the fluid-fluid boundary and (d)
position of the fluid-fluid interface for case B and for different number of mesh elements.
All the results are normalized with respect to the result obtained with the finer mesh,
denoted with \symbol, at steady-state and in UC4. Case A refers to Ca = 1.25 ⇥ 10�1,
h⇤ = 1/4, case B refers to Ca = 2.5⇥10�2, h⇤ = 1/20 and case C refers to Ca = 5⇥10�1,
h⇤ = 5. Other flow parameters are constant, ff = 0.25 and M = 1. In the following we
use a mesh made of 4.3⇥ 104 elements.

the selected parameters. The regime is fundamental as it drives the extent253

of the interfacial surface area between the fluids and therefore the amount of254

fluid-fluid drag. The saturation and the fluid-fluid interface are presented as255

a function of the gap thickness and capillary numbers. Then we discuss the256

effect of the flow confinement, i.e. the permeability, on the velocity and pres-257

sure fields. The main section discusses the value of each drag terms presented258
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in Eq. 10.259

4.1. Flow regimes and fluid saturations260

As previously discussed, the continuity of the non-wetting phase, and261

thus the flow regime, may vary in such systems. Here, the continuity of262

the non-wetting fluid, depends, among other things, on the fractional flow263

ff and the ratio of the transverse injection lengths of each fluid yi/L. We264

observed breakup of the non-wetting fluid for high fractional flow and small265

section of injection of this fluid, as shown in Fig. 6. The state diagram was266

obtained for Ca = 2.5 ⇥ 10�2 and a thin gap h⇤ = 1/20, which is the most267

favorable case for phase breakage, due to greater capillary effects, among the268

parameters we used. We focus on the film-flow regime in the following, so we269

chose to perform all the simulations with a low fractional flow (ff = 0.25)270

and a medium inlet section (yo/L = 0.5). For these parameters, we observed271

that the two fluids remain continuous at all times and for the entire range272

of tested capillary numbers and gap thickness, as described in Table 3. The273

interface between the fluids becomes stationary and steady-state is reached274

for every capillary number and values of gap thickness.275

As an example, Fig. 7 shows the initial, intermediate, and final config-276

urations of the fluid distribution for Ca = 1.25 ⇥ 10�1 and h⇤ = 1/8. The277

fluid-fluid interface is periodic on the five central unit cells at steady-state278

whereas the interface is slightly deformed at the inlet and outlet cells, under279

the influence of boundary conditions.280

The penetration of the non-wetting fluid shown in Fig. 7 does not result281

from an unstable displacement, i.e. viscous fingering, since both fluids have282

the same viscosity. Here, non-wetting phase break-up could have occurred283
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Figure 6: State diagram of the non-wetting phase (in yellow) connectivity during cocurrent
two-phase flows in our modified Hele-Shaw cell. The results are given as a function of the
fractional flow and the dimensionless inlet length of the non-wetting fluid yo/L. Here,
h⇤ = 1/20 and Ca = 2.5 ⇥ 10�2. Breakup of the non-wetting fluid occurred for high
fractional flow and small dimension of the inlet.
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(a)

(b)

(c)

Volume fraction of non-wetting fluid

Figure 7: Fluids distribution along the upper half-row at (a) the initial time, (b) an
intermediate time and (c) the final time (steady-state reached) for Ca = 1.25 ⇥ 10�1,
ff = 0.25, M = 1 and h⇤ = 1/8. At steady-state the fluid-fluid interface taken on the
central unit cells is periodic whereas it is slightly deformed in the first and last UC under
the influence of the boundary conditions.

either by snap-off phenomenon or because of the shear exerted by the wet-284

ting fluid. However, the pore throat is large and the fractional flow is low,285

which favors the continuity of the non-wetting fluid phase. The flow-regime286

observed is therefore a film-flow regime within the limit of the parameters287

chosen for this study.288

Fig. 8 shows the wetting fluid saturation at steady-state as a function of289

the dimensionless gap between the plates and for different capillary numbers.290

Wetting fluid saturation at steady-state decreases, on average, from 0.6 to291

0.4 as the dimensionless gap between the plates decreases from 5 to 1/20.292
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The results for the largest gaps are very close to the purely 2D results. The293

saturation fields insets in Fig. 8 indicate that the fluid-fluid interfaces are294

very similar for the thinnest gaps, whereas they differ significantly according295

to the capillary number for thicker gaps. This last point explains the differ-296

ent saturation we observed. Indeed, for low capillary numbers, the interface297

is flatter than for high capillary numbers, as shown in Fig. 9. Two config-298

urations are possible, either the capillary number is high and the fluid-fluid299

interface is mostly translated toward the pore throat as the gap increases, or300

the capillary number is low enough that the fluid-fluid interface is deformed301

(flattened) and also pushed towards the pore throat for an increasing gap302

thickness. Another important feature that plays a role at the interfacial drag303

is the symmetry of the fluid-fluid interface, as can be seen from Fig. 9. The304

interface tends to be symmetric when the gap becomes very thin for any305

capillary number, and it also tends to be symmetric, whatever the gap, when306

the capillary number is large. These different fluid configurations might lead307

to substantial differences in the velocity and pressure fields, for example by308

forming a narrow channel with high local velocity, which would also impact309

the amount of drag.310

4.2. Pressure and velocity fields311

Fig. 10 shows the pressure field for selected values of capillary number312

and gap thickness. The main result here is that the pressure jump across313

the fluid-fluid interface is very difficult to distinguish for the largest value of314

the capillary number Ca = 5⇥ 10�1, especially for the thinnest gap. This is315

because the main pressure contribution to the pressure jump arises from the316

out-of-plane curvature and thus scales as h�1, whereas the pressure gradient317
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2D
 ca

se

Figure 8: Fluid saturation at steady-state in UC4 as a function of the dimensionless gap
and for different capillary numbers. Fields of the level-set function at steady-state in
UC4 are given for the selected value of the dimensionless gap and Ca = 1.25 ⇥ 10�1.
Wetting fluid hold-up increases for thicker gaps. The 2D limit case is given with plain
black markers.

across the cell scales as h�2 for the very thin gap, for which the Darcean318

terms are expected to be dominant. In contrast, the pressure jump is visible319

for the smallest value of the capillary number Ca = 2.5 ⇥ 10�2. In this last320

case, we see that the pressure is higher in the non-wetting fluid, which is in321

agreement with the orientation of the out-of-plane meniscus.322

Fig. 11 shows the velocity field, normalized with respect to the reference323

velocity, for the same parameters as for the pressure fields. The corresponding324

streamlines and the position of the fluid-fluid interface are also presented for325

three different cases. For the thinnest gap (h⇤ = 1/20), the velocity fields are326

alike regardless of the capillary number. In this case, the maximum velocity is327
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Figure 9: Comparison of the fluid-fluid interface at steady-state in UC4 for different
dimensionless gaps between the plates. The interfaces are almost symmetric about the
y-axis for a very thin gap for (a) Ca = 5⇥ 10�1 and (b) Ca = 1.25⇥ 10�1. The interfaces
are flattenned for larger gaps for (c) Ca = 2.5⇥ 10�2. Here, ff = 0.25 and M = 1).

reached in the center of the pore throat and between the fluid-fluid interface328

and the obstacle boundary. For the thickest gap, the velocity field depends on329

the capillary number. Either the capillary number is high and the maximum330

velocity is reached precisely in the center of the pore throat or the capillary331

number is low and the maximum velocity is slightly offset from the center332

overhang the fluid interface directly where it forms a narrower constriction.333

In this case, we also notice that recirculation cells develop in the wetting334

fluid. This observation is a direct manifestation of the momentum transfer335

between the two fluids (see also Alamooti et al. (2020)) and indicates that the336

fluid-fluid interface should not be treated similarly to fluid/solid boundaries,337

or at least not as a fixed wall. In the following, we study the drag force terms338

between phases and the effect of permeability and capillary number on them.339
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Figure 10: Comparison of the pressure field for two capillary numbers Ca = 5⇥ 10�1 (top
row), Ca = 2.5 ⇥ 10�2 (bottom row) and two dimensionless gap thickness, with h⇤ = 5

(left column) and h⇤ = 1/20 (right column). The solid black line denotes the fluid-fluid
interface given by the contour � = 0.5. Results in UC4 at steady-state for ff = 0.25 and
M = 1. The pressure jump across the fluid is not discernable for a high capillary number,
regardless of the gap’s thickness, as opposed to pressure fields for a small capillary number.
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Figure 11: Comparison of the velocity field for two capillary numbers Ca = 5⇥ 10�1 (top
row), Ca = 2.5 ⇥ 10�2 (bottom row) and two dimensionless gap thickness, with h⇤ = 5

(left column) and h⇤ = 1/20 (right column). The solid green line denotes the fluid-fluid
interface given by the contour � = 0.5. Results in UC4 at steady-state for ff = 0.25

and M = 1. Recirculation cells appeared for low capillary number and thin gaps, which
illustrate the momentum transfer from the core fluid o to the wetting fluid w.
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4.3. Drag forces between phases340

We are only interested in the x-component of the drag forces, dij, because341

it is the main flow direction and we expect that @ypi ⌧ @xpi. We also know342

from the symmetry of the problem that the gradient of the average pressure343

in the y-direction is zero. We start from the sum of the superficial mean344

pressure drops, from Eqs. 10,345

@xhpwi+ @xhpoi| {z }
@xP

= �12

h2
(µwhuwi+ µohuoi) + dwc

| {z }
ds

+ dow + dwo, (17)

with @xP the total pressure drop and ds the sum of all fluid-solid drag forces.346

The two pressure drops are plotted against the dimensionless gap thickness347

for different capillary numbers in Fig. 12. Both mostly depend on the gap348

thickness. For large gaps h⇤ � 1/2, the pressure drops tend gently towards349

the smaller pressure drop obtained for 2D flow. For smaller gaps h⇤ < 1/2,350

the pressure drops scale as h�2, the same as the drag upon the plates. We351

noticed that, if dwo ⇡ �dow, then @xP ⇡ ds, recalling that dij stands for the352

x-component of the drag force dij. To check whether this is the case, we353

calculated the following integral, from Eq. 6,354

dwo = �dow +

Z

�ow

�

✓
⇡

4
k +

2

h
cos ✓

◆
now · ex d�

| {z }
Ic

. (18)

Fig. 13 shows the integral Ic normalized with respect to the fluid-fluid drag.355

Ratio between Ic and dow is at a maximum (⇡ 0.1) for the smaller Ca and356

h⇤ = 1/4, then it decreases for thinner gaps, since the fluid-fluid interface357

tends to be symmetric about the y-axis, thus
R
�ow

now ·ex d� tends to zero. In358
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Figure 12: Pressure drop across the model as a function of the dimensionless gap thickness
for each fluid. (a) Ca = 5 ⇥ 10�1 and (b) Ca = 2.5 ⇥ 10�2. Here, M = 1, ff = 0.25

and the results are in UC4. The results from 2D Stokes equation are given with the black
markers. The pressure drop scales as h�2 for thin gaps h⇤  1/4 for all values of Ca.

Ic, the contribution from the out-of-plane meniscus dominates by an order of359

magnitude over the contribution of the in-plane curvature for small gaps h⇤ 360

1/4, whereas both contributions are equivalent for larger gaps. Consequently,361

the fluid-fluid drag contributions cancel each other in Eq. 17, dwo ⇡ �dow in362

the following and the total pressure drop is approximately equal to the sum363

of the fluid-solid drag.364

Fig. 14 shows the relative part of each fluid-solid drag force in the total365

pressure drop (@xP ). For 2D flows, the total pressure drop is entirely due to366

the wetting fluid drag upon the cylinder. For very thin gaps, about half of367

the mean pressure drop is due to the drag upon the cylinder, whereas the368

other half is due to the drag upon the plates. In all cases, the total pressure369

drop can be approximated by the sum of all the fluid-solid drag forces, as370
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Figure 13: Value of the integral Ic in Eq. 18, non-dimensionalized by the fluid-fluid drag,
as a function of the dimensionless gap thickness. Here, M = 1, ff = 0.25 and the results
are in UC4. The results from 2D Stokes equation are given with the black markers.
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Figure 14: Part of the total mean pressure drop produced by the drag upon the obstacle
and upon the plates by each fluid for different dimensionless gap thickness. Results are
given for Ca = 5⇥ 10�1 only since the allocation is very alike for other value of Ca. Here,
M = 1, ff = 0.25 and the results are in UC4 at steady-state. The total pressure drop is
the sum of the mean pressure gradient of each fluid (rP = rhpwi+rhpoi).

predicted by Eq. 17.371

We now turn to the fluid-fluid drag force. Fig. 15 shows the part of each372

drag force in the pressure drop of the non-wetting fluid and wetting fluid.373

Focusing on the fluid-fluid drag, we notice that its part in the pressure drop374

is not negligible, even for very thin gaps, since it reaches approximately 40%375

of @xhpii for h⇤ = 1/20, whatever the value of Ca. This part increases for376

thicker gaps (i.e. for higher permeability) up to the maximum value reached377

for the 2D flow. As an example, the pressure drop of the non-wetting fluid is,378

logically, entirely due to the fluid-fluid drag force for a 2D flow. Now, looking379

at the other drags, we notice that the drag upon the obstacle is higher than380

the drag upon the plates, the former generates, at least, approximately 60%381

of the pressure drop of the wetting fluid. It is interesting to observe that382
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the relative part of each drag remains quite constant for thin gaps h⇤ < 1/4,383

which indicates that for thin gaps all the drag forces scales the same, and384

precisely scale as h�2, as previously observed by looking at the pressure385

drops. A discrepancy is observable between the pressure drop and the sum386

of the drags for thick gaps and small Ca, due to the approximations when387

considering that the two drag forces are equal. Finally, the main findings here388

are that the fluid-fluid drag force is non-negligible compared to the fluid-solid389

drag forces and that the relative importance of this drag increases with the390

gap, therefore with the permeability. We also observe that the relative part of391

each drag is constant for very thin gaps h⇤  1/4. In the following paragraph,392

we present a scaling argument to explain this finding.393

The limit case of very thin gaps is best described by Darcy’s law. The394

pressure drag can be written as dpij = � 1
S

R
pinij · ex d� and the viscous drag395

as dµij =
�
1
S

R
µirhuii · nij d�

�
· ex. Estimation of the pressure is given, in396

the thin-gap regime, by Darcy’s law as p ⇡ Lhuiµ/h2. Since the viscous397

stress can be estimated as µhui/L, the ratio between these two terms scales398

as L/h, and the viscous drag is negligible in front of the pressure drag when399

L/h � 1. Now, the pressure term is applied on a contour of length L, so400

dpf ⇡ huiµ/h2. Consequently, the pressure drag at the fluid-fluid interface401

scales as the drag upon the plates. The features of the thin-gap regime,402

defined as h⇤  1/4, are (i) the pressure drag dominates over the viscous403

drag, which is negligible, and (ii) the pressure drag scales as the drag upon404

the plates, and the fluid-fluid drag is not negligible. All drag forces scale the405

same in this latter regime.406

This scaling reasoning can be checked by looking at the pressure and407
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Figure 15: Part of the drag forces in the mean pressure gradient of a given fluid. Results
are given for each dimensionless gap thickness and capillary number. (a) fluid o and (b)
fluid w for Ca = 5 ⇥ 10�1, (c) fluid o and (d) fluid w for Ca = 1.25 ⇥ 10�1, (e) and (f)
fluid o and w, respectively, for Ca = 2.5⇥ 10�2. The sum of all drag forces is given with
the black markers. Here, M = 1, ff = 0.25, and the results are in UC4 after steady-state
was reached. The discrepancy for thick gaps and low Ca comes from the approximation
made by considering that the fluid-fluid drag forces are equal.
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viscous drag in the fluid-fluid drag force408

dij =
1

S

Z

�ij

�pinij · ex d�
| {z }

dpij

+
1

S

Z

�ij

nij · µi

⇣
rui + (rui)

T
⌘
· ex d�

| {z }
dµij

. (19)

Fig. 16 shows the relative part of the viscous (dµf ) and pressure terms409

(dpf ) in the fluid-fluid drag. The viscous term is negligible compared to the410

pressure part for very thin gaps h⇤  1/4 and for every value of Ca, as411

previously shown. In contrast, the viscous drag dominates over the pressure412

drag for low Ca and very thick gaps. Both terms are important for high Ca413

and thick gaps/2D flow.414

Figure 16: Part of viscous and pressure drag into the fluid-fluid drag force for different
dimensionless gap thickness. (a) Ca = 5 ⇥ 10�1 and (b) Ca = 2.5 ⇥ 10�2. Here, M = 1,
ff = 0.25, and the results are obtained in UC4 at steady-state. The viscous drag is
negligible compared to the pressure drag for thin gap h⇤  0.25.

5. Conclusions415

The question of active or passive fluid-fluid interface (i.e. allows or not416

momentum exchange from one fluid to another) is of major concern for two-417

34



phase flows in microfluidic devices, and by extension in porous media. This418

issue has been treated recently for remobilization of ganglia, for which the419

drag exerted by the surrounding flowing fluid is capital. Although not man-420

ifesting itself in such a visual way, fluid-fluid drag may also be important in421

the case of continuous film flow (i.e. the two fluids are flowing adjacently422

in the same channel), as the common interface is large. We addressed this423

question by numerical simulations in a modified Hele-Shaw cell, which al-424

lows calculating the contribution from the viscous shear, but also from the425

pressure contrary to the previous work, in the fluid-fluid drag.426

We found that the fluid-fluid drag is not negligible, even for small gaps427

between the cell’s plate (i.e. increasing solid-fluid friction). For an increasing428

gap, the fluid-fluid drag is more and more important to predict the pressure429

drop, especially for high capillary numbers. As an example, for Ca = 0.5,430

the fluid-fluid drag represents between 30% to 65% of the non-wetting fluid’s431

pressure drop for a dimensionless gap increasing from 1/20 to 1. Also, we432

found that the pressure contribution may overcome the viscous shear contri-433

bution for smaller gaps.434

The main limit of this work is the presence of the cylindrical solid ob-435

stacles between the cell’s plates, also discussed in past similar works. The436

no-flow boundary condition induced a more complex flow field near the ob-437

stacle that is not well reproduced by the depth-averaged 2D flow equation.438

However, this issue is not strengthened by increasing the gap, which allows439

us to compare the results as we have done. These findings are important440

to predict and model two-phase flows in microfluidic devices when film-flow441

regimes are expected. They also add arguments in favor of taking into ac-442
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count the coupling between the two fluids in the large-scale flow equations443

used for highly permeable media, as film flow is a common regime in such444

porous media. Further work could investigate the dynamic film effects in the445

case of zero contact angle between the cell plates and the impact on the drag446

forces on them. However, this likely requires computationally intensive 3D447

flow calculations in order to accurately capture the films.448
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Appendix A. Comparison between 3D and depth-averaged 2D one-639

phase flows640

In this appendix section we compare 3D and depth-averaged 2D one-641

phase flows to illustrate the impact of the gap thickness. The geometry is642

the same as used previously (3D model is obtained by an extrusion). First,643

Fig. A.17 shows the velocity profile (x-component) along a line from the tip of644

the cylindrical obstacle to the center of the pore (along y-axis) as a function645

of the dimensionless gap thickness. We observe a difference between the 2D646

and 3D results, even for a small gap thickness. This is due to the cylindrical647

solid obstacles that which locally disturbs the velocity field and which can648

only be obtained by 3D models. We note that this effect is not amplified649

by going outside the theoretical validity domain (h/L ⌧ 1), and that the650

depth-averaged 2D model is still effective.651

This has an impact on the calculation of the drag on the cylindrical652

solid obstacle. As shown in Fig. A.18, the drag per unit of surface is well653

reproduced for gaps as large as h/L = 2.654
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Figure A.17: Normalized velocity (x-component) profile along the line that goes from the
tip of the obstacle to the center of the cell (along the y axis), for 2D depth-integrated and
integrated 3D flow as a function of the dimensionless gap thickness.

Figure A.18: Drag (x-component) per unit of surface, for 2D depth-integrated and 3D
flows as a function of the dimensionless gap thickness.
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