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Abstract: In this paper we suggest a Port Hamiltonian model of the solidification process of
water, using the phase field approach. Firstly, the Port Hamiltonian formulation of the dynamics
of the phase field variable, governed by the Allen-Cahn equation, is recalled. It is based on
adding to the phase field variable, its gradient, and extending the system with its dynamics.
Secondly, the model is completed by the energy balance equation for the heat conduction and the
complete Port Hamiltonian model is derived. Thirdly a Algebro-differential Port Hamiltonian
representation is suggested, where the Port Hamiltonian system is defined on a Lagrangian
submanifold, allowing to use directly the variables defining the thermodynamical data.

Keywords: Port Hamiltonian systems on Lagrange subspaces, Phase Field, Diffuse interface,
Solidification process, Thermodynamical properties

1. INTRODUCTION

The deterioration of the environment through the dis-
charge of wastewater, harmful to the flora and the fauna,
leads also to the shortage of clean water ressources. In this
context, the green processes development like melt crystal-
lization of water may provide a low energy solution and si-
multaneously enables the minimization of use of hazardous
material (Yin et al. (2017)). In this paper, we suggest a
structured Port Hamiltonian model of the solidification
process in order to provide numerical models suitable for
the simulation, design and control of such a processes. The
companion paper of (Bendimerad-Hohl et al. (2022)) gives
the procedure to derive a finite-dimensional discretized
model preserving the Port Hamiltonian structure. The
main challenge to establish this solidification model is the
moving interface between the solid and the liquid phase.

Two approaches are possible. The first one, called thin
interface approach, consists in describing the interface as
the boundary of the spatial domains of each phase, using
for instance their characteristic functions. The second one
called diffuse interface approach, consists in introducing a
function called phase field that is a smooth approximation
of the characteristic function of the domain. The boundary
is replaced by a narrow interface layer corresponding to
intermediate values of the phase field variable.

⋆ The authors acknowledge the support of the projects
of the French National Research Agency ”Implicit Port
Hamiltonian control systems” IMPACTS (ANR-21-CE48-0018)
see https://impacts.ens2m.fr/ and WATERSAFE (ANR-20-CE04-
0002): ”Wastewater purification by solidification: Simulation by the
Phase Field method (WATERSAFE)”.

In this paper we suggest a Dissipative Port-Hamiltonian
formulation of a solidification process. Port-Hamiltonian
systems are a modelling framework, allowing the thermo-
dynamically consistent representation of open physical sys-
tems (Duindam et al. (2009); van der Schaft and Jeltsema
(2014)) and well-suited for representing open thermody-
namical processes (Ramirez et al. (2013b,a); Favache et al.
(2010)).

The Port-Hamiltonian formulation of systems with moving
interface has been proposed following both approaches,
considering sharp interfaces in (Diagne and Maschke
(2013)) and diffuse interfaces (Vincent et al. (2020)). In
this paper we shall elaborate on the phase field approach
and extend the model Port Hamiltonian formulation of
the Allen-Cahn equation formulated by Vincent et al.
(2020) by coupling it to the heat diffusion to an extended
Port Hamiltonian system. In the section 2, we shall recall
the definition of Port Hamiltonian systems and recall the
Port Hamiltonian formulation of the phase field variable
dynamics described by the Allen-Cahn equation (Vincent
et al. (2020)) and finish with its extension to the complete
process of solidification. In the section 3, we shall recall
the thermodynamical properties of the water and ice and
their extension to a biphasic model with diffuse interface,
including the phase field variable. In the section 4, we
shall reformulate the Port Hamiltonian model of section
2, using the entropy as generating function, but using an
formulation as a Differential-Algebraic Partial Differential
Equation system, or a Implicit Port Hamiltonian Sys-
tem (Maschke and van der Schaft (2020); van der Schaft
and Maschke (2021)), thereby expressing the dynamics in
terms of intensive rather than extensive variables.



Fig. 1. Liquid/Solid interface : Phase field representation

2. PORT HAMILTONIAN FORMULATION OF
SOLIDIFICATION PROCESS

In this section, we present a Port Hamiltonian formula-
tion of the phase field model of a solidification process,
following the thermodynamic approach of (Wang et al.
(1993)). This model consists in coupling the energy bal-
ance equation with the Allen-Cahn equation, taking the
entropic form of the Gibbs’ equation. This leads to extend
the Port Hamiltonian formulation of the Allen Cahn equa-
tion of (Vincent et al. (2020)) by coupling it to the Port
Hamiltonian model of heat diffusion model.

2.1 Reminder of the solidification model

Following the phase field approach, (Wang et al. (1993))
present a model of a solidification process, consisting in
a closed system of volume V in which a pure material
undergoes a phase transition between solid and liquid.

Thermodynamic model This model corresponds to the
diffuse interface model of bi-phasic systems where the
spatial localization of the two phases is represented by the
continuous phase field variable ϕ. ϕ takes values in the
interval [0, 1], taking value 0 for the solid state, 1 for the
liquid state and intermediate value at the diffuse interface
(see the figure 1). The authors write the entropy balance
equation and use Gibbs’ equation in the entropy form 1 :

ds =

(
∂s

∂ϕ

)
dϕ+ τdu (1)

where s denotes the entropy density, u the internal energy
density and τ the reciprocal temperature τ = (∂s∂e )ϕ = ( 1

T ).

The total entropy functional of the bi-phasic system is
expressed by the Landau-Ginzburg entropy functional:

S(ϕ, u) =

∫
V

(
s(ϕ, u)− 1

2
ϵ2(grad ϕ)2

)
dv, (2)

where the quadratic term accounts for the entropy of the
diffuse interface, ϵ is a constant related to the thickness
of the interface (see Boettinger et al. (2002); Kobayashi
(1993)) and s(ϕ, u) is the entropy density function associ-
ated with Gibbs’ equation (1).

1 In this paper, we make the usual assumption that the mass density
is uniform Wang et al. (1993).

Dynamic equations The dynamical model consists first
in the energy balance equation:

∂u

∂t
= −div q (3)

where q denotes the heat flux

q =Mτ F̄ (4)

and F̄ the driving force

F̄ = −grad(τ) (5)

where Mτ =
λ( 1

τ ,ϕ)

τ2 , λ being the thermal conductivity 2 .
It is coupled to the relaxation dynamics of the phase
field variable ϕ, the gradient system called Allen Cahn
equation:

η
∂ϕ

∂t
=
∂s

∂ϕ
(ϕ) + div(ϵ2grad ϕ) = −δ(−S)

δϕ
, (6)

where η is the positive interface mobility and δS
δϕ denotes

the variational derivative of the functional S with respect
to ϕ.

2.2 Reminder on the dissipative Port Hamiltonian Systems

Consider the following dissipative systems :

∂x

∂t
(t, z) = (−GRRG∗

R)
δH
δx

, (7)

where x(t, z) ∈ Rn is the state variable defined on the
spatial domain V and a time interval in R+, H is the
Hamiltonian functional, R is a positive, coercive matrix
operator and GR is a matrix differential operator (G∗

R
denoting its formal adjoint).

Its Port Hamiltonian formulation is the defined by consid-
ering the Hamiltonian matrix differential operator

Je =
[

0 GR
−G∗

R 0

]
, (8)

and decomposing the system (7) into∂x∂t
F

 = Je

(
δH
δx
Q

)
(9)

where the driving force F and the flux Q variable are
related by the dissipative relation :

Q = R F (10)

The Port Hamiltonian system is then obtained by aug-
menting the system with boundary port variables (the in-
terface variables of the system at its boundary) associated
with the Stokes-Dirac structure defined by the Hamilto-
nian operator Je (van der Schaft and Maschke (2002)).
These boundary port variables are by linear functions of

the trace of the vector

(
δH
δx

Q

)⊥

.

2 The thermal conductivity of ice (ϕ = 0) and water (ϕ = 1) can be
found in Yen (1981); IAPWS (2009b)



Example: the heat conduction The energy balance equa-
tion (3) and the definition of the driving force (5) leads
to the Dissipative Port Hamiltonian formulation (9) (10)
with GR = −div and R =Mτ :∂u∂t

F̄

 =

(
0 −div

−grad 0

)( ∂s
∂u
q

)
(11)

The associated pair of boundary port variables is :(
f∂
e∂

)
= W e =

(
γ0
δs

δu
−γ⊥q

)
(12)

where the boundary operator W is defined as:

W =

(
γ0 0
0 −γ⊥

)
(13)

and γ0 is the Dirichlet trace map and γ⊥ is the normal
trace map, (Kurula and Zwart (2012)).

2.3 Port Hamiltonian formulation of the Allen-Cahn
equation

We briefly recall now the dissipative Hamiltonian formula-
tion of the Allen-Cahn equation as suggested by (Vincent
et al. (2020)). The state space representation is augmented
with the new state :

ψ = grad ϕ (14)

leading to define the extended state vector : (ϕ, ψ, u). The
Landau-Ginzburg entropy functional (2) is then written :

S̄(ϕ, ψ, u) =

∫
Ω

s(ϕ, u)− 1

2
ϵ2ψ2 dV (15)

Let us now compute the variational derivative δS
δϕ in (6) in

terms of S̄(ϕ, ψ, u) :

δS

δϕ
=
δS̄

δϕ
− div

∂S̄

∂ψ
:= Fϕψ (16)

Defining

Eϕψ = −∂ϕ
∂t

(17)

the gradient dynamics (6) is expressed by the following
dissipative constitutive relation

Eϕψ = 1/ηFϕψ (18)

The dynamics of the added state variable ψ is then
easily obtained by permutation of the spatial and time
derivatives :

∂ψ

∂t
=

∂

∂t
gradϕ = grad

∂ϕ

∂t
= −gradEϕψ (19)

Hence the Allen-Cahn equation augmented with the dy-
namics of the added variable ψ admits the Dissipative Port
Hamiltonian formulation (9) (10):

∂ϕ

∂t
∂ψ

∂t
Fϕψ

 =

(
0 0 −1
0 0 −grad
1 −div 0

)
δ(−S̄)
δϕ

δ(−S̄)
δψ
Eϕψ

 (20)

with GR =

(
−1

−grad

)
and R = η.

Once again with the aid of (Kurula and Zwart (2012)),
the boundary port variables of the Port Hamiltonian
formulation of the Allen-Cahn equation are :(

fϕψ∂
eϕψ∂

)
= W eϕψ =

−γ⊥
δ(−S̄)
δψ

γ0Eϕψ

 (21)

with the boundary operator W :

W =

(
0 −γ⊥ 0
0 0 γ0

)
(22)

2.4 Port Hamiltonian formulation of the solidification
process

Recalling that

δS̄

δu
=
∂s

∂u
= τ (23)

the Dissipative Port Hamiltonian formulation of solidifica-
tion process is obtained by assembling (11) and (20)

∂ϕ

∂t
∂ψ

∂t
Fϕψ
∂u

∂t
F̄


= J


− ∂s

∂ϕ
(ϕ, u)

ϵ2ψ
Eϕψ
−τ
q

 (24)

with Hamiltonian matrix differential operator

J =


0 0 −1 0 0
0 0 −grad 0 0
1 −div 0 0 0
0 0 0 0 −div
0 0 0 −grad 0

 (25)

and Hamiltonian functional −S̄ defined in (15), completed
with the two dissipative relation (4) and (18).

The associated boundary operator W̃ are also obtained by
assembling the boundary operators of the heat conduction
and the augmented Allen-Cahn equation :

W̃ =

0 −γ⊥ 0 0 0 0
0 0 γ0 0 0 0
0 0 0 0 γ0 0
0 0 0 0 0 −γ⊥

 (26)

and the extended pair of boundary port variables is :
fϕψ∂
eϕψ∂
f∂
e∂

 = W̃


− ∂s

∂ϕ
(ϕ, u)

ϵ2ψ
Fϕψ
−τ
q

 =

 −γ⊥(ϵ2ψ)
γ0 (1/ηEϕψ)

γ0τ
−γ⊥Mτ (−grad(τ))

(27)

It may be shown, from (Vincent et al. (2020); Kurula
and Zwart (2012)), that the operator J in (25) and

the boundary operator W̃ in (26) define a Stokes-Dirac
structure van der Schaft and Maschke (2002).



From the properties of a Stokes-Dirac structure, one may
deduce the neg-entropy balance equation :

d(−S̄)
dt

= −
∫
V

EϕψFϕψdV −
∫
V

qF̄ dV −
∫
∂V

ẽ∂ f̃∂ dS (28)

which becomes, by means of the dissipation relations (4)
and (18)

d(−S̄)
dt

= −
∫
V

ηF 2
ϕψdV −

∫
V

Mτ F̄
2dV +

∫
∂V

ẽ∂ f̃∂ dS (29)

where the two first terms corresponds to the irreversible
entropy production due to the gradient dynamics of the
phase field and the heat conduction and the third one
corresponds to the external entropy flow flowing into the
system.

3. THERMODYNAMIC PROPERTIES USING PHASE
FIELD

The objective of this section is to present how to compute
extended thermodynamic properties from the thermody-
namics properties of the liquid water and ice.

3.1 Thermodynamic properties of liquid water and ice

Thermodynamics properties of the liquid water and ice
are practically found in literature (IAPWS (2009a)) and
(IAPWS (2009b)). The provided thermodynamic potential
is the Gibbs energy expressed as a function of temperature
and pressure. The expression of the specific Gibbs energy
of the liquid phase is as follows:

gliq(T, p)/g
∗ =

7∑
j=0

6∑
k=0

gjkτ
iπk (30)

with the reduced temperature τ = (T − T0)/T
∗ and

the reduced pressure π = (p − p0)/p
∗. The constants

T0, p0, T
∗, p∗, g∗ and the gjk are given in (IAPWS

(2009b)). In a same way the expression of the specific
Gibbs energy of the solid phase is as follows:

gsol (T, p) = g0(p)− s0Ttτ + TtRe

(
2∑
k=1

rk

[
(tk − τ)

ln(tk − τ) + (tk + τ) ln(tk + τ)− 2tk ln(tk)

−τ
2

tk

]) (31)

with g0(p) =
∑4
k=0 g0k(π−π0)k and r2(p) =

∑2
k=0 r2k(π−

π0)
k, τ = T/Tt, π = p/pt, and π0 = p0/pt. All The

constants Tt, pt, p0, s0, g0, r1 as well as the gok, r2k, tk are
given in (IAPWS (2009a)). From the expression of these
state equations, other specific thermodynamic quantities
as entropy, Helmotz energy and density for each phase can
be derived from standard thermodynamic computations
(see IAPWS (2009a), IAPWS (2009b) and Callen (1991)).
As an example the specific Helmotz energy f⋆, the specific
entropy s⋆ as a function of temperature and pressure and

the density ρ⋆ as well as the heat capacity cp⋆ can be
deduced from g⋆ for ⋆ = sol, liq by the formulas:

f⋆(T, p) = g − p
∂g⋆
∂p

(32)

s⋆(T, p) = −∂g⋆
∂T

(33)

ρ⋆(T, p) =
(∂g⋆
∂p

)−1

(34)

cp⋆(T, p) = −T ∂
2g⋆
∂T 2

(35)

Finally we give some values of these properties at the
melting temperature (273.15K) at atmospheric pressure.

Table 1. Values of some thermodynamic prop-
erties at the melting temperature

⋆ g⋆ f⋆ s⋆ ρ⋆ cp⋆
liq 101.343 0.0018 –0.1476 999.843 4219.41
sol 101.343 – 9.1870 – 1220.769 916.721 2096.71

3.2 The extended Equation of State

For sake of brevity, we restrict our attention to the
extended specific entropy s assuming constant density. The
stability principle of thermodynamics when two phases are
present requires ( see Callen (1991)):

∂s

∂ϕ

∣∣∣∣
ϕ=0

=
∂s

∂ϕ

∣∣∣∣
ϕ=1

and
∂2s

∂ϕ2

∣∣∣∣
ϕ=0,1

< 0. (36)

From the constraint that at equilibrium the variational
derivative of the Landau-Ginzburg entropy functional:
must be equal to 0 in each phase (grad ϕ = 0), we have
(see Wang et al. (1993); Boettinger et al. (2002)):

∂s

∂ϕ

∣∣∣∣
ϕ=0,1

= 0 and
∂2s

∂ϕ2

∣∣∣∣
ϕ=0,1

< 0. (37)

Let us follow the method proposed in Boettinger et al.
(2002) to obtain the extended specific entropy function:

s(ϕ, T ) = ssol(T ) + pi(ϕ)[sliq(T )− ssol(T )] + wpw(ϕ)
(38)

with pi(ϕ) = ϕ3(6ϕ2 − 15ϕ+ 10), pw(ϕ) = −ϕ2(1− ϕ)2

where sliq, ssol represent the specific entropy of pure
water and of pure ice respectively. pw(ϕ) is the double-
well polynomial and pi(ϕ) is the interpolating polynomial.

This choice of pi ensures that ∂s
∂ϕ

∣∣∣∣
ϕ=0,1

= 0 . w gives the

tuning of the hollow between the two local maximum (see
Boettinger et al. (2002)). w must be positive in order to

check ∂2s
∂ϕ2

∂2s
∂u2 −

(
∂2s
∂ϕ∂u

)2
> 0 (see Callen (1991)). Figure

2 shows the extended entropy for water and ice.

4. IMPLICIT PORT HAMILTONIAN SYSTEM

In the Port Hamiltonian formulation of the section 2, the
Hamiltonian function is the entropy functional (2) which
depends on the internal energy u and the phase field
variable ϕ and its gradient ψ. In the section 3, the practical



Fig. 2. Extended specific entropy with w = 18 103

definition of the thermodynamic properties of the bi-phasic
water-ice system has been given, leading to the expressions
of the entropy density (38) depending on the temperature
rather than the internal energy. That means that we need
to change a coordinate of the state space from the internal
energy u, an extensive variable, to the temperature T , an
intensive variable.

In this section, we reformulate the Port Hamiltonian model
from Section 2, through the definition of the Implicit
Port Hamiltonian formulation. For these systems, the
energy function is actually not defined explicitly but rather
by a set of constitutive relations between the extensive
and intensive variables, satisfying the Maxwell reciprocity
conditions. The graph of these relations have a geometrical
interpretation as Lagrangian submanifolds which allow
the definition of reciprocal constitutive equations in a
coordinate free way (van der Schaft and Maschke (2018);
van der Schaft and Maschke (2020)) and may be adapted
to distributed parameter systems (Maschke and van der
Schaft (2020); van der Schaft and Maschke (2021)).

Consider Gibbs’ equation (1) associated with the entropy
density function s (ϕ, u); it gives rise to the following
Lagrangian submanifold defined by the graph of s (ϕ, u)

Ls =

(x, e) ∈ R2 × R2 : e =

 ∂s

∂ϕ
(ϕ, u)

∂s

∂u
(ϕ, u)

 ; x =

(
ϕ
u

)
(39)

In order to perform the change of coordinates, let us
consider the Legendre transform of the entropy density
s (ϕ, u) with respect to u

s∗ (ϕ, τ) = τ u− s (ϕ, u) (40)

where the internal energy u is considered to be a function
of the phase field variable ϕ and the reciprocal temperature
obtained by partial inversion of τ = ∂s

∂u (ϕ, u)with respect

to u 3 . Then the Legendre submanifold (39) can be defined
as follows

3 The invertibility is actually insured by the strict concavity of
s (ϕ, u) due to the strict concavity of the entropy functions ssol and
sliq of the solid and liquid phases and its definition (38).

Ls =

{
(x, e) ∈ R2 × R2

/
x =

(
ϕ

∂s∗

∂τ
(ϕ, τ)

)
; e =

 ∂s∗

∂ϕ
(ϕ, τ)

τ

 ;

(
ϕ
τ

)
∈ R2


(41)

The dynamics of the solidification process can then be
expressed as follows. First, considering the extended en-
tropy functional (15), one have the associated Legendre
submanifold:

L(−S̄) =

{((
x
ψ

)
,

(
e
eψ

))
∈ R3 × R3

/
(x,−e) ∈ Ls; eψ = ϵ2ψ; ψ ∈ R

}
(42)

Now let us write the Port Hamiltonian system, in coordi-
nates. First compute the time derivative of the vector x,
with its expression in the definition (41) of the Lagrange
submanifold Ls:

∂

∂t

(
ϕ
u

)
=

∂

∂t

(
ϕ

∂s∗

∂u
(ϕ, τ)

)

=

 1 0
∂s∗

∂ϕ∂τ
(ϕ, τ)

∂2s∗

∂τ2
(ϕ, τ)

 ∂

∂t

(
ϕ
τ

)
(43)

with ∂2s∗

∂τ2 = −cp − τ
∂cp
∂τ where cp (ϕ, τ) is the extended

heat capacity and ∂s∗

∂ϕ∂τ = −τ ∂cp∂ϕ .

The thermal conductivity becomes:

λ = λsol + pi(ϕ)

[
λliq − λsol

]
. (44)

The Port Hamiltonian System (24), using (43) in the right-
hand side term and the parametrization of the extensive
variables e in (41), leads to the following implicit PDE:

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
∂s∗

∂ϕ∂τ
0 0

∂2s∗

∂τ2
0

0 0 0 0 1





∂ϕ

∂t
∂ψ

∂t
Fϕψ
∂τ

∂t
F̄


= J


−∂s

∗

∂ϕ
(ϕ, τ)

ϵ2ψ
Eϕψ
−τ
q

 .

(45)

This PDE, augmented with the dissipative relations (18)
and (4) and with the boundary port variables (27), defines
a Dissipative Boundary Port Hamiltonian System.

It is remarkable that the dynamics of phase field models of
solidification processes often lead to implicit formulations
of the dynamics. For instance (Wang et al. (1993)) and
(Boettinger et al. (2002)) begin their paper using the
entropy as thermodynamical potential, in order to ensure
the irreversible entropy creation of the phase field dynam-
ics. However, they use the Helmhotz free energy density
f(ϕ, T ) as a generating function of Thermodynamic prop-
erties of the bi-phasic system. Yet, even with f , these
authors finally obtain an implicit dynamic system (see for
instance equations (54) to (58) in Wang et al. (1993)).



5. CONCLUSION

In this contribution, we have proposed a Boundary Port
Hamiltonian representation of the solidification of water
or any other pure substance using the diffuse interface
approach and using a phase field variable. Therefore, we
have augmented the Port Hamiltonian representation sug-
gested by (Vincent et al. (2020)) of the Allen-Cahn equa-
tion, representing the dynamics of a non-conserved phase
field variable, to a Port Hamiltonian system including the
heat transport. Finally we have suggested a DAE-PDE
Port Hamiltonian formulation of the system, that allow to
change in a consistent way the coordinates on which the
dynamics is expressed. In the given case we have expressed
the energy balance equation in terms of the reciprocal
temperature instead of the internal energy, enabling to
use the experimental datas of thermodynamic properties
of water and ice.

Forthcoming work will consist in modifying this model by
adding the pollutant in the thermodynamics functional
and in the conservation equations in order to provide a
model of the melt crystallisation process as well as relaxing
the assumption of uniform mass density. Furthermore the
control of the process will be considered, using passivity-
based control methods, taking account of the energy
balance and entropy balance equations (Ramirez et al.
(2016)).
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