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Abstract

The goal of the present work is to propose a way to modify both the initial-
ization distribution of the weights of a neural network and its activation function,
such that all pre-activations are Gaussian. We propose a family of pairs initial-
ization/activation, where the activation functions span a continuum from bounded
functions (such as Heaviside or tanh) to the identity function.

This work is motivated by the contradiction between existing works dealing with
Gaussian pre-activations: on one side, the works in the line of the Neural Tangent
Kernels and the Edge of Chaos are assuming it, while on the other side, theoretical
and experimental results challenge this hypothesis.

The family of pairs initialization/activation we are proposing will help us to
answer this hot question: is it desirable to have Gaussian pre-activations in a neural
network?

TODO:

• give more information on φ2+

1 Introduction

Let us take a neural network at initialization with L layers. The operation made by the
l-th layer is:

∀l ∈ [1, L] : X(l+1) = φ(Z(l+1)) (1)

where: Z(l+1) =
1
√
nl
W (l)X(l) + b(l), (2)

whereX(l+1) ∈ Rnl+1 is its activation, Z(l+1) ∈ Rnl+1 its pre-activation, φ is the coordinate-
wise activation function, W (l) ∈ Rnl+1×nl is the weight matrix of the layer, b(l) ∈ Rnl+1 its
vector of biases, and X(l) ∈ Rnl its input.
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The object of the present study is the distribution of the pre-activations Z(l), for a
�xed input X(0), and weights W (l) and biases b(l) randomly initialized according to given
distributions.

Gaussian hypothesis for the pre-activations. In the theoretical analysis of the
properties of neural networks at initialization, the hypothesis of Gaussian pre-activations
is common. In particular, this is a fundamental assumption when studying �Neural Tan-
gent Kernels� (NTK) [3] or �Edge of Chaos� (EOC) [5]. In a nutshell, the NTK is an
operator describing the optimization trajectory of an in�nitely wide neural network (NN),
which is believed to help to understand the optimization of ordinary NNs; the EOC is a
criterion over the initialization distribution of the weights and biases of an in�nitely wide
NN, ensuring that information propagates and backpropagates the best across the layers
of the NN. On one side, this Gaussian hypothesis can be justi�ed in the case of �in�nitely
wide� NNs (i.e., when the widths nl of the layers tend to in�nity), by application of the
Central Limit Theorem (see Eqn. (2) when nl → ∞) [4]. On the other side, it is appar-
ently necessary to get the results of [3, 5]. However, this Gaussian hypothesis remains
debated for both theoretical and practical reasons.

First, from a strictly theoretical point of view, it has been shown that, for �nite-
width NNs (�nite nl), the distribution of Z(l) tends to have heavier and heavier tails as l
increases, that is, as information �ows from the input to the output [9]. Second, a series
of experiments tends to show that pushing the distribution of the pre-activations towards
a Gaussian (e.g., through a Bayesian prior) leads to worse performances than pushing it
towards distributions with heavier tails (e.g., Laplace distribution) [?].

Contributions. The goal of the present work is testing the accuracy of neural networks
with a realistic architecture, that is, of �nite width (nl may be small) and commonly used
(�fully connected� or �convolutional�), adjusted in such a way that all the pre-activations
are Gaussian. To this end, we propose a family of pairs (Pθ, φθ), where Pθ is the distri-
bution of the weights at initialization, φθ is the activation function, and θ ∈ (2,∞) is a
parameter such that:

• for a given layer l:

Z
(l)
i ∼ N (0, 1) i.i.d.

W
(l)
ij ∼ Pθ i.i.d.

b
(l)
i = 0

⇒ Z
(l+1)
i :=

1
√
nl
W (l)φθ(Z

(l)) + b(l) ∼ N (0, 1),

in other words, the pre-activations Z
(l+1)
i remain Gaussian for for all l;

• Pθ is the symmetric Weibull distribution W(θ, 1), of CDF:

FW (t) =
1

2
+

1

2
sgn(t) exp

(
−|t|θ

)
; (3)

• φθ is de�ned in such a way that Z
(l+1)
i := 1√

nl
W (l)φθ(Z

(l)) + b(l) is Gaussian;
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• limiting cases:

θ → ∞ ⇒ Pθ
d→ R and φθ

p.p.→ Id,

θ → 2 ⇒ Pθ
d→ W(2, 1) and φθ

p.p.→ φ2+ ,

where R is the Rademacher distribution (if ξ ∼ R, then P(ξ = ±1) = 1/2), Id is
the identity function, and φ2+ is an increasing function with: lim±∞ φ2+ = ±1 and
φ′2+(0) =

√
π.

In the limiting case θ → ∞, we initialize the weights at ±1, which corresponds to
binary �weight quantization�, used in the �eld of neural networks compression [6],
and we use a linear activation function, commonly used in theoretical analyses of
neural networks [1].

In the limiting case θ → 2, we recover weights whose distribution has a Gaussian
tail, with an Heaviside-like activation function, used since the very beginning of the
neural networks [7].

2 Obtaining the family {(Pθ, φθ) : θ ∈ (2,∞)}

2.1 Decomposing the problem

In order to evaluate the distribution of the pre-activations outputted by a layer, we should
be able to deal with a linear combination of products of random variables:

Z(l+1) =
1
√
nl
W (l)φ(Z(l)) + b(l). (4)

For i.i.d. pre-activations Z
(l)
i ∼ N (0, 1), we want the components of Z(l+1) to be N (0, 1).

Without loss of generality, nous consider only one component of Z(l+1), we omit layer
indices, we replace Z(l) by X, and the bias b(l) by 0 (see discussion in Sec. 3):

Z =
1√
n

n∑
i=1

Wiφ(Xi).

Since we want to have Z ∼ N (0, 1), and provided that Z in a linear combination
of i.i.d. r.v. (Wiφ(Xi))i, we want to construct an initialization distribution for Wi and
a function φ in such a way that all (Wiφ(Xi))i follow a distribution N (0, 1). This is
imposed by the following lemma:

Lemma 1. Let (Zi)i be i.i.d. random variables. Let Z = 1√
n

∑n
i=1 Zi. If Z is N (0, 1),

then the distribution of the Zi is also N (0, 1).

See proof in App. A.
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Main problem. Let X ∼ N (0, 1). We want to �nd a family Θ of parameters θ such
that, for any θ ∈ Θ, there exists a probability distribution Pθ and a function φθ such
that: W ∼ Pθ ⇒ Wφθ(X) ∼ N (0, 1).

We decompose the problem into two parts, by introducing an intermediary random
variable Y = φ(X):

• for a distribution Pθ, deduce Qθ s.t.: W ∼ Pθ, Y ∼ Qθ ⇒ WY =: G ∼ N (0, 1);

• for a distribution Qθ, �nd a function φθ s.t.: X ∼ N (0, 1) ⇒ Y = φθ(X) ∼ Qθ.

2.2 Why choosing the family of Weibull distributions?

We are looking for a family of distributions P = {Pθ : θ ∈ Θ} such that, for any θ ∈ Θ,
there exists Qθ such that:

W ∼ Pθ, Y ∼ Qθ ⇒ WY = G ∼ N (0, 1).

Therefore, the family P is subject to several conditions. Two results tend to indicate
that a subset of the family of Weibull distributions is a good choice:

1. according to the results of Section 2.2.1, the density of W at 0 should be 0, which
is the case for all Weibull distributions;

2. according to the results of Section 2.2.2, W should be generalized Weibull-tail of
parameter θ ∈ (2,∞) (see De�nition 2).

In the process, we are able to gather information about the distribution of |Y |, namely
its density at 0 and the leading power of the log of its survival function:

f|Y |(0) =

√
2

π

[∫ ∞
0

f|W |(t)

t
dt

]−1
,

logS|Y |(y) ∝ −y1/(
1
2
− 1
θ ).

As a conclusion of this section, we consider that the distribution Pθ of W lies in the
following subset of the family of symmetric Weibull distributions (de�ned at Eqn. (3)):

P := {W(θ, 1) : θ ∈ Θ},
Θ := (2,∞).

2.2.1 Behavior near 0

Since the product G = WY is N (0, 1), then we must have f|G|(0) =
√

2/π ∈ (0,∞),
which is impossible for several choices of distributions for W .

Proposition 1 (density of a product of random variables at 0). Let W,Y be two inde-
pendent non-negative random variables and Z = WY . Let fW , fY , fZ be their respective
density. Assuming that fY is continuous at 0 with fY (0) > 0, we have:

lim
w→0

∫ ∞
w

fW (t)

t
dt =∞ ⇒ lim

z→0
fZ(z) =∞, (5)
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moreover, if fY is bounded:∫ ∞
0

fW (t)

t
dt <∞ ⇒ fZ(0) = fY (0)

∫ ∞
0

fW (t)

t
dt.

Corollary 1. If fY and fW are continuous at 0 with fY (0) > 0 and fZ(0) > 0, then:

lim
z→0

fZ(z) =∞. (6)

According to Corollary 1, it is impossible to obtain a Gaussian G by multiplying two
random variables W and Y whose densities are both continuous and non-zero at 0. So,
if we want to manipulate continuous densities, it is necessary that either fW (0) = 0 or
fY (0) = 0.

Moreover, we want to have Y = φ(X), where X is Gaussian. In order to obtain
Y with a zero density at 0, it is necessary to build a function φ with φ′(0) = ∞ (see
Appendix B), which is usually not desirable as an activation function of a neural network
for training stability reasons. So, it is natural to build W such that fW (0) = 0.

Remark 1. The density of the product of two i.i.d. N (0, 1) random variables is:

f(x) =
K0(|x|)
π

,

where K0 is the modi�ed Bessel function of the second kind. Naturally, limx→0 f(x) =∞,
which illustrates Corollary 1.

2.2.2 Behavior of the tail

We use the results of [8] on the �generalized Weibull-tail distributions�.

De�nition 1 (slowly varying function). A measurable function l : (0,∞) → (0,∞) is
said to be �slowly varying� if:

∀a > 0, lim
x→∞

l(ax)

l(x)
= 1.

De�nition 2 (generalized Weibull-tail distribution). A random variable X is called �gen-
eralized Weibull-tail� with tail parameter θ > 0 if its survival function S is bounded by
Weibull-tail functions of tail parameter θ with possibly di�erent slowly-varying functions
l1 and l2:

exp
(
−xθl1(x)

)
≤ S(x) ≤ exp

(
−xθl2(x)

)
, for all x > 0.

Proposition 2 (behavior of the tail). The product of two independent non-negative gen-
eralized Weibull-tail random variables |W | and |Y | with tail parameters θW and θY is
generalized Weibull-tail with tail parameter θ such that:

1

θ
=

1

θW
+

1

θY
.
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We recall that, in our case, |G| = |W | · |Y | is the absolute value of a Gaussian random
variable. So |G| is generalized Weibull-tail of parameter θG = 2. Thus, if we assume that
|W | and |Y | are generalized Weibull-tail of respective parameters θW and θY , then we
necessarily have:

1

θY
=

1

2
− 1

θW
.

So θ := θW is constrained to the set Θ = (2,∞).

2.3 Product of two random variables

We assume that G = WY ∼ N (0, 1). Let us consider the random variables |W |, |Y | and
|G| = |W | · |Y |. Let f|W |, f|Y | and f|G| their densities. Under integrability conditions, we
can use the following property of the Mellin transformM:

Mf|G| = (Mf|W |) · (Mf|Y |), where (Mf)(t) =

∫ ∞
0

xt−1f(x) dx.

So:

f|Y |(y) :=M−1
[
Mf|G|
Mf|W |

]
(y).

Then, by symmetry, we can obtain fY starting from f|G| (density of the absolute
value of a Gaussian N (0, 1)) and f|W |. We choose W ∼ W(θ, 1), the symmetric Weibull
distribution of parameters (θ, 1) (see Eqn. (3)). To summarize:

W ∼ Pθ =W(θ, 1), Y ∼ Qθ : f|Y | =M−1
[
Mf|G|
Mf|W |

]
(y).

2.3.1 Obtaining the distribution of Y

Through the Mellin transform. The most direct way to obtain the distribution of
|Y | consists in performing the following computation:

f|Y |(y) :=M−1
[
Mf|G|
Mf|W |

]
(y).

Sadly, whileMf|G| andMf|W | are easy to compute, the inverse Mellin transformM−1

seems to be analytically untractable in this case.
Moreover, the numerical computation ofM−1 is too heavy for the required precision.

Through the numerical resolution of an integral equation. Provided that |G| =
|W | · |Y |, where G ∼ N (0, 1) and Y ∼ W(θ, 1), we are looking for the distribution of |Y |.
We are able to express this problem as an integral equation, namely:

S|G|(z) =

∫ ∞
0

f|Y |(y)S|W |

(
z

y

)
dy, (7)
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where f|Y | is the unknown, and S|G| and S|W | are respectively the survival function of |G|
and |W |.

We provide in Appendix D the technical details of the numerical resolution, based
on the resolution of a least-square problem. However, we need to express the candidate
solution as a linear combination of a family of functions. We propose the following family:

e
(1)
λ1

(x) = exp

[
−
(
x

λ1

)θ′]
,

e
(2)
λ2,µ2,α2,γ2

(x) = exp

[
−
(
|x− µ2|
λ2

)θ′]
(x+ γ2)

α2 ,

e
(3)
λ3,µ3,α3,γ3

(x) = exp

[
−
(
|x− µ3|
λ3

)θ′]
(x+ γ3)

−α3 ,

e
(4)
λ4,µ4

(x) = exp

[
−
(
|x− µ4|
λ4

)θ′]
,

where θ′ = [1
2
− 1

θ
]−1 (see Proposition 2).

The resolution process consists in the following loop:

1. solve the integral equation with the family of functions:

(e
(1)
λ1
, e

(2)
λ2,µ2,α2,γ2

, e
(3)
λ3,µ3,α3,γ3

, e
(4)
λ4,µ4

);

2. train the λi, µi, αi, γi by gradient descent.

2.4 Obtaining the activation function

To get φ, it is su�cient to make the following computation:

φθ(t) := F−1Y (FG(t)), FY (t) :=
1

2
+

1

2
sgn(t)

∫ |t|
0

f|Y |(y) dy. (8)

2.5 Results

Examples of activation functions. Using these activation functions φθ, combined
with the adequate initialization of weights W(θ, 1), guarantees Gaussian pre-activations.
The family of the φθ is a continuum spanning bounded functions, such as Heaviside, or
tanh, and linear functions.

3 Discussion

Independence of the components Z
(l)
i of the pre-activations. In this work, we

assumed that the components Z
(l)
i of the pre-activations are independent. This simpli-

�cation is partly justi�ed by the result obtained in [4]: in this variant of the Central

Limit Theorem, exchangeability of the components Z
(l)
i is su�cient to ensure that the

pre-activations of the next layer Z(l+1) are Gaussian. However, if we stay in a non-
asymptotic case, where the width nl of the layers is small, this result does not apply, and
it is necessary to measure the e�ect of the dependence between the components of Z(l).
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(a) θ = 2.2 (b) θ = 2.5 (c) θ = 3

(d) θ = 4 (e) θ = 5 (f) θ = 10

Figure 1 � Activation functions φθ with θ ∈ {2.2; 2.5; 3; 4; 5; 10}.

Initialization of the biases. We have not taken into account the initialization of the
biases, since they are just added to a sum, which is already Gaussian (see Eqn. (4)). We
can set them to 0 or draw them randomly from a Gaussian, provided that we adjust the
�rst term of Eqn. (4) in such a way that the result remains N (0, 1).

Back to the Neural Tangent Kernels and the Edge of Chaos. In these works, the
hypothesis of Gaussian pre-activations come from the in�nite-width limit of the layers.
It is now possible to do the same work, but with the pairs initialization/activation we
are proposing here, for narrow neural networks, while keeping the Gaussian hypothesis
(necessary when deriving the results).

Testing neural networks with several pairs (Pθ, φθ). We are now ready to test
the Gaussian hypothesis for the pre-activations by training a family of neural networks
having each their own pair (Pθ, φθ). We would be able to compare their performance
with networks with the same architecture, but with the usual initialization and activation
functions. The results will help us to answer the current hot question: is it desirable to
have Gaussian pre-activations in a neural network?
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A Decomposition of a Gaussian as a sum of i.i.d. ran-

dom variables

Lemma 1. Let (Zi)i be i.i.d. random variables. Let Z = 1√
n

∑n
i=1 Zi. If Z is N (0, 1),

then the distribution of the Zi is also N (0, 1).

Proof. Let ψZ(x) := E[eiZx] be the characteristic function of the distribution of Z. Since
the (Zi)i are i.i.d., we have:

ψZ(x) = exp

(
−x

2

2

)
,

ψZ(x) =

[
ψ Zi√

n

(x)

]n
.

Therefore, ψZi(x) = e−x
2/2. Thus, Zi ∼ N (0, 1).

B Activation functions with vertical tangent at 0

Lemma 2. Let φθ a function transforming a Gaussian random variable G ∼ N (0, 1) into
a symmetrical Weibull random variable Y ∼ W(θ, 1). That is, Y = φθ(G). Then φθ has
a vertical tangent at 0.

Proof. We have:

φθ(x) = F−1Y (FG(x)),

where:

FG(x) :=
2√
2π

∫ x

−∞
exp

(
−t

2

2

)
dt

FY (x) :=
1

2
+

1

2
sgn(x) exp

(
−|x|θ

)
.

Thus:

φ′θ(x) = F ′G(x)
1

F ′Y (F−1Y (FG(x)))

Therefore:

φ′θ(0) = F ′G(0)
1

F ′Y (F−1Y (FG(0)))

=
1√
2π

1

F ′Y (F−1Y (1/2))

=
1√
2π

1

F ′Y (0)

=∞.
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C Constraints on the product of two random variables

Proposition 1 (density of a product of random variables at 0). Let W,Y be two inde-
pendent non-negative random variables and Z = WY . Let fW , fY , fZ be their respective
density. Assuming that fY is continuous at 0 with fY (0) > 0, we have:

lim
w→0

∫ ∞
w

fW (t)

t
dt =∞ ⇒ lim

z→0
fZ(z) =∞, (9)

moreover, if fY is bounded:∫ ∞
0

fW (t)

t
dt <∞ ⇒ fZ(0) = fY (0)

∫ ∞
0

fW (t)

t
dt. (10)

Proof. Let z, z0 > 0:

fZ(z) =

∫ ∞
0

fY (t)
1

t
fW

(z
t

)
dt

≥
∫ z0

0

fY (t)
1

t
fW

(z
t

)
dt

≥ inf
[0,z0]

fY ·
∫ z0

0

1

t
fW

(z
t

)
dt

≥ inf
[0,z0]

fY ·
∫ ∞
z/z0

fW (t)

t
dt.

Let us take z0 =
√
z. We have:

fZ(z) ≥ inf
[0,
√
z]
fY ·

∫ ∞
√
z

fW (t)

t
dt.

Then we take the limit z → 0, hence:

• if
∫∞
0

fW (t)
t

dt =∞, then: limz→0 fZ(z) =∞, which achieves (9);

• if
∫∞
0

fW (t)
t

dt <∞, then: fZ(0) ≥ fY (0)
∫∞
0

fW (t)
t

dt, which achieves one half of (10);

Let us prove the second half of (10). Let z, z0 > 0:

fZ(z) =

∫ ∞
0

fY (t)
1

t
fW

(z
t

)
dt

=

∫ z0

0

fY (t)
1

t
fW

(z
t

)
dt+

∫ ∞
z0

fY (t)
1

t
fW

(z
t

)
dt

≤ sup
[0,z0]

fY ·
∫ ∞
z/z0

fW (t)

t
dt+

∫ ∞
1

fY (z0t)
1

t
fW

(
z

z0t

)
dt

Let z0 =
√
z. We have:

fZ(z) ≤ sup
[0,
√
z]

fY ·
∫ ∞
√
z

fW (t)

t
dt+

∫ ∞
1

fY
(√

zt
) 1

t
fW

(√
z

t

)
dt,
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where: ∫ ∞
1

fY
(√

zt
) 1

t
fW

(√
z

t

)
dt ≤ ‖fY ‖∞

∫ ∞
1

1

t
fW

(√
z

t

)
dt

≤ ‖fY ‖∞
∫ √z
0

fW (t)

t
dt.

According to the hypotheses, we have, as z → 0:

sup
[0,
√
z]

fY → fY (0)∫ ∞
√
z

fW (t)

t
dt→

∫ ∞
0

fW (t)

t
dt∫ √z

0

fW (t)

t
dt→ 0,

hence the result.

D Numerical resolution of an integral equation

We consider the following equation, of unknown g:

f(z) =

∫ ∞
0

g(x)K(z, x) dx, (11)

where f is a �xed function and K is a �xed kernel (e.g., f = SZ and K(z, x) = S(z/x).
Let (z1, · · · , zn) a �nite sequence of points. Let (e1, · · · , ep) a family of functions. We

are looking for ĝ ∈ Vp = Vect(e1, · · · , ep) such that:

ĝ :=

p∑
j=1

cjej,

ĝ = arg min
g∈Vp

p∑
i=1

(
f(zi)−

∫∞
0
g(x)K(zi, x) dx

f(zi)

)2

,

if f is strictly positive on R+.
This problem is a standard weighted least-square regression with solution:

C = (MT∆2M)−1MT∆2F

= (M ′TM ′)−1M ′TF ′,

where:

C ∈ Rp Cj = cj,

M ∈ Rn×p Mij =

∫ ∞
0

ej(x)K(zi, x) dx,

F ∈ Rn Fi = f(zi),

∆ ∈ Rn×n ∆ = Diag(f(z1)
−1, · · · , f(zn)−1),

M ′ = ∆M F ′ = ∆F.

12



This gives the approximate solution ĝ of Eqn. (11) minimizing the squared relative
error between f and f̂(·) =

∫
ĝ(x)K(·, x) dx.

13
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