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Thermodynamic symmetry resolved entanglement entropies in integrable systems

We develop a general approach to compute the symmetry-resolved Rényi and von Neumann entanglement entropies (SREE) of thermodynamic macrostates in interacting integrable systems. Our method is based on a combination of the thermodynamic Bethe ansatz and the Gärtner-Ellis theorem from large deviation theory. We derive an explicit simple formula for the von Neumann SREE, which we show to coincide with the thermodynamic Yang-Yang entropy of an effective macrostate determined by the charge sector. Focusing on the XXZ Heisenberg spin chain, we test our result against iTEBD calculations for thermal states, finding good agreement. As an application, we provide analytic predictions for the asymptotic value of the SREE following a quantum quench.

I. INTRODUCTION

In the past two decades, the study of different measures of quantum entanglement, such as the von Neumann and Rényi entropies [START_REF] Nielsen | Quantum computation and quantum information[END_REF], have revolutionized our understanding of many-body systems, with ramifications ranging from high energy physics to the theory of critical and non-equilibrium phenomena [START_REF] Amico | Entanglement in Many-Body Systems[END_REF][START_REF] Calabrese | Entanglement Entropy in Extended Quantum Systems[END_REF][START_REF] Eisert | Colloquium: Area Laws for the Entanglement Entropy[END_REF][START_REF] Laflorencie | Quantum Entanglement in Condensed Matter Systems[END_REF][START_REF] Headrick | Lectures on entanglement entropy in field theory and holography[END_REF]. Entanglement entropies play in particular a crucial role in the emergence of thermodynamics in isolated many-body systems out of equilibrium [START_REF] Santos | Entropy of Isolated Quantum Systems after a Quench[END_REF][START_REF] Collura | Stationary entanglement entropies following an interaction quench in 1D Bose gas[END_REF][START_REF] Deutsch | Microscopic Origin of Thermodynamic Entropy in Isolated Systems[END_REF][START_REF] Alba | Entanglement and Thermodynamics after a Quantum Quench in Integrable Systems[END_REF], as recently demonstrated by beautiful experiments in cold-atom settings [START_REF] Kaufman | Quantum Thermalization through Entanglement in an Isolated Many-Body System[END_REF][START_REF] Brydges | Probing Rényi Entanglement Entropy via Randomized Measurements[END_REF][START_REF] Elben | Mixed-State Entanglement from Local Randomized Measurements[END_REF]. For example, in the framework of quantum quenches [START_REF] Calabrese | Time Dependence of Correlation Functions Following a Quantum Quench[END_REF], the generic growth and late-time saturation of entanglement measures correspond to the emergence of a local stationary mixed state [START_REF] Rigol | Thermalization and Its Mechanism for Generic Isolated Quantum Systems[END_REF][START_REF] Calabrese | Quantum Quenches in 1 + 1 Dimensional Conformal Field Theories[END_REF][START_REF] Essler | Quench Dynamics and Relaxation in Isolated Integrable Quantum Spin Chains[END_REF][START_REF] Vidmar | Generalized Gibbs Ensemble in Integrable Lattice Models[END_REF].

The connections between entanglement and thermodynamics can be studied very explicitly in one-dimensional integrable systems [START_REF] Korepin | Quantum Inverse Scattering Method and Correlation Functions[END_REF], which are very useful toy models with an extensive number of local conservation laws. As a defining feature, their Hamiltonian can be diagonalized analytically, with the corresponding energy spectrum admitting an intuitive description in terms of stable quasiparticle excitations. It has been known for a long time that their macrostates are fully described by the corresponding distribution function of quasiparticle quasimomenta [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF], in analogy to non-interacting quantum gases. For example, at thermal equilibrium the system entropy is given by the Yang-Yang entropy [START_REF] Yang | Thermodynamics of a One-Dimensional System of Bosons with Repulsive Delta Function Interaction[END_REF], a simple functional of such distribution functions [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF]. As an important milestone, it has been recently realized that a similar description also holds out of equilibrium. In particular, in an appropriate scaling limit, the entanglement dynamics after a quench can be captured by a semiclassical formula featuring the Yang-Yang entropy corresponding to the post-quench stationary state [START_REF] Alba | Entanglement and Thermodynamics after a Quantum Quench in Integrable Systems[END_REF][START_REF] Fagotti | Evolution of Entanglement Entropy Following a Quantum Quench: Analytic Results for the XY Chain in a Transverse Magnetic Field[END_REF][START_REF] Calabrese | Entanglement spreading in non-equilibrium integrable systems[END_REF][START_REF] Alba | Entanglement Dynamics after Quantum Quenches in Generic Integrable Systems[END_REF] joined with the quasiparticle picture of entanglement spreading [START_REF] Calabrese | Evolution of entanglement entropy in one-dimensional systems[END_REF].

While not yet proven in general, this formula has been numerically tested in a number of cases [START_REF] Alba | Entanglement and Thermodynamics after a Quantum Quench in Integrable Systems[END_REF][START_REF] Alba | Entanglement Dynamics after Quantum Quenches in Generic Integrable Systems[END_REF][START_REF] Alba | Rényi entropies after releasing the Néel state in the XXZ spin-chain[END_REF][START_REF] Mestyán | Rényi Entropies of Generic Thermodynamic Macrostates in Integrable Systems[END_REF][START_REF] Modak | Correlation and Entanglement Spreading in Nested Spin Chains[END_REF][START_REF] Lagnese | Entanglement Dynamics of Thermofield Double States in Integrable Models[END_REF], and derived analytically in non-interacting systems [START_REF] Fagotti | Evolution of Entanglement Entropy Following a Quantum Quench: Analytic Results for the XY Chain in a Transverse Magnetic Field[END_REF], as well as in certain integrable quantum cellular automata [START_REF] Klobas | Exact Thermalization Dynamics in the "Rule 54" Quantum Cellular Automaton[END_REF][START_REF] Klobas | Entanglement Dynamics in Rule 54: Exact Results and Quasiparticle Picture[END_REF][START_REF] Klobas | Exact Relaxation to Gibbs and Non-Equilibrium Steady States in the Quantum Cellular Automaton Rule 54[END_REF].

More recently, the interplay between entanglement entropies and symmetries has attracted increasing theoretical [START_REF] Laflorencie | Spin-Resolved Entanglement Spectroscopy of Critical Spin Chains and Luttinger Liquids[END_REF][START_REF] Goldstein | Symmetry-Resolved Entanglement in Many-Body Systems[END_REF][START_REF] Xavier | Equipartition of the Entanglement Entropy[END_REF][START_REF] Neven | Symmetry-Resolved Entanglement Detection Using Partial Transpose Moments[END_REF] and experimental [START_REF] Lukin | Probing Entanglement in a Many-Body-Localized System[END_REF][START_REF] Vitale | Symmetry-Resolved Dynamical Purification in Synthetic Quantum Matter[END_REF] interest, with a lot of work being devoted to the study of symmetry-resolved entanglement entropies (SRRE). Most of the existing literature has so far focused on ground-state physics in various theoretical contexts, such as CFTs [START_REF] Goldstein | Symmetry-Resolved Entanglement in Many-Body Systems[END_REF][START_REF] Xavier | Equipartition of the Entanglement Entropy[END_REF][START_REF] Cornfeld | Imbalance Entanglement: Symmetry Decomposition of Negativity[END_REF][START_REF] Murciano | Symmetry Decomposition of Negativity of Massless Free Fermions[END_REF][START_REF] Chen | Charged Rényi Negativity of Massless Free Bosons[END_REF][START_REF] Chen | Symmetry Decomposition of Relative Entropies in Conformal Field Theory[END_REF][START_REF] Capizzi | Symmetry Resolved Relative Entropies and Distances in Conformal Field Theory[END_REF][START_REF] Hung | Entanglement Branes and Factorization in Conformal Field Theory[END_REF][START_REF] Calabrese | Symmetry-Resolved Entanglement Entropy in Wess-Zumino-Witten Models[END_REF][START_REF] Capizzi | Symmetry Resolved Entanglement Entropy of Excited States in a CFT[END_REF][START_REF] Bonsignori | Boundary Effects on Symmetry Resolved Entanglement[END_REF][START_REF] Estienne | Finite-Size Corrections in Critical Symmetry-Resolved Entanglement[END_REF][START_REF] Ghasemi | Universal Thermal Corrections to Symmetry-Resolved Entanglement Entropy and Full Counting Statistics[END_REF], free [START_REF] Murciano | Entanglement and Symmetry Resolution in Two Dimensional Free Quantum Field Theories[END_REF][START_REF] Horváth | U(1) Symmetry Resolved Entanglement in Free 1+1 Dimensional Field Theories via Form Factor Bootstrap[END_REF] and interacting integrable quantum field theories [START_REF] Horváth | Symmetry Resolved Entanglement in Integrable Field Theories via Form Factor Bootstrap[END_REF][START_REF] Capizzi | Entanglement of the 3-State Potts Model via Form Factor Bootstrap: Total and Symmetry Resolved Entropies[END_REF][START_REF] Horváth | Branch Point Twist Field Form Factors in the Sine-Gordon Model II: Composite Twist Fields and Symmetry Resolved Entanglement[END_REF], holographic settings [START_REF] Belin | Holographic Charged Rényi Entropies[END_REF][START_REF] Caputa | Charged Entanglement Entropy of Local Operators[END_REF][START_REF] Zhao | Symmetry-Resolved Entanglement in AdS3/CFT2 Coupled to U(1) Chern-Simons Theory[END_REF][START_REF] Weisenberger | Symmetry-Resolved Entanglement for Excited States and Two Entangling Intervals in AdS3/CFT2[END_REF], spin chains [START_REF] Bonsignori | Symmetry Resolved Entanglement in Free Fermionic Systems[END_REF][START_REF] Fraenkel | Symmetry Resolved Entanglement: Exact Results in 1D and Beyond[END_REF][START_REF] Feldman | Dynamics of Charge-Resolved Entanglement after a Local Quench[END_REF][START_REF] Murciano | Symmetry Resolved Entanglement in Gapped Integrable Systems: A Corner Transfer Matrix Approach[END_REF][START_REF] Calabrese | Full Counting Statistics in the Gapped XXZ Spin Chain[END_REF][START_REF] Ares | Symmetry-Resolved Entanglement in a Long-Range Free-Fermion Chain[END_REF][START_REF] Wiseman | Entanglement of Indistinguishable Particles Shared between Two Parties[END_REF][START_REF] Barghathi | Rényi Generalization of the Accessible Entanglement Entropy[END_REF][START_REF] Barghathi | Operationally Accessible Entanglement of One-Dimensional Spinless Fermions[END_REF][START_REF] Barghathi | Theory of Noninteracting Fermions and Bosons in the Canonical Ensemble[END_REF][START_REF] Murciano | Symmetry Resolved Entanglement in Two-Dimensional Systems via Dimensional Reduction[END_REF][START_REF] Tan | Particle Number Fluctuations, Rényi Entropy, and Symmetry-Resolved Entanglement Entropy in a Two-Dimensional Fermi Gas from Multidimensional Bosonization[END_REF][START_REF] Ma | Symmetric Inseparability and Entanglement of Charge Coherence in Number Conserving Mixed States[END_REF][START_REF] Jones | Symmetry-resolved entanglement entropy in critical free-fermion chains[END_REF], disordered systems [START_REF] Turkeshi | Entanglement Equipartition in Critical Random Spin Chains[END_REF][START_REF] Kiefer-Emmanouilidis | Bounds on the Entanglement Entropy by the Number Entropy in Non-Interacting Fermionic Systems[END_REF][START_REF] Kiefer-Emmanouilidis | Slow Delocalization of Particles in Many-Body Localized Phases[END_REF][START_REF] Kiefer-Emmanouilidis | Evidence for Unbounded Growth of the Number Entropy in Many-Body Localized Phases[END_REF] and non-trivial topological phases [START_REF] Cornfeld | Entanglement Spectroscopy of Non-Abelian Anyons: Reading off Quantum Dimensions of Individual Anyons[END_REF][START_REF] Monkman | Operational Entanglement of Symmetry-Protected Topological Edge States[END_REF][START_REF] Azses | Symmetry-Resolved Entanglement in Symmetry-Protected Topological Phases[END_REF][START_REF] Azses | Identification of Symmetry-Protected Topological States on Noisy Quantum Computers[END_REF][START_REF] Azses | Observing Floquet topological order by symmetry resolution[END_REF][START_REF] Oblak | Equipartition of Entanglement in Quantum Hall States[END_REF]. On the other hand, only a few results have been derived for out-of-equilibrium situations [START_REF] Lukin | Probing Entanglement in a Many-Body-Localized System[END_REF][START_REF] Parez | Exact Quench Dynamics of Symmetry Resolved Entanglement in a Free Fermion Chain[END_REF][START_REF] Parez | Quasiparticle Dynamics of Symmetry-Resolved Entanglement after a Quench: Examples of Conformal Field Theories and Free Fermions[END_REF][START_REF] Fraenkel | Entanglement Measures in a Nonequilibrium Steady State: Exact Results in One Dimension[END_REF][START_REF] Parez | Dynamics of Charge-Imbalance-Resolved Entanglement Negativity after a Quench in a Free-Fermion Model[END_REF].

In the context of quantum quenches, Refs. [START_REF] Parez | Exact Quench Dynamics of Symmetry Resolved Entanglement in a Free Fermion Chain[END_REF][START_REF] Parez | Quasiparticle Dynamics of Symmetry-Resolved Entanglement after a Quench: Examples of Conformal Field Theories and Free Fermions[END_REF] derived analytic results for the dynamics of the SREE following a quench in non-interacting fermionic systems, and showed how quantitative predictions could be obtained generalizing the quasiparticle picture developed for the standard entanglement dynamics [START_REF] Fagotti | Evolution of Entanglement Entropy Following a Quantum Quench: Analytic Results for the XY Chain in a Transverse Magnetic Field[END_REF]. While extending the exact microscopic calculations to interacting integrable models appears to be out of reach, one could wonder whether it is possible to generalize the semiclassical formula beyond the non-interacting regime, thus obtaining a conjecture for the SREE analogous to that of Ref. [START_REF] Alba | Entanglement and Thermodynamics after a Quantum Quench in Integrable Systems[END_REF] for the standard entanglement entropy.

A first step in this direction is to compute the SREE for the post-quench stationary state. Assuming the validity of the generalized Gibbs ensemble (GGE) [START_REF] Essler | Quench Dynamics and Relaxation in Isolated Integrable Quantum Spin Chains[END_REF][START_REF] Vidmar | Generalized Gibbs Ensemble in Integrable Lattice Models[END_REF], this amounts to understand how the SREE of a generic macrostate can be related to the corresponding distribution function of quasiparticle quasimomenta. Indeed, in the case of the standard entanglement entropy, the identification of the latter with the Yang-Yang entropy played a crucial role for the heuristic derivation of the formula put forward in Ref. [START_REF] Alba | Entanglement and Thermodynamics after a Quantum Quench in Integrable Systems[END_REF].

Motivated by these discussions, in this work we develop a general approach to compute the symmetry-resolved Rényi and von Neumann entanglement entropies of thermodynamic macrostates in interacting integrable systems. For concreteness, we will focus on the prototypical example of the XXZ Heisenberg spin chain, although our method can be clearly extended to any Bethe ansatz integrable model. Our approach is based on a combination of the thermodynamic Bethe ansatz [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF] and the Gärtner-Ellis theorem from large deviation theory [START_REF] Touchette | The Large Deviation Approach to Statistical Mechanics[END_REF]. As our main result, we will show that the von Neumann SREE coincides with the Yang-Yang entropy of an effective macrostate determined by the charge sector.

The rest of this work is organized as follows. In Sec. II we define the symmetry-resolved Rényi and von Neumann entanglement entropies. In Sec. III we introduce the XXZ Heisenberg spin chain and review its description in terms of the thermodynamic Bethe ansatz. Next, in Sec. IV we discuss how the SREE can be obtained in terms of certain rate functions within large deviation theory and show that the thermodynamic Bethe ansatz can be conveniently used to explicitly compute them. Finally, in Sec. V, we present two applications of this formalism, presenting results for the SREE of thermal states and GGEs corresponding to a quench from tilted Néel states. Our conclusions are consigned to Sec. VI.

II. SYMMETRY RESOLVED ENTANGLEMENT ENTROPIES

Let us begin by reviewing the definitions of symmetry-resolved Rényi and von Neumann entanglement entropies. We consider a system with a U (1)-charge operator Q, in a given state described by the density matrix . Denoting by A, Ā a spatial bipartition, we assume Q = QA ⊕ Q Ā. If [ , Q] = 0, then [ A , QA ] = 0, where A = tr Ā[ ] is the reduced density matrix of the subsystem A. Accordingly, A is block-diagonal, and we can write

A = ⊕ Q p A (Q) A (Q) , (1) 
where

p A (Q) = tr [Π Q ρ A ]
, and Π Q is the projector onto the sector of charge Q in the subsystem A. Introducing the von Neumann entanglement entropy

S 1 ( A ) = -tr [ A ln A ] , (2) 
a simple calculation shows

S 1 ( A ) = Q p A (Q)S 1 (Q) - Q p A (Q) ln p A (Q) , (3) 
where we introduced the symmetry resolved entanglement entropy

S 1 (Q) ≡ -tr [ A (Q) ln A (Q)] . (4) 
Similarly, the symmetry resolved Rényi entropies can be defined as

S n (Q) ≡ 1 1 -n ln tr[ n A (Q)] . (5) 
If the reduced density matrix A is known exactly, a simple strategy to compute the SREE was put forward in Ref. [START_REF] Goldstein | Symmetry-Resolved Entanglement in Many-Body Systems[END_REF][START_REF] Xavier | Equipartition of the Entanglement Entropy[END_REF]. Namely, one first computes the charged moments

Z n (θ) ≡ tr n A e iθ QA , (6) 
and their Fourier transform

Z n (Q) = π -π dθ 2π e -iQθ Z n (θ) ≡ tr [Π Q n A ] . (7) 
The symmetry-resolved Rényi and von Neumann entanglement entropies are then obtained as

S n (Q) = 1 1 -n ln Z n (Q) Z 1 (Q) n , S 1 (Q) = lim n→1 S n (Q) = -∂ n Z n (Q) Z 1 (Q) n n=1 , (8) 
while

p A (Q) = Z 1 (Q) . (9) 
As mentioned, we will focus on the XXZ Heisenberg spin chain

H = 1 4 L j=1 σ x j σ x j+1 + σ y j σ y j+1 + ∆σ z j σ z j+1 , (10) 
where σ α are the Pauli matrices, while ∆ is the anisotropy parameter. For concreteness, we will restrict to the gapped regime of the model, ∆ > 1, and set ∆ = cosh(η) with η ∈ R (the generalization to the case ∆ < 1 is straightforward).

For the Hamiltonian (10) the U (1)-symmetry charge is given by the magnetization

S z = 1 2 L j=1 σ z j . (11) 
We will take L even, so that the eigenvalues of S z are integer numbers. Due to its underlying integrability, the model features an infinite number of pairwise commuting local and quasilocal conserved operators (charges), see Ref. [START_REF] Ilievski | Quasilocal Charges in Integrable Lattice Systems[END_REF] for a comprehensive review. For ∆ > 1, they are all even under spin inversion, except for the magnetization [START_REF] Kaufman | Quantum Thermalization through Entanglement in an Isolated Many-Body System[END_REF]. Following [START_REF] Ilievski | Quasilocal Charges in Integrable Lattice Systems[END_REF], we denote them by Q 

Q (2) 1/2 ∝ H [88].
The Hamiltonian (10) can be diagonalized exactly using the Bethe ansatz. Each eigenstate is associated with a set of quasiparticle quasimomenta, or rapidities, {λ j } j , satisfying a set of quantization conditions known as Bethe equations [START_REF] Korepin | Quantum Inverse Scattering Method and Correlation Functions[END_REF]. In the thermodynamic limit, the rapidities arrange themselves into patterns in the complex plane and their collective behavior can be described in terms of rapidity distribution functions [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF]. In particular, in the regime ∆ > 1, a given state is characterized by the set ρ ≡ {ρ n (λ)} ∞ n=1 , where λ ∈ [-π/2, π/2] while the index n labels different bound-states of quasiparticles. Together with ρ n (λ), one also needs to introduce the distribution functions ρ h n (λ) for the unoccupied modes, or "holes", satisfying [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF] 

ρ m (λ) + ρ h m (λ) = a m (λ) - ∞ n=1 [a mn * ρ n ] (λ) , (12) 
where we defined the convolution

(f * g)(λ) = π/2 -π/2 dµf (λ -µ)g(µ) , (13) 
and

a mn (λ) = (1 -δ mn ) a |m-n| (λ) + 2a |m-n|+2 (λ) + . . . + 2a m+n-2 (λ) + a m+n (λ) , (14) 
a n (λ) = 1 π sinh(nη) cosh(nη) -cos(2λ) . ( 15 
)
From the knowledge of the densities {ρ n (λ)}, several thermodynamic quantities can be computed immediately. For instance, the correspondent magnetization and energy densities are

S z [ρ] = 1 2 - ∞ n=1 n π/2 -π/2 dλ ρ n (λ) , (16) 
H[ρ] = ∞ n=1 π/2 -π/2 dλ ρ n (λ)ε n (λ) , (17) 
where

ε n (λ) = -π sinh(η)a n (λ) . (18) 
Similarly, the density of any quasilocal charge can be written as

Q (j) s [ρ] = ∞ n=1 π/2 -π/2 dλ ρ n (λ)q (j) s,n (λ) , (19) 
where q (j) s,n (λ) are known functions [START_REF] Ilievski | Quasilocal Charges in Integrable Lattice Systems[END_REF]. The solution to the set of equations ( 12) is not unique. This corresponds to the fact that the model admits infinitely many equilibrium stationary states, which can be represented in the grand canonical form

GGE ≡ 1 Z GGE exp   hS z - s,j β (j) s Q (j) s   , (20) 
where

Z GGE ≡ tr   exp   hS z - s,j β (j) s Q (j) s     (21) 
is a normalization. The density matrices [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF] describe the set of generalized Gibbs ensembles, which depend on the Lagrange multipliers h, β

s . As explained in Ref. [START_REF] Mossel | Generalized TBA and Generalized Gibbs[END_REF] (see also Refs. [START_REF] Mestyán | Rényi Entropies of Generic Thermodynamic Macrostates in Integrable Systems[END_REF][START_REF] Alba | Quench Action and Rényi Entropies in Integrable Systems[END_REF]) the corresponding rapidity distribution functions ρ n (λ) can be found following the standard prescriptions of the thermodynamic Bethe ansatz [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF] (TBA). In particular, the function ρ n (λ) is given by the saddle-point condition

δ δρ n F h, β (j) s , ρ = 0 , (22) 
where we have introduced the generalized free energy density

F h, β (j) s , ρ = -E[h, β (j) s , ρ] + S YY [ρ] . (23) 
Here we defined

E[h, β (j) s , ρ] ≡ -hS z [ρ] + s,j β (j) s Q (j) s [ρ] = -h 1 2 - n n dλ ρ n (λ) + s,j β (j) s n dλ ρ n (λ)q (j) s,n (λ) , (24) 
while

S YY [ρ] = ∞ n=1 dλ [ρ t,n (λ) ln ρ t,n (λ) -ρ n (λ) ln ρ n (λ) -ρ h,n (λ) ln ρ h,n (λ)] (25) 
is the Yang-Yang entropy density. Introducing the auxiliary functions

η n (λ) = ρ h n (λ) ρ n (λ) , (26) 
and after standard manipulations, the saddle-point condition can be rewritten as

ln η n (λ) = nh + g n (λ) + ∞ m=1 a nm * ln [1 + 1/η m ] (λ) , (27) 
with

g n (λ) ≡ s,j β (j) s q (j) s,n (λ) . ( 28 
)
The set of equations ( 27) can be solved numerically by simple iterative methods. Once the functions η n (λ) are known, one can use ρ h n (λ) = η n (λ)ρ n (λ) and solve [START_REF] Brydges | Probing Rényi Entanglement Entropy via Randomized Measurements[END_REF] for the functions ρ n (λ), finally obtaining the rapidity distribution functions corresponding to the state [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF].

IV. SREE AND LARGE-DEVIATION THEORY

In the rest of this work, we aim to compute the SREE assuming that the subsystem reduced density matrix has the form [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF]. Note that, in principle, one should take into account boundary effects, because the definition [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF] implicitly assumes an infinite system-size limit. However, we will only be interested in the leading extensive behavior of the SREE. Therefore, we will neglect any boundary effect, because they are expected to give sub-leading contributions.

In principle, the SREE could be computed using the strategy outlined in Sec. II, cf. Eqs. ( 6)-( 9). However, for thermodynamic states, the charged moment are expected to be exponentially small in the subsystem size, making the computation of the Fourier transform in [START_REF] Santos | Entropy of Isolated Quantum Systems after a Quench[END_REF] challenging from the numerical point of view. Here we provide an alternative approach, which is tailored to capture the leading behavior of the SREE and which turns out to be particularly convenient to be implemented within the TBA formalism.

Our method is based on an application of the Gärtner-Ellis theorem from large deviation theory [START_REF] Touchette | The Large Deviation Approach to Statistical Mechanics[END_REF] and it is valid beyond integrable models. We introduce the general idea in Sec. IV A, while in Sec. IV B we discuss its implementation within the TBA formalism.

A. Extensive SREE from the Gärtner-Ellis theorem

Let A be the reduced density matrix associated with a subsystem A, containing spins. We start by considering

p 1 (Q) ≡ tr[ Π Q ] , (29) 
where we have omitted the dependence on the subsystem size A for reasons that will be explained in the next paragraph. We have p 1 (Q) ≥ 0, Q p 1 (Q) = 1, so that p 1 (Q) is a probability distribution for the charge Q. Setting q = Q/ , we expect on physical grounds that q should follow a large deviation principle in the large limit, that is,

p 1 (Q) ∼ e -I1(q) , (30) 
where I 1 (q) is referred to as the rate function. In this setting, I 1 (q) can be computed by means of the the Gärtner-Ellis theorem [START_REF] Touchette | The Large Deviation Approach to Statistical Mechanics[END_REF]. To this end, we define the generating function

G(w) = tr e w Q ∼ e f1(w) , w ∈ R . (31) 
The Gärtner-Ellis theorem states that we can compute I 1 (q) as the Legendre-Fenchel transform of f 1 (w)

I 1 (q) = sup w∈R {wq -f 1 (w)} . (32) 
In the case where the functions involved are concave and regular, the Legendre-Fenchel transform reduces to the Legendre transform. Namely, we can write explicitly

I 1 (q) = w 1,q q -f 1 (w 1,q ) , (33) 
where w 1,q is determined by the condition

d dw (f 1 (w) -wq) w=w1,q = 0 . (34) 
A very similar reasoning can be applied to compute the symmetry resolved Rényi entropies, which involve powers of the symmetry resolved density matrices (Q) =

Π Q tr[Π Q ] . Indeed, using [ , Π Q ] = 0 , (35) 
and the fact that Π α Q = Π Q for any power α, we have

tr[ α (Q)] = tr[Π Q α ] tr[Π Q ] α = tr[Π Q α ] tr[ α ] tr[ α ] (p 1 (Q)) α = p α (Q) tr[ α ] (p 1 (Q)) α , (36) 
where we have introduced

p α (Q) = tr[Π Q α ] tr[ α ] . (37) 
Again, we have p α (Q) ≥ 0. Furthermore, we have

Q p α (Q) = tr[ α Q Π Q ] tr[ α ] = 1 . (38) 
Therefore p α (Q) is a probability distribution. Assuming

p α (Q) ∼ e -Iα(q) , (39) 
we can obtain I α (q) proceeding as before. Namely, introducing

G α (w) = tr α e w Q tr[ α ] ∼ e fα(w) , w ∈ R , (40) 
we get

I α (q) = w α,q q -f α (w α,q ) , (41) 
where w α,q is determined by the condition

d dw (f α (w) -wq) w=wα,q = 0 . (42) 
Finally, defining the density of SREE entropy

s α (q) = lim →∞ S α (q ) = 1 1 -α lim →∞ ln tr[ α (q )] (43) 
and using (36), we obtain

s α (q) = s α + 1 1 -α [-I α (q) + αI 1 (q)] , (44) 
where

s α = lim →∞ 1 1 -α ln tr[ α ] ( 45 
)
is the density of Rényi entropy. We may now take the limit α → 1 to recover the von Neumann SREE, yielding

s 1 (q) = s 1 + I 1 (q) + dI α (q) dα α=1 . (46) 

B. Explicit computations via TBA

In this section we show how the program presented above can be followed within the thermodynamic Bethe ansatz formalism, arriving at an explicit exact formula for the SREE. At the technical level, similar calculations appeared, albeit in a completely different context, in Ref. [START_REF] Perfetto | Quench Action and Large Deviations: Work Statistics in the One-Dimensional Bose Gas[END_REF], where, following Refs. [START_REF] Silva | Statistics of the Work Done on a Quantum Critical System by Quenching a Control Parameter[END_REF][START_REF] Gambassi | Large Deviations and Universality in Quantum Quenches[END_REF], the Gärtner-Ellis theorem was applied to the study of the work statistics after a quench in the integrable Lieb-Liniger model.

We start by computing

f α (w) = lim →∞ 1 ln tr( α e w Q) tr[ α ] . ( 47 
)
Let us recall that denotes in principle the reduced density matrix in a subsystem of size , within a system of total size L. However, as far as we are interested in the extensive part of the entanglement entropies, it can be argued that the calculations amount to taking first = L, and then the limit L → ∞. Hence, can be taken to be of the same form as the full system's density matrix, therefore justifying the notation instead of A .

Assuming that is of the form [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF], the density matrix α is of the same form, but with Lagrange multipliers αh, αβ (j) s . Following the standard prescription [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF][START_REF] Mossel | Generalized TBA and Generalized Gibbs[END_REF], we can therefore cast the trace into a functional integral over rapidity distribution functions, obtaining

f α (w) = F w + αh, αβ (j) s , ρ[w + αh, αβ (j) s ] -F αh, αβ (j) s , ρ[αh, αβ (j) s ] , (48) 
where F(h, β

s , ρ) is defined in ( 23), while we denoted by ρ[h, β

s ] the set of saddle-point rapidity distribution functions associated with the GGE [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF] with Lagrange multipliers h, β (j) s . Next, by using the definition of ρ[w + αh, αβ

(j)
s ] in terms of a saddle-point condition [START_REF] Fagotti | Evolution of Entanglement Entropy Following a Quantum Quench: Analytic Results for the XY Chain in a Transverse Magnetic Field[END_REF], it is straightforward to see that [START_REF] Chen | Symmetry Decomposition of Relative Entropies in Conformal Field Theory[END_REF] can be rewritten as

S z [ρ[w α,q + αh, αβ (j) s ]] = q , ( 49 
)
where S s [ρ] was defined in [START_REF] Calabrese | Quantum Quenches in 1 + 1 Dimensional Conformal Field Theories[END_REF]. Finally, using ( 41) and ( 44), and after tedious but straightforward simplifications, we arrive at

s α (q) = 1 1 -α -E[αh, αβ (j) s , ρ[w α,q + αh, αβ (j) s ]] + S Y Y [ρ[w α,q + αh, αβ (j) s ]]+ + αE[h, β (j) s , ρ[w 1,q + h, β (j) s ]] -αS Y Y [ρ[w 1,q + h, β (j) s ]] . ( 50 
)
This formula gives us the density of the Rényi SREE .

Let us evaluate (50) in the limit α → 1. We expand

-E[αh, αβ (j) s , ρ[w α,q + αh, αβ (j) s ]] + S Y Y [ρ[w α,q + αh, αβ (j) s ]] = t 1 + (α -1)t 2 + o(1 -α) . (51) 
Clearly

t 1 = -E[h, β (j) s , ρ[w 1,q + h, β (j) s ]] + S Y Y [ρ[w 1,q + h, β (j) s ]] . (52) 
Next, writing -E[αh, αβ (j) s , ρ[w α,q + αh, αβ (j) s ]] = w α,q q -E[w α,q + αh, αβ (j) s , ρ[w α,q + αh, αβ (j) s ]] ,

recalling the definition of ρ[w 1,q + h, β

s ] in terms the saddle-point condition, and using

d dα = ∂ ∂α + δ δρ ∂ρ ∂α , (54) 
we get

t 2 = -E[h, β (j) s , ρ[w 1,q + h, β (j) s ]] . (55) 
Putting everything together, we finally obtain

s 1 (q) = S Y Y [ρ[w 1,q + h, β (j) s ]]] . (56) 
Eq. ( 56) is the main result of this section. It states that the value of the density of the von Neumann SREE can be obtained as the Yang-Yang entropy density associated with the macrostate ρ[w 1,q + h, β

s ], whose magnetization must be equal to q (because of the condition (49) defining w 1,q ). Note that, in order to evaluate numerically Eqs. ( 50) and [START_REF] Caputa | Charged Entanglement Entropy of Local Operators[END_REF], one needs to find the value of w α,q for which (49) is satisfied, which can be achieved by standard numerical procedure.

V. APPLICATIONS

In this section we apply the formalism developed in the previous sections and provide results for the SREE in thermal states and in the GGE following a quantum quench from tilted Néel states. 

s 1 (q) ∆ = 2 (c) β = 1 β = 2 β = 3
FIG. 1. Left: Density of symmetry resolved Rényi entanglement entropy, corresponding to the thermal state [START_REF] Zhao | Symmetry-Resolved Entanglement in AdS3/CFT2 Coupled to U(1) Chern-Simons Theory[END_REF], with β = 1 and ∆ = 2. Center: comparison between analytical TBA results and numerical data obtained by iTEBD calculations for the Rényi-2 SREE. As increases, we were only able to obtain reliable iTEBD data for smaller values of q (cf. the main text). Right: Density of symmetry resolved von Neumann entanglement entropy. In all plots, we only show results for q > 0, the curves being manifestly symmetric for q < 0.

A. Thermal states

Let us first consider the case in which the reduced density matrix is described by a thermal state

= e -βH Z . ( 57 
)
The rapidity distribution functions are determined by the system of equations [START_REF] Mestyán | Rényi Entropies of Generic Thermodynamic Macrostates in Integrable Systems[END_REF] where now [START_REF] Takahashi | Thermodynamics of One-Dimensional Solvable Models[END_REF] g n (λ) = -βπ sinh ηa n (λ) .

We have solved numerically the TBA equations and evaluated Eqs. ( 50) and [START_REF] Caputa | Charged Entanglement Entropy of Local Operators[END_REF]. Examples of our data are reported in Fig. 1. We observe a generic non-monotonic behavior for both the Rényi and von Neumann SREE, which is more pronounced for smaller values of the temperature (i.e. larger values of β) and larger Rényi index.

Obtaining an independent numerical confirmation of our results appears to be challenging. This is because computations based on exact-diagonalization techniques are restricted to relatively small system sizes, which are plagued by large finite-size effects. To make things worse, the dimension of a given charge sector is smaller than that of the whole Hilbert space. In order to get around this issue, we have performed numerical computations based on the iTEBD algorithm [START_REF] Vidal | Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension[END_REF], which allow us to reach large sub-system sizes. More precisely, we have computed numerically the reduced density matrix over sites, starting from an infinite system prepared in a thermal state at a given temperature β -1 , and extracted the SREE using the strategy outlined in Sec. II, cf. Eqs. ( 6)-( 9).

As a general numerical limitation of this approach, the charged moments are exponentially small in and it is therefore difficult to obtain data with good relative precision for large values of α in [START_REF] Headrick | Lectures on entanglement entropy in field theory and holography[END_REF]. This results in significant numerical inaccuracies for the density of SREE for large values of Q. Despite all of these problems, we were able to extract reliable independent numerical data for the Rényi SREE at large values of and small q, finding convincing agreement with our TBA computations and yielding an independent confirmation of our method. An example is shown in Fig. 1(b).

B. Quantum quenches from tilted Néel states

In this section we finally consider the GGE reached at late times after a quantum quench. We focus in particular on the tilted Néel initial state

|ϑ; = -sin ϑ 2 | ↑ + cos ϑ 2 | ↓ ⊗ cos ϑ 2 | ↑ + sin ϑ 2 | ↓ ⊗L/2 , (59) 
where we denoted by |↑ , |↓ the two basis states for the local Hilbert space. We are interested in the reduced density matrix reached at large times after the system is initialized in the state [START_REF] Bonsignori | Symmetry Resolved Entanglement in Free Fermionic Systems[END_REF]. Note that our method straightforwardly applies to other quantum quenches from more general integrable initial states [START_REF] Piroli | What Is an Integrable Quench?[END_REF][START_REF] Pozsgay | Integrable Matrix Product States from Boundary Integrability[END_REF]. More general classes of states can be considered for free models [START_REF] Bastianello | Spreading of entanglement and correlations after a quench with intertwined quasiparticles[END_REF][START_REF] Bastianello | Entanglement spreading and quasiparticle picture beyond the pair structure[END_REF][START_REF] Bertini | Entanglement and diagonal entropies after a quench with no pair structure[END_REF]. The plots show our results for q > 0, the curves being manifestly symmetric for q < 0.

Importantly, although the titled Néel state breaks the U (1) symmetry of the Hamiltonian, the latter is restored at late times during the dynamics, and the GGE density matrix commutes with the magnetization operator. The rapidity distribution function of the GGE associated with the Néel (ϑ = 0) and tilted Néel states were first derived in Refs. [START_REF] Wouters | Quenching the Anisotropic Heisenberg Chain: Exact Solution and Generalized Gibbs Ensemble Predictions[END_REF][START_REF] Pozsgay | Correlations after Quantum Quenches in the XXZ Spin Chain: Failure of the Generalized Gibbs Ensemble[END_REF] and [START_REF] Piroli | Exact Steady States for Quantum Quenches in Integrable Heisenberg Spin Chains[END_REF][START_REF] Piroli | From the Quantum Transfer Matrix to the Quench Action: The Loschmidt Echo in XXZ Heisenberg Spin Chains[END_REF] respectively, see also [START_REF] Pozsgay | Overlaps with Arbitrary Two-Site States in the XXZ Spin Chain[END_REF]. Building upon these references, the explicit form of the GGE was extracted from such rapidity distributions in Ref. [START_REF] Mestyán | Rényi Entropies of Generic Thermodynamic Macrostates in Integrable Systems[END_REF][START_REF] Alba | Quench Action and Rényi Entropies in Integrable Systems[END_REF]. As a result of these analyses, it was found that, for the tilted Néel GGE, the functions (28) read g n (λ) = g N,n (λ) + g ζ,n (λ), where

g N,n (λ) = 2n ln 4 + n-1 l=0 ln sin 2 (2λ) + sinh 2 (η(n -1 -2l)) 4 tan λ + i η 2 (n -2l) tan λ -i η 2 (n -2l) , (60) 
g ζ,n (λ) = -2 n-1 l=0 ln [2(cos(2λ) + cosh(η(n -1 -2l) + 2ζ))] . (61) 
We have solved the corresponding TBA equations and evaluated Eq. ( 56) to compute the von Neumann SREE. An example of our data is shown in Fig. 2, where also report our results for the rate function I 1 (q) defined in [START_REF] Klobas | Exact Thermalization Dynamics in the "Rule 54" Quantum Cellular Automaton[END_REF]. Similarly to the thermal case, we observe a generic non-monotonic behavior for the SREE. In addition, we see that the latter exhibits very weak dependence on the tilting angle ϑ. We have verified that, as the tilting angle ϑ approaches zero, the rate function grows to infinity, signaling the fact that the GGE density matrix associated with the Néel state only has non-trivial support on the sector of vanishing magnetization. Conversely, we found that the von Neumann SREE approaches a non-trivial finite value as ϑ → 0.

In this case, we were not able to test our results against independent numerical calculations based on the iTEBD algorithm. While sufficiently large subsystem sizes are needed in order to be able to neglect finite-size effects, the relaxation times are expected to grow at least linearly with . On the other hand, the iTEBD algorithm is limited to relatively short times, and does not allow us to explore the late-time regime beyond intervals of a few sites.

VI. CONCLUSIONS

In this work, we have developed a general approach to compute the SREE of thermodynamic macrostates in interacting integrable systems, which is based on a combination of the TBA and the Gärtner-Ellis theorem from large deviation theory. As our main result, we have shown that the SREE coincides with the Yang-Yang entropy of an effective macrostate which is determined by the charge sector, see Eq. [START_REF] Caputa | Charged Entanglement Entropy of Local Operators[END_REF]. Although our results apply to any Bethe ansatz integrable model, for concreteness we have presented explicit results only in the case of the XXZ Heisenberg spin chain, focusing on equilibrium thermal states and GGEs following a quench from tilted Néel initial states (the former have also been tested against numerical simulations). Besides their interest per se, our findings represent a first step towards the derivation of a semiclassical formula for the dynamics of the SREE in interacting integrable systems, thus generalizing the recent results obtained for free fermions in Refs. [START_REF] Parez | Exact Quench Dynamics of Symmetry Resolved Entanglement in a Free Fermion Chain[END_REF][START_REF] Parez | Quasiparticle Dynamics of Symmetry-Resolved Entanglement after a Quench: Examples of Conformal Field Theories and Free Fermions[END_REF]. Furthermore, they are also the starting point for the entanglement resolution non-homogenous settings for integrable models in the context of generalized hydrodynamics [START_REF] Bertini | Transport in out-of-equilibrium XXZ chains: Exact profiles of charges and currents[END_REF][START_REF] Castro-Alvaredo | Emergent hydrodynamics in integrable quantum systems out of equilibrium[END_REF], thus extending know results for the total entropies [START_REF] Alba | Entanglement and quantum transport in integrable systems[END_REF][START_REF] Bertini | Entanglement evolution and generalised hydrodynamics: noninteracting systems[END_REF][START_REF] Alba | Entanglement Spreading and Generalized Hydrodynamics[END_REF][START_REF] Alba | Generalized-hydrodynamic approach to inhomogeneous quenches: correlations, entanglement and quantum effects[END_REF].

s

  , where s = 1/2, 1, 3/2, 2, . . . and j = 1, 2, . . .. With this convention, Q (j) 1/2 are strictly local, and

ϑ = π/ 6 ϑ = π/ 5 ϑ = π/ 4 FIG. 2 .

 6542 FIG.2. Rate function I1(q) (left) and density of symmetry resolved von Neumann entanglement entropy (right) for the tilted Néel state, for different tilting angles ϑ. The plots show our results for q > 0, the curves being manifestly symmetric for q < 0.
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