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In this paper we suggest a Port Hamiltonian model of the solidification process of water, using the phase field approach. Firstly, the Port Hamiltonian formulation of the dynamics of the phase field variable, governed by the Allen-Cahn equation, is recalled. It is based on adding to the phase field variable, its gradient, and extending the system with its dynamics. Secondly, the model is completed by the energy balance equation for the heat conduction and the complete Port Hamiltonian model is derived. Thirdly a Algebro-differential Port Hamiltonian representation is suggested, where the Port Hamiltonian system is defined on a Lagrangian submanifold, allowing to use directly the variables defining the thermodynamical data.

INTRODUCTION

The deterioration of the environment through the discharge of wastewater, harmful to the flora and the fauna, leads also to the shortage of clean water ressources. In this context, the green processes development like melt crystallization of water may provide a low energy solution and simultaneously enables the minimization of use of hazardous material [START_REF] Yin | Progressive freezing and suspension crystallization methods for tetrahydrofuran recovery from Grignard reagent wastewater[END_REF]). In this paper, we suggest a structured Port Hamiltonian model of the solidification process in order to provide numerical models suitable for the simulation, design and control of such a processes. The companion paper of [START_REF] Bendimerad-Hohl | Structure-preserving discretization of a coupled Allen-Cahn and heat equation system[END_REF]) gives the procedure to derive a finite-dimensional discretized model preserving the Port Hamiltonian structure. The main challenge to establish this solidification model is the moving interface between the solid and the liquid phase.

Two approaches are possible. The first one, called thin interface approach, consists in describing the interface as the boundary of the spatial domains of each phase, using for instance their characteristic functions. The second one called diffuse interface approach, consists in introducing a function called phase field that is a smooth approximation of the characteristic function of the domain. The boundary is replaced by a narrow interface layer corresponding to intermediate values of the phase field variable.

⋆ The authors acknowledge the support of the projects of the French National Research Agency "Implicit Port Hamiltonian control systems" IMPACTS (ANR-21-CE48-0018) see https://impacts.ens2m.fr/ and WATERSAFE (ANR-20-CE04-0002): "Wastewater purification by solidification: Simulation by the Phase Field method (WATERSAFE)".

In this paper we suggest a Dissipative Port-Hamiltonian formulation of a solidification process. Port-Hamiltonian systems are a modelling framework, allowing the thermodynamically consistent representation of open physical systems [START_REF] Duindam | Modeling and Control of Complex Physical Systems -The Port-Hamiltonian Approach[END_REF]; van der Schaft and Jeltsema (2014)) and well-suited for representing open thermodynamical processes (Ramirez et al. (2013b,a); [START_REF] Favache | An entropy-based formulation of irreversible processes based on contact structures[END_REF]).

The Port-Hamiltonian formulation of systems with moving interface has been proposed following both approaches, considering sharp interfaces in [START_REF] Diagne | Port Hamiltonian formulation of a system of two conservation laws with a moving interface[END_REF]) and diffuse interfaces [START_REF] Vincent | Port Hamiltonian systems with moving interface: a phase field approach[END_REF]). In this paper we shall elaborate on the phase field approach and extend the model Port Hamiltonian formulation of the Allen-Cahn equation formulated by [START_REF] Vincent | Port Hamiltonian systems with moving interface: a phase field approach[END_REF] by coupling it to the heat diffusion to an extended Port Hamiltonian system. In the section 2, we shall recall the definition of Port Hamiltonian systems and recall the Port Hamiltonian formulation of the phase field variable dynamics described by the Allen-Cahn equation [START_REF] Vincent | Port Hamiltonian systems with moving interface: a phase field approach[END_REF]) and finish with its extension to the complete process of solidification. In the section 3, we shall recall the thermodynamical properties of the water and ice and their extension to a biphasic model with diffuse interface, including the phase field variable. In the section 4, we shall reformulate the Port Hamiltonian model of section 2, using the entropy as generating function, but using an formulation as a Differential-Algebraic Partial Differential Equation system, or a Implicit Port Hamiltonian System [START_REF] Maschke | Linear boundary Port Hamiltonian systems defined on Lagrangian submanifolds[END_REF]; van der Schaft and Maschke (2021)), thereby expressing the dynamics in terms of intensive rather than extensive variables. In this section, we present a Port Hamiltonian formulation of the phase field model of a solidification process, following the thermodynamic approach of [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF]). This model consists in coupling the energy balance equation with the Allen-Cahn equation, taking the entropic form of the Gibbs' equation. This leads to extend the Port Hamiltonian formulation of the Allen Cahn equation of [START_REF] Vincent | Port Hamiltonian systems with moving interface: a phase field approach[END_REF]) by coupling it to the Port Hamiltonian model of heat diffusion model.

Reminder of the solidification model

Following the phase field approach, [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF]) present a model of a solidification process, consisting in a closed system of volume V in which a pure material undergoes a phase transition between solid and liquid.

Thermodynamic model This model corresponds to the diffuse interface model of bi-phasic systems where the spatial localization of the two phases is represented by the continuous phase field variable ϕ. ϕ takes values in the interval [0, 1], taking value 0 for the solid state, 1 for the liquid state and intermediate value at the diffuse interface (see the figure 1). The authors write the entropy balance equation and use Gibbs' equation in the entropy form1 :

ds = ∂s ∂ϕ dϕ + τ du (1)
where s denotes the entropy density, u the internal energy density and τ the reciprocal temperature τ = ( ∂s ∂e ) ϕ = ( 1 T ). The total entropy functional of the bi-phasic system is expressed by the Landau-Ginzburg entropy functional:

S(ϕ, u) = V s(ϕ, u) - 1 2 ϵ 2 (grad ϕ) 2 dv, (2) 
where the quadratic term accounts for the entropy of the diffuse interface, ϵ is a constant related to the thickness of the interface (see [START_REF] Boettinger | Phase-field simulation of solidification[END_REF]; [START_REF] Kobayashi | Modeling and numerical simulations of dendritic crystal growth[END_REF]) and s(ϕ, u) is the entropy density function associated with Gibbs' equation ( 1).

Dynamic equations

The dynamical model consists first in the energy balance equation:

∂u ∂t = -div q (3)
where q denotes the heat flux

q = M τ F (4)
and F the driving force F = -grad(τ ) ( 5)

where

M τ = λ( 1 τ ,ϕ)
τ 2 , λ being the thermal conductivity2 . It is coupled to the relaxation dynamics of the phase field variable ϕ, the gradient system called Allen Cahn equation:

η ∂ϕ ∂t = ∂s ∂ϕ (ϕ) + div(ϵ 2 grad ϕ) = - δ(-S) δϕ , ( 6 
)
where η is the positive interface mobility and δS δϕ denotes the variational derivative of the functional S with respect to ϕ.

Reminder on the dissipative Port Hamiltonian Systems

Consider the following dissipative systems :

∂x ∂t (t, z) = (-G R RG * R ) δH δx , (7) 
where x(t, z) ∈ R n is the state variable defined on the spatial domain V and a time interval in R + , H is the Hamiltonian functional, R is a positive, coercive matrix operator and G R is a matrix differential operator (G * R denoting its formal adjoint).

Its Port Hamiltonian formulation is the defined by considering the Hamiltonian matrix differential operator

J e = 0 G R -G * R 0 , (8) 
and decomposing the system (7) into

  ∂x ∂t F   = J e δH δx Q (9) 
where the driving force F and the flux Q variable are related by the dissipative relation :

Q = R F (10)
The Port Hamiltonian system is then obtained by augmenting the system with boundary port variables (the interface variables of the system at its boundary) associated with the Stokes-Dirac structure defined by the Hamiltonian operator J e (van der Schaft and [START_REF] Van Der Schaft | Hamiltonian formulation of distributed-parameter systems with boundary energy flow[END_REF]). These boundary port variables are by linear functions of the trace of the vector δH δx Q ⊥ .

Example: the heat conduction The energy balance equation (3) and the definition of the driving force (5) leads to the Dissipative Port Hamiltonian formulation (9

) (10) with G R = -div and R = M τ :   ∂u ∂t F   = 0 -div -grad 0 ∂s ∂u q (11)
The associated pair of boundary port variables is :

f ∂ e ∂ = W e = γ 0 δs δu -γ ⊥ q (12)
where the boundary operator W is defined as:

W = γ 0 0 0 -γ ⊥ (13)
and γ 0 is the Dirichlet trace map and γ ⊥ is the normal trace map, [START_REF] Kurula | The duality between the gradient and divergence operators on bounded Lipschitz domains[END_REF]).

Port Hamiltonian formulation of the Allen-Cahn equation

We briefly recall now the dissipative Hamiltonian formulation of the Allen-Cahn equation as suggested by [START_REF] Vincent | Port Hamiltonian systems with moving interface: a phase field approach[END_REF]). The state space representation is augmented with the new state :

ψ = grad ϕ (14) 
leading to define the extended state vector : (ϕ, ψ, u). The Landau-Ginzburg entropy functional (2) is then written :

S(ϕ, ψ, u) = Ω s(ϕ, u) - 1 2 ϵ 2 ψ 2 dV (15)
Let us now compute the variational derivative δS δϕ in (6) in terms of S(ϕ, ψ, u) :

δS δϕ = δ S δϕ -div ∂ S ∂ψ := F ϕψ (16) 
Defining

E ϕψ = - ∂ϕ ∂t (17) 
the gradient dynamics ( 6) is expressed by the following dissipative constitutive relation

E ϕψ = 1/ηF ϕψ (18)
The dynamics of the added state variable ψ is then easily obtained by permutation of the spatial and time derivatives :

∂ψ ∂t = ∂ ∂t gradϕ = grad ∂ϕ ∂t = -grad E ϕψ (19) 
Hence the Allen-Cahn equation augmented with the dynamics of the added variable ψ admits the Dissipative Port Hamiltonian formulation (9) (10):

    ∂ϕ ∂t ∂ψ ∂t F ϕψ     = 0 0 -1 0 0 -grad 1 -div 0      δ(-S) δϕ δ(-S) δψ E ϕψ      (20) 
with G R = -1 -grad and R = η.

Once again with the aid of [START_REF] Kurula | The duality between the gradient and divergence operators on bounded Lipschitz domains[END_REF]), the boundary port variables of the Port Hamiltonian formulation of the Allen-Cahn equation are :

f ϕψ ∂ e ϕψ ∂ = W e ϕψ =   -γ ⊥ δ(-S) δψ γ 0 E ϕψ   (21)
with the boundary operator W :

W = 0 -γ ⊥ 0 0 0 γ 0 (22)

Port Hamiltonian formulation of the solidification process

Recalling that δ S

δu = ∂s ∂u = τ (23) 
the Dissipative Port Hamiltonian formulation of solidification process is obtained by assembling ( 11) and ( 20)

          ∂ϕ ∂t ∂ψ ∂t F ϕψ ∂u ∂t F           = J        - ∂s ∂ϕ (ϕ, u) ϵ 2 ψ E ϕψ -τ q        (24) 
with Hamiltonian matrix differential operator

J =      0 0 -1 0 0 0 0 -grad 0 0 1 -div 0 0 0 0 0 0 0 -div 0 0 0 -grad 0      (25) 
and Hamiltonian functional -S defined in (15), completed with the two dissipative relation ( 4) and ( 18).

The associated boundary operator W are also obtained by assembling the boundary operators of the heat conduction and the augmented Allen-Cahn equation :

W =    0 -γ ⊥ 0 0 0 0 0 0 γ 0 0 0 0 0 0 0 0 γ 0 0 0 0 0 0 0 -γ ⊥    ( 26 
)
and the extended pair of boundary port variables is :

    f ϕψ ∂ e ϕψ ∂ f ∂ e ∂     = W        - ∂s ∂ϕ (ϕ, u) ϵ 2 ψ F ϕψ -τ q        =    -γ ⊥ (ϵ 2 ψ) γ 0 (1/ηE ϕψ ) γ 0 τ -γ ⊥ M τ (-grad(τ ))   (27)
It may be shown, from [START_REF] Vincent | Port Hamiltonian systems with moving interface: a phase field approach[END_REF]; [START_REF] Kurula | The duality between the gradient and divergence operators on bounded Lipschitz domains[END_REF]), that the operator J in (25) and the boundary operator W in (26) define a Stokes-Dirac structure van der Schaft and [START_REF] Van Der Schaft | Hamiltonian formulation of distributed-parameter systems with boundary energy flow[END_REF].

From the properties of a Stokes-Dirac structure, one may deduce the neg-entropy balance equation :

d(-S) dt = - V E ϕψ F ϕψ dV - V q F dV - ∂V ẽ∂ f∂ dS (28)
which becomes, by means of the dissipation relations ( 4) and ( 18)

d(-S) dt = - V ηF 2 ϕψ dV - V M τ F 2 dV + ∂V ẽ∂ f∂ dS (29)
where the two first terms corresponds to the irreversible entropy production due to the gradient dynamics of the phase field and the heat conduction and the third one corresponds to the external entropy flow flowing into the system.

THERMODYNAMIC PROPERTIES USING PHASE FIELD

The objective of this section is to present how to compute extended thermodynamic properties from the thermodynamics properties of the liquid water and ice.

Thermodynamic properties of liquid water and ice

Thermodynamics properties of the liquid water and ice are practically found in literature (IAPWS (2009a)) and (IAPWS (2009b)). The provided thermodynamic potential is the Gibbs energy expressed as a function of temperature and pressure. The expression of the specific Gibbs energy of the liquid phase is as follows:

g liq (T, p)/g * = 7 j=0 6 k=0 g jk τ i π k (30)
with the reduced temperature τ = (T -T 0 )/T * and the reduced pressure π = (p -p 0 )/p * . The constants T 0 , p 0 , T * , p * , g * and the g jk are given in (IAPWS (2009b)). In a same way the expression of the specific Gibbs energy of the solid phase is as follows:

g sol (T, p) = g 0 (p) -s 0 T t τ + T t Re 2 k=1 r k (t k -τ ) ln(t k -τ ) + (t k + τ ) ln(t k + τ ) -2t k ln(t k ) - τ 2 t k (31) with g 0 (p) = 4 k=0 g 0k (π -π 0 ) k and r 2 (p) = 2 k=0 r 2k (π - π 0 ) k , τ = T /T t , π = p/p t
, and π 0 = p 0 /p t . All The constants T t , p t , p 0 , s 0 , g 0 , r 1 as well as the g ok , r 2k , t k are given in (IAPWS (2009a)). From the expression of these state equations, other specific thermodynamic quantities as entropy, Helmotz energy and density for each phase can be derived from standard thermodynamic computations (see IAPWS (2009a), IAPWS (2009b) and [START_REF] Callen | Thermodynamics and an Introduction to Thermostatistics[END_REF]. As an example the specific Helmotz energy f ⋆ , the specific entropy s ⋆ as a function of temperature and pressure and the density ρ ⋆ as well as the heat capacity c p ⋆ can be deduced from g ⋆ for ⋆ = sol, liq by the formulas:

f ⋆ (T, p) = g -p ∂g ⋆ ∂p (32) s ⋆ (T, p) = - ∂g ⋆ ∂T (33) ρ ⋆ (T, p) = ∂g ⋆ ∂p -1 (34) c p ⋆ (T, p) = -T ∂ 2 g ⋆ ∂T 2 (35)
Finally we give some values of these properties at the melting temperature (273.15K) at atmospheric pressure. 

The extended Equation of State

For sake of brevity, we restrict our attention to the extended specific entropy s assuming constant density. The stability principle of thermodynamics when two phases are present requires ( see [START_REF] Callen | Thermodynamics and an Introduction to Thermostatistics[END_REF]):

∂s ∂ϕ ϕ=0 = ∂s ∂ϕ ϕ=1 and ∂ 2 s ∂ϕ 2 ϕ=0,1 < 0. (36) 
From the constraint that at equilibrium the variational derivative of the Landau-Ginzburg entropy functional: must be equal to 0 in each phase (grad ϕ = 0), we have (see [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF]; [START_REF] Boettinger | Phase-field simulation of solidification[END_REF]): ∂s ∂ϕ ϕ=0,1 = 0 and

∂ 2 s ∂ϕ 2 ϕ=0,1 < 0. ( 37 
)
Let us follow the method proposed in [START_REF] Boettinger | Phase-field simulation of solidification[END_REF] to obtain the extended specific entropy function:

s(ϕ, T ) = s sol (T ) + p i (ϕ)[s liq (T ) -s sol (T )] + wp w (ϕ) (38) with p i (ϕ) = ϕ 3 (6ϕ 2 -15ϕ + 10), p w (ϕ) = -ϕ 2 (1 -ϕ) 2
where s liq , s sol represent the specific entropy of pure water and of pure ice respectively. p w (ϕ) is the doublewell polynomial and p i (ϕ) is the interpolating polynomial. This choice of p i ensures that ∂s ∂ϕ ϕ=0,1 = 0 . w gives the tuning of the hollow between the two local maximum (see [START_REF] Boettinger | Phase-field simulation of solidification[END_REF]). w must be positive in order to [START_REF] Callen | Thermodynamics and an Introduction to Thermostatistics[END_REF]). Figure 2 shows the extended entropy for water and ice.

check ∂ 2 s ∂ϕ 2 ∂ 2 s ∂u 2 -∂ 2 s ∂ϕ∂u 2 > 0 (see

IMPLICIT PORT HAMILTONIAN SYSTEM

In the Port Hamiltonian formulation of the section 2, the Hamiltonian function is the entropy functional (2) which depends on the internal energy u and the phase field variable ϕ and its gradient ψ. In the section 3, the practical Fig. 2. Extended specific entropy with w = 18 103 definition of the thermodynamic properties of the bi-phasic water-ice system has been given, leading to the expressions of the entropy density (38) depending on the temperature rather than the internal energy. That means that we need to change a coordinate of the state space from the internal energy u, an extensive variable, to the temperature T , an intensive variable.

In this section, we reformulate the Port Hamiltonian model from Section 2, through the definition of the Implicit Port Hamiltonian formulation. For these systems, the energy function is actually not defined explicitly but rather by a set of constitutive relations between the extensive and intensive variables, satisfying the Maxwell reciprocity conditions. The graph of these relations have a geometrical interpretation as Lagrangian submanifolds which allow the definition of reciprocal constitutive equations in a coordinate free way (van der Schaft and [START_REF] Van Der Schaft | Generalized port-Hamiltonian DAE systems[END_REF]; van der Schaft and Maschke (2020)) and may be adapted to distributed parameter systems [START_REF] Maschke | Linear boundary Port Hamiltonian systems defined on Lagrangian submanifolds[END_REF]; van der Schaft and Maschke (2021)).

Consider Gibbs' equation (1) associated with the entropy density function s (ϕ, u); it gives rise to the following Lagrangian submanifold defined by the graph of s (ϕ, u)

L s =      (x, e) ∈ R 2 × R 2 : e =    ∂s ∂ϕ (ϕ, u) ∂s ∂u (ϕ, u)    ; x = ϕ u      (39)
In order to perform the change of coordinates, let us consider the Legendre transform of the entropy density s (ϕ, u) with respect to u s

* (ϕ, τ ) = τ u -s (ϕ, u) (40) 
where the internal energy u is considered to be a function of the phase field variable ϕ and the reciprocal temperature obtained by partial inversion of τ = ∂s ∂u (ϕ, u)with respect to u 3 . Then the Legendre submanifold (39) can be defined as follows

L s = (x, e) ∈ R 2 × R 2 x = ϕ ∂s * ∂τ (ϕ, τ ) ; e =   ∂s * ∂ϕ (ϕ, τ ) τ   ; ϕ τ ∈ R 2    (41)
The dynamics of the solidification process can then be expressed as follows. First, considering the extended entropy functional (15), one have the associated Legendre submanifold:

L (-S) = x ψ , e e ψ ∈ R 3 × R 3 (x, -e) ∈ L s ; e ψ = ϵ 2 ψ; ψ ∈ R (42) 
Now let us write the Port Hamiltonian system, in coordinates. First compute the time derivative of the vector x, with its expression in the definition (41) of the Lagrange submanifold L s : 

∂ ∂t ϕ u = ∂ ∂t ϕ ∂s * ∂u (ϕ, τ ) =   1 0 ∂s * ∂ϕ∂τ (ϕ, τ ) ∂ 2 s * ∂τ 2 (ϕ, τ )   ∂ ∂t ϕ τ ( 
λ = λ sol + p i (ϕ) λ liq -λ sol . (44) 
The Port Hamiltonian System (24), using (43) in the righthand side term and the parametrization of the extensive variables e in (41), leads to the following implicit PDE:

       1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 ∂s * ∂ϕ∂τ 0 0 ∂ 2 s * ∂τ 2 0 0 0 0 0 1                  ∂ϕ ∂t ∂ψ ∂t F ϕψ ∂τ ∂t F           = J        - ∂s * ∂ϕ (ϕ, τ ) ϵ 2 ψ E ϕψ -τ q        . ( 45 
)
This PDE, augmented with the dissipative relations ( 18) and ( 4) and with the boundary port variables ( 27), defines a Dissipative Boundary Port Hamiltonian System.

It is remarkable that the dynamics of phase field models of solidification processes often lead to implicit formulations of the dynamics. For instance [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF]) and [START_REF] Boettinger | Phase-field simulation of solidification[END_REF]) begin their paper using the entropy as thermodynamical potential, in order to ensure the irreversible entropy creation of the phase field dynamics. However, they use the Helmhotz free energy density f (ϕ, T ) as a generating function of Thermodynamic properties of the bi-phasic system. Yet, even with f , these authors finally obtain an implicit dynamic system (see for instance equations ( 54) to (58) in [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF]).

CONCLUSION

In this contribution, we have proposed a Boundary Port Hamiltonian representation of the solidification of water or any other pure substance using the diffuse interface approach and using a phase field variable. Therefore, we have augmented the Port Hamiltonian representation suggested by [START_REF] Vincent | Port Hamiltonian systems with moving interface: a phase field approach[END_REF]) of the Allen-Cahn equation, representing the dynamics of a non-conserved phase field variable, to a Port Hamiltonian system including the heat transport. Finally we have suggested a DAE-PDE Port Hamiltonian formulation of the system, that allow to change in a consistent way the coordinates on which the dynamics is expressed. In the given case we have expressed the energy balance equation in terms of the reciprocal temperature instead of the internal energy, enabling to use the experimental datas of thermodynamic properties of water and ice.

Forthcoming work will consist in modifying this model by adding the pollutant in the thermodynamics functional and in the conservation equations in order to provide a model of the melt crystallisation process as well as relaxing the assumption of uniform mass density. Furthermore the control of the process will be considered, using passivitybased control methods, taking account of the energy balance and entropy balance equations [START_REF] Ramirez | On the passivity based control of irreversible processes: A Port-Hamiltonian approach[END_REF]).
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  43) with ∂ 2 s * ∂τ 2 = -c p -τ ∂cp ∂τ where c p (ϕ, τ ) is the extended heat capacity and ∂s * ∂ϕ∂τ = -τ ∂cp ∂ϕ . The thermal conductivity becomes:

Table 1 .

 1 Values of some thermodynamic properties at the melting temperature

	⋆	g⋆	f⋆	s⋆	ρ⋆	cp ⋆
	liq	101.343	0.0018	-0.1476	999.843 4219.41
	sol	101.343 -9.1870 -1220.769 916.721 2096.71

In this paper, we make the usual assumption that the mass density is uniform[START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF].

The thermal conductivity of ice (ϕ = 0) and water (ϕ = 1) can be found in[START_REF] Yen | Review properties of snow,ice ad sea ice[END_REF];IAPWS (2009b) 

The invertibility is actually insured by the strict concavity of s (ϕ, u) due to the strict concavity of the entropy functions s sol and s liq of the solid and liquid phases and its definition (38).