
HAL Id: hal-03853628
https://hal.science/hal-03853628v1

Submitted on 8 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncertainty quantification in a mechanical submodel
driven by a Wasserstein-GAN

Hamza Boukraichi, Nissrine Akkari, Fabien Casenave, David Ryckelynck

To cite this version:
Hamza Boukraichi, Nissrine Akkari, Fabien Casenave, David Ryckelynck. Uncertainty quantification
in a mechanical submodel driven by a Wasserstein-GAN. IFAC-PapersOnLine, 2022, 55 (20), pp.469-
474. �10.1016/j.ifacol.2022.09.139�. �hal-03853628�

https://hal.science/hal-03853628v1
https://hal.archives-ouvertes.fr

Uncertainty quantification in a mechanical submodel driven
by a Wasserstein-GAN

Hamza BOUKRAICHI1,2, Nissrine AKKARI1,
Fabien CASENAVE1, David RYCKELYNCK2

1 Safran Tech
Etablissement Paris Saclay

Rue des Jeunes Bois-Chateaufort, 78114 Magny-Les-Hameaux, France

2 MINES ParisTech, PSL University
MAT - Centre des matériaux

CNRS UMR 7633, BP 87 91003 Evry, France

Abstract
The analysis of parametric and non-parametric uncertainties of very large dynamical systems

requires the construction of a stochastic model of said system. Linear approaches relying on random
matrix theory Soize (2000) and principal componant analysis can be used when systems undergo
low-frequency vibrations. In the case of fast dynamics and wave propagation, we investigate a
random generator of boundary conditions for fast submodels by using machine learning. We
show that the use of non-linear techniques in machine learning and data-driven methods is highly
relevant.

Physics-informed neural networks Raissi et al. (2017) is a possible choice for a data-driven
method to replace linear modal analysis. An architecture that support a random component is
necessary for the construction of the stochastic model of the physical system for non-parametric
uncertainties, since the goal is to learn the underlying probabilistic distribution of uncertainty in
the data. Generative Adversarial Networks (GANs) are suited for such applications, where the
Wasserstein-GAN with gradient penalty variant Gulrajani et al. (2017) offers improved convergence
results for our problem.

The objective of our approach is to train a GAN on data from a finite element method code
(Fenics) so as to extract stochastic boundary conditions for faster finite element predictions on
a submodel. The submodel and the training data have both the same geometrical support. It
is a zone of interest for uncertainty quantification and relevant to engineering purposes. In the
exploitation phase, the framework can be viewed as a randomized and parametrized simulation
generator on the submodel, which can be used as a Monte Carlo estimator.

Keywords : deep learning, adversarial learning, generative models, submodeling, uncertainty
quantification, supervised learning, regression models.

1 Introduction
The aim of this paper1 is to present novel methods for submodeling using deep learning models for
parametric and non-parametric uncertainty quantification for fast dynamics, where approaches based
on linear modal analysis are computationally inefficient and inaccurate.

1.1 Related Work
In order to determine parametric and non-parametric approaches, one has to define the differences
between aleatory and epistemic uncertainty. These laters are stated in Batou et al. (2015) and You
et al. (2020) :

1This work has been submitted to IFAC for possible publication.

1

ar
X

iv
:2

11
0.

13
68

0v
1

 [
st

at
.M

L
]

 2
6

O
ct

 2
02

1

• Aleatory uncertainties: the uncertainties relative to some model parameters induced by the lack
of knowledge related to those parameters. To process these uncertainties, parametric approaches
are used as the modeling of the uncertainty of the parameters by random variables and fields in
order, for instance, to construct stiffness and mass matrices with respect to those parameters.

• Epistemic uncertainties: also arise from lack of knowledge on parameters but based on subjective
perception, and limited data availability, such as interval analysis, possibility theory, and fuzzy
set theory. Parametric approaches are not suited for this application.

Both these types of uncertainty are listed as model parameter uncertainty in Batou et al. (2015) where
a new type of uncertainty is also introduced :

• Modeling error: the uncertainties induced by the modeling errors within the choice of the physical
model.

Epistemic uncertainties and modeling errors cannot be processed by fully parametric approches. Non-
parametric and mixed approaches (see Batou et al. (2015)) are necessary such as:

• Probabilistic approach: random matrix theory (see Adhikari & Chowdhury (2010), Guedri et al.
(2012))

• Possibilistic approach: Fuzzy variables and interval analysis (see You et al. (2020)).

In this paper, both parametric and non-parametric approaches are investigated in the situation of both
aleatory and epistemic uncertainties. Modeling errors are not investigated.
The use of neural networks to learn solutions of partial differential equations (PDEs) have been re-
cently proposed for physics application (see Raissi et al. (2017) , Raissi et al. (2019)), using the real
or an approximate of the residual from the PDE to enforce a physical constraint on the output of
the network. Such application exists for architectures like generative adversarial networks that were
introduced in Goodfellow et al. (2014) and optimized in Gulrajani et al. (2017). More details on these
architectures can be found in Section 2.
Generative adversarial networks and adversarial training are used for non-parametric density estima-
tion in general cases of random data (Abbasnejad et al. (2019) and Singh et al. (2018)) and also for
physical data that are solutions of certain partial differential equations (Yang & Perdikaris (2019)).
Our study consists in using similar approaches to learn non-parametric densities over data from a finite
element model, without any information about the underlying partial differential equation solved. But,
we enforce physical properties using a submodel in the area of interest in the exploitation phase for
uncertainty quantification.

1.2 Contribution
The aim of this paper is to present two novel methods developed for the construction of stochastic
submodels for uncertainty quantification using data from a finite element model (FEM). These two
methods rely on the same general principle which is a stochastic submodel formed of two components:

• A neural network learning boundary conditions around a predetermined zone of interest.

• A finite element submodel in the zone of interest using boundary conditions generated by the
neural network. We assume that there is no modeling error in the zone of interest covered by
the proposed submodel.

The objective is to obtain comparable or/and better predictions than a classical learning process of
a neural network over physical data, while improving some physical properties. Indeed, during the
training of a physics-informed neural network, increasing precision over physical properties is generally
obtained using a penalization term given by the residual of the PDE in the cost function, but with
FEM models designed for engineering applications, it is quite intrusive to get access to the residual of
the PDE.

The development of deep neural networks that are thermodynamically-consistent is a key issue, as
explained in Hernandez et al. (2021). In our approach, the known physical properties and principles
are enforced, online, using a submodel over the interest zone, here enforcing the output of the whole

2

reduced model to be a solution to the underlying FEM formulation on the submodel zoom area. Also,
the training of the neural networks is facilitated since every network learning problem is one dimension
lower. For a 3D problem on a cartesian mesh, the network has to learn the prediction over a 2D surface
representing the boundary conditions instead of learning the data over the whole 3D domain.

So to address both aleatory and epistemic uncertainties, we propose two methods as follows:

• Aleatory uncertainties: a deep convolutional neural regressor is trained to generate parametrized
boundary conditions associated with the parameters of the simulation, for a parametric approach.

• Epistemic uncertainties: a Wasserstein GAN is trained to generate stochastic boundary condi-
tions by using the same training data. It aims at learning the underlying probabilistic density
binding the simulation data and the parameters of the simulation, for a non-parametric approach.

Both methods are then compared to a linear data reduction, using the Proper Orthognal Decomposition
(POD) method, constructed over the same boundary data.

2 Models
2.1 Proper Orthogonal Decomposition (POD)
Let us denote by X = [L2(Ω)] the functional Hilbert space of the squared integrable scalar functions
over a bounded 2D−open set Ω. We denote the L2(Ω)-inner product by (., .).
Consider U(p)(t, x) ∈ R the value of a physical data over a mesh of Ω and associated to the parameters
vector p and to a time t. The mesh has a grid shape, so that U is also a tensor of data. A subspace of
the solution space is obtained thanks to the snapshots POD method Sirovich (1987): if we discretize
the time interval to m points, then the snapshots set is given as follows: S = {U(p)(ti) ; i = 1, ...,m}.
The POD modes Φj , j = 1, ...,m, computed via the snapshots POD start with the solution of the
eigenvalues problem with the temporal correlations matrix:

Cij = (U(p) (ti) , U(p) (tj)), (1)

of size m × m. Let us denote by (Aj)j=1,...,m = (Ai,j)1≤i≤m and (λj)j=1,...,m for j = 1, ...,M , sets
of respectively orthonormal eigenvectors and eigenvalues of the matrix C. Then, the POD modes
associated with λn, are given by:

Φj(x) = 1√
λn

m∑
i=1

Ai,jU(p)(ti, x) ,∀x ∈ Ω ∀j = 1, ...,m. (2)

Snapshots are approximated by orthogonal projection on the space generated by a truncation of the
POD basis: U(p)(t, x) ≈ Σm̂k=1αk(p, t)Φk(x), where m̂ ≤ m, and αk are called the generalized coordi-
nates. Meta-models are then trained to predict the generalized coordinates of a new solution from the
parameter values.

2.2 Deep Convolutional Neural Regressor
A Deep convolutional Neural Regressor (DcNR) consists in learning to generate the physical data (U)
over a grid with the parameters vector (p) as an input. As indicated by its name, the internal structure
of this network is formed by a succession of transposed convolutional layers of adequate dimensions in
order to obtain a regression model of the physical field in the adequate size. The objective function in
this case being:

min
θ

E
p∈PT rain

√
[(U(p)−N(θ, p)]2 (3)

Where N denotes the neural network, θ its trainable weights, PTrain the training set of parameters
vectors, and E the mathematical expectation.

3

2.3 Wasserstein Generative Adversarial Network
Generative adversarial networks were introduced in Goodfellow et al. (2014) as an unsupervised frame-
work to learn probabilistic densities over data. It showed an empirical success as an efficient method
for learning and sampling from a complicated multi-modal distribution. It relies on the adversarial
training of two neural networks:

• Discriminator: a classifier whose role is to determine whether the data it receives as inputs are
real or generated by the second network. Its architecture is a succession of convolutional layers
to determine a classifier network.

• Generator: a generative model, whose role is to generate new data resembling the real data from
a random vector (the input) in order to fool the discriminator. Its architecture is a succession of
transposed convolutional layers for a generative model.

In Gulrajani et al. (2017), it has been shown that under specific architecture and smoothness properties
of the discriminator, an objective function defined as follows:

min
θgen

max
θdisc

E
z∼N (0,1)

[D(θdisc, G(θgen, z))]− E
p∈PT rain

[D(θdisc, U(p))] (4)

will lead the generator to convergence and being able to sample from the real data distribution using
the random vector as a latent space descriptor. In (4), G and D denote respectively the generator
and discriminator networks, and θgen, θdisc their respective trainable weights. In the exploitation
phase, the discriminator is no longer used and the generator can be viewed as a randomized simulation
generator on the submodel, which can be used as a Monte Carlo estimator.

3 Use Case
3.1 Domain Definition
We define two 2D cartesian space grids Ω and Ω′, with Ω′ ⊂ Ω representing the zone of interest. Ω
and Ω′ are space discretization of sizes [Nx, Ny] and [N ′x, N ′y] of the domains [−Lx, Lx] × [−Ly, Ly]
and [−L′x, L′x]× [−L′y, L′y]. And finally a temporal grid T is defined as discretization of size NT of the
space [0, Tfinal] and the time step ∆t = Tfinal

NT−1 .

3.2 Finite element models
The objective here is to train a generator on data from a FEM code (Fenics, see Alnæs et al. (2015))
so as to extract boundary values for a submodel that occupies the zone of interest Ω′. For visual
representation of this approach, refer to Figure 1. Let g be the boundary values, g is defined as
Dirichlet boundary conditions for both models as:

• For the initial FEM model, constant boundary values are chosen for the domain Ω.

• For the FEM submodel, g is the output of the pretrained neural network (the generator).

We choose to solve the 2D wave equation, given as follows:
1
c2
∂2u
∂t2 −∆u = f on Ω ∀t > 0

u = g on ∂Ω ∀t > 0
u = u0 on Ω for t = 0

(5)

Where u is the amplitude of the wave (displacement on the z-axis). For simplification purposes, the
term c2 will be omitted on the following formulation:

The variational problem goes as:
a(un, v) = Ln(v) (6)

4

Where Vh is the Sobolev space of solutions on the approximate space.

The time discretization used for the FEM formulation reads:

∂2u

∂t2
= un − 2un−1 + un−2

∆t2 (7)

un − 2un−1 + un−2

∆t2 = fn + ∆un (8)

Then:
∀v ∈ Vh(un − 2un−1 + un−2)v = ∆t2(fn + ∆un)v (9)

∫
Ω
unv∂x−

∫
Ω

∆t2∆unv∂x =
∫

Ω
∆t2fn + 2un−1v − un−2v∂x (10)

Using Green theorem:∫
Ω
unv∂x+ ∆t2

∫
Ω

∆un∆v∂x =
∫

Ω
∆t2fn + 2un−1v − un−2v∂x (11)

Then we obtain for the FEM formulation (6):

a(un, v) =
∫

Ω
unv∂x+ ∆t2

∫
Ω

∆un∆v∂x (12)

Ln(v) =
∫

Ω
∆t2fn + 2un−1v − un−2v∂x (13)

3.3 Dataset Generation
A source point is determined for the problem resolution where (xS , yS) are the source point coordinates,
it is choosen to be outside the zoom domain: i.e. (xS , yS) ∈ Ω and (xS , yS) 6∈ Ω′.
The right hand side of the wave equation is set as:

(∀t ∈ T)
{
f(xS , yS , t) = sin(ωt)
f(x, y, t) = 0 ∀(x, y) ∈ Ω, (x, y) 6= (xS , yS) (14)

A three-dimensional parameter vector p = (ω, xs, ys) is choosen and determined then sampled, (note
that c is fixed for all samples since it is a parameter needed for the submodel). Sampling is done using
latin hypercube sampling routines. For every parameter vector p a simulation matrix U(p) is generated
using FEM model described in section 3. One sample of data is then(p, U(p)) where p ∈ Dp ⊂ R3 and
U(p) ∈ Vh ⊂ RNX×NY .
Then, 3 datasets are generated as the following:

• Training data set: 100 samples generated, used for training each neural network described in
section 2.

• Test data set: 10 samples generated, used for testing the training process of each neural network,
and comparaison intra-model.

• Monte Carlo samples: 1000 samples generated, used for uncertainty quantification and compar-
ison of the estimate of the real probability density with the density from the neural networks.

5

Figure 1: Visualization of the FEM output on Ω and Ω′

4 Numerical Results
4.1 Data Sampling
In this section we present the data range used for sampling and generating data for the training and
testing phase. Values were choosen as: Lx = 8m ,Ly = 4m, L′x = 4m, L′y = 2m , Nx = 40, Ny = 20,
NT = 100, ∆t = 4 × 10−5s, c = 2000m/s. Boundary conditions for the model over Ω are set to be
zero Dirichlet boundary conditions.
The variable parameters identified in Section 3 are sampled following Table 1 values.

Table 1: Parameters sampling

P Mean Value Variation (%) Min Value Max Value
ω 5 kHz 5% 4,75 kHz 5,25 kHz
xS -1.85 m 17.5% of Ly -2.2 m -1.5 m
yS -0.65 m 28,75% of Ly -1.8 m 0.5 m

4.2 Trained submodels
For every model described in Section 2, we train multiple version in order to do a full comparison for
the two approaches:

• POD: We train different POD models with multiple metamodels over the orthogonal projection
coefficients (random forest, gaussian process, linear ...). We choose to keep a POD model with
random forest considering it held the best trade-off between precision and computional cost for
our problem. It will be referred to as POD RF.

• DcNR: We train multiple DcNR :

– NN : it takes as input the parameter vector p and outputs the value of U over all the area
of interest.

– NN BC : it takes as input the parameter vector p and outputs the boundary values around
the area of interest.

– NN t: it takes as input the parameter vector p and the time value t and outputs the value
of U over all the area of interest at the instant t.

– NN BC t: it takes as input the parameter vector p and the time value t and outputs the
boundary values around the area of interest at the instant t.

• GAN: Like for the DcNR, we trained two versions, both taking as an input a random vector z and
outputs the value of U over all the area of interest (WGAN) or the boundary values around the
area of interest (WGAN BC) . Predictions of WGAN and WGAN BC restricted to the boundary
of Ω′ are also applied as Dirichlet boundary conditions to the submodel (WGAN ZOOM and
WGAN BC ZOOM respectively).

6

For information about training time of each neural network, refer to Table 2.

Table 2: Training time

Nets Training time GPU card
NN 12,4 Hours NVIDIA V100

NN BC 2,7 Hours NVIDIA V100
WGAN 24 Hours NVIDIA A100

WGAN BC 7,8 Hours NVIDIA A100

We define a relative error indicator over the time and space grid of the interest zone, in order to
quantify the precision of our submodels as ε. For a submodel M, a parameter vector p (resp. random
vector z for a GAN), and a time value t:

ε(M,p, t) =
E

(x,y)∈Ω′
[|M(p)(t, x, y)− U(p)(t, x, y)|]

max
x,y∈Ω′

|U(p)(t, x, y)| (15)

For a comparison over the testing data set:

ε(M, t) = E
p∈PT est

[ε(M,p, t)] or E
z∼N (0,1)

[ε(M, z, t)] (16)

For a comparison of the prediction of physical quantities we choose to compute the kinetic energy over
the zone of interest grid using a finite difference scheme as follows:

Ke(p, t, x, y) = m

2 (V (p, t, x, y))2 (17)

Where:
V (p, t, x, y) = U(p)(t, x, y)− U(p)(t− dt, x, y)

dt
(18)

Since the mass (m) is constant over the space grid and over all parameter vectors, it will be omitted
in computing the relative error over the kinetic energy prediction.

4.3 Parametric approach results
For the parametric approach, comparison is done by computing the error indicator defined in the
previous section for all our parametric submodels, for all the samples in the testing data set described
in Section 3.

Figure 2: Relative error ε: NN (Left) vs NN-Zoom (Right)

7

Figure 3: Relative error ε on Ke

Figure 2 shows one of the known problems with using convolutional layers to predict physical fields,
which is errors and noise introduced in the output following the structure of the different convolutions,
this phenomenom is corrected by the zoom operation by the submodel. As shown, the noise is still vis-
ible on the boundaries but not propagated inside the interest area. Figure 3 shows that the submodels
approaches are better in predicting physical values such as kinetic energy, this can be explained by the
fact that the submodels consists in running a partial physical model and thus having better physical
properties, and as expected the POD performs poorly against non-linear methods.

4.4 Non-parametric approach results
For the non-parametric approach, since comparison on regression models is impossible, we used our
submodels as Monte-Carlo estimators of statistical quantities and compared the estimated values with
the same Monte-Carlo approach on the real data. We choose to estimate the mean and compute the
error indicator defined in the previous section. And to evaluate the generative capacity of our models,
we define a discrepancy indicator as follows:

σ(M, t, x, y) =
√

E
z∼N (0,1)

[(M(z)(t, x, y)− ETrain)2] (19)

Where M is a WGAN-based network and ETrain is the pointwise mean over the training data:

ETrain = E
p∈PT rain

[U(p)(t, x, y)] (20)

σ computes a point wise discrepancy value to show our models capacity to generate different data from
the training data. To evaluate this generative capacity we define a relative discrepancy indicator as
follows:

σrel(M, t) =
E

(x,y)∈Ω′
[|σ(M, t, x, y)− σTrain|]

max
x,y∈Ω′

σTrain
(21)

Where σTrain is the pointwise standard deviation over the training data:

σTrain =
√

E
p∈PT rain

[(U(p)(t, x, y)− ETrain)2] (22)

We choose as physical value the maximum amplitude defined as follows:

A(p)(x, y) =
∣∣∣max

t
U(p)(t, x, y)−min

t
U(p)(t, x, y)

∣∣∣ (23)

8

Figure 4: Relative error ε on pointwise mean: GAN (Left) and GAN-BC-ZOOM (Right)

Figure 5: Point wise relative discrepancy indicator σrel : WGAN (Upper left) , WGAN-ZOOM (Upper
right), Monte Carlo samples (Lower left) and GAN-BC-ZOOM (Lower right)

Figure 6: Relative error ε of WGANs prediction on pointwise mean

9

Figure 7: Point wise relative discrepancy indicator σrel of WGANs

Figure 8: Histogram of maximum amplitude prediction

Figure 4 shows that the zoom operation of the submodel helds the same correction properties over
the noise and errors introduced by the use of convolutional layers and also noise introduced by the
GAN’s random component. Figure 6 shows that our submodel approaches perfom significantly better
on the mean prediction. Figures 5 and 7 show that our approaches held better generative properties
that are useful for uncertainty quantification, the WGAN BC ZOOM shows the best performance,
since higher discrepancy values in the other approaches can be explained by the accumulation of
the error on the right boundary side of the submodel zoom area, furthermore the discrepancy in the
WGAN BC ZOOM approach shows a more structured shape holding more statistically representative
physical information. Figures 5 and 7 show also the discrepancy indicator computed on the 1000
Monte Carlo samples described in Section 3, the low value can be explained by the fact that the size
of samples in training set is sufficent to describe the underlying probabilistic distribution of the Monte
Carlo samples knowing the parameters. Further investigations are necessary to precisely determine
the sample size of the training set for better generative behavior. Nonetheless, our approaches show
better generative capacity exploring extremum values that have not been considered in the training set
and the Monte Carlo samples as shown in Figure 8 where our approach has better generative capacity
on the density tails.

5 Conclusion
In this paper we presented novel methods for parametric and non-parametric uncertainty quantification
relying on physical submodels over an area of interest. We have empirically shown that our methods
obtain comparable and slighlty better estimation of physical fields than classical neural networks
approaches, while reducing the dimensionality of the learning problem and thus reducing the training

10

cost of our models by restricting our attention to the boundary of a submodel. We fulfill the necessary
condition that the cost of each run of the physical submodel is smaller than the cost of running the
full physical model. Better precision is reached in the parametric view, by using DCnR’s. Besides, in
situation where the parameters distribution is unknwon (epistemic uncertainties), only non-parametric
approaches are feasible. For that, using the Wasserstein-GAN as a boundary conditions generator, we
showed a higher value of the discrepancy in the Monte Carlo sampling method compared to high-
fidelity solutions, while keeping physical consistency thanks to the learned boundary conditions, thus
offering better generative behavior in the exploration of density tails.

References
Abbasnejad, M. E., Shi, Q., Hengel, A. V. D. & Liu, L. (2019), ‘A generative adversarial density

estimator’, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) .

Adhikari, S. & Chowdhury, R. (2010), ‘A reduced-order random matrix approach for stochastic struc-
tural dynamics’, Computers & Structures 88(21-22), 1230–1238.

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes,
M. E. & Wells, G. N. (2015), ‘The fenics project version 1.5’, Archive of Numerical Software 3(100).

Batou, A., Soize, C. & Audebert, S. (2015), ‘Model identification in computational stochastic dynamics
using experimental modal data’, Mechanical Systems and Signal Processing 50-51, 307–322.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. &
Bengio, Y. (2014), ‘Generative adversarial nets’, Advances in neural information processing systems
27.

Guedri, M., Cogan, S. & Bouhaddi, N. (2012), ‘Robustness of structural reliability analyses to epistemic
uncertainties’, Mechanical Systems and Signal Processing 28, 458–469.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. (2017), ‘Improved training of
wasserstein gans’.

Hernandez, Q., Bad́ıas, A., González, D., Chinesta, F. & Cueto, E. (2021), ‘Deep learning of
thermodynamics-aware reduced-order models from data’, Computer Methods in Applied Mechan-
ics and Engineering 379, 113–763.

Raissi, M., Perdikaris, P. & Karniadakis, G. (2019), ‘Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions’, Journal of Computational Physics 378, 686–707.

Raissi, M., Perdikaris, P. & Karniadakis, G. E. (2017), ‘Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations’.

Singh, S., Uppal, A., Li, B., Li, C.-L., Zaheer, M. & Póczos, B. (2018), ‘Nonparametric density
estimation under adversarial losses’, arXiv preprint arXiv:1805.08836 .

Sirovich, L. (1987), ‘Turbulence and the dynamics of coherent structures’, Part III: dynamics and
scaling. Quarterly of applied mathematics 45, 583–590.

Soize, C. (2000), ‘A nonparametric model of random uncertainties for reduced matrix models in struc-
tural dynamics’, Probabilistic Engineering Mechanics 15(3), 277–294.

Yang, Y. & Perdikaris, P. (2019), ‘Adversarial uncertainty quantification in physics-informed neural
networks’, Journal of Computational Physics 394, 136–152.

You, L., Zhang, J., Du, X. & Wu, J. (2020), ‘A new structural reliability analysis method in presence
of mixed uncertainty variables’, Chinese Journal of Aeronautics 33(6), 1673–1682.

11

	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Models
	2.1 Proper Orthogonal Decomposition (POD)
	2.2 Deep Convolutional Neural Regressor
	2.3 Wasserstein Generative Adversarial Network

	3 Use Case
	3.1 Domain Definition
	3.2 Finite element models
	3.3 Dataset Generation

	4 Numerical Results
	4.1 Data Sampling
	4.2 Trained submodels
	4.3 Parametric approach results
	4.4 Non-parametric approach results

	5 Conclusion

