
HAL Id: hal-03853639
https://hal.science/hal-03853639

Submitted on 15 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reaching Consensus in the Presence
of Contention-Related Crash Failures

Anaïs Durand, Michel Raynal, Gadi Taubenfeld

To cite this version:
Anaïs Durand, Michel Raynal, Gadi Taubenfeld. Reaching Consensus in the Presence of Contention-
Related Crash Failures. SSS 2022 - 24th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, Nov 2022, Clermont-Ferrand, France. pp.193-205, �10.1007/978-3-
031-21017-4_13�. �hal-03853639�

https://hal.science/hal-03853639
https://hal.archives-ouvertes.fr


Reaching Consensus
in the Presence of Contention-Related Crash Failures

Anaïs Durand?, Michel Raynal†, and Gadi Taubenfeld§

?LIMOS, Université Clermont Auvergne CNRS UMR 6158, Aubière, France
†IRISA, CNRS, Inria, Univ Rennes, 35042 Rennes, France

§Reichman University, Herzliya 4610101, Israel

Abstract. While consensus is at the heart of many coordination problems in
asynchronous distributed systems prone to process crashes, it has been shown to
be impossible to solve in such systems where processes communicate by message-
passing or by reading and writing a shared memory. Hence, these systems must
be enriched with additional computational power for consensus to be solved on
top of them. This article presents a new restriction of the classical basic com-
putational model that combines process participation and a constraint on failure
occurrences that can happen only while a predefined contention threshold has not
yet been bypassed. This type of failure is called λ-constrained crashes, where λ
defines the considered contention threshold. It appears that when assuming such
contention-related crash failures and enriching the system with objects whose
consensus number is k ≥ 1, consensus for n processes can be solved for any
n ≥ k assuming up to k failures. The article proceeds incrementally. It first
presents an algorithm that solves consensus on top of read/write registers if at
most one crash occurs before the contention threshold λ = n − 1 has been by-
passed. Then, it shows that if the system is enriched with objects whose consensus
number is k ≥ 1, then

– when λ = n− k, consensus can be solved despite up to k
λ-constrained crashes, for any n ≥ k, and

– when λ = n− 2k + 1, consensus can be solved despite up to 2k − 1
λ-constrained crashes, assuming k divides n.

Finally, impossibility results are presented for the number of λ-constrained fail-
ures that can be tolerated.

Keywords: Consensus algorithm, Asynchronous system, Atomic register, Con-
currency, Consensus number, Contention, λ-constrained failure, Participating pro-
cess, Process crash failure, Read/write register.

1 Introduction

Consensus and contention-related crash failures. Consensus is one of the most impor-
tant problems encountered in crash-prone asynchronous distributed systems. Its state-
ment is pretty simple. Let us consider a system of n asynchronous sequential processes
denoted p1, ..., pn. Each process pi is assumed to propose a value and, if it does not
crash, must decide a value (Termination property) such that no two processes decide



2 Anaïs Durand, Michel Raynal, and Gadi Taubenfeld

different values (Agreement property) and the decided value is a proposed value (Va-
lidity property). Despite its very simple statement, consensus is impossible to solve in
the presence of asynchrony and process crashes, even if a single process may crash, be
the communication medium message-passing [6], or atomic read/write registers [10].

In a very interesting way, Fischer, Lynch, and Paterson presented in Section 4 of [6]
an algorithm for asynchronous message-passing systems that solves consensus if a ma-
jority of processes do not crash and the processes that crash do it initially (the num-
ber of crashes being unknown to the other processes [19]). This poses the following
question: Can some a priori knowledge on the timing of failures impact the possibil-
ity/impossibility of consensus in the presence of process crash failures? As the notion
of “timing” is irrelevant in an asynchronous system, Taubenfeld replaced the notion of
time with the notion of contention degree and, to answer the previous question, he in-
troduced in [18] the explicit notion of weak failures, then renamed contention-related
crash failures in [5].

More precisely, given a predefined contention threshold λ, a λ-constrained crash
failure is a crash that occurs while process contention is smaller or equal to λ. Con-
sidering read/write shared memory systems and λ = n − 1, a consensus algorithm is
presented in [5, 18] that tolerates one λ-constrained crash (i.e., at most one process
may crash, which may occur only when the contention degree is ≤ (n − 1)), and it
is shown that this bound (on the number of failures) is tight.1 In addition, upper and
lower bounds for solving the k-set agreement problem [2] in the presence of multiple
contention-related crash failures for k ≥ 2 are presented in [5, 18].

Motivation: Why λ-Constrained Failures? The first and foremost motivation for this
study is related to the basics of computing, namely, increasing our knowledge of what
can (or cannot) be done in the context of asynchronous failure-prone distributed sys-
tems. Providing necessary and sufficient conditions helps us determine and identify
under which type of (weak) process failures the fundamental consensus problem is
solvable.

As discussed and demonstrated in [5], the new type of λ-constrained failures enables
the design of algorithms that can tolerate several traditional “any-time” failures plus
several additional λ-constrained failures. More precisely, assume that a problem can
be solved in the presence of t traditional failures but cannot be solved in the presence
of t + 1 such failures. Yet, the problem might be solvable in the presence of t1 ≤ t
“any-time” failures plus t2 λ-constrained failures, where t1 + t2 > t.

Adding the ability to tolerate λ-constrained failures to algorithms that are already
designed to circumvent various impossibility results, such as the Paxos algorithm [12]
and indulgent algorithms in general [7, 8], would make such algorithms even more ro-
bust against possible failures. An indulgent algorithm never violates its safety property
and eventually satisfies its liveness property when the synchrony assumptions it relies
on are satisfied. An indulgent algorithm which in addition (to being indulgent) tolerates
λ-constrained failures may, in many cases, satisfy its liveness property even before the
synchrony assumptions it relies on are satisfied.

1 The consensus algorithm described in [5,18] does not use adopt/commit objects as done in the
present article. As we will see, this object is crucial for the present paper.



Consensus in the presence of contention-related crashes 3

When facing a failure-related impossibility result, such as the impossibility of con-
sensus in the presence of a single faulty process, discussed earlier [6], one is often
tempted to use a solution that guarantees no resiliency at all. We point out that there is a
middle ground: tolerating λ-constrained failures enables to tolerate failures some of the
time. Notice that traditional t-resilient algorithms also tolerate failures only some of the
time (i.e., as long as the number of failures is at most t). After all, something is better
than nothing. As a simple example, an algorithm is described in [6], which solves con-
sensus despite asynchrony and up to t < n/2 processes crashes if these crashes occur
initially (hence no participating process crashes).

Content of the article. This article investigates the interplay between asynchrony, pro-
cess crashes, contention threshold, and the computability power of base objects as mea-
sured by their consensus number [9]. Let us recall that the consensus number of an ob-
jectO (denoteCN(O)) is the maximal number of processes for which consensus can be
solved despite any number of process crashes (occurring at any time) with any number
of objects O and read/write registers. If there is no such integer, CN(O) = +∞.

After a presentation of the computing model, the article is made up of three main
sections.

– Section 3 presents a consensus algorithm built on top of read/write registers (RW),
which tolerates one process crash occurring before the contention degree bypasses
(n− 1).

– Section 4 generalizes the previous algorithm by presenting two (reduction) algo-
rithms that solve consensus on top of objects whose consensus number is k ≥ 1.

• The first algorithm tolerates up to k process crashes that may occur before the
contention degree bypasses n− k.

• The second algorithm, assumes k divides n, and tolerates up to 2k− 1 process
crashes that may occur before the contention degree bypasses n− 2k + 1.

– Finally, Section 5 presents impossibility results that address the limits of the pro-
posed approach.

A short look at consensus solvability The article [19] was one of the very first articles
(if not the first one) that considered the case of initial failures for distributed tasks
solvability. The reader will find in [4, 13] an approach to task solvability based on the
theory of knowledge. When considering the close case of synchronous network-based
systems the reader will find in [20] an overview of results for the case of consensus
algorithms where links can appear and disappear at every communication step.

The usual notion of fault tolerance states that algorithm is crash-resilient if, in the
presence of crash faults, all the non-faulty processes complete their operations and ter-
minate. The article [17] considers a weaker liveness property namely a limited number
of participating correct processes are allowed not to terminate in the presence of faults.
As stated in [17] “sacrificing liveness for few of the processes allows us to increase the
resiliency of the whole system”.



4 Anaïs Durand, Michel Raynal, and Gadi Taubenfeld

2 Computing Model

Process and communication model. The system is composed of n asynchronous se-
quential processes denoted p1, ..., pn. The index of pi is the integer i. Asynchronous
means that each process proceeds at its own speed, which can vary with time and re-
mains unknown to the other processes [14, 16].

A process can crash (a crash is an unexpected premature halt). Given an execution, a
process that crashes is said to be faulty in that execution, otherwise, it is correct. Let us
call contention the current number of processes that started executing. A λ-constrained
crash is a crash that occurs before the contention degree bypasses λ.

The processes communicate through a shared memory made of the following base
objects:

– Read/write atomic registers (RW).
– Atomic objects with consensus number k ≥ 1 (these objects, denoted kCONS, will

be used in Section 4).
– Adopt/commit objects (see below).

The adopt-commit object. This object can be built in asynchronous read/write systems
prone to any number of process crashes. Hence, its consensus number is 1. It was in-
troduced by Gafni in [11]. It provides the processes with a single operation (that a
process can invoke only once) denoted ac_propose(). This operation takes a value as
input parameter and returns a pair 〈tag, v〉, where tag ∈ {commit, adopt} and v is a
proposed value (we say that the process decides a pair). The following properties define
the object.

– Termination. A correct process that invokes ac_propose() returns from its invoca-
tion.

– Validity. If a process returns the pair 〈−, v〉, then v was proposed by a process.
– Obligation. If the processes that invoke ac_propose() propose the same input value
v, only the pair 〈commit, v〉 can be returned.

– Weak agreement. If a process decides 〈commit, v〉 then any process that decides
returns the pair 〈commit, v〉 or 〈adopt, v〉.

Process participation. As in message-passing systems(see e.g., [1,3,15]), it is assumed
that all the processes participate in the algorithm. (Equivalently, a process that does not
participate is considered as having crashed initially).

Proposed values. Without loss of generality, it is assumed that the values proposed in a
consensus instance are non-negative integers, and⊥ is greater than any proposed value.

3 Base Algorithm (k = 1): Consensus from Read/Write Registers

This section presents an algorithm that solves consensus on top of RW registers (the
consensus number of which is 1) while tolerating one crash that occurs before the con-
tention degree bypasses λ = n− 1.



Consensus in the presence of contention-related crashes 5

3.1 Presentation of the algorithm

Shared base objects. The processes cooperate through the following shared objects.

– INPUT [1..n] is an array of atomic single-writer multi-reader registers. Each of its
entries is initialized to ⊥, a value that cannot be proposed by the processes and is
greater than any of these values. INPUT [i] will contain the value proposed by pi.

– DEC is a multi-writer multi-reader atomic register, the aim of which is to contain
the decided value. It is initialized to ⊥.

– LAST will contain the index of a process.
– AC is an adopt/commit object.

Local objects. Each process pi manages:

– three local variables denoted vali, resi and tagi, and
– two arrays denoted input1[1..n] and input2[1..n].

The initial values of the previous local variables are irrelevant. The value proposed by
pi is denoted ini.

operation propose(ini) is code for pi
(1) INPUT [i]← ini;
(2) repeat input1i ← asynchronous non-atomic reading of INPUT [1..n];

input2i ← asynchronous non-atomic reading of INPUT [1..n]
until

(
input1i = input2i ∧input1i contains at most one ⊥

)
end repeat;

(3) vali ← min
(
values deposited in input1i[1..n]

)
;

(4) if (∃ j such that input1i[j] = ⊥) then LAST ← j end if;
(5) 〈tagi, resi〉 ← AC .ac_propose(vali);
(6) if (tagi = commit ∨ LAST = i) then DEC ← resi else wait

(
DEC 6= ⊥

)
end if;

(7) return(DEC ).

Algorithm 1: Consensus tolerating one (n − 1)-constrained failure (on top of atomic
RW registers)

Behavior of a process pi. (Algorithm 1) When a process pi invokes propose(ini), it
first deposits the value ini in INPUT [i] (Line 1) and waits until the array INPUT [1..n]
contains at least (n− 1) entries different from their initial value ⊥ (Line 2). Because at
most one process may crash, and the process participation assumption, the wait state-
ment eventually terminates.

After this occurs, pi computes the smallest value deposited in the array INPUT [1..n]
(Line 3, remind that ⊥ is greater than any proposed value). If INPUT [1..n] contains
an entry equal to ⊥, say INPUT [j], pi observes that pj is a belated process (or pj the
only process that may crash and it crashed before depositing its value in INPUT [j])
and posts this information in the shared register LAST (Line 4).

Then, pi champions its value vali for it to be decided. To this end, it uses the un-
derlying adopt/commit object, namely, it invokes AC .ac_propose(vali) from which it



6 Anaïs Durand, Michel Raynal, and Gadi Taubenfeld

obtains a pair 〈tagi, resi〉 (Line 5). There are three possible cases for a process pi; at
the end of which it decides at Line 7.

– If tagi = adopt, due to the Weak Agreement property of the object AC , no value
different from resi can be decided. Consequently, pi writes resi in the shared reg-
ister DEC (Line 6) and returns it as the consensus value (Line 7).

– The same occurs if, while tagi = adopt, pi is such that LAST = i. In this case,
pi has seen all the entries of the array INPUT [1..n] filled with non-⊥ values and
imposes resi as the consensus value.

– If pi is such that tagi = adopt ∧ LAST 6= i, it waits until it sees DEC 6= ⊥, and
decides.

3.2 Proof of algorithm 1

Lemma 1. Algorithm 1 satisfies the Validity property of consensus.

Proof It is easy to see that a value written in DEC is obtained from the adopt/commit
object at Line 5. Moreover, due to Line 1 and Line 3 (where ⊥ is greater than any pro-
posed value), only values proposed to consensus can be proposed to the adopt/commit
object. 2Lemma 1

Lemma 2. Let us consider an execution in which no process crashes. Algorithm 1 sat-
isfies the Agreement property of consensus.

Proof Let p` be the last process that writes the value it proposes in INPUT [1..n]. It
follows from Line 3 that p` computes the smallest value in the array, and from Line 2
and Line 4 that, no index different from ` can be assigned to LAST . There are then two
cases according to the value of the pair 〈tag, res〉 returned at Line 5.

– If a process pk obtains 〈commit, res〉, it follows from the Weak Agreement prop-
erty of the adopt/commit object that any other process can obtain 〈commit, res〉
or 〈adopt, res〉 only. We then have DEC = res after the execution of Line 6.
This is because the assignment at Line 6 can be executed only by a process that
obtained 〈commit, res〉 or by p` (which is pLAST ) which obtained 〈commit, res〉
or 〈adopt, res〉 from its invocation of the AC object.

– If at Line 5 no process obtains 〈commit,−〉, it follows from Line 6 that only p`
assigns a value to DEC , and consequently, no other value can be decided.

2Lemma 2

Lemma 3. Let us consider executions in which one process crashes. Algorithm 1 sat-
isfies the Agreement property of consensus.

Proof Let us recall that by assumption (namely, contention related crash failures) if a
process pk crashes, it can do it only when the contention is lower or equal to (n − 1).
We consider two cases.



Consensus in the presence of contention-related crashes 7

– If pk crashes initially (i.e., before writing the value it proposes in INPUT [k], this
array will eventually contain (n−1) non-⊥ entries, and all the correct processes will
consequently compute the same minimal value val that they will propose to the un-
derlying adopt/commit object (Line 5). It then follows from the Obligation property
of this object that all the correct processes will obtain the same pair 〈commit, res〉,
from which we conclude that a single value can be decided.

– The process pk crashes after it writes the value it proposes in INPUT [k]. There are
two cases.
• When exiting the repeat loop (Line 2), the local array input1i of all processes

does not contain ⊥. In this case, we are as in the previous item (replacing
INPUT [1..n] with one ⊥ value by INPUT [1..n] with no ⊥ value).
• There is an entry x such that, when exiting Line 2, there is some process pi

where input1i[x] = ⊥ and all other entries are different than ⊥ (let call A
this set of processes), while other process pj is such that all entries of input1j
are different than ⊥ (set B). px is the last process to write into INPUT and
belongs to B.
Notice that pk is not the last process to write into INPUT since it crashes when
the contention threshold is lower or equal to (n − 1). Thus x 6= k and px is
correct.
Processes of set A write x in LAST at Line 4. Thus LAST contains the iden-
tity of a correct process. The rest of the proof is the same as the proof of
Lemma 2.

2Lemma 3

Lemma 4. Algorithm 1 satisfies the Termination property of consensus.

Proof Due to the assumption that all the processes participate and at most one process
can crash, no process can block forever at Line 2.

Hence, all the correct processes invoke AC .ac_propose(vali) and, due the Termi-
nation of the adopt/commit object, return from their invocation. If the tag commit is
returned at some correct process pk, this process assigns a value to DEC . If the tag is
adopt, we claim that the process pk such that k = LAST is a correct process. Hence,
it then assigns a non-⊥ value to DEC . So, in all cases, we have eventually DEC 6= ⊥,
which concludes the proof.

Proof of the claim. If LAST = k at Line 6, there is a process pi that wrote k in
LAST at Line 4. This means that pi found input1i[k] = ⊥ at Line 4 and every other
entry of input1i was different than ⊥. Thus, we conclude that the contention threshold
λ = n − 1 was attained when pi wrote k in LAST . But, by assumption, no process
crashes after the contention threshold λ = n − 1 has been attained. So, pk is a correct
process. 2Lemma 4

Theorem 1. Let λ = n − 1. Considering an asynchronous RW system, Algorithm 1
solves consensus in the presence of at most one λ-constrained failure.



8 Anaïs Durand, Michel Raynal, and Gadi Taubenfeld

Proof The proof follows from the previous lemmas. 2Theorem 1

We notice that this bound is tight. When using only atomic registers, there is no
consensus algorithm for n processes that can tolerate two (n − 1)-constrained crash
failures (Corollary 1, [5, 18]).

4 General Algorithms (k ≥ 1):
Consensus from Objects whose Consensus Number is k

As we are about to see, these algorithms are reductions to Algorithm 1. At Line 5, it
exploits the additional power provided by objects whose consensus number is k. We
present below two consensus algorithms:

– Algorithm 2, which tolerates up to k (n− k)-constrained failures, and
– Algorithm 3, which tolerates up to 2k−1 (n−2k+1)-constrained failures, assuming
k divides n.

4.1 Presentation of Algorithm 2

Shared objects. Algorithm 2 uses the same shared registers DEC , LAST , and AC as
Algorithm 1. It also uses:

– An array INPUT [1..dn/ke] where each entry INPUT [x] (instead of being a sim-
ple read/write register) is a kCONS object, and

– A Boolean array denoted PARTICIPANT [1..n], initialized to [false, ..., false].

Behavior of a process pi. Algorithm 2 is very close to Algorithm 1.

– The lines N1 and N2 are new. They aim to ensure that no process will block forever
despite up to k crashes.

– The lines with the same number have the same meaning in both algorithms.
– Each set of at most k processes pi, pj , etc. such that di/ke = dj/ke, defines a clus-

ter of processes that share the same kCONS object. Consequently, all the processes
of a cluster act as if they were a single process, namely, no two different values can
be written in INPUT [di/ke] by processes belonging to the same cluster.

4.2 Further explanations

Before proving Algorithm 2, let us analyze it with two questions/answers.

Question 1. Can Algorithm 2 where k ≥ 1, tolerates (k+1) (n− (k+1))-constrained
process crashes?

The answer is “no.” This is because if (k+1) processes crash, for example, initially
(as allowed by the (n − (k + 1))-constrained assumption), the other processes will
remain blocked forever in the loop of Line N2. This entails the second question.



Consensus in the presence of contention-related crashes 9

operation propose(ini) is code for pi
(N1) PARTICIPANT [i]← true;
(N2) repeat participanti ← asynchronous reading of PARTICIPANT [1..n]

until participanti[1..n] contains at most k entries with false end repeat;
(1-M) INPUT [di/ke]← kCONS [di/ke].propose(ini);
(2-M) repeat input1i ← asynchronous non-atomic reading of INPUT [1..dn/ke];

input2i ← asynchronous non-atomic reading of INPUT [1..dn/ke]
until input1i = input2i ∧ input1i contains at most one ⊥ end repeat;

(3) vali ← min
(
values deposited in input1i

)
;

(4) if (∃ j such that input1i[j] = ⊥) then LAST ← j end if;
(5) 〈tagi, resi〉 ← AC .ac_propose(vali);
(6) if (tagi = commit ∨ LAST = di/ke)

then DEC ← resi else wait
(
DEC 6= ⊥

)
end if ;

(7) return(DEC );

Algorithm 2: Consensus tolerating up to k (n − k)-constrained failures (on top of
kCONS objects)

Question 2. Are the lines N1-N2 needed?
Let us consider Algorithm 2 without the lines N1-N2 and with k = 2, and let us

examine the following possible scenario which involves five processes p1, ..., p5. So, p1
and p2 belong the cluster 1, p3 and p4 belong the cluster 2, and p5 belongs to cluster
3. Let us assume that the value in5 proposed by p5 is smaller than the other proposed
values.

– Process p1 executes Line 1-M and writes in INPUT [1].
– Process p3 executes Line 1-M and writes in INPUT [2].
– Both processes p1 and p3 execute Line 4 and write the cluster number 3 in LAST .
– Then, process p5 executes from Line 1-M until Line 4.
– Then, the processes p1, p3, and p5 execute Line 5, and obtain the tag adopt.
– Then p5 crashes. It follows that p5 will never write in DEC which forever remains

equal to ⊥.
– Then p2 and p4 execute Line 1-M to Line 4, and obtain adopt from the adopt/commit

object.
– It follows that, when the processes p1, p2, p3, and p4 execute Line 6 they remain

forever blocked in the wait statement.

Hence, Lines N1 and N2 cannot be suppressed from Algorithm 2.

4.3 Proof of algorithm 2

Theorem 2. Let n ≥ k and λ = n − k. Considering an asynchronous RW system
enriched with k-CONS objects, Algorithm 2 solves consensus in the presence of at
most k λ-constrained crash failures.

Proof Let us first observe that, as at most k processes may crash, no process can block
forever at Line N2.



10 Anaïs Durand, Michel Raynal, and Gadi Taubenfeld

Now, let us show that the lines N1-N2 cannot entail a process to block forever at
any line from 1-M to 7. To this end, let us consider the n processes are partitioned
in clusters of at most k processes so that pi belongs to the cluster identified di/ke. A
cluster crashes if all its processes crash. A cluster is alive if at least one of its processes
does not crash. There are two cases.

– Each cluster contains at least one process that does not crash, so all the clusters are
alive. It follows that, when a process executes Line 4 and assigns a cluster identity to
LAST , it is the identity of an alive cluster, from which follows that (if needed due
to the predicate of Line 4) a correct process will be able to write a value in DEC ,
thereby preventing processes from being blocking forever in the wait statement at
Line 6.

– All the processes in a cluster crash. Let us notice that at most one cluster can crash.2

In this case, considering the clusters (instead of the processes) and replacing n by
dn/ke, we are in the same case as in the proof of Lemma 3.

2Theorem 2

4.4 When k divides n: Tolerating k − 1 classical any-time failures

Let us consider the case where crash failures are not constrained. Those are the classical
crashes that can occur at any time (they are called any-time failures in [5]). It is known
that there is no consensus algorithm for n ≥ k+1 processes that can tolerate k any-time
failures, using registers and wait-free consensus objects for k processes [9]. In such a
model, Algorithm 2 has the property captured by the following theorem.

Theorem 3. If k divides n, Algorithm 2 tolerates k − 1 any-time failures.

Proof Using the cluster terminology defined in the previous proof, k divides n, each
cluster contains k processes exactly. As at most (k− 1) processes may crash, it follows
that all the clusters must be alive. The rest of the proof is the same as the proof of
Theorem 2. 2Theorem 3

4.5 When k divides n: Tolerating 2k − 1 contention-related crash failures

Algorithm 3. Let Algorithm 3 be the same as Algorithm 2, except that line 3,
“until participanti[1..n] contains at most k entries with false end repeat;"
is replaced with,
“until participanti[1..n] contains at most 2k − 1 entries with false end repeat;"
Then, the following theorem holds,

Theorem 4. Assume that k divides n, n ≥ 2k−1, and λ = n−2k+1. Considering an
asynchronous RW system enriched with k-CONS objects, Algorithm 3 solves consensus
in the presence of up to (2k − 1) λ-constrained crash failures.

2 If k does not divides n, and the cluster that crashes contains less than k processes, no other
cluster can crash.



Consensus in the presence of contention-related crashes 11

Proof Using the cluster terminology defined in the proof of Algorithm 2, k divides n,
implies that each cluster contains k processes exactly. As at most 2k− 1 processes may
crash, it follows that all the clusters, except maybe one, must be alive. The rest of the
proof is similar to the proof of Theorem 2. 2Theorem 4

5 Impossibility Results

This section presents impossibility results for an asynchronous model which supports
atomic read/write registers and kCONS objects, in which λ-constrained and any-time
crash failures are possible. Let an initial crash failure be the crash of a process that
occurs before it executes its first access to an atomic read/write register.

Hence, there are three types of crash failures: initial, λ-constrained, and any-time.
Let us say that a failure type T1 is more severe than a failure type T2 (denoted T1 >
T2) if any crash failure of type T2 is also a crash failure of type T1 but not vice-versa.
Considering an n-process system, the following severity hierarchy follows from the
definition of the failure types: any-time > (n − 1)-constrained > (n − 2)-constrained
· · · > 1-constrained > initial (let us observe that any-time is the same as n-constrained
and initial is the same as 0-constrained).

Consensus with λ-constrained failures.

Theorem 5. For every ` ≥ 0, k ≥ 1, n > ` + k, and λ = n − `, there is no con-
sensus algorithm for n processes, using atomic RW registers and kCONS objects, that
tolerates (` + k) λ-constrained crash failures (even when assuming that there are no
any-time crash failures).

Proof Assume to the contrary that for some ` ≥ 0, k ≥ 1, n > `+ k, and λ = n− `,
there is a consensus algorithm, sayA, that (1) uses atomic registers and kCONS objects,
and (2) tolerates `+ k λ-constrained crash failures.

Given any execution ofA, let us remove any set of ` processes by assuming they fail
initially (this is possible because (n−`)-constrained > initial). It then follows (from the
contradiction assumption) that the assumed algorithm A solves consensus in a system
of n′ = n− ` processes, where n′ > k, using atomic registers and k-cons objects.

However, in a system of n′ = n − ` processes, process contention is always lower
or equal to n′, from which follows that, in such an execution, n′-constrained crash
failures are the same as any-time failures. Thus, algorithm A can be used to generate
a consensus algorithm A′ for n′ = n − ` processes, where n′ > k, that (1) uses only
atomic registers and k-cons objects, and (2) tolerates k any-time crash failures. But, this
is known to be impossible as shown in [9]. A contradiction. 2Theorem 5

Consensus using atomic registers only. For the special case of consensus using atomic
registers only, the equation n > ` + k becomes n > ` + 1. The following corollary is
then an immediate consequence of Theorem 5.



12 Anaïs Durand, Michel Raynal, and Gadi Taubenfeld

Corollary 1. For every 0 ≤ ` < n− 1 and λ = n− `, there is no consensus algorithm
for n processes, using atomic RW registers, that can tolerate (`+1) λ-constrained crash
failures (even when assuming that there are no any-time crash failures). In particular,
when ` = 1, there is no consensus algorithm for n processes that can tolerate two
(n− 1)-constrained crash failures.

Consensus with λ-constrained and any-time failures.

Theorem 6. For every ` ≥ 0, k ≥ 1, n > ` + k, g ≥ 0, and λ = n − `, there is no
consensus algorithm for n processes, using atomic RW registers and kCONS objects,
that,tolerates (`+ k − g) λ-constrained crash failures and g any-time crash failures.

Proof Follows immediately from Theorem 5 by observing that any-time crash failures
belong to a more severe type of a failure than λ-constrained crash failures when λ < n,
and is the same as a λ-constrained crash failure when λ = n. 2Theorem 6

6 Conclusion

This article has investigated the computability power of the pair made up of process
participation plus contention-related crashes, when one has to solve consensus in an
n-process asynchronous shared memory system enriched with objects the consensus
number of which is equal to k. It has been shown that for n ≥ k, consensus can be
solved in such a context in the presence of up to k process crashes if these crashes
occur before process contention has attained the value λ = n − k. Furthermore, for
the case where k divides n, it has been shown that consensus can be solved in such a
context in the presence of up to 2k − 1 process crashes if these crashes occur before
process contention bypasses the threshold λ = 2n− k + 1.

The corresponding consensus algorithms have been built in an incremental way.
Namely, a read/write algorithm based on adopt/commit object has first been given, and
then generalized by replacing atomic read/write registers by objects whose consensus
number is k. Developments of the power/limit of this approach have also been pre-
sented, increasing our knowledge on an important topic of fault-tolerant process syn-
chronization in asynchronous distributed systems.

Acknowledgments

M. Raynal has been partially supported by the French projects ByBloS (ANR-20-CE25-
0002-01) and PriCLeSS (ANR-10-LABX-07-81) devoted to the design of modular
building blocks for distributed applications.

References

1. Attiya H. and Welch J.L., Distributed computing: fundamentals, simulations and advanced
topics, (2nd Edition), Wiley-Interscience, 414 pages, ISBN 0-471-45324-2 (2004)



Consensus in the presence of contention-related crashes 13

2. Chaudhuri S., More choices allow more faults: set consensus problems in totally asyn-
chronous systems. Information and Computation, 105(1):132-158 (1993)

3. Cachin Ch., Guerraoui R., and Rodrigues L., Reliable and secure distributed programming,
Springer, 367 pages, ISBN 978-3-642-15259-7 (2011)

4. Castañeda A., Gonczarowski Y.A., and Moses Y., Unbeatable consensus. Distributed Com-
puting, 35(2): 123-143 (2022)

5. Durand A., Raynal M., and Taubenfeld G., Contention-related crash-failures: definitions,
agreement algorithms and impossibility results. Theoretical Computer Science, 909:76-86
(2022)

6. Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374-382 (1985)

7. Guerraoui R., Indulgent algorithms. Proc. 19th Annual ACM Symposium on Principles of
Distributed Computing (PODC’00), ACM Press, pp. 289-297 (2000)

8. Guerraoui R. and Raynal M., The information structure of indulgent consensus. IEEE Trans-
actions on Computers, 53(4):453-466 (2004)

9. Herlihy M. P., Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124-149 (1991)

10. Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research, 4:163-183, JAI Press Inc. (1987)

11. Gafni E., Round-by-round fault detectors: unifying synchrony and asynchrony. Proc. 17th
ACM Symposium on Principles of Distributed Computing (PODC), ACM Press, pp. 143-152
(1998)

12. Lamport L., The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–
169 (1998)

13. Moses Y. and Rajsbaum S., A layered analysis of consensus. SIAM Journal of Computing,
31(4):989-1021 (2002)

14. Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515
pages, ISBN 978-3-642-32026-2 (2013)

15. Raynal M., Fault-tolerant message-passing distributed systems: an algorithmic approach.
Springer, 492 pages, ISBN 978-3-319-94140-0 (2018)

16. Taubenfeld G., Synchronization algorithms and concurrent programming. Pearson Educa-
tion/Prentice Hall, 423 pages, ISBN 0-131-97259-6 (2006)

17. Taubenfeld G., A closer look at fault tolerance. Theory of Computing Systems, 62(5) :1085–
1108 (2018). (First version in Proceedings of PODC 2012, 261–270)

18. Taubenfeld G., Weak failures: definition, algorithms, and impossibility results. Proc. 6th Int’l
Conference on Networked Systems (NETYS’18), Springer LNCS 11028, pp. 269-283 (2018)

19. Taubenfeld G., Katz S., and Moran S., Initial failures in distributed computations. Interna-
tional Journal of Parallel Programming, 18(4):255–276 (1989)

20. Winkler K. and Schmid S., An Overview of recent results for consensus in directed dynamic
networks. Bulletin of the European Association for Theoretical Computer Science, Vol. 128,
30 pages (2019)


