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ABSTRACT 

 

An experimental and theoretical investigation of the scaling laws governing the 

phenomenon of Maxwell-Wagner-Sillars interfacial polarization in composite materials in 

dependence on morphology, volume fraction, orientation of fillers, form factor and presence 

of interphases is presented in the current study. By considering the complex dielectric 

function of the matrix and of the fillers, the dielectric spectra are calculated in the frequency 

range from 107 Hz to 10-2 Hz and compared to dielectric measurements by Broadband 

Dielectric Spectroscopy, carried out in the frequency range from 107 Hz to 0.5 Hz and 

between -90 oC and 150 oC. The characteristic frequencies of the global dielectric response 

are reported to strongly vary with the conductivity value of the conductive phase, while a 

much weaker dependence is observed upon varying the volume fraction, the form factor 

and the orientation of fillers. The value of permittivity at low frequency does not change 

with the conductivity value, whereas a significant variation is observed in dependence on 

the composite morphology, form factor, orientation of fillers and presence of interfaces with 

different gradients of properties. Two possible applications of our analysis are reported: (i) 

measuring the conductivity of materials without employing a direct electrical contact 

between the electrodes and the sample and (ii) discriminating different phenomena of 

electrical polarization in complex materials by analyzing the scaling laws. Our study 

delivers thus a useful and necessary analysis of the dielectric behavior of composite 

materials, where interfacial polarization effects play a major role.  
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1. Introduction 

 

The electrical and dielectric properties of homogeneous materials can be fully 

described by the complex dielectric permittivity function  −= i (or by the complex 

conductivity function  += i , with  =  0i )1. The spectral and temperature 

dependence of 𝜀∗ directly reveal phenomena taking place at the molecular scale such as 

dipolar relaxation processes2-4, phase transitions5-7 and charge transport processes8-13. The 

direct correlation existing between the spectral dependence of 𝜀∗ and molecular phenomena 

is drastically impacted by the presence of interfaces and interphases, when the materials 

under study are heterogeneous (composite materials, multiphase materials, etc.). From an 

electrical point of view, an interface is an internal surface between two phases having 

different electrical and dielectric properties14. The existence of internal surfaces separating 

two different dielectric phases (phase A and phase B) has a major consequence on the 

interpretation of the dielectric properties of heterogeneous materials15-23. The global 

dielectric response must be described in this case by two different complex dielectric 

functions: the complex dielectric permittivity function of the phase A ( AAA i −= ) and the 

complex dielectric permittivity function of the phase B ( )BBB i −= . If an interphase is 

formed between the two phases, a third complex dielectric function must be taken into 

account to describe the dielectric behavior of the system under study (𝜀𝑖𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒
∗ =

𝜀′𝑖𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒 − 𝑖𝜀′′𝑖𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒). The global dielectric response in such systems becomes thus a 

complicated average of 𝜀𝐴
∗ and 𝜀𝐵

∗  (eventually, also, of 𝜀𝑖𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒
∗ ), not anymore reflecting 

only molecular phenomena taking place in phase A or phase B, but also giving rise to new 

phenomena appearing in the dielectric spectra of heterogeneous materials. For instance, the 

phenomenon of interfacial polarization gives rise to the appearance of new dielectric 

features resembling molecular relaxation phenomena but to which they do not have any 

direct physical correspondence. Furthermore, the presence of interfacial polarization can 

distort the dielectric spectra of molecular relaxation processes, causing apparent shifts in 

their frequency position and broadening effects6. As opposed to the homogenous material 

described by only one complex dielectric function, the direct molecular assignment of a 
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dielectric spectrum is thus generally lost in a heterogeneous material and a detailed analysis 

employing two or more complex dielectric functions must be carried-out in order to describe 

its spectral behavior.  

The aim of the present study is to thoroughly analyze the electrical and dielectric 

properties of composites materials in systematic dependence on morphology, volume 

fraction, orientation of fillers, form factor and presence of interphases exhibiting different 

gradients of local properties. In the scientific literature, the global dielectric response of 

heterogeneous materials is usually treated using dielectric mixing models using effective 

medium approaches24-40. These models give precise determinations of mean dielectric 

parameters, but without a systematic analysis of the scaling laws governing the 

characteristic frequencies in a broad frequency range. In the present study, the characteristic 

frequencies defining the global dielectric response of composite materials are thoroughly 

investigated and their scaling laws are analyzed in a broad frequency range. Our study 

delivers a useful and necessary analysis of the dielectric behavior of composite materials, 

where interfacial polarization effects play a major role. 

 

2. Methods and Materials: 

 

Methods: The dielectric measurements were carried-out using a high resolution 

dielectric spectrometer (Alpha Analyzer) from Novocontrol GmbH, assisted by a Quatro 

Temperature Controller. The samples have been measured in a parallel-plate geometry 

using brass electrodes. The applied voltage was 0.1 V. The temperature was controlled 

under flow of pure nitrogen gas, leading to stabilization conditions better than 0.1 oC for the 

absolute temperature.  

Materials: Two polymeric materials have been investigated: poly(vinyl acetare) 

(PVAc, Mw = 100.000 g/mol, density= 1.19 g/cm-3, purchased from Sigma Aldrich) and 

poly(2-vynil-pyridine) (P2VP, Mw = 37.500 g/mol, density=0.97 g/cm-3, purchased from 

Sigma Aldrich). The samples were prepared in form of films of 100 µm in thickness.  
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3. The phenomenon of interfacial polarization 

  

The basic principle of the phenomenon of interfacial polarization is related to the 

contrast in the dielectric loss (or in the conductivity value) taking place across an internal 

interface that separates local different dielectric phases of a composite material. The 

orientation of the internal interface in respect to the direction of the applied electric field is 

of crucial importance. In order to exemplify the basic principle of this phenomenon, the 

simplest experimental situation is considered in Figure 1: two layers exhibiting a contrast in 

their dielectric loss and measured by applying an electric field perpendicularly to their 

surfaces. In order to experimentally realize these conditions, two fully amorphous polymers 

exhibiting a large difference in their glass transition temperature have been chosen: 

poly(vinyl acetare) (PVAc, with a glass transition temperature of Tg(PVAc)= 400C) and 

poly(2-vynil-pyridine) (P2VP, with a glass transition temperature of Tg(P2VP)= 1550C). To 

simplify the experimental conditions even more, a metal electrode has been placed between 

the two layers, in order to completely eliminate the possibility of the interphase that could 

be formed at the contact between the two polymer phases. This corresponds to a measured 

global dielectric response originating from to two dielectric contributions: the contribution 

of the bulk PVAc and the contribution of the bulk P2VP. When an interphase is formed 

between the two phases (not the case for the data presented in Figure 1), a third dielectric 

contribution, that of the interphase, must be comprised in the global dielectric response. In 

the case presented in Figure 1, the measured dielectric response is thus given by:  


+=

VPPPVAcmeas CCC 2

111
       (eq.1) 

Where: 
measmeasmeas CiCC += represents the measured complex capacity,

PVAcPVAcPVAc CiCC +=  

the complex capacity of the PVAc layer and
VPPVPPVPP CiCC 222

+= the complex capacity of the 

P2VP layer. Eq. 1 corresponds to a serial circuit of two complex capacities (or, since 

( )
=





Ci

Z



1
of two complex impedances) and it can be equivalently expressed as: 
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 += VPPPVAcmeas ZZZ 2
        (eq.2) 

Where: 

measZ represents the measured complex impedance, 

PVAcZ the complex impedance of 

the PVAc layer and 

VPPZ 2
the complex capacity of the P2VP layer. 

Based on the complex capacity C , representing the measurable parameter in a 

dielectric experiment, the complex dielectric permittivity  −= i  of the material under 

study can be determined using the following relation:  

d

A
C  =  0          (eq.3) 

Where: 
As

Vm12

0 10854.8 −= represents the vacuum permittivity, d the sample thickness and 

A the surface area of the sample. Eq. 1 can be thus re-written as: 


+=

VPP

VPP

PVAc

PVAc

meas

sample ddd

2

2


       (eq.4) 

Where: 
measmeasmeas i −=

 represents the measured complex dielectric permittivity, 

PVAcPVAcPVAc i −= the complex permittivity of the PVAc layer, 
VPPVPPVPP i 222  −= the 

complex permittivity of the P2VP layer and
sampled , PVAcd and VPPd 2  the total sample thickness 

and the thickness of the PVAc and P2VP layer, respectively.  

The dielectric loss PVAc 
 of the bulk PVAc and the dielectric loss VPP2 

 of the bulk P2VP 

are presented in Figure 1a, b, d, e as a function of temperature at a fixed frequency (100 Hz) 

and as a function of frequency at a fixed temperature (120°C). For PVAc, a relaxation peak 

related to the dynamic glass transition (alpha relaxation) is observed around 60°C (Figure 

1a). The alpha relaxation peak is followed, at higher temperatures, by the conductivity 

contribution. For P2VP, the alpha relaxation peak is observed around 125°C (Figure 1b). 

When PVAc and P2VP are measured together in bi-layer morphology (Figure 1c), the global 

dielectric response, given by eq. 1, shows three peaks in the dielectric loss: a peak 

corresponding to the alpha relaxation of PVAc, a peak corresponding to the alpha relaxation 

of P2VP and a third peak, appearing around 850C, whose origin is related to the 
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phenomenon of MWS interfacial polarization (Figure 1c). A similar behavior is found by 

looking at the experimental data of the dielectric loss as a function of frequency (Figure 1 d, 

e, f). Between the alpha relaxation peak of PVAc appearing slightly above 106 Hz (Figure 

1d) and the alpha relaxation peak of P2VP observed slightly below 102 Hz, a third peak is 

detected around 104 Hz, when the PVAc and the P2VP layers are measured together in a bi-

layer structure (Figure 1 f). This peak is the same peak detected around 60oC in the dielectric 

spectrum shown as a function of temperature (Figure 1c) and it is thus related the 

phenomenon of interfacial polarization. This MWS contribution, appearing frequently in 

dielectric spectra of multiphase materials (composite materials, heterogeneous materials, 

etc.), arises basically from a contrast in the dielectric loss (or in the conductivity) taking place 

across the internal interface separating the two different dielectric phases. We note that, 

according to Figure1, neither the formation of an interphase nor a physical contact between 

the dielectric phases is a necessary condition for the appearance of the interfacial 

polarization. The three dielectric peaks observed in Figure 1c represent thus the measured 

average of the spectra presented in Figure 1a and Figure 1b, according to the equation 1. In 

the same way, the dielectric data measured in Figure 1f represent the measured average of 

the spectra presented in Figure 1d and Figure 1e, according to the same equation 1. 

Additional experimental data, measured at different frequencies and at different 

temperatures, are presented in the Supplementary Material (Figure S1 and S2). 

For a deeper understanding of this phenomenon, the voltage distribution across a 

multiphase material is analyzed in Figure 2, by considering the simplest morphology 

represented by a two-layer structure. On this structure, a total voltage of VT=1 V is applied 

at different frequencies between 107 Hz and 10-2 Hz. For the sake of simplicity, we shall 

consider in our calculations two dielectric phases (phase A and phase B) having an identical 

permittivity value ( )3== BA  , an identical thickness ( )mmdd BA 1.0==  and showing a 

difference of 3 orders of magnitude between their dielectric losses. This difference of 3 

decades in the dielectric losses (corresponding roughly to the contrast shown on Figure 1 

between PVAc and P2VP) is related in our calculations to a difference of 3 decades in the 

conductivity values of the two phases (conductivity of phase A: cmSA /10 8−= , conductivity 
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of phase B: cmSB /10 11−= ). In the global response of the two phases, a peak in the dielectric 

loss is observed at a characteristic frequency of 3 x 103 Hz, related to the phenomenon of 

MWS interfacial polarization. At high frequencies, well above the characteristic frequency 

of the MWS peak, the total voltage VT=1V applied on the bi-layer structure is distributed 

between the two dielectric phases A and B. In our particular case, the voltages across phase 

A and B are equal (VA=VB=0.5 V), because of the fact that the two phases have identical 

permittivity values and identical thicknesses. More generally, it can be easily shown that, at 

high frequencies, the voltage distribution between the two phases is actually governed by 

the values of permittivity and thickness (see Figure S3 from Supplementary Information). 

At low frequencies, below the characteristic frequency of the MWS peak, the voltage applied 

on the bi-layer structure falls entirely on the phase B. Thus VT=VB=1 V, while VA=0 V. This is 

due to the fact that, at high frequencies, the measured impedance comprises contributions 

from both phases A and B, while at low frequencies only the impedance of the phase B is 

measured. As shown in Figure 2, the characteristic frequency of the MWS peak marks thus 

the transition between a measurement reflecting the phase A and phase B to a measurement 

reflecting only the phase B. This is experimentally validated in Figure 3, where the measured 

impedance values corresponding to the experimental data presented in Figure 1 are shown. 

At high frequencies, both PVAc and P2VP contribute to the total impedance measurement, 

but, as the frequency decreases below the characteristic value of fMWS, the measurement 

reflects only the impedance of P2VP. This is because, in this frequency range, the impedance 

of PVAc is by orders of magnitude lower than that of P2VP, being practically negligible. In 

the same time, while only the impedance of P2VP contributes the total measurement, the 

effective parameters are still calculated from the measured impedance using the total 

thickness of sample, which is the sum of the thicknesses of both PVAc and P2VP. This is the 

reason why, as shown in Figure 2, two dielectric phases of equal permittivity values 

( )3== BA   give rise, in the frequency range lower than the characteristic frequency fMWS, 

to an effective permittivity of 6.  

 In conclusion, the MWS interfacial polarization is an important phenomenon 

appearing in multiphase materials (composite materials, heterogeneous materials, etc.), 
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leading to a voltage distribution across the local dielectric phases that changes with the 

frequency of the applied electric field. As a direct consequence, this phenomenon gives rise 

to dielectric dispersions appearing as peaks in the spectra of dielectric loss. Thus, for 

understanding the dielectric behavior of multiphase materials, the scaling laws of this 

phenomenon have to be systematically analyzed in dependence on the conductivity value, 

frequency, volume fraction of the local dielectric phases, morphology, orientation, form 

factor, presence of interphases showing gradients of local properties etc. This is analysis is 

carried-out in the following section.  

 

4. Theoretical analysis 

 

The global dielectric behavior of a two-phase composite material can be calculated as 

a function of the morphology using the following formulas (more details are provided in 

Supplementary Information): 

(1) for a bi-layer morphology (when the electric field is perpendicular to the surface of the 

layers): 

( ) 



−+
=

21

21*

1 


net

        (eq.5)
 
 

Where: 𝜀1
∗ and 𝜀2

∗ are the complex dielectric functions of the two phases and Φ =dins/L being 

the volume fraction of the insulating phase. The case when the applied electric field is 

parallel to the surface of the layers is trivial: the global response is a linear combination of 

𝜀1
∗ and 𝜀2

∗ and the presence of the interface has no impact on the dielectric spectra (unless an 

interfacial layer is formed between the two phases, in which case a third dielectric function 

has to be taken into account).  

(2) for a spherical morphology, the Maxwell- Garnett41-43 equation can be used: 

( ) ( )

( ) ( )

* * *

*

* *

1 2 2 1

1 2

matrix filler matrix

net

filler matrix

  


 

 +  + −  =
 −  + +        (eq.6) 
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Where: 𝜀𝑚𝑎𝑡𝑟𝑖𝑥
∗  represents the complex dielectric permittivity function of the matrix, 𝜀𝑓𝑖𝑙𝑙𝑒𝑟

∗   

the complex dielectric permittivity of the fillers (or of the domains) and  the volume 

fraction of the fillers. 

(3) for a cylindrical morphology44: 













+

−
+=







fillermatrix

matrixfiller

marixnet



 21

      (eq.7)

 

(4) for a ellipsoidal morphology, the following formula has been derived in previous 

studies44-47: 

( ) 











−+

−
+= 

=






zyxk

k

kmatrixfillermatrix

matrixfiller

matrixnet
L,,

2cos1 





   (eq.8) 

Where: Φ = 4𝜋𝑅𝑥𝑅𝑦𝑅𝑧𝑁 3⁄  represents the volume fraction of the ellipsoidal filler (or 

domains), N is the number of particles per unit volume, and Lk  is the depolarization factor 

along the k-axis, with Lx+Ly+Lz=1. 

In the case of ellipsoidal fillers, another important parameter to be considered is 

related to the impact of orientation effects. Thus, the dielectric response of composite 

materials with randomly oriented ellipsoidal fillers is given by:  

( ) 











−+

−
+= 

=






zyxk kmatrixfillermatrix

matrixfiller

matrixnet
L,,3

1
1






     (eq.9) 

With: 31cos2 =k  

In the case of oriented fillers, the formula becomes:  

( ) 











−+

−
+=







kmatrixfillermatrix

matrixfiller

matrixnet
L


 1

      (eq.10)

 

Where: the factor Lk reflects the orientation of the fillers in respect to the direction of the 

applied electric field. Thus, for ellipsoids with the long axis oriented parallel with the 

direction of the applied electric field: 
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     (eq.11a) 

        (eq.11b) 

 

While for a perpendicular orientation between the long axis of the fillers and the direction 

of the applied electric field: 

       (eq.11c) 

        (eq.11d) 

 

The above formula will be used in the following to perform numerical calculations of 

the global dielectric response of composite materials in dependence on conductivity, 

frequency, volume fraction of the local dielectric phases, morphology, orientation, form 

factor and presence of interphases with gradients of local properties.  

 

4.1 The influence of morphology 

 

Different morphologies of a two-phase composite material are taken into account 

(layered, spherical, cylindrical and ellipsoidal), while keeping constant all the other 

parameters that play a role for the phenomenon of interfacial polarization. For the 

cylindrical and the ellipsoidal morphology, a random orientation of fillers is considered.  

The results are presented in Figure 4. At high frequencies, the global dielectric response 

gives a dielectric permittivity that is identical to the permittivity values of the two phases 

(supposed equal, for the sake of simplicity). As we decrease the frequency; the phenomenon 

of MWS interfacial polarization starts to play an important role. It is manifested by a peak 

in the dielectric loss, marking the transition to much lower values of conductivity 

(corresponding to the phase which is less conductive). In the same time, an increase in the 

values of the net permittivity is observed, which is typical for the phenomenon of interfacial 

polarization. At constant values of 𝜀𝑚
∗  and 𝜀𝑓

∗  and at a constant value of the volume fraction 

𝐿𝑧 = −
1

𝑞2 − 1
+

𝑞

 𝑞²− 1 3/2
𝑙𝑛 𝑞 +  𝑞²− 1 1/2  

𝐿𝑥 = 𝐿𝑦 =  1− 𝐿𝑧 2⁄  

𝐿𝑧 =
1

1− 𝑞²
−

𝑞

 1− 𝑞² 3/2
𝑐𝑜𝑠−1𝑞 

𝐿𝑥 = 𝐿𝑦 =  1− 𝐿𝑧 2⁄  
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(taken 20% in the shown calculations), the position of the MWS peak and the plateau values 

of ’ at low frequencies change with the morphology. The highest value of ’ is observed for 

the ellipsoidal morphology while the lowest one for the layered morphology. In the 

following sections the scaling laws of the characteristic frequencies defining the global 

dielectric response will be analysed, for each morphology, in dependence on the 

conductivity, volume fraction, orientation of fillers, form factor and presence of interphases 

with different gradients of local properties.  

In order to analyze the scaling laws, several characteristic frequencies are defined, as follows 

(Figure 5): 

(a) fon represents the onset of interfacial polarization effects, it is the frequency where the net 

permittivity value starts to increase with decreasing frequency, due to interfacial 

polarization effects.  

(b) fi is the inflexion point where the first derivative of the net permittivity in respect to 

frequency shows a maximum and where the second derivative is equal to zero. 

(c) fMWS is the frequency position of the MWS interfacial polarization peak observed in the 

net dielectric loss. 

(d) fmax, is the frequency where the increase in the net permittivity starts to show a 

“saturation” plateau value in the low frequency region of the dielectric spectra.  

 

4.2 The influence of conductivity 

  

The influence of the variation of the conductivity of fillers (or domains) is taken into 

account, for three different morphologies, by keeping constant the complex permittivity 

function of the matrix and the volume fraction. For the ellipsoidal morphology, a random 

orientation of fillers is considered. The results are presented in Figure 6. As expected, all the 

characteristic frequencies are shifted to higher values with increasing the conductivity. No 

change in the plateau value of ’net at low frequencies is observed upon varying the 

conductivity. A detailed quantitative analysis is presented in Figure 7. The following scaling 

laws can be readily derived: 
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fmax ~ fi ~ fon ~ fMWS ~ DC         (eq.12) 

fi2=fonfmax           (eq.13) 

And σDC is defined as the plateau observed in frequency dependence of σ'.  

 

4.3 The influence of volume fraction 

   

The influence of the variation of the volume fraction is taken into account, for three 

different morphologies, by keeping constant the complex permittivity function of the matrix 

and of the fillers (or of the domains). The results are presented in Figure 8. As expected, the 

plateau value of the dielectric permittivity varies with the variation of the volume fraction. 

In the same time, only a little variation is observed for the position of the MWS interfacial 

polarization peak. A quantitative analysis is presented in Figure 9. One can deduce that 

fi2=fon fmax, which is identical to the scaling law expressed by the eq. 13 upon varying the value 

of conductivity. 

 

4.4 The influence of orientation of fillers 

   

The influence of the orientation of fillers is taken into account for an ellipsoidal 

morphology, by keeping constant the complex permittivity function of the matrix and of the 

fillers (or of the domains) and the value of the volume fraction. Three different orientations 

are considered: random and parallel and perpendicular to the direction of the applied 

electric field. The results are presented in Figure 10. As expected, it is observed that the 

plateau value of ’net in the low frequency range strongly depends on the orientation. The 

highest value is obtained for the parallel orientation, while the lowest one for the 

perpendicular one. In the same time, less obvious, the frequency position of the MWS 

interfacial polarization changes as well. A systematic analysis upon varying the 

conductivity (while keeping a constant volume fraction) and the volume fraction (while 

keeping constant the conductivity value) is shown in Figure 11, for three different 
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orientations (random, parallel and perpendicular). A detailed quantitative analysis of the 

characteristic frequencies is shown in Figure 12.  

It is thus observed that fmax ~ fi ~ fon ~ fMWS ~ DC and fi2=fon fmax, which are identical to the 

scaling laws derived before. It is equally observed that the characteristic frequencies show 

a negligible dependence on the volume fraction of the fillers (or of domains). The 

quantitative analysis of the plateau values of ’net in the low frequency range presented in 

Figure 13 reveals a linear dependence in respect to the variation of the volume fraction. The 

most pronounced changes are observed for the parallel orientation of fillers.  

 

  4.5 The influence of the form factor 

  

The influence of the form factor is taken into account by varying the form factor of 

ellipsoidal fillers and keeping constant all the other parameters that play a role (the complex 

dielectric function of the two phases, the volume fraction, the orientation). The results are 

shown in Figure 14. It is observed that the plateau value of ’net in the low frequency range 

strongly depends on the form factor of ellipsoidal fillers and that the frequency position of 

the MWS interfacial polarization changes as well. With increasing the form factor, the values 

of ’net increase and the MWS peak is shifted to lower frequencies (Figure 15). Parallel 

dependencies are observed, implying: 

fmax ~ fi ~ fon ~ fMWS.          (eq.14) 

which is identical with the scaling laws that were determined before. 

 

4.6 The influence of the presence of interphases with different gradients of 

properties 

  

When an interphase is formed between two phases A and B (characterized by

AAA i −= and BBB i −= ), a third complex dielectric function, that of the interphase, 

must be taken into account for modeling the global dielectric behavior of the system. For 
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the sake of simplicity, this analysis is carried out in the present section for the case of a 

layered morphology.  

For a material consisting of two layers (A of thickness dA and B of thickness dB), the 

net complex dielectric permittivity when the electric field is perpendicular to the surface of 

the layers can be written as:  

 
***

B

B

A

A

net

BA dddd


+=

+
         (eq.15) 

If an interphase of thickness di is formed between the phases A and B, the complex dielectric 

function of the interphase 𝜀𝑖𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒
∗ = 𝜀′𝑖𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒 − 𝑖𝜀′′𝑖𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒 must be included in the 

calculations. Generally, the local dielectric properties in the interphase show a gradual 

variation depending on the local coordinate x between the two phases A and B, thus 

𝜀′𝑖𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒 = 𝜀′
𝑖𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒 𝑥  and 𝜀′′𝑖𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒 = 𝜀′′𝑖𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒 𝑥 . In this case, the previous 

formula must be replaced by: 

( ) ( ) *

0 intint

**

B

B

di

erphaseerphaseA

A

net

BiA d

xix

dxdddd


+

−
+=

++
     (eq.16) 

The above formula is applied in the following in order to emphasize the impact of the 

presence of interphases with different gradients of local properties. Four situations are 

compared: 

(a) No interphase is formed; the system is described by two complex dielectric functions, 

according to the eq. 15. 

         

(b) An interphase is formed, having constant local properties. The system is described 

by: 

  
**

int

**

B

B

erphase

i

A

A

net

BiA dddddd


++=

++
      (eq.17) 
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(c) An interphase is formed, with a linear gradient of local properties between phase A 

and phase B. The effective dielectric function of the interphase can be calculated by 

solving the integral shown in eq. 16, which leads to: 
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     (eq.18) 

With: L being the thickness of the interphase, cond  the dielectric loss of the phase which 

is more conductive and ins  the dielectric loss of the phase which is less conductive. 

(d)  An interphase is formed, with an exponential gradient of local properties between 

phase A and phase B. The effective dielectric function of the interphase can be 

calculated by solving the integral shown in (eq.16), leading to: 
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  (eq.19) 

 

Numerical calculations according to the four situations presented above are shown in 

Figure 16. While a detailed analysis is out of the scope of the present section, several obvious 

conclusions can be drawn: 

(a) First of all, in the limit of high frequencies (above 1 MHz for the case presented in 

Figure 16), no impact of the presence of interfaces or interphases is observed, all 

dielectric curves coincide.   

(b) Secondly, a significant difference in the global dielectric behavior is observed when 

an interphase is present at the interface between two different dielectric phases. 
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(c) Thirdly, the impact of the presence of an interphase strongly depends on the form of 

the gradient of the local dielectric properties between the two phases. 

 

For a deeper analysis of the impact of interphases, further analytical and numerical 

approaches are required. While taking into consideration effects of interphases remains still 

a relatively simple mathematical problem when constant local properties are assumed, 

analyzing more realistic profiles exhibiting gradients of local properties can become very 

rapidly complicated to solve, especially when less simple morphologies are considered (as 

for instance, spherical or ellipsoidal). The scope of the present section of our study was to 

demonstrate the first steps of a rigorous analytical approach that allows one to analyze the 

impact of interphases in dependence on the profile of their gradient of local properties.  

 

5. Experimental investigations of interfacial polarization effects 

  

The most important difficulty in experimentally analyzing the scaling laws of the 

phenomenon of interfacial polarization in multi-phase materials is related to the non-ideal 

distribution of properties specific to composite materials. The fillers are often not uniformly 

distributed in the volume of the matrix and quite frequently aggregation phenomena are 

observed. Furthermore, for composite materials prepared by solvent casting, sedimentation 

effects can be observed when a significant difference in density exists between the fillers 

and the matrix. Moreover, even for very low volume fractions, percolation phenomena can 

take place when fillers with a high form factor are employed. Not at last, the fillers do not 

have constant dimensions characterizing their shape but they show a distribution of sizes 

around an average value. An ideal composite material is therefore difficult to realize 

experimentally. Therefore, since aggregation effects, sedimentation effects, percolation 

effects and fillers with a non-uniform size distribution are not analyzed in the present study, 

only two morphologies could be chosen to experimentally exemplify the scaling laws of 

multiphase materials: a bi-layer morphology and a cylindrical morphology. Both 

morphologies were at the macroscopic scale, offering thus the experimental control needed 
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to approach the ideal situations analyzed by our numerical simulations. The experimental 

data and their analysis are presented in the Supplementary Information.   

 

5. Applications  

  

5.1 Discrimination of different electrical polarization phenomena 

  

Two different forms of the phenomenon of electrical polarization, namely the 

interfacial polarization in bi-layer materials and the electrode polarization in ion-conducting 

materials, can be analyzed using an identical equation (eq. 15). This is because, in both cases, 

the global dielectric response is given by a serial circuit of two complex capacities, where 

two different dielectric function must be taken into consideration: (a) the dielectric functions 

of the two different dielectric phases, in the case of interfacial polarization; (b) the dielectric 

function of the bulk and that of the interfacial layers formed in contact with the 

measurement electrodes in the case of electrode polarization6,13,14,48-50. Both situations lead to 

dielectric curves having a similar shape (Figure 17), both showing a dielectric peak in the 

global dielectric loss. However, despite the fact that both phenomena of electrical 

polarization can de described by using the same mathematical formalism (eq. 15), a detailed 

analysis of the characteristic frequencies in dependence on the volume fraction Φ  of the less 

conductive phase (of the interfacial layers in the case of electrode polarization) lead 

surprisingly to a fundamental difference: while the frequency position of the dielectric peak 

appears precisely at the inflexion point given by fi in the case of interfacial polarization, the 

dielectric peak appears at fmax in the case of electrode polarization. Thus, fMWS=fi in the first 

case while fMWS=fmax in the second one. This behavior is exemplified in Figure 17, where the 

characteristic frequencies of these two phenomena are shown in dependence on the volume 

fraction Φ. For electrode polarization, the parameter Φ is characterized by values in the 

range of 10-5 (because the thickness of the interfacial layers formed in contact with the 

measurement electrodes is in the nanometer range), while in the case of interfacial 

polarization measured in bi-layer structures, the two phases have thickness on the same 
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order of magnitude (thus, Φ shows a value in the decade centered on 0.5). In conclusion, a 

fundamentally different inter-relation between the characteristic frequencies is found for 

these two phenomena of electrical polarization, although both of them can be fully 

described by using the same mathematical formalism represented by eq.15. The analysis of 

the scaling laws could therefore represent a powerful means to discriminate different 

phenomena of electrical polarization. This can be extremely useful in understanding the 

dielectric response of complex materials (heterogeneous materials, multiphase materials, 

composite materials, etc.), where several dielectric peaks of different origins (molecular 

fluctuations, interfacial polarization, electrode polarization) can be observed in the global 

dielectric response.  

 

5.2 Measuring the conductivity of materials without a direct electrical contact 

  

In the standard approach, measuring the conductivity of materials implies a direct 

contact between the measurement electrodes and the surface of the samples under study. 

However, in many situations, the ability of measuring the conductivity without employing 

a direct contact between the electrodes and the samples can turn out to be extremely useful. 

A contact-less measurement of conductivity would be useful, for instance, when the sample 

is undergoing a large mechanical deformation. Furthermore, a contact-less conductivity 

measurement can be useful as well for in-situ investigations when the samples are subjected 

to external stimuli such as a vapor treatment, etc...The non-conventional way of measuring 

the conductivity using a contact-less approach can be carried-out with the help of the 

phenomenon of electrode polarization. The basic principle is illustrated in Figure 18. 

Measuring the conductivity of a material using an air gap geometry leads to global dielectric 

response consisting of two different contributions: the contribution of the conductive phase 

(the materials under study) and the contribution of the insulating phase (the air gap). Due 

the dielectric contrast between the two phases, a MWS peak appears in the global dielectric 

loss. For a detailed analysis of its frequency position in dependence on the conductivity 

value, the dielectric response in an air-gap geometry must be first calculated as: 
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        (eq.20) 

 

Where: Φ =dins/L represents the volume fraction of insulating phase (the air gap), 

condcondcond i −= the complex dielectric function of the conductive phase (the polymer 

layer) and
insinsins i −= the complex dielectric function of the insulating phase.  

Separating the real and the imaginary part leads to: 

 

(eq.21a) 

 

 

(eq.21b) 

 

The MWS interfacial polarization is manifested as a peak appearing in the dielectric loss. Its 

frequency position can therefore be calculated by solving the equation: 

( )
( )
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This leads to: 

      (eq.23) 

 

With: 
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          (eq.23b) 

            (eq.23c) 

             (eq.23d) 

 

Considering that ins=0, one gets an analytical expression relating the frequency position of 

the MWS interfacial polarization to the conductivity value of the polymer layer: 

( ) condins
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



+−


=

12
f

0

MWS
      (eq.24) 

The validity of this formula has been verified by measuring bi-layer polymer samples 

consisting in one conductive and an air gap. In a broad temperature range, an excellent 

agreement is found between the measured values of conductivity and those calculated using 

the above formula (Figure 18). Our approach is thereby validated for measuring the 

conductivity in an air-gap geometry, without a direct contact between the electrodes and 

the surface of the measured sample. 

 

6.  Conclusions 

 

In the present work, the scaling laws governing the electrical and dielectric behavior 

of composite materials consisting of two different dielectric phases have been studied. For 

this purpose, the characteristic frequencies describing the global dielectric behavior have 

been analyzed in dependence on morphology, conductivity, volume fraction, orientation of 

fillers, form factor and presence of interphases exhibiting different gradients of local 

properties. A first theoretical approach was demonstrated to evidence the impact of local 

gradients of properties existing in the interphases formed between two distinct dielectric 

regions present in a composite material. Two applications of our analysis of scaling laws 

were demonstrated: (i) discriminating different phenomena of electrical polarization 

(interfacial polarization vs. electrode polarization); (ii) measuring conductivity of materials 

without employing a direct electrical contact between the electrodes and the samples under 
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investigation. Our study delivered thus a useful and necessary analysis of the dielectric 

behavior of composite materials, where interfacial polarization effects play a major role. 
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Figure 1: The dielectric loss ε'' of a PVAc layer with a thickness of 100µm (a,d) and of a P2VP 

layer (b, e) with a thickness of 100µm, measured separately and together in a bi-layer 

structure (c, f), as function of temperature at a constant frequency of 100Hz (left graphs) 

and as function of frequency at a constant temperature of 120 oC (right graphs). 

 

Figure 2: The effective permittivity, the effective dielectric loss and the voltage distribution 

of a bi-layer system consisting of two different dielectric phases (phase A and phase B) 

having an identical permittivity value ( 3== BA  ), an identical thickness ( )mmdd BA 1.0==  

and showing a difference of 3 orders of magnitude between their dielectric losses 

(conductivity of phase A A=10-8 S/cm, conductivity of phase B σB=10-11 S/cm). 

 

Figure 3: The measured impedance values for the experimental data shown in Fig. 1 d, e, f. 

 

Figure 4:  The complex dielectric function (ɛ*net=ɛ'net - iɛ''net) and the complex conductivity 

function (σ*net=σ'net + iσ''net) of several multiphase materials consisting of an insulating matrix 

(ɛ'm= 3, σ’m=10-12 S/cm) and a conductive fillers (ɛ'f= 3, σ’f=10-6 S/cm) with a fixed volume 

fraction Φ=20%. Different morphologies were investigated: layered, cylindrical, spherical 

and ellipsoidal particles, as indicated. 

 

Figure 5: The characteristic frequencies of polarization effects: fon, fmax, fMWS and fi defined in 

spectra of ɛ', ɛ'', the first and the second derivative of ɛ'. 

 

Figure 6: The complex dielectric function (ɛ*net=ɛ'net - iɛ''net) and the complex conductivity 

function (σ*net=σ'net + iσ''net) in dependence on the frequency for different values of the DC-

conductivity for multiphase materials consisting of an insulating matrix (σ’m=10-12 S/cm) and 

conductive fillers. The volume fraction is Φ =20%. For three different morphologies: 

Layered, spherical and ellipsoidal. 
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Figure 7: (a) The characteristic frequencies fmax, fon, fi and fMWS (determined from the data 

presented in Fig. 6) (b) The ratio fi2/(fmax x fon) (c) The plateau values of ɛ'netat low frequencies, 

are  plotted as a function of  the DC-conductivity of the fillers (σcond=σDC); for three different 

morphologies of multiphase materials (layered, spherical and ellipsoidal), as indicated.  

 

Figure 8: The complex dielectric function (ɛ*net=ɛ'net - iɛ''net) and the complex conductivity 

function (σ*net=σ'net + iσ''net) in dependence on the frequency at different values of volume 

fraction Φ. Three different morphologies of multiphase materials were investigated 

(layered, spherical and ellipsoidal). Conductivity values of 10-12 S/cm and 10-6 S/cm were 

assumed for the insulating matrix and the conductive fillers, respectively.  

 

Figure 9: (upper graphs)The characteristic frequencies fon, fmax, fi, and fMWS(determined from 

the data presented in Fig. 8) (middle graphs) The ratio fi2/(fonxfmax) (lower graphs) The 

plateau values of ɛ'net at low frequencies, as a function of the volume fraction of the fillers; 

for three different morphologies of multiphase materials (layered, spherical and ellipsoidal), 

as indicated.  

 

Figure 10: The complex permittivity (ε*net =ε'net –iε''net) and the complex conductivity 

(σ*net=σ'net +iσ''net) of composite material consisting of a host insulating matrix (σ'm=10-12 S/cm) 

filled with conductive ellipsoidal particles (σ'f= 10-6 S/cm and Φ=10%) were simulated. Three 

different orientations of the ellipsoidal fillers were considered: (i) Random orientation, (ii) 

oriented parallel to E direction (iii) perpendicular to E direction.  

 

Figure 11: The complex permittivity (ε*net =ε'net –iε''net) and the complex conductivity 

(σ*net=σ'net +iσ''net) of composite material consisting of a host insulating matrix (with a 

conductivity value of 10-12 S/cm) filled with conductive ellipsoidal particles (left graphs) 

with a fixed volume fraction Φ=10% and at different DC-conductivity values of the fillers; 

(right graphs) as a function of the volume fraction of fillers with a constant conductivity 
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value of 10-6 S/cm. Three different orientations of the ellipsoidal fillers were estimated 

(Random orientation, oriented parallel and perpendicular to E direction). 

 

Figure 12: (upper graphs) Characteristic frequencies fon, fmax, fi and fMWS (determined from 

the data presented in Fig. 11 left) (middle graphs) The ratio fi2/(fonxfmax) plotted as a function 

of the DC-conductivity of the fillers at fixed volume fraction Φ =10%. (lower graphs) The 

characteristic frequencies fon, fmax, fi and fMWS (determined from the data presented in Fig. 11 

right) as a function of the volume fraction of the fillers. All three different orientations were 

investigated, as indicated. 

 

Figure 13: The plateau values of ɛ'net in low frequency range (form the data presented in 

fig.12 right) in dependence on the volume fraction of the fillers for three different 

orientations of the ellipsoidal particles. 

 

Figure 14:  Complex dielectric function of composite materials with ellipsoidal fillers of 

different values of form factor q. The Conductivity values of 10-12 S/cm and 10-6 S/cm were 

considered for the insulating matrix and the conductive fillers, respectively. The volume 

fraction is Φ =20%. 

 

Figure 15: The characteristic frequencies as a function of the form factor q, in log-log plot. 

 

Figure 16: (upper graphs) Schematic presentation of (a) two phases model (b) three phases 

model with interphase showing a gradient of properties. 

(lower graph) Complex permittivity and complex conductivity of bi-phases material 

showing different situations of gradient of properties at interphases: (i) without any 

gradients of properties; (ii) interphase with a constant local properties (iii) interphase with 

a linear gradients in the local properties; (iv) interphase with an exponential gradients in 

the local properties. 
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Figure 17: (upper graphs)The global dielectric properties of a system consisting of two 

phases of different conductivity, calculated using formula (eq. 20) for two different values 

of the volume fraction x: (left graph) x=10-5, σins=10-12 S/cm, σcond=10-4 S/cm, ɛins=3, ɛcond=3; 

(right graph) x=0.5, σins=10-12 S/cm, σcond=10-8 S/cm, ɛins=3, ɛcond=3 (lower graphs) The 

characteristic frequencies fon, fmax, fMWS and fi as a function of x=dins/L. 

 

Figure 18: (a) The dielectric loss of a polymer layer (PVAc blend with 20%v EMPy[TF2N], 

thickness of 200µm)measured in the conventional geometry(between two electrodes) and 

using an air-gap geometry (the upper electrode do not touch the surface of the sample under 

investigation). (b) The conductivity values σDC of the polymer film (PVAc blend with 20%v 

EMPyr[TF2N]) vs. inverse temperature, as measured and as calculated using the formula 

(eq.24). 
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Figure 15 
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Figure 16 
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Figure 17 
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Figure 18 
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Supplementary Material:  

1- The phenomenon of interfacial polarization: basic principle 

 

Figure S1: The dielectric loss ε'' of PVAc with a thickness of 100µm and of P2VP with 

100µm in thickness, for the two samples measured separately (a, b) and together (c), as 

function of temperature and at different frequencies, as indicated. 

 

 
Figure S2: The dielectric loss ε'' of PVAc with a thickness of 100µm and of P2VP with 

100µm in thickness, for the two samples measured separately (a, b) and together (c), as 

function of frequency and at different temperature, as indicated. 
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Figure S3: the effective permittivity, the effective dielectric loss and the voltage 

distribution of a bi-layer system consisting of two layers of different dielectric phases 

(phase A and phase B) having identical permittivity values ( 3== BA  ).The thickness 

values are: mmdA 09.0= for the phase A and mmdB 01.0=  for the phase B. The two phase 

show a difference of 3 orders of magnitude between their dielectric losses, originating 

from a contrast of conductivity (conductivity of phase A: A=10-8 S/cm, conductivity of 

phase B: σB=10-12 S/cm). 

 

 

2- Maxwell-Wager-Sillars interfacial polarization in the electrical and dielectric 

behavior of multiphase materials 

This study offers a complete theoretical description of the electrical and dielectric 

properties of multiphase materials with different morphologies. 

I. Lamellar:  

The dielectric properties of bi-layers structure consisting of a conductive and an insulating 

layer are investigated:  
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Figure S4: Bi-layers structure 

According to this morphology, we have capacitance in series so we use the following 

expressions: 

21

111


+=
CCC net      (eq.S1) 

With:      

L

A
C netnet

 =  0 ,
1

101
d

A
C  =  and 

2

202
d

A
C  =   

      The global dielectric response can be calculated by considering the complex permittivity 

functions (or the complex conductivity functions) of the two phases and their corresponding 

thicknesses: 





+
=

inscondcondins

inscond

net
dd

L




 *      (eq.S2) 

Where: 

𝑐𝑜𝑛𝑑
∗ = ′𝑐𝑜𝑛𝑑 − 𝑖′′𝑐𝑜𝑛𝑑 represents the complex dielectric function of the conductive 

layer, 𝑑𝑐𝑜𝑛𝑑 its thickness, 𝑖𝑛𝑠
∗ = ′𝑖𝑛𝑠 − 𝑖′′𝑖𝑛𝑠 the complex dielectric function of the 

insulating layer, 𝑑𝑖𝑛𝑠 its thickness, and 𝐿 = 𝑑𝑖𝑛𝑠 + 𝑑𝑐𝑜𝑛𝑑 represents the total thickness of the 

polymer sample. Between the complex permittivity function and the complex conductivity 

function a linear relationship exists, thus 𝑐𝑜𝑛𝑑
∗ = 𝑖0

𝑐𝑜𝑛𝑑
∗ , with ′𝑐𝑜𝑛𝑑 = 0′′

𝑐𝑜𝑛𝑑
 and 

′′𝑐𝑜𝑛𝑑 = 0′
𝑐𝑜𝑛𝑑

, and 𝑖𝑛𝑠
∗ = 𝑖0

𝑖𝑛𝑠
∗ , with ′𝑖𝑛𝑠 = 0′′

𝑖𝑛𝑠
 and ′′𝑖𝑛𝑠 = 0′

𝑖𝑛𝑠
, with 

being the radial frequency of the applied electric field and 0 the vacuum permittivity.  
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The global dielectric response of bi-layers structures consisting of an insulating and a 

conductive polymer phase was simulated by numerical calculations using the formula: 

( ) 



−+
=

inscond

inscond

net





1

*

     
(eq.S3) 

With Φ=dins/L being the volume fraction of the insulating phase. 

Separating the real and the imaginary part, leads to: 

( ) ( )( ) ( ) ( )( )

( ) ( )
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   −  +  + −  +         

(eq.S4a)
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(eq.S4b) 

For the complex conductivity function, the following expressions are derived: 
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(eq.S5a) 
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   −  +  + −  +         

(eq.S5b) 

II. Composite materials with spherical particles: 

The composite material under investigation is consisting of a host matrix filled with 

spherical particles. 

 

Figure S5: Composite material consisting of a host matrix embedded with spherical 

particles 
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The most general approach of calculating the net dielectric properties of composite materials 

consisting of a host matrix filled with spherical fillers is given by the Maxwell- Garnett 

equation41-43: 

( ) ( )

( ) ( )

* * *

*

* *

1 2 2 1

1 2

matrix filler matrix

net

filler matrix

  


 

 +  + −  =
 −  + +      

(eq.S6)

  

 

Where: Φ is the volume fraction of the fillers.  

Separating the real and the imaginary part leads to: 
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      (eq.S7a) 

And 
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(eq.S7b) 

III. Composite materials with ellipsoidal particles: 

The analytical formula of the global dielectric response of composite material consisting of 

a host matrix filled with ellipsoidal particles44-47: 

( ) 


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

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+= 

=

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kmatrixfillermatrix

matrixfiller

matrixnet
L,,
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
    (eq.S8) 

Where: Φ = 4𝜋𝑅𝑥𝑅𝑦𝑅𝑧𝑁 3⁄ represents the volume fraction of the ellipsoidal particles and Lk 

is called the depolarization factor along the k-axis, with Lx+Ly+Lz=1. 
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In this section, orientation effects are investigated:  

a) Ellipsoidal particles randomly oriented: 

Dielectric response of composite materials with ellipsoidal fillers randomly oriented, 

with 31cos2 =k , is given by: 

( ) 
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−
+= 

=
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zyxk kmatrixfillermatrix

matrixfiller

matrixnet
L,,3

1
1






   

(eq.S9) 

 

Figure S6: Structure of a dispersion of randomly oriented ellipsoidal fillers 

b) Oriented ellipsoidal particles: 

Composite materials with oriented ellipsoidal fillers can be analyzed, when the k-axis is 

parallel to E direction, the formula (S8) becomes: 

( ) 











−+

−
+=







kmatrixfillermatrix

matrixfiller

matrixnet
L


 1     (eq.S10) 

Two orientations can be obtained; long axis of the ellipsoid can be parallel or 

perpendicular to the E-direction, as presented in the Figure S.7 below: 

 
Figure S7: Structure of a dispersion of oriented ellipsoidal fillers (a) Prolate ellipsoids: 

fillers oriented parallel to the E-direction (b) Oblate ellipsoids: fillers oriented 

perpendicular to the E-direction 
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(a) Prolate ellipsoids (Rz> Rx), the form factor: 1=
x

z

R

R
q  and the depolarization factor has 

the following expression: 

( )
( ) 212

2322
1ln

11

1
−+

−
+

−
−= qq

q

q

q
Lz        (eq.S11a) 

(b) Oblate ellipsoids (Rz< Rx), 1=
x

z

R

R
q  and the depolarization factor is:

( )
q

q

q

q
Lz

1

2322
cos

11

1 −

−
+

−
=         (eq.S11b) 

(iv) Composite materials with cylindrical fillers:  

Actually, the fillers particles can be of any ellipsoidal shape. Special cases such as cylinders 

particles can be covered and analyzed by the analytical formula (S8) in dependence to the 

form factor q which is the axial ratio of the particles (q=Rz⁄Rx), thus the depolarization factor 

Lk.  

• Cylinders perpendicular to the direction of the dielectric field: 

The corresponding equation is obtained by substituting 1/2 for Lk in the equation (S11b):  


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+=
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 21

     

(eq.S12)

 

 

3- Experimental data to investigate the phenomenon of interfacial MWS 

polarization.  

 

a) Composite material consisting of a host matrix embedded with cylinder fillers 

Dielectric properties of composite material consisting of a host matrix embedded with 

cylinder fillers were characterized by Broadband Dielectric Spectroscopy. The 

polytetraflouroethylene (PTFE) was filled with an ionic liquid (EMIM SCN, 1-Ethyl-3-

methylimidazolium thiocyanate, from Iolitec), as illustrated in the Figure S8.  
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Figure S8: A host matrix embedded with cylinder fillers 

 

Figure S9: (left graphs) Complex permittivity measured for a composite material with 

cylinder fillers, as a function of frequency at different values of temperature. (right 

graphs) Normalized curves for the data presented in left graphs. 

 

 

Figure S10: (a) The characteristic frequencies fmax, fon, fi and fMWS (determined from the 

dielectric measurements presented in Fig. S9) plotted as a function of the measured DC-

conductivity (b) as a function of the inverse of temperature. 

Teflon, ''=0

electrodes

Ionic liquid

1mm 2 mm V()

2,6

2,8

3,0

3,2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-2

10
-1

213K203K

208K

193K

198K

183K

188K

 

 

 
'

frequency [Hz]

 

 

 
''

0,9

1,0

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
-2

10
-1

10
0

183K

188K

193K

198K

203K

208K

 

 

 
' n

o
rm

.

frequency norm.

 

 
 

'' 
n

o
rm

.

-10 -9 -8 -7 -6 -5 -4
0

1

2

3

4

5

6

7

log(
DC

) [S/cm]

 f
max

 f
on

 f
i

 f
MWS

 

 

lo
g
(f

m
a
x
),

 l
o
g
(f

o
n
),

 l
o
g
(f

i),
 l
o
g
(f

M
W

S
)

slope 1.0

4,6 4,8 5,0 5,2 5,4 5,6
0

1

2

3

4

5

6

7

1000/T [1/K]

 f
max

 f
on

 f
i

 f
MWS

 

 

lo
g
(f

m
a
x
),

 l
o
g
(f

o
n
),

 l
o
g
(f

i),
 l
o
g
(f

M
W

S
)



 

57 

 

 

Figure S12: (a) fi2 vs. fonfmax for the data presented in fig.S9 (b) the ratio fi2/(fonfmax) for 

different values of temperature. (c) fMWS as a function of fi. (d)the ratio fMWS/fi for different 

values of temperature 

 

b) Bi-layers materials: 

Dielectric measurements by Broadband Dielectric Spectroscopy have been carried out 

for bi-layer sample consisting of a conductive (PVAc_4%BMIM BF4, thickness200µm) 

and an isolating polymer phase (PTFE, thickness 25µm) was investigated.  

 

Figure S13: (a) Complex permittivity measured as a function of frequency at different 

values of temperature. (b) Normalized curves for the data presented in fig.13a 
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Figure S14: (left) The characteristic frequencies fmax, fon, fi and fMWS (determined from the 

dielectric measurements presented in Fig. S13) plotted as a function of the measured DC-

conductivity (right) as a function of the inverse of temperature. 

 

Figure S15: (a) fi2 vs. fonfmax for the data presented in fig. S13 (b) The ratio fi2/(fonfmax) for 

different values of temperature. (c) fMWS as a function of fi. (d) The ratio fMWS/fi for different 

values of temperature.  
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