Metallic Trace Elements Shipping Profile by PM1 Source Apportionment in a Mediterranean Port City

L. Le Berre^{1,2,3}, B. Chazeau^{1,4}, B. Temime-Roussel¹, G.M. Lanzafame¹, A. Armengaud³, S. Sauvage⁵, L. Ntziachristos^{6,7}, N. Marchand¹, B. D'Anna¹ and H. Wortham¹

 ¹ Aix Marseille Univ, CNRS, LCE, Marseille, France - ² ADEME, French Agency for ecological transition, Angers, 49004, France - ³ AtmoSud, Regional Network for Air Quality Monitoring of Provence-Alpes-Côte-d'Azur, Marseille, France - ⁴ Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland - ⁵ CERI EE, Centre for Energy and Environment, IMT Lille Douai, University of Lille, Douai,59508, France - ⁶ Aristotle University of Thessaloniki, Thessaloniki, Greece - ⁷ Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere, 33720, Finland

AAAR 40^{TH} annual conference – October 4, 2022

/ km² / year

Marine traffic Density Maps 2021

A real **hotspot** in France, where the population is clearly exposed to a complex mixture of pollutants

Shipping emissions

Impacts on air quality and population health

~250,000 premature deaths per year worldwide attributable to shipping (Sofiev et al, 2018)

Previous study on Organic Aerosol in Marseille

(Chazeau et al, 2022)

 Difficulty to separate « industrial » and « shipping » sources by Positive Matrix Factorization (PMF) model

\Rightarrow Objectives :

- To isolate « shipping » and « industrial » sources
- To evaluate the contribution of « shipping » source to the air quality degradation of Marseille

Methodology

Source apportionment analysis

Focus on metallic trace elements in PM₁

- Ship emissions are associated with ultrafine particles (Merico et al., 2020)
- Metals recognized as tracers to separate « shipping » and « industrial » sources (Chang et al., 2018; Chu Van et al., 2020)

Using Positive Matrix Factorisation (PMF)

 SoFi Pro toolkit (Canonaco et al., 2013)

• Minimization of
$$Q = \sum_{i} \sum_{j} \left(\frac{e_{i,t}}{\sigma_{i,t}} \right)^2$$

Rotation ambiguity (a-values)

⁽Adapted of Krall et al. 2017)

Campaigns during summer 2021

Measurement sites

Campaigns during summer 2021

Measurement sites

Substances monitored

- More 30 trace metals in PM₁
 - Online metal analyser Xact 625i
 - High time resolution

- In addition
 - PM₁ chemical composition : BC, sulfate, OA...
 - Ultrafine particle number and size distribution
 - Gaseous compounds : SO₂, NO_X, VOC, ...

 \Rightarrow Original metals database with high time resolution

Similar PMF results on both sites

• Northern pass site

CORTEA

Southern pass site

⇒ 3 shipping factors identified

Reminder of PMF strategy

- Input data :
 - Metals in PM₁ with Xact
 - Time resolution : 30 min
 - Periods :
 - June on North site
 - July on South site
- 21 elements used

As, Ba, Br, Ca, Cl, Co, Cu, Fe, I, K, Mn, Ni, Pb, Rb, S, Se, Sn, Sr, Ti, V, Zn

- No constrained PMF
- 5 factors selected

Ship in cruising phase factor (FSC < 0.5 %)

 Daily profile correlated with ship arrivals/departures

- Factor contributes > 90% of V and Ni while the mass is dominated by S (30-50%).
- V/Ni mass ratio between 0.5 0.8 as found in recent studies (Yu et al., 2021)

Diurnal factor profiles

Chemical factor profiles

Ship in cruising phase factor (FSC < 0.5 %)

 Daily profile correlated with ship arrivals/departures

- Factor contributes > 90% of V and Ni while the mass is dominated by S (30-50%).
- V/Ni mass ratio between 0.5 0.8 as found in recent studies (Yu et al., 2021)
- Maximum concentrations are observed along ship access routes to the port

(CNrs)

Auxiliary engine factor (FSC < 0.1 %)

Mass factor dominated by Fe and S ٠

Diurnal factor profiles

Relative contribution $(\Sigma \text{ variable } = 1)$

Results on sites inside the port area

Auxiliary engine factor (FSC < 0.1 %)

- Mass factor dominated by Fe and S
- Maximum concentrations are observed along the berths or along ship access routes to the port
- On south site, could be mixed with traffic

of several

Engine lubricating oil

categories of ships.

۲

•

Mass factor dominated by Zn and S

when sites are downwind

Maximum concentrations are observed

Diurnal factor profiles

Chemical factor profiles

Measurement sites

Results on urban background site

Focus on shipping factors

• Urban background site : Marseille-Longchamp 2021

• Only one factor could be retrieved

⇒ V/Ni mass ratio = 0.9

Reminder of PMF strategy

- Input data :
 - Metals in PM₁ with Xact
 - Time resolution : 2 hours
 - Periods: June-September 2021
 - Fireworks periods excluded (July 14, 2021)
- 18 elements used
 - As, Br, Ca, Cl, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Se, Si, Ti, V, Zn
- No constrained PMF
- 6 factors selected

Conclusions and outlooks

Conclusions

- Shipping factors identified
 - 3 profiles on sites inside the port area
 - Only 1 retrieve on urban background site
- New regulation in Mediterranean sea change shipping chemical profile
- Contribution of shipping activity
 - Low (< 10%) for total mass of metals
 - High (> 90%) for mass of specific toxic metal such as V and Ni

Outlooks

- For the PMFs on sites inside port area : Need to constrain specific profiles to stabilize the runs
- For the PMFs on the urban background site : Some factors of the PMF solutions need to be refined
- Next step : achieve a complete PM₁ source apportionment with OA, BC and metals

THANK YOU FOR YOUR ATTENTION

Acknowledgements

This work uses data generated by :

PAREA project « Fine particles in fields close to maritime traffic in Marseille » which has received funding from the French Agency for ecological transition (ADEME) as part of CORTEA research program 2019 (June campaign)

SCIPPER project « Shipping Contributions to Inland Pollution Push for the Enforcement of Regulations » which has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 814893 (July campaign)