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A B S T R A C T

Nonlinear model order reduction has opened the door to parameter optimiza-
tion and uncertainty quantification in complex physics problems governed by
nonlinear equations. In particular, the computational cost of solving these
equations can be reduced by means of local reduced-order bases. This article
examines the benefits of a physics-informed cluster analysis for the construc-
tion of cluster-specific reduced-order bases. We illustrate that the choice of
the dissimilarity measure for clustering is fundamental and highly affects the
performances of the local reduced-order bases. It is shown that clustering
with an angle-based dissimilarity on simulation data efficiently decreases the
intra-cluster Kolmogorov N-width. Additionally, an a priori efficiency crite-
rion is introduced to assess the relevance of a ROM-net, a methodology for
the reduction of nonlinear physics problems introduced in our previous work
in [T. Daniel, F. Casenave, N. Akkari, D. Ryckelynck, Model order reduction
assisted by deep neural networks (ROM-net), Advanced Modeling and Simula-
tion in Engineering Sciences 7 (16), 2020]. This criterion also provides engi-
neers with a very practical method for ROM-nets’ hyperparameters calibration
under constrained computational costs for the training phase. On five different
physics problems, our physics-informed clustering strategy significantly out-
performs classic strategies for the construction of local reduced-order bases in
terms of projection errors.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Differential equations are widely used for the mathematical modeling of physical phenomena. These differential
equations involve boundary conditions, initial conditions, constants and source terms that can be considered as pa-
rameters of the physics problem. For well-posed parametrized differential equations, any point of the parameter space
is associated to one single solution. Under the third Hadamard well-posedness condition, the solution is a continuous
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function of the parameters. Therefore, any connected set in the parameter space defines a connected set in the solution
space, called solution manifold. This concept can be extended to any quantity of interest, be it an internal variable or
a function of the solution. The solution manifold can be interpreted as the support of a probability density function
for the solution in uncertainty propagation, when a probabilistic model is given to describe uncertainties on the pa-
rameters. The concept of solution manifold also appears in design optimization where the objective is to minimize
a solution-dependent cost function by modifying parameters such as material constants, microstructural properties,
or geometrical characteristics, for instance. Both uncertainty quantification and design optimization are many-query
problems since they require solving the parametrized differential equations for a large number of points in the pa-
rameter space, which is sometimes prohibitive. To mitigate the computational cost related to such applications, many
model order reduction methods [1, 2] have been developed, including methods based on tensor decompositions (e.g.
the Proper Generalized Decomposition [3, 4]) and projection-based methods (e.g. the Reduced Basis method [5, 6]
and the POD Galerkin method [7, 8]). Projection-based model order reduction consists in computing an approximate
solution in a low-dimensional subspace of the solution space, which can give accurate predictions provided that the
solution manifold is embedded in a low-dimensional space.

The potential of such numerical methods is related to the maximum distance between a point of the solution
manifold and its orthogonal projection onto the approximation space. This distance is used to define the Kolmogorov
N-width measuring the worst-case error for the best N-dimensional approximation space. The behavior of the Kol-
mogorov width when increasing the dimension N provides information about the reducibility of a given physics
problem: slowly decaying Kolmogorov widths indicate that increasing the dimension of the linear approximation
subspace does not significantly improve the quality of the approximate solution. The asymptotic behavior of the
Kolmogorov width is studied in [9, 10]. Problems combining large values of the Kolmogorov widths with low
decay rates are not reducible, which means that one cannot compute accurate approximate solutions at low com-
putational costs. This is the case in particular when considering wave propagation [10] and advection-dominated
problems [11, 12, 13, 14, 15, 16]. For such problems, in the projection-based model order reduction community,
[17, 18] suggested using multiple local approximation spaces dedicated to different subsets of the solution mani-
fold. These local approximation spaces are spanned by local reduced-order bases (ROBs), usually computed with the
Proper Orthogonal Decomposition (POD [19, 7]). ROM interpolation techniques have also been extensively stud-
ied in [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. More recently, [32] introduced two nonlinear model order
reduction techniques called manifold Galerkin method and manifold least-squares Petrov-Galerkin method, where a
deep convolutional autoencoder is used for nonlinear dimensionality reduction. In [33], this idea is extended to a
hyper-reduction framework, using a shallow masked autoencoder with fully-connected layers.

The present article focuses on the use of multiple local ROBs to tackle the slow decrease of the Kolmogorov
N-width, because of the compatibility of this approach with the Galerkin method and its classical extension to
hyper-reduction methods [34, 35, 36, 37, 38]. Splitting a non-reducible problem into multiple reducible ones can
be achieved with cluster analysis. Cluster analysis belongs to unsupervised learning tasks and can be defined as the
search of groups (or clusters) of similar objects in a database. The choice of the clustering algorithm depends on
the underlying motivation and thus on the clusters’ topological properties that are expected. Representative-based
algorithms [39, 40, 41] use a dissimilarity measure to assign each object of the database to the cluster corresponding
to the closest representative object, leading to compact clusters. We refer the reader to the books [42], [40] (chapters
6 and 7), [43] (section 14.3), or articles [44, 45] for more details about clustering algorithms. In cases where efficient
error bounds for reduced representations are available, ideal cases being for linear problems with affine parameter
dependencies, a powerful framework has been proposed in [46]. Random sketching is used to improve the orthogonal
greedy algorithm, and then used in a greedy algorithm where the solution is approximated in a subspace spanned by
vectors selected online in a dictionary of candidate basis vectors.

The present work studies physics-informed clustering strategies for the construction of dictionaries of local ROBs,
for complex nonlinear problems parametrized by a field that may not have known error bounds. Physics-informed
cluster analysis consists in clustering the parameter space by means of a dissimilarity measure which involves physical
quantities obtained when solving the physics problem. In other words, clusters in the parameter space are implicitly
defined as the preimages of clusters found in a database of numerical simulation results. In practice, this means
that a clustering algorithm is applied in the solution space, as proposed for the first time in [17, 18]. The focus is
on finding a clustering strategy that is appropriate for model order reduction purposes. In [47], it was noticed that
clustering based on the Euclidean distance (or L2 distance) in the solution space was not adapted for the construction of
local reduced-order models (ROMs), which led to the definition of projection-error based local ROMs (PEBL-ROM)
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where the solution space is hierarchically partitioned using the projection error as a dissimilarity criterion. We propose
here to work with the sine dissimilarity related to relative projection errors instead, giving a symmetric dissimilarity
measure that can be plugged into a representative-based clustering method. We show that this dissimilarity measure
corresponds to the Hilbert-Schmidt distance between the projections onto the snapshots’ approximation spaces, which
is of particular interest when using Galerkin projection to solve the governing equations.

Our main contributions are twofold. First, we developed a physics-informed clustering strategy based on the
sine dissimilarity and k-medoids clustering, and an automatic snapshot selection procedure for the construction of
POD bases. Second, with the practical limitation of the computational budget in industrial contexts, we developed
an a priori efficiency criterion enabling hyperparameters calibration for dictionary-based ROM-nets [48], where a
classifier is trained to automatically recommend the best ROM in the dictionary for a given point in the parameter
space without computing the dissimilarity online. Section 2 gives an overview of model order reduction methods
and of the techniques that have been developed to deal with non-reducible problems, including dictionaries of local
ROMs. Section 3 presents representative-based clustering algorithms, and in particular k-medoids clustering. Our
physics-informed clustering strategy and a priori efficiency criterion are introduced in Sections 4 and 5 respectively.
Applications to various physics problems are developed in Section 6 and show the importance of choosing an ap-
propriate dissimilarity measure for clustering. Section 4 can be skipped for the first reading, as it contains technical
details about our dissimilarity measure.

2. Model order reduction background

Let us consider a physics problem described by the following parametrized differential equation:

D(u; x) = 0, (1)

where u is the primal variable belonging to a Hilbert spaceH whose inner product is denoted by ⟨., .⟩H , x denotes the
parameters of the problem, and D is an operator involving a differential operator and operators for initial conditions
and/or boundary conditions. Equation (1) can be a system of ordinary differential equations or partial differential
equations depending on the physics problem. Let us assume that this physics problem is well-posed in the sense of
Hadamard, that is to say that there exists a unique solution u(x) for any parameter x, and that this solution changes
continuously with x. Let us introduce the set X of all the possible parameters x. The solution manifoldM is defined
by:

M := u(X) = {u(x) | x ∈ X}. (2)

2.1. Introduction to model order reduction

Model order reduction [1, 2] is a discipline in numerical analysis consisting in replacing a computationally expen-
sive high-fidelity model by a fast reduced-order model (ROM) to calculate approximate solutions of some complex
physics equations. A ROM can be either a data-driven metamodel (or surrogate model) calibrated with a regression
algorithm, or a physics-based model obtained by numerical methods such as the Proper Generalized Decomposi-
tion [3, 4], the Reduced Basis method [5, 6], and the POD Galerkin method [7, 8], among others. It is generally
used for parametrized equations whose solution must be known for different points in the parameter space. As in
machine learning, a model order reduction procedure starts by a training phase (or offline stage) where the ROM
is built from some training data. The ROM is then used on test data in an exploitation phase (or online stage). In
the training phase, high-fidelity solutions, called snapshots, are computed with the high-fidelity model for different
points of the parameter space to get a sampled representation of the solution manifold. The model order reduction
algorithm analyzes these snapshots to learn how the solution is affected by parameter variations. Contrary to usual
machine learning problems, the amount of training data is limited because the high-fidelity model giving snapshots
is time-consuming and costly. The selection of relevant points in the parameter space can be optimized to ensure
that the snapshots are representative of the behavior of the solution, like in the greedy approach of the Reduced Basis
method where an a posteriori error estimator is used to select snapshots. Given the cost of computing snapshots in
the training phase, a ROM is profitable only if it is extensively used in the exploitation phase. This paper addresses
issues that are specific to projection-based model order reduction (e.g. POD Galerkin, Reduced Basis method) where
the approximate solution is obtained by solving the physics equations with the Galerkin method on a well-chosen
reduced-order basis (ROB).
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2.2. The Proper Orthogonal Decomposition (POD)
It is now assumed that Equation (1) defines a parametrized partial differential equation whose solution u(x) for

a given point x ∈ X in the parameter space is a function of space and time defined on Ω × [0; t f ], with Ω ⊂ Rα,
α = 1, 2 or 3 and t f ∈ R∗+. Most of the time, the Hilbert spaceH is a subspace of the Lebesgue space L2(Ω × [0; t f ])
of square-integrable functions. However, parameters x and time t can be considered together in a variable χ called
generalized parameters living in the set X̃ = X × [0; t f ]. Therefore, the solution u(χ) belongs to the space L2(Ω).
The Stiefel manifold V(N, L2(Ω)) represents the set of all orthonormal N-frames in L2(Ω). For two square-integrable
functions f and g, the notation ⟨ f , g⟩L2(Ω) stands for the L2(Ω) inner product

∫
Ω

f (ξ)g(ξ)dξ. The following definition
gives a theoretical continuous definition of the proper orthogonal decomposition (POD [19, 7]), also known as the
Karhunen-Loève decomposition or principal component analysis:

Definition 2.1 (POD basis). Let u : X̃ → L2(Ω). A POD basis {ψ∗k}1≤k≤N ∈ V(N, L2(Ω)) of order N ∈ N∗ of u is a
solution of the following optimization problem:

{ψ∗k}1≤k≤N ∈ arg min
{ψk}1≤k≤N∈V(N,L2(Ω))

∫
χ∈X̃

||u(χ) −
N∑

k=1

⟨u(χ), ψk⟩L2(Ω)ψk ||
2
L2(Ω) dχ. (3)

The sum in Equation (3) is the proper orthogonal decomposition of order N of u. When N → +∞, the approxi-
mation error given by the minimum of the cost function in Equation (3) tends towards zero (Theorem 4 in [49]).

Let H be a Hilbert space with an orthonormal basis {ei}i∈N∗ , and A : H → H a linear operator. We define the
Hilbert-Schmidt function ΛHS (H) as:

ΛHS (H)(A) :=

√√
∞∑

i=1

||A(ei)||2H , (4)

which can potentially take infinite values. A linear operator A on a Hilbert space H is a Hilbert-Schmidt operator if
ΛHS (H)(A) is finite. As shown in [50] (Chapter VIII, Theorem 2.3), the set HS (H) of all Hilbert-Schmidt operators
onH is a Hilbert space with respect to the following inner product:

⟨A, B⟩HS (H) :=
∞∑

i=1

⟨A(ei), B(ei)⟩H . (5)

The Hilbert-Schmidt function ΛHS (H) is actually the norm induced by this inner product, and corresponds to the
Frobenius norm for matrices when the vector space H is finite-dimensional. We now use the more conventional
notation ||A||HS (H) := ΛHS (H)(A) for the Hilbert-Schmidt norm. The Hilbert-Schmidt inner product and norm are
independent of the choice of the basis {ei}i∈N∗ , see Proposition 9.18 in Chapter 9 of [51], which will be useful for
proofs of some properties of the dissimilarity measure introduced in this paper. The POD is highly related to the
theory of Hilbert-Schmidt operators. In [52, 53], it is shown that the POD optimization problem is equivalent to
finding the optimal approximation of a Hilbert-Schmidt operator related to u by a finite rank operator in the Hilbert-
Schmidt norm. The POD basis functions can also be obtained from the eigenfunctions of the Hilbert-Schmidt integral
operator [7] Ru:

L2(X̃) ∋ φ 7→ Ru(φ) ∈ L2(X̃), (6)

where Ru(φ) is defined by:

X̃ ∋ χ 7→ Ru(φ)(χ) :=
∫
χ′∈X̃

〈
u(χ), u(χ′)

〉
L2(Ω) φ(χ′)dχ′ ∈ R. (7)

In this work, we keep the explicit distinction between the time t and the parameters x ∈ X rather than working
on the generalized parameters χ ∈ X̃, because we do not consider the time as a clustering variable. Nonetheless,
spatio-temporal functions f ∈ L2(Ω × [0; t f ]) are considered as trajectories ( f (., t))t∈[0;t f ] in the Hilbert space L2(Ω).
In other words, such functions are seen as functions defined on Ω and parametrized by the time. For this reason, the
manifoldM is rather defined by:

M := {u(x)(., t) | x ∈ X, t ∈ [0; t f ]}, (8)

and the approximation spaces are subspaces of L2(Ω), leading to an approximate solution expressed as a time-
dependent linear combination of basis functions defined on Ω.
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In practice, we are given a finite set of m points xi of the parameter space X, for which high-fidelity solutions u(xi)
are computed in a high-dimensional approximation space whose dimension is denoted by N . These solutions, called
snapshots, provide information about the behavior of the physical system and give a sampled version of the solution
manifold. The POD is applied as a linear dimensionality reduction technique, processing this information to build a
ROB that can be used to accelerate future numerical simulations for new parameters.

Definition 2.2 (POD basis construction). Given an integer N ≤ N , a POD basis {ψ∗k}1≤k≤N ∈ V(N, L2(Ω)) is computed
from the snapshots {u(xi)}1≤i≤m as a solution of the following optimization problem:

{ψ∗k}1≤k≤N ∈ arg min
{ψk}1≤k≤N∈V(N,L2(Ω))

m∑
i=1

||u(xi) −
N∑

k=1

⟨u(xi), ψk⟩L2(Ω)ψk ||
2
L2(Ω×[0;t f ]). (9)

The uniqueness of the POD basis is obtained by specifying a construction algorithm, such as the Snapshot
POD [54, 55] or the singular value decomposition (SVD) for instance. By construction, the subspace spanned by
the ROB minimizes the projection errors of the snapshots u(xi). The optimality of the POD basis is discussed and
illustrated in [56]. In practice, when using a numerical procedure to solve Equation (1), for example the finite-element
method with a time-stepping scheme, the coordinates of the snapshots in the finite-element basis are stored in columns
in a matrix Q ∈ RN×mnt called snapshots matrix, with nt being the number of time steps. The coordinates of the POD
modes ψk are given in the N first columns of the matrix M−1/2V, where M ∈ RN×N is the finite-element mass matrix
and V ∈ RN×rank(Q) is the matrix of left singular vectors in the SVD of the snapshots matrix Q, when indexing the
singular values in decreasing order. The decay rate of the singular values of the snapshots matrix Q is related to the
behavior of the sequence of Kolmogorov widths. It enables evaluating the reducibility of the physics problem. When
computing a POD basis for a variable defined at integration points rather than the finite-element mesh nodes, for the
purpose of applying Gappy-POD after hyper-reduced simulations, the POD modes are simply given by the N first left
singular vectors in the SVD of the corresponding snapshots matrix.

2.3. Non-reducible problems

Approximate solutions of Equation (1) can be obtained by solving the PDEs on a finite-dimensional subspace
HN ∈ Gr(N,H) spanned by a ROB, where the Grassmannian Gr(N,H) is the set of all N-dimensional subspaces of
H . The best approximation inHN of the solution u(x) for a given parameter x is the following orthogonal projection
πHN (u(x)) onto the approximation space:

πHN (u(x)) = arg min
v∈HN

||u(x) − v||H , (10)

with ||.||H denoting the norm induced by the inner product of the Hilbert spaceH .
The Kolmogorov N-width is defined by:

dN(M) := inf
HN∈Gr(N,H)

sup
u∈M

inf
v∈HN

||u − v||H = inf
HN∈Gr(N,H)

sup
u∈M
||u − πHN (u)||H , (11)

and quantifies how well the solution manifold M can be approximated by searching approximate solutions in a
N-dimensional subspace of H . The Kolmogorov N-width corresponds to the worst projection error on the best N-
dimensional approximation space. For a fixed solution manifoldM, the sequence (dN(M))N∈N is decreasing, which
means that approximation errors get lower when increasing the dimension of the approximation space.

For some problems, the Kolmogorov width slowly decays when increasing the dimension N of the approximation
space. For these non-reducible problems, the dimension N of the linear approximation space giving a sufficiently
small Kolmogorov width is generally too high to enable the fast computation of approximate solutions. Qualitatively,
the solution manifoldM covers too many independent directions to be embedded in a low-dimensional subspace. To
address this issue, several techniques have been developed:

• Problem-specific methods tackle the difficulties of some specific physics problems that are known to be non-
reducible, such as advection-dominated problems which have been largely investigated, for instance in [13, 14,
15, 16, 57, 58, 59].
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• Online-adaptive model reduction methods update the ROM in the exploitation phase by collecting new informa-
tion online as explained in [60], in order to limit extrapolation errors when solving the parametrized governing
equations in a region of the parameter space that was not explored in the training phase. The ROM can be up-
dated for example by querying the high-fidelity model when necessary for basis enrichment [35, 61, 62, 63, 64].
Other methods propose enrichment procedures that do not require solving the equations with the high-fidelity
model, whose complexity scales linearly with ([65, 66]) or is independent of ([67]) the dimension of the high-
fidelity model.

• ROM interpolation methods [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] use interpolation techniques on
Grassmann manifolds or matrix manifolds to adapt the ROM to the parameters considered in the exploitation
phase by interpolating between two precomputed ROMs.

• Dictionaries of basis vector candidates enable building a parameter-adapted ROM in the exploitation phase by
selecting a few basis vectors. This technique is presented in [68, 69] for the Reduced Basis method.

• Dictionaries of ROMs rely on the construction of several local ROMs adapted to different regions of the so-
lution manifold. These local ROMs can be obtained by partitioning the time interval [70, 71], the parameter
space [70, 72, 73, 74, 64, 75, 76], or the solution space [17, 18, 74, 77, 47, 78, 48, 38]. Local ROMs have been
used both with the Reduced Basis method and the POD Galerkin method. In the same vein as online-adaptive
model reduction methods, local ROBs can be adapted online using for example a low-rank SVD update method,
as in [18, 77] when switching from one local ROB to another or in [64] when an error indicator detects extrap-
olation errors. This concept of local ROMs should not be confused with another type of local (or localized)
ROMs described in [79], where the ROMs are associated to subdomains of the computational domain, in the
spirit of domain decomposition techniques.

• Nonlinear manifold ROM methods [32, 80, 33] learn a nonlinear embedding and project the governing equations
onto the corresponding approximation manifold, by means of a nonlinear function mapping a low-dimensional
latent space to the solution space. This function is the decoder of an undercomplete autoencoder trained with the
mean squared error loss to compress the snapshots and reconstruct them from their compressed representations.
In this way, the nonlinear manifold is approximated with one single nonlinear ROM. Classical linear ROMs
are obtained when the autoencoder has only one hidden-layer with linear activation functions. In this case, the
decoder simply returns a linear combination of the POD modes.

2.4. Dictionaries of local reduced-order models

This paper focuses on dictionaries of ROMs, where the solution manifold is partitioned to get a collection of
subsetsMk ⊂ M that can be covered by a dictionary of low-dimensional subspaces, enabling the use of linear ROMs.
If {Mk}k∈[[1;K]] is a partition ofM, then:

∀k ∈ [[1; K]], ∀N ∈ N∗, dN(Mk) ≤ dN(M). (12)

For a given number K of subsets, two partitions can be compared on the basis of the ratios dN(Mk)/dN(M). The idea
of clustering training data to define local ROBs traces back to the work of D. Amsallem, K. Washabaug, M.J. Zahr
and C. Farhat in 2012, published in [17, 18] and validated on nonlinear problems in computational fluid dynamics
and fluid-structure-electric interactions. In these papers, the set of snapshots is partitioned with k-means clustering to
define K clusters represented by their means {uk}1≤k≤K . One local ROB is computed for each cluster using the POD.
In the exploitation phase, given the solution at the i-th time increment, one looks for the closest mean uk in terms of
the norm ||.||L2(Ω) and computes the state of the solution at the i + 1-th time increment with the corresponding local
ROB. This technique has been used more recently in a hyper-reduction framework in [77, 38].

When using a clustering algorithm to partition the solution manifold, the quality of the partition is related to
the choice of the clustering method and the dissimilarity measure δ used to group similar solutions on the manifold.
Among physics-informed clustering strategies, i.e. strategies incorporating simulation data to compute dissimilarities,
[17, 18, 77, 78, 38] used k-means with Euclidean distances in the solution space or in a subspace of the solution space
found by PCA, [48] used k-medoids with the Grassmann distance between subspaces spanned by the trajectories of
the solutions, [47] applied a hierarchical partitioning based on a binary tree structure with the projection error as
dissimilarity criterion, and [74] proposed working on the governing equations’ nonlinear term, using either a variant
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of k-means with the DEIM [81] residual as clustering criterion or k-means on a low-dimensional representation of
the governing equations’ nonlinear term obtained by a DEIM-based feature selection. It is recalled that k-means
is a representative-based clustering algorithm equipped with the Euclidean distance, and that changing this distance
leads to other clustering methods. The Local Decomposition Method [82] also relies on a physics-informed clus-
tering strategy even though no dissimilarity measure is used, because a Gaussian mixture model is applied to shock
sensors computed from the field of a quantity of interest, which enables separating subsonic and transonic flows in
computational fluid dynamics.

2.5. Dictionary-based ROM-nets
The use of ROM dictionaries introduces the need for a model selection method that identifies the most suitable

model in the dictionary. In [17, 18, 77, 38], the local ROM is selected by finding the closest cluster representative
from the current state of the solution with the Euclidean distance. When model selection is not straightforward and
slows down the simulation process, one can use a classifier to learn the model selection task and enable fast model
recommendation in the exploitation phase. In [83], global POD-bases for inputs and outputs of a black-box simulation
model are constructed, classifiers are trained in the form of self-organizing maps in the POD coefficients space, and
local surrogate models are trained – while keeping a reduced representation on a global POD basis. Dictionaries
of ROMs with automatic model recommendation made by a classifier can be found in [78, 74, 48, 75, 76]. To our
knowledge, the idea of combining physics-informed clustering for the definition of local ROMs with a classifier
for model recommendation came from the pioneering works of Peherstorfer, Butnaru, Willcox, and Bungartz on
the Localized Discrete Empirical Interpolation Method (LDEIM [74], 2014) and of Nguyen, Barhli, Muñoz and
Ryckelynck on computer vision [78] in 2018. When the classification task is performed by deep neural networks and
takes the parameters as inputs, this methodology is known as dictionary-based ROM-net [48], see Figure 1.

Fig. 1: Exploitation phase of a ROM-net: a dictionary of K local ROMs combined with a classifier CK for automatic model recommendation. The
classifier takes a point x of the parameter space as an input an returns the label of the most suitable ROM in the dictionary.

Dictionary-based ROM-nets consist in a dictionary of local ROMs and a classifier acting as a model selector, which
enables the automatic adaptation of the ROM to the state and the environment of the physical system. The ROM-net’s
classifier (real classifier denoted by CK where K is the number of local ROMs) approximates the theoretical perfect
classifier KK returning the index of the best local ROM for a given point in the parameter space. For simplicity,
the term dictionary-based ROM-net (or simply ROM-net) is used throughout this paper to refer to the methodology
described by Figures 1 and 2 and Algorithm 1, even when the classifier is not an artificial neural network.

Figure 2 gives the main steps of the training phase of a dictionary-based ROM-net and draws a comparison with
the construction of a global ROM benefiting from the ROM-net’s physics-informed cluster analysis. The dictionary
of local ROMs is built from clusters given by a physics-informed clustering procedure. First, a simplified version of
the physics problem is solved for each input example of the training database. The simplified physics problem must
be less computationally demanding than the target problem; such simplification is problem-dependent and likely to
be constructed by an expert of the considered application. In particular, it can be solved with a coarse mesh to reduce
the dimension of the approximation space. The simplified simulations provide what we call simplified snapshots:
these snapshots cannot be exploited to build ROMs, but they give information about how the physical system reacts
to parameter changes. The clustering algorithm finds clusters from the information contained in these simplified
snapshots. In light of the clustering results, one must identify a few relevant training examples for which the target
problem is solved to get high-fidelity snapshots, that is, snapshots that well represent the solution manifold and can
then be used for the construction of the local ROMs. The different needs in terms of training data for reduced-order
modeling and machine learning can be seen through these two families of snapshots: the clustering and classification
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Fig. 2: Training phases of a dictionary-based ROM-net and a global ROM with a physics-informed clustering strategy.

algorithms use information related to the simplified snapshots to get a sufficiently large training set, while the ROMs
use a limited number of high-fidelity snapshots in order to learn to make predictions in a physics problem. This
distinction between these two types of simulation data is essential when considering complex problems with many
degrees of freedom. The three major differences between our work and the seminal works of [78] and [74] are the
use of simplified simulations, the clustering strategy with a new ROM-oriented dissimilarity measure, and an a priori
efficiency criterion introduced hereinafter. It is noteworthy that, among the four variants of the LDEIM, the parameter-
based LDEIM with clustering of snapshots (section 4.2. of [74]) is the one that shares the more similarities with our
work, since it applies clustering on simulation data and uses the parameters as inputs for the classifier. The training
algorithm is given in Algorithm 1.
When using a dictionary-based ROM-net, two natural questions arise:

• Which dissimilarity measure and clustering algorithm should be used for model order reduction purposes?

• Can the high-fidelity snapshots be automatically selected and how?

After clustering, the training phase of the dictionary-based ROM-net still includes expensive steps corresponding
to boxes with thick lines in Figure 2, namely the computation of the high-fidelity snapshots, the construction of the
local ROMs (which can involve a hyper-reduction algorithm), and the training of a classifier for automatic model
recommendation. Therefore, an evaluation criterion is needed in order to assess the quality of the clusters before
continuing the ROM-net’s training phase, i.e. right after the clustering step, see Figure 2. This criterion should enable
the evaluation of the profitability of the ROM-net and the tuning of clustering hyperparameters, using the simplified
snapshots only. Put briefly, in addition to the two aforementioned questions, this work must also address the following
issues:

• Is it possible to define a simple practical method to select good hyperparameters (number of clusters, number
of POD modes, number of high-fidelity snapshots)?

• Can one define an efficiency criterion computable after the clustering step to evaluate the expected performances
of the ROM-net with respect to a single global ROM?

Remark 2.3. Dictionary-based ROM-nets use machine learning to assist model order reduction procedures in the
training and exploitation phases. It does not replace physics models by regression models, since numerical predictions
made by a ROM are obtained by solving physics equations.
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Remark 2.4. This paper focuses on the choice of the dissimilarity measure in the clustering task for the construction
of the dictionary of ROMs, and on hyperparameters calibration. Our article [84] gives more details about the other
important component of a dictionary-based ROM-net, namely the classifier designed for automatic model recommen-
dation.

Algorithm 1 Training algorithm for dictionary-based ROM-nets

Input: Points {xi}1≤i≤m in the parameter space, number of clusters K, number ns of high-fidelity snapshots per cluster.
Output: Trained dictionary-based ROM-net made of K ROMs and one classifier for automatic model recommenda-

tion.
1: Stage 1 (simplified simulation data generation):
2: Call the high-fidelity solver to compute solutions of a simplified version of the target physics problem.
3: Simplified snapshots {uLF

i }1≤i≤m := solutions for {xi}1≤i≤m.
4: Stage 2 (clustering based on simulation data)
5: Compute sine dissimilarities between simplified snapshots.
6: Run a k-medoids clustering algorithm using sine dissimilarities as clustering distance, to get K clusters.
7: KK(xi) := label/cluster of uLF

i .
8: Stage 3 (snapshots selection)
9: for k ∈ [[1; K]] do

10: Run a k-medoids clustering algorithm on the k-th cluster to get ns subclusters.
11: end for
12: I := indices of the subclusters’ medoids.
13: Call the high-fidelity solver to compute solutions of the target physics problem for {xi}i∈I.
14: High-fidelity snapshots {uHF

i }i∈I := solutions for {xi}i∈I.
15: Stage 4 (ROM dictionary construction):
16: for k ∈ [[1; K]] do
17: Build a local (hyper-)reduced-order model for the k-th cluster using its ns high-fidelity snapshots.
18: end for
19: Stage 5 (classification for automatic model recommendation)
20: Train a classifier CK on the labeled dataset {(xi,KK(xi)}1≤i≤m.

3. Clustering background

3.1. Representative-based clustering

In representative-based clustering algorithms, each cluster is associated to a partitioning representative, i.e. a
reference point that well represents the cluster’s members. Clusters representatives are useful in our case, because
they can be used to select the high-fidelity snapshots. Representative-based algorithms generally define the clusters
thanks to the Voronoi diagram generated by the representatives, which gives clusters with high cohesion.

Definition 3.1 (Representative-based clustering). Let us consider a finite set {xi}1≤i≤m of elements of a topological
space T endowed with a dissimilarity measure δ. For a given integer K ∈ [[2; m]], representative-based clustering
consists in finding K representatives {x̃k}1≤k≤K ⊂ T minimizing the objective function:

m∑
i=1

min
k∈[[1;K]]

δ(xi, x̃k)2. (13)

The clusters Ck are given by:
Ck := {xi | δ(xi, x̃k) ≤ δ(xi, x̃l) ∀l ∈ [[1; K]]}. (14)

When the dissimilarity measure is the Euclidean distance, the optimal representatives are the clusters’ means
or centroids (see [40], p.162). This problem corresponds to k-means clustering [39], where the cost function in
Equation (13) corresponds to the within-cluster variance and is related to clusters inertia.
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3.2. K-medoids clustering
In k-medoids, the representatives must be taken among the elements of the dataset. This restriction is particularly

useful when functions of the training examples (such as mean and median) do not make sense or cannot be easily
computed. It enables working with any type of data with any dissimilarity measure. The next definitions introduce
the k-medoids optimization problem:

Definition 3.2 (Binary matrices). A binary matrix is a matrix whose coefficients are either 0 or 1. The set of binary
matrices of size m × n is denoted by Bm,n.

Definition 3.3 (K-medoids clustering). Let us consider a finite set {xi}1≤i≤m of elements of a topological space T
endowed with a dissimilarity measure δ. For a given integer K ∈ [[2; m]], let us introduce the setZm,K:

Zm,K :=

Z ∈ Bm,K |

K∑
k=1

zik = 1 ∀i ∈ [[1; m]] and
m∑

i=1

zik ≥ 1 ∀k ∈ [[1; K]]

 . (15)

K-medoids clustering consists in solving the following optimization problem:

Z∗ := arg min
Z∈Zm,K

K∑
k=1

m∑
i=1

zikδ(xi, x̃k)2, (16)

where the medoids x̃k are given by:

x̃k := arg min
x j∈{xl}1≤l≤m

m∑
i=1

zikδ(xi, x j)2. (17)

This formulation of the k-medoids problem has similarities with the k-means formulation proposed in [85]. With
this formulation, the definition of the clusters Ck in Equation (14) is equivalent to:

Ck = {xi | z∗ik = 1}. (18)

Equation (15) defining the set Zm,K ensures that each point is assigned to one single cluster, and that each cluster
contains at least one element. Equation (17) defines the medoid of a cluster as its most central member. K-medoids is
a combinatorial optimization problem, for which several heuristic approaches have been proposed to find a suboptimal
solution at lower cost. The Partitioning Around Medoids (PAM [41] and Chap. 2 of [86]) is the most known algo-
rithm. It iteratively looks for the best swap between nonmedoid points and medoids. Clustering Large Applications
(CLARA [87] and Chap. 3 of [86]) applies PAM on different subsamples to reduce the computational complexity of
PAM. As explained in Section 11.2.1 of [42], both PAM and CLARA algorithms can be interpreted as graph-searching
problems: PAM explores the entire graph of clustering solutions, while CLARA explores a subgraph only. Clustering
Large Applications based on Randomized Sampling (CLARANS [88, 89]) only considers a sample of the neighbors
of the current graph node at each iteration, which enables searching over the entire graph as in PAM but at lower cost.
These three algorithms have been improved recently in [90] in terms of computational complexity. Apart from these
approaches, a simple and fast k-medoids algorithm has been proposed in [91] following the standard implementation
of k-means, i.e. alternating between a cluster assignment step and updating the medoids with Equation (17). However,
as explained in [90], this algorithm does not explore as many configurations as PAM does. For all these algorithms,
the dissimilarities δ(xi, x j) are precomputed before looking for clusters.

4. Proposed local ROM approach

4.1. Motivations
Instead of considering the absolute projection error when defining the Kolmogorov N-width, one can use the

relative projection error, which leads to the following definition:

Definition 4.1 (Normalized Kolmogorov N-width). Let N ∈ N∗. If M contains at least one nonzero element, the
normalized Kolmogorov N-width of the manifoldM in the ambient Hilbert spaceH is defined by:

d̃N(M) := inf
HN∈Gr(N,H)

sup
u∈M\{0}

inf
v∈HN

||u − v||H
||u||H

. (19)
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Let ∡H (u, v) ∈ [0; π/2] denote the angle between two nonzero elements u and v ofH :

∡H (u, v) := arccos
(
|⟨u, v⟩H |
||u||H ||v||H

)
, (20)

and let ∡H (u,V) ∈ [0; π/2] be the angle between u and a subspaceV ⊂ H :

∡H (u,V) := inf
v∈V

∡H (u, v). (21)

The normalized Kolmogorov N-width is related to the largest angle between elements of the solution manifold and
the approximation space:

Property 4.2. Let N ∈ N∗, and suppose thatM contains at least one nonzero element. Then:

d̃N(M) = inf
HN∈Gr(N,H)

sup
u∈M\{0}

sin∡H (u,HN) . (22)

The proof of this property is given in Appendix A, with another property linking the normalized Kolmogorov
width d̃N(M) with the absolute Kolmogorov width dN(M) via an inequality. As suggested by Equation (22) of
Property 4.2, the dissimilarity measure should be defined as a function of the angle between elements of the solution
manifold in order to focus on the shape of the fields u ∈ M rather than their intensities. In this way, clustering would
efficiently decrease projection errors by limiting the maximum angular deviations within clusters. The Euclidean
distance ||u − v||H used in [17, 18, 77, 78, 38] does not always ensure the reduction of projection errors. Indeed, the
solution manifold can contain solutions that are relatively close in terms of the Euclidean distance but distributed in
many different directions of the spaceH . On the other hand, having a subsetMk with a large diameter in terms of the
Euclidean distance is not a problem if it is embedded in a low-dimensional space, as indicated by Property 4.2. Let
us suppose that the solution manifold contains two elements u and v having disjoint supports supp(u) and supp(v) and
such that there exists a large real number λ such that λu is still in the solution manifold (see Figure 3). The elements
u and λu are aligned in the same direction and could then be obtained with the same 1-dimensional approximation
space. However, if λ is large enough, the distance ||u − λu||H can be very large with respect to ||u − v||H . In this case,
it is possible to assign u and v to the same cluster while assigning λu to another, whereas u and λu are aligned along a
direction that is orthogonal to v. For these reasons, the Euclidean distance does not seem to be adapted, except if the
number K of clusters is large enough to get very local subsetsMk with restricted angular deviations.

Fig. 3: Clustering with the Euclidean distance would assign u and v to the same cluster and λu to another, whereas u and λu could be computed
with the same 1D approximation space.

A more natural and straightforward approach would consist in clustering the parameter space X to define the
subsetsMk = u(Xk) for each cluster Xk. Note that the subsetsMk no longer form a partition ofM, although their
union still equals toM. This strategy may not be appropriate when u is a nonlinear function of the parameters x ∈ X.
The physics of the underlying problem can also generate situations where small changes of the parameters in some
directions of the parameter space totally modifies the shape of the solution in a nonlinear way, while large variations
in other directions of the parameter space only imply linear variations. An example is given in [48], where it is shown
that clusters identified in the parameter space give subsetsMk spreading all over the solution manifoldM. To avoid
this issue, it is preferable to apply a physics-informed clustering strategy by partitioning the solution manifold directly
with an appropriate dissimilarity measure δ.
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4.2. Proposed dissimilarity measure

This section introduces the dissimilarity measure used in this paper for clustering and gives some of its properties.
It is important to stress that this dissimilarity is computed from the simplified snapshots uLF given by the simplified
simulations. Hence, in this section, the notation uLF ∈ L2(Ω × [0; t f ]) represents a simplified snapshot.

Definition 4.3 (Principal angles between subspaces). LetV1 andV2 be two subspaces of L2(Ω). The principal angles
or canonical angles θk(V1,V2) ∈ [0; π/2] betweenV1 andV2 are defined by:

∀k ∈ N∗, θk(V1,V2) := ∡(vk
1, v

k
2), (23)

where the angle ∡ := ∡L2(Ω) is measured in L2(Ω) (see Equation (20)), and where the vectors vk
1 ∈ V1 and vk

2 ∈ V2
are given by the following sequence of optimization problems:

(v1
1, v

1
2) ∈ arg min

(v1,v2)∈V1×V2

∡(v1, v2)

(vk+1
1 , vk+1

2 ) ∈ arg min
{
∡(v1, v2) v j ∈ V j ∩

(
span({vi

j}1≤i≤k)
)⊥
, j ∈ {1; 2}

} (24)

with the notationV⊥ denoting the orthogonal complement ofV ⊂ L2(Ω) in L2(Ω).

In practice, when the spaces V1 and V2 are finite-dimensional, it can be shown (see Theorem 1 of [92]) that the
principal angles are given by:

∀k ∈ [[1; min(dim(V1), dim(V2))]], θk (V1,V2) = arccosσk, (25)

with σ1 ≥ σ2 ≥ ... ≥ σmin(dim(V1),dim(V2)) being the singular values of the matrix C(V1,V2) ∈ Rdim(V1)×dim(V2) defined
by:

Ci j(V1,V2) := ⟨ψ(1)
i , ψ(2)

j ⟩L2(Ω), (26)

where the functions ψ(1)
i (resp. ψ(2)

j ) form an orthonormal basis of V1 (resp. V2). The vector θ(V1,V2) denotes the
vector containing the principal angles between the spacesV1 andV2.

Definition 4.4 (n-dimensional elementary basis). Let u ∈ L2(Ω × [0; t f ]) and n ∈ [[1;N]]. The n-dimensional elemen-
tary basis associated to u is the orthonormal n-frame Ψn(u) ∈ V(n, L2(Ω)) obtained by solving the POD minimization
problem given in Equation (9) with the Snapshot POD algorithm, using the trajectory of u over time as a snapshot.

Definition 4.5 (n-dimensional elementary approximation space). Let u ∈ L2(Ω × [0; t f ]) and n ∈ [[1;N]]. The n-
dimensional elementary approximation spaceVn(u) ∈ Gr(n, L2(Ω)) is the subspace spanned by Ψn(u).

In Definition 4.4, the POD basis Ψn(u) is used for clustering only, it is not supposed to be used for numerical
simulations since it is computed from simplified snapshots. Qualitatively, the subspace Vn(u) spanned by this POD
basis is the best n-dimensional approximation space for the trajectory of u(., t) in L2(Ω), that is to say:

Vn(u) = arg min
Vn∈Gr(n,L2(Ω))

∫ t f

0
inf

v∈Vn

||u(., t) − v||2L2(Ω) dt. (27)

Definition 4.6 (Chordal distance between subspaces [93], p. 140, Section 2). Let H be a Hilbert space, and n,m be
two integers with n ≤ m. The chordal distance between subspacesV1 ∈ Gr(n,H) andV2 ∈ Gr(m,H) is defined by:

dc(V1,V2) := || sin θ(V1,V2)||2 =

 n∑
k=1

sin2 θk(V1,V2)

1/2

. (28)

Definition 4.7 (Sine dissimilarity between functions). Given n ∈ [[1;N]], the sine dissimilarity δ̃n between functions
u and v in L2(Ω × [0; t f ]) is defined by:

δ̃n(u, v) := dc(Vn(u),Vn(v)). (29)
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Let us now recall the definition of the orthogonal projection πHn : L2(Ω) → L2(Ω) on a n-dimensional subspace
Hn of L2(Ω), with an orthonormal basis {ψk}1≤k≤n:

∀u ∈ L2(Ω), πHn (u) =
n∑

k=1

⟨u, ψk⟩L2(Ω)ψk. (30)

The following properties give interesting interpretations of the sine dissimilarity that motivate its use for the construc-
tion of dictionaries of local ROMs. The proofs of these properties are given in Appendix B.

Property 4.8 (Sine dissimilarity and L2 projection errors). For all n ∈ [[1;N]], the sine dissimilarity is symmetric and
satisfies:

∀(u, v) ∈ L2(Ω × [0; t f ])2, δ̃n(u, v) =

 n∑
i=1

||ψi(u) − πVn(v)(ψi(u))||2L2(Ω)

1/2

, (31)

with πVn(v) denoting the orthogonal projection onVn(v) and where the functions ψi(u) ∈ L2(Ω) for i ∈ [[1; n]] are the
vectors of the elementary basis Ψn(u).

Property 4.9 (Sine dissimilarity and Hilbert-Schmidt distance). For all n ∈ [[1;N]], for all (u, v) ∈ L2(Ω × [0; t f ])2,
the sine dissimilarity satisfies:

δ̃n(u, v) =
1
√

2
||πVn(u) − πVn(v)||HS (L2(Ω)). (32)

These properties show that the sine dissimilarity can be interpreted either in terms of projection errors, or as the
Hilbert-Schmidt distance between the projections onto the elementary approximation spaces. The sine dissimilarity
is therefore relevant for model order reduction methods using Galerkin projection for the computation of approximate
solutions in low-dimensional approximation spaces. In addition to the proofs of the two aforementioned properties,
two other mathematical results on the sine dissimilarity are given in Appendix B: we show that this dissimilarity
is a pseudometric on L2(Ω × [0; t f ]), and that it is asymptotically equivalent to the Grassmann dissimilarity used
in previous papers [48, 94] for small angles. Finally, the next definition introduces the ROM-oriented dissimilarity
between parameters as the sine dissimilarity between the corresponding solutions:

Definition 4.10 (ROM-oriented dissimilarity between parameters). Given n ∈ [[1;N]], the ROM-oriented dissimilarity
between parameters x and x′ in X is defined by:

δn
(
x, x′

)
:= δ̃n

(
uLF (x) , uLF (

x′
))
, (33)

where uLF : X → L2(Ω × [0; t f ]) is either the primal variable (i.e. the solution of the physics problem) or a dual
variable (i.e. an internal variable) defining a quantity of interest.

It is recalled that this dissimilarity is computed from simplified snapshots. Property 7.2 given in Appendix B
implies that the ROM-oriented dissimilarity is a pseudometric on X. Several variants of this dissimilarity can be
obtained according to the definition of the variable uLF . Using the primal variable should improve the quality of
the POD-Galerkin approximation, since the data would be clustered according to the angles between the subspaces
spanned by the trajectories of the primal solution. This would give a method-oriented dissimilarity, that is, a dissimi-
larity favoring the accuracy of the numerical method (namely model order reduction) used for numerical simulations.
Using a dual variable instead would improve the quality of the Gappy-POD [95] reconstruction for the quantity of
interest when hyper-reduction is used. This would define a goal-oriented method favoring the accuracy of numerical
predictions of a quantity of interest. Of course, one could mix both strategies by taking a weighted average of these
two variants of the ROM-oriented dissimilarity.

4.3. Choice of the clustering method
As an unsupervised learning task, clustering has no indisputable evaluation criterion. This is the reason why

there is no hierarchy in the large variety of clustering algorithms. The algorithm must be selected according to
the purpose. For model order reduction purposes, we have seen that the Kolmogorov N-width relates the physics
problem’s reducibility to projection errors on the approximation space, which makes the projection error a good
candidate for an evaluation criterion:
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Definition 4.11 (Relative projection error). Let u ∈ L2(Ω) be a nonzero square-integrable function, and Ψ =
{ψk}1≤1≤N ∈ V(N, L2(Ω)) be an orthonormal reduced-order basis of dimension N ∈ N∗ in L2(Ω). The relative projec-
tion error η(u,Ψ) of u on span(Ψ) is given by:

η(u,Ψ) :=
||u −

∑N
k=1⟨u, ψk⟩L2(Ω)ψk ||L2(Ω)

||u||L2(Ω)
. (34)

Remark 4.12. The relative projection error does not depend on the choice of the orthonormal basis used to represent
the subspace span(ΨN). Therefore, the notations η(u,ΨN) and η(u, span(ΨN)) can be used interchangeably.

As shown in Equation (22) in Property 4.2, Kolmogorov widths can be decreased by limiting the angular devia-
tion within the clusters. Having defined a dissimilarity measure δn based on angles in Definitions 4.7 and 4.10, one
must look for compact-shaped clusters in terms of the dissimilarity δn. Therefore, we use PAM k-medoids clustering
algorithm to reduce the intra-cluster maximum angular deviations as much as possible. Our physics-informed cluster-
ing method consists in running simplified simulations and applying PAM to simulation data using the ROM-oriented
dissimilarity.

When computed in L2(Ω) and therefore with n = 1, the sine dissimilarity has a simple formula:

∀(u, v) ∈ L2(Ω)2, δ̃1(u, v)L2(Ω) := sin∡L2(Ω) (u, v) =

√√√
1 −

⟨u, v⟩2L2(Ω)

||u||2L2(Ω)||v||
2
L2(Ω)

, (35)

which gives a direct link with the relative projection error:

δ̃1(u, v)L2(Ω) = η(u, span({v})). (36)

This formula will be used for the computation of the dissimilarity in the applications given at the end of this paper. In
this setting, we showed in [96] the following property motivating the choice of k-medoids clustering:

Property 4.13 (Optimality of k-medoids clustering). The partitionsMk ofM minimizing the k-medoids cost function
with dissimilarity δ̃1(., .)L2(Ω) are exactly the minimizers of a discretized version of the following cost function:

K∑
k=1

P(u ∈ Mk) ď1(pU |u∈Mk )
2, (37)

where ďN is a variant of the Kolmogorov width obtained by replacing the worst-case error by the mean squared error
as in [97]:

ďN(pU) :=
(

inf
HN∈Gr(N,L2(Ω))

EU∼pU

[
η (U,HN)2

])1/2

=

(
inf

HN∈Gr(N,L2(Ω))
EX∼pX

[
η (u(X),HN)2

])1/2

,

(38)

with pX denoting a probability density function in the parameter space and pU being the resulting probability density
function in the solution space.

4.4. Automatic snapshots selection

Once clusters have been identified within the dataset, one must select relevant points for which the entire high-
fidelity simulation will be run to provide high-fidelity snapshots for the construction of the local ROMs. For each
cluster, the high-fidelity snapshots must be well distributed and representative of the cluster’s members. When one
wants to use only one snapshot per cluster, then the clusters’ medoids are good candidates. For more than one
snapshot per cluster, a second k-medoids cluster analysis can be conducted within each cluster, with ns subclusters
where ns is the desired number of high-fidelity snapshots per cluster, using the same dissimilarity measure as for the
first clustering. High-fidelity snapshots can then be computed for the subclusters’ medoids. This method corresponds
to a two-stage hierarchical k-medoids clustering.
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5. ROM-net’s efficiency criterion and hyperparameters tuning

5.1. Gain with respect to a global reduced-order model

We recall the following notations: K is the number of clusters (or number of ROMs in the dictionary), N is the
number of POD modes, and ns is the number of snapshots per cluster used for the construction of the local ROMs.

A dictionary-based ROM-net [48] is made of a dictionary of K local ROMs and a classifier CK which automatically
selects the best model from the dictionary for a given point in the parameter space without computing any physics-
informed dissimilarity, see Figure 1. The real classifier CK enables bypassing the simplified simulation that is required
to evaluate the perfect classifierKK , see Figure 2. In this section, it is assumed that all the dictionary’s ROMs have the
same number of modes, denoted by N, and have been built from the same number of high-fidelity snapshots, denoted
by ns. A dictionary of K ROBs with N modes and ns high-fidelity snapshots per basis is denoted by {Ψ(K,N,ns)

k }k∈[[1;K]].
The objective of this section is to define a practical method for the calibration of the hyperparameters K, N and ns,
based on an evaluation criterion quantifying the ROM-net’s profitability with respect to a single global ROM. This
criterion must be computable very early in the ROM-net’s training phase, right after the physics-informed clustering
procedure in Figure 2 and before the computation of high-fidelity snapshots, the construction of the ROMs, and the
classifier’s training phase. Therefore, the local ROBs {Ψ(K,N,ns)

k }k∈[[1;K]] used in the evaluation criterion are simply built
from Kns simplified snapshots selected by the two-stage hierarchical k-medoids clustering, instead of the correspond-
ing high-fidelity snapshots that will be computed afterwards. Their performances are compared with the performance
of a global ROB Ψ(1,N,Kns)

g containing N modes and inferred from the same Kns snapshots as {Ψ(K,N,ns)
k }k∈[[1;K]]. This

global basis thus benefits from the physics-informed clustering procedure for the selection of its snapshots. The ROBs
are related to the function uLF(X) ∈ L2(Ω × [0; t f ]) parametrized by the random variable X representing the current
point in the parameter space. The following definition introduces the gain used in our evaluation criterion:

Definition 5.1 (Gain). Given integers K > 1, N > 0 and ns > 0 and a classifier FK : X → [[1; K]], the gain is defined
by:

G(X; K,N, ns,FK) =
η
(
uLF(X),Ψ(1,N,Kns)

g

)
η
(
uLF(X),Ψ(K,N,ns)

FK (X)

) , (39)

where uLF(X) results from a simplified simulation. For K = 1, the gain equals to 1.

Remark 5.2. In Definition 5.1, the primal variable u can be replaced by a quantity of interest, depending on the
choice made for the definition of the ROM-oriented dissimilarity.

As a function of X, the gain can be seen as a random variable parametrized by the hyperparameters K, N and
ns and the classifier. The notations GC(K,N, ns) and GK (K,N, ns) denote G(X; K,N, ns,CK) and G(X; K,N, ns,KK)
respectively. Right after the physics-informed clustering procedure, the user cannot evaluate the gain GC(K,N, ns)
since the real classifier CK has not been trained yet. However, the clusters implicitly define the perfect classifier KK

and thus the user has access to values of the gain GK (K,N, ns). In the next property, the following assumption is
made:

[A1] The gain GK (K,N, ns) is assumed to be deterministic, which means that it is no longer a random variable but
rather a deterministic function of the hyperparameters K, N and ns. In other words, when the right cluster is
chosen, the gain does not depend on X.

Property 5.3 (Gain decomposition). Under assumption [A1]:

E[GC(K,N, ns)] = p GK (K,N, ns) + (1 − p) E(K,N, ns), (40)

where p = P(CK = KK) is the classification accuracy and E(K,N, ns) given by:

E(K,N, ns) := E[GC(K,N, ns) CK , KK] (41)

is the conditional expectation of the gain GC(K,N, ns) when selecting the wrong ROB.



16 Daniel et al. / Journal of Computational Physics (2022)

Proof. The expected gain E[GC(K,N, ns)] satisfies:

E[GC(K,N, ns)] = p E[GC(K,N, ns) CK = KK] + (1 − p) E(K,N, ns). (42)

If GK (K,N, ns) is constant for fixed hyperparameters (K,N, ns), then:

GK (K,N, ns) = E[GK (K,N, ns) CK = KK] = E[GC(K,N, ns) CK = KK], (43)

because the gains GK (K,N, ns) and GC(K,N, ns) return the same values when the real classifier CK selects the right
ROB. Replacing E[GC(K,N, ns) CK = KK] by GK (K,N, ns) in Equation (42) ends this proof.

Two additional assumptions are made in what follows:

[A2] The classification accuracy p is modeled as a decreasing function of the number of clusters K defined on a
finite interval [[1; Kmax]]. Indeed, for a fixed number of training examples, increasing the number of classes K
makes the classification task more complicated. When the number of classes is too large in comparison with
the number of training data, the classifier hardly improves the performance of a random guess classifier.

[A3] The conditional expectation E(K,N, ns) is constant, meaning that the expected gain when choosing the wrong
ROB does not depend on the hyperparameters K, N and ns. For all K,N, ns:

E := E(K,N, ns) = E[GC(K,N, ns) CK , KK]
≤ E[GK (K,N, ns) CK , KK] = GK (K,N, ns),

(44)

so E ≤ GK (1,N, ns) = 1 in particular. In the application presented in the last section of this paper, we take
E = 0.75.

The next definition introduces the concept of real profitability for a dictionary-based ROM-net:

Definition 5.4 (Real ROM-net profitability). Given integers K > 1, N > 0 and ns > 0, a dictionary-based ROM-net
with classifier CK and ROM dictionary {Ψ(K,N,ns)

k }k∈[[1;K]] is profitable with a real profit G∗r ∈ R+ if its expected gain
satisfies E[GC(K,N, ns)] ≥ G∗r .

This means that, on average, projection errors made by a global ROB are G∗r times larger than those made by
the ROM-net, even when classification errors are taken into account. However, the ROM-net profitability cannot be
evaluated a priori on E[GC(K,N, ns)], since the real classifier has not been trained yet and the dictionary of ROBs
{Ψ

(K,N,ns)
k }k∈[[1;K]] inferred from high-fidelity snapshots have not been computed yet, see Figure 2. For these reasons,

the following definition introduces the concept of perfect profitability:

Definition 5.5 (Perfect ROM-net profitability). Given integers K > 1, N > 0 and ns > 0, a dictionary-based ROM-net
with perfect classifier KK and ROM dictionary {Ψ(K,N,ns)

k }k∈[[1;K]] is perfectly profitable with a perfect profit G∗p ∈ R+ if
E[GK (K,N, ns)] ≥ G∗p.

Property 5.6. Let G∗r ∈ R+. Let us consider a dictionary-based ROM-net with hyperparameters K, N, ns. Under
assumptions [A1], [A2] and [A3], the dictionary-based ROM-net is profitable with real profit G∗r if and only if it is
perfectly profitable with the following perfect profit:

G∗p(G∗r ) =
G∗r − (1 − p(K))E

p(K)
. (45)

Proof. It is a direct consequence of the gain decomposition property (Property 5.3).

When the gains are computed with the results of the simplified simulations and with ROBs inferred from simplified
snapshots, the dictionary-based ROM-net is said to be a priori profitable with real profit G∗r > 1 if:

E[GK (K,N, ns)] ≥
G∗r − (1 − p(K))E

p(K)
. (46)

The a priori profitability can be assessed early in the ROM-net training phase, right after the physics-informed clus-
tering procedure.
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5.2. Practical method

The number of clusters K, the number of POD modes N and the number of snapshots per cluster ns are three
important hyperparameters when building a dictionary-based ROM-net. Choosing a good number of clusters K may
be particularly difficult. The optimal value of K is related to the nonlinearity of the solution manifold: the more
curved the solution manifoldM is, the greater K must be to coverM with several subspaces. It also depends on the
number of POD modes N: very fast simulations would require N to be small, which would increase the number of
local bases required to cover the solution manifold. Last but not least, K also has an influence on the accuracy of
the ROM-net’s classifier. In a classification problem, increasing the number of classes while keeping the size of the
training set constant makes the learning task tougher. Hence, the performance of a dictionary-based ROM-net does
not monotonically increase with K since its classifier may choose the wrong model, leading to inaccurate numerical
predictions.
The hyperparameters K, N and ns must satisfy the following requirements:

[R1] Limited computational resources: the total number of high-fidelity snapshots Kns is limited by the maximum
allowable budget in terms of high-fidelity simulations of the entire physics problem.

[R2] Speed-up factor requirements: to effectively reduce the computational cost of high-fidelity simulations, the
number N of POD modes per local ROB must not exceed N1/3.

[R3] Accuracy requirements: the mean projection error must be lower than a user-defined threshold η∗:

E[η
(
uLF(X),Ψ(K,N,ns)

KK (X)

)
] ≤ η∗. (47)

[R4] Gain requirements: given a user-defined threshold G∗r > 1, Equation (46) for the ROM-net a priori profitability
must be satisfied to ensure that the local bases give better performances than a single global ROB.

Remark 5.7 (Concerning requirement R2). After the Galerkin projection of the governing equations onto a ROB
made of N modes, the linear system to be solved at each iteration of the Newton-Raphson is full and thus has a
complexity of O(Nα) with 2 ≤ α ≤ 3, which must be compared with the complexity O(Nβ) of the sparse linear system
obtained with the finite-element method, with 1 ≤ β ≤ 2. The worst case is obtained for α = 3 and β = 1, which gives
an upper bound in the order of N1/3 for N.

Given these constraints, we introduce the definition of hyperparameters admissible set:

Definition 5.8 (Hyperparameters admissible set). The hyperparameters admissible set is defined by:

A = {(K,N, ns) ∈ (N∗)3 [R1], [R2], [R3], [R4] are satisfied.}. (48)

This definition gives a practical method for the ROM-net profitability analysis and hyperparameters tuning. The hy-
perparameters admissible set can be identified using simplified snapshots right after the clustering step in the training
phase, see Figure 2. If the hyperparameters admissible set is empty, then it is not worth continuing the training phase
of the dictionary-based ROM-net given the user-defined thresholds η∗ and G∗r and the maximum number of high-
fidelity snapshots nmax

snapshots. The user can either build a global ROB using the physics-informed clustering results to
identify snapshots, or weaken some of the requirements [R1] to [R4]. The time spent for simplified simulations is not
wasted: the user can justify the choice of using a global ROB, and can benefit from these simulations for high-fidelity
snapshots selection. On the contrary, if the hyperparameters admissible set is not empty, then there is a benefit in
using a dictionary-based ROM-net. The choice of the best hyperparameters configuration among the admissible ones
depends on the user’s priorities. However, given the cost of the entire training phase, a ROM-net is generally used
for applications where the number of test simulations is very high, e.g. for parameter optimization or uncertainty
quantification. In this case, once accuracy and gain requirements are met, one should take the smallest number of
POD modes N to get the highest possible speed-up factor. Among the admissible configurations with the smallest
number of modes, it is recommended to choose the value of K minimizing the mean projection error, to get the most
accurate dictionary among the fastest admissible ones. The number of high-fidelity snapshots ns per cluster must be
fixed accordingly so that the total number Kns of high-fidelity snapshots remains lower than nmax

snapshots.
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Remark 5.9. Choosing the smallest possible number of modes N generally implies choosing larger values for K,
which usually decreases the performance of the ROM-net’s classifier for automatic model recommendation. When
interesting values for K are rather large (say greater than 8), one can artificially improve the classifier’s accuracy
by running several reduced simulations in parallel with the models having the highest membership probabilities. An
error estimator could then be used to determine which reduced simulation is the most accurate, as proposed in [94].
Such a strategy increases the number of simulations to be run in the exploitation phase, but would enable working
with large K’s and thus small N’s, lessening the computational complexity of online reduced simulations. In addition,
when the number of training examples is not large enough compared to the number of clusters K for the classification
task, the data augmentation algorithm presented in [84] for the classification of numerical simulations can be applied
to reduce the risk of overfitting.

6. Numerical applications

6.1. 1D steady heat equation
6.1.1. Problem description
Let us consider the following ordinary differential equation:

− (λu′)′ (ξ) = s(ξ) ∀ξ ∈ [0; L]
u(0) = u0
u(L) = u0

(49)

where λ ∈ L2([0; L]), s ∈ L2([0; L]), u0 ∈ R and u − u0 ∈ H1
0([0; L]). This equation describes the thermal behavior of

an heterogeneous continuous medium of length L with thermal conductivity λ(ξ) and temperature u(ξ), in the presence
of a heat source s(ξ). We are interested in the behavior of the solution u under variying source terms and conductivity
functions. The conductivity function λ is defined by:

λ(ξ) = λ11{ϵ(ζ)L≤ξ≤(ϵ(ζ)+ζ)L} + λ2(1{ξ<ϵ(ζ)L} + 1{ξ>(ϵ(ζ)+ζ)L}), (50)

with λ2 = 1000λ1 ∈ R∗+ and with ζ being a random variable following the uniform distribution U(0.1, 0.5). The
random variable ϵ(ζ) follows the uniform distribution U(0, 1 − ζ). The source term s is modeled by a zero-mean
Gaussian process with an exponential covariance function. The problem described by Equation (49) is therefore
parametrized by the heat source distribution s and the microstructural parameters ζ and ϵ(ζ). The weak formulation
of Equation (49) reads: ∫ L

0
λ(ξ)v′(ξ)u′(ξ)dξ =

∫ L

0
s(ξ)v(ξ)dξ ∀v ∈ H1

0([0; L]). (51)

The interval [0; L] is discretized intoN−1 = 1999 subdivisions of length h = L/(N−1). The vertices {ξi = ih}0≤i≤N−1
define a finite-element mesh whose P1 shape functions are denoted by {ϕi}1≤i≤N−2. The shape functions ϕ0 and
ϕN−1 are not used because of the Dirichlet boundary conditions. The finite-element method computes a high-fidelity
approximate solution u − u0 in the space span ({ϕi}1≤i≤N−2), whose coordinates are stored in a vector q ∈ RN−2. This
vector is the solution of the following linear system:

Kq = f, (52)

with K ∈ R(N−2)×(N−2) given by:

Ki j =

∫ L

0
λ(ξ)ϕ′i(ξ)ϕ

′
j(ξ)dξ ∀(i, j) ∈ [[1;N − 2]], (53)

and f ∈ RN−2 given by:

fi =
∫ L

0
s(ξ)ϕi(ξ)dξ ∀(i, j) ∈ [[1;N − 2]]. (54)

Both K and f are recomputed when considering a new realization of the random source term and conductivity function.
A dataset of 1000 realizations of the random source term and microstructural parameters is generated. For each

example in the dataset, the finite-element solution q is computed with a Python routine. Figure 4 shows the solution’s
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Fig. 4: Examples of solutions u(ξ) for different source terms s(ξ). The vertical dashed lines indicate the locations of the interfaces between the
constituents of the bimaterial. Between the two interfaces, the thermal conductivity is λ1. Outside of this interval, the thermal conductivity is
λ2 = 1000λ1.

Fig. 5: Decay of the singular values obtained by singular value decomposition on the matrix containing all the examples in the dataset.
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behavior for different configurations. One can observe that the solution is not affected by the source term in high-
conductivity regions. Figure 5 gives the singular values of the matrix containing the 1000 solutions. It can be observed
that the decay of the singular values is rather slow for a 1D problem, meaning that this problem is non-reducible and
that a dictionary of local ROBs may be required. The database is splitted into two subsets: a training set and a test
set, both containing 500 examples. The training set is used to identify clusters and build the ROBs, while the test set
is used for evaluation purposes.

Remark 6.1. In the training phase of a dictionary-based ROM-net for time-dependent physics problems, the simplified
problem that is simulated to provide data for the clustering procedure generally corresponds to a few time steps of the
target problem. In this example, Equation (49) does not define a time-dependent problem. In this case, the simplified
problem can be defined as the target problem solved on a coarse finite-element mesh.

6.1.2. Hyperparameters calibration
This section deals with the calibration of the hyperparameters (K,N, ns). K-medoids is applied on the training set

with the ROM-oriented dissimilarity δn introduced in Equation (33). Since Equation (49) is time-independent, one
must take n = 1 for the ROM-oriented dissimilarity. We simply use the notation δ instead of δ1 for the ROM-oriented
dissimilarity obtained by computing the sine dissimilarity in the solution space. The ROBs Ψ1(u) and Ψ1(v) used to
calculate δ(u, v) are obtained by normalizing the solutions u and v. For clustering, we use our own implementation of
PAM [41, 86] k-medoids algorithm, with multiple random initializations for the medoids.

The physics problem considered in this section gives only one field u per set of parameters. Therefore, the number
of POD modes N is necessarily lower than or equal to the number of high-fidelity snapshots per cluster ns. For
simplification purposes, we take N = ns. Given that N = 2000, the number of POD modes N must be lower than
⌊N1/3⌋ = 12. To effectively reduce the computational cost of high-fidelity simulations, the maximum number of
modes considered in this paper is N = 5.

Let us say that we are given a budget of 20 high-fidelity simulations. The hyperparameters must satisfy the
inequality Kns = KN ≤ 20. Our thresholds for the mean projection error and the mean gain are η∗ = 0.35 and G∗r = 2.
A polynomial of degree 2 is considered for the model p(K) for the classification accuracy, and its coefficients are
determined by imposing p(1) = 1, p(6) = 0.8 (value taken from [48]), p(Kmax) = 1/Kmax (accuracy of a random guess
for balanced classes) and Kmax = 20.

Fig. 6: Mean projection error as a function of the number of clusters K for different number of modes N. Dotted lines indicate the configurations
which do not comply with the allocated number of high-fidelity snapshots.
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Fig. 7: Gain as a function of the number of clusters K for different number of modes N. Dotted lines indicate the configurations which do not
comply with the allocated number of high-fidelity snapshots.

Figure 6 gives the mean projection error as a function of K and N. For N = 4 and N = 5 modes, the mean
projection errors are below the tolerance η∗ for all K. For N = 3, the accuracy criterion is satisfied for K ≥ 4. The
mean projection error for N = 2 modes falls below the tolerance for K ≥ 13, which does not conform to the constraint
K ≤ 10 imposed by the allocated number of high-fidelity snapshots. With N = 1 mode, the mean projection error
remains too large, which rejects configurations with N = 1. The configurations (K,N) satisfying the accuracy criterion
and respecting the budget for high-fidelity snapshots are K = 4, 5, 6 for N = 3, K = 2, 3, 4, 5 for N = 4, and K = 2, 3, 4
for N = 5.

The gain curves are given in Figure 7. The dashed line in black delimits the ROM-net’s profitability domain:
configurations under this curve are irrelevant, either because the corresponding expected gain is too low, or because
misclassification errors would be too frequent because too many classes are considered. The configuration (K,N) =
(5, 5) meets both gain and accuracy requirements, but violates the constraint K ≤ 4 for N = 5 and thus requires too
many high-fidelity snapshots. For (K,N) = (3, 3), the gain is large enough but the mean projection error is larger than
the tolerance, as seen in Figure 6. Finally, the admissible configurations are K = 4, 5, 6 for N = 3, and K = 4, 5 for
N = 4. The hyperparameters admissible set is represented in Figure 8. Among the admissible configurations, those
with N = 3 are more interesting in terms of speed of online reduced simulations. The lowest mean projection error
is obtained for K = 6 when N = 3, see Figure 6. Therefore, we choose the hyperparameters (K,N, ns) = (6, 3, 3),
corresponding to the lower right dot in Figure 8.

Remark 6.2. It has been decided to take the configuration with the best accuracy among the admissible configurations
with the smallest value for N, in order to have a simple and systematic approach for hyperparameters calibration.
However, in the present example, one could also use the elbow method. The elbow method is commonly used for
selecting the number of clusters for k-means clustering or the number of components for a PCA. It consists in choosing
the elbow or knee point of the curve of an evaluation criterion. In spite of the difficulties of defining clearly the elbow
point in some situations, this method raises interesting questions. In our example, if one uses the elbow method with
the error curve, the best number of clusters is still K = 6: for N = 3, K = 6 is the elbow point. When using this method
with the gain curve, the best number of clusters turns out to be K = 4, even when considering a smoothed version
of the blue curve in Figure 7 to avoid undesirable fluctuations due to sampling and medoids initializations. Indeed,
taking K = 5 or K = 6 does not significantly improve the gain when N = 3, whereas the number of high-fidelity
snapshots and the complexity of the classification problem would be increased. The practical method presented in
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this paper can be adapted according to the user’s priorities between training cost, online speed, accuracy, and gain.

Fig. 8: Hyperparameters admissible set.

6.1.3. Comparison of different model order reduction strategies
Let x = (s, ζ, ϵ(ζ)) denote the parameter of the problem. After projection of the source term in the finite-element

basis, the parameter x is represented by a N + 2-dimensional vector x whose coordinates are centered and scaled to
unit variance. This way, distances in the parameter space can be computed with the Euclidean distance:

δX(x, x′) = ||x − x′||2. (55)

Introducing the notation q(x) ∈ RN−2 for the solution of Equation (52) for a given parameter x, one can define a
physics-informed dissimilarity measure δH using the Euclidean distance in the solution space:

δH (x, x′) = ||q(x) − q(x′)||2. (56)

These dissimilarity measures are compared with the ROM-oriented dissimilarity measure δ introduced in Equa-
tion (33), obtained by computing the sine dissimilarity in the solution space. K-medoids clustering is used for both
snapshots selection and manifold partitioning in conjunction with one of these three dissimilarity measures. Different
model order reduction strategies are compared in terms of projection errors under the following setting:

• Equivalent number of snapshots: all the strategies use the same total number of snapshots, which ensures
equal budgets for high-fidelity simulations in the training phase. It is recalled that the high-fidelity snapshots
are given by high-fidelity simulations that are more expensive than the simplified simulations used to generate
the database, find clusters and evaluate their quality.

• Equivalent number of POD modes: all the ROBs use the same number of modes, which ensures equivalent
speed-ups when exploiting the ROMs.

If a dictionary of K local ROBs is compared with a global ROB made of N modes, then each local ROB must have
N modes. For the construction of these local cluster-specific ROBs, ns = N snapshots are selected in each cluster
using the two-stage hierarchical k-medoids clustering procedure. Hence, the total number of snapshots is Kns = KN.
Snapshots for the construction of the global ROB are therefore selected by taking the medoids of a single k-medoids
clustering with KN clusters.
Six model order reduction strategies are considered, namely:
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• Three global ROBs containing N modes computed from KN snapshots. The snapshots are selected thanks to a
k-medoids cluster analysis with KN clusters, using different dissimilarities:

– Global ROM 1 uses the dissimilarity δX (Euclidean distance in the parameter space).

– Global ROM 2 uses the dissimilarity δH (Euclidean distance in the solution space).

– Global ROM 3 uses the ROM-oriented dissimilarity δ (sine dissimilarity in the solution space).

• Three ROM dictionaries consisting of K local ROBs with N modes each. Each local ROB is inferred from N
snapshots. Again, k-medoids is applied with different dissimilarity measures:

– ROM dictionary 1 uses the dissimilarity δX (Euclidean distance in the parameter space). This strategy is
the most natural and simple one among ROM dictionaries.

– ROM dictionary 2 uses the dissimilarity δH (Euclidean distance in the solution space) like in [17, 18, 77,
78, 38]. This strategy belongs to physics-informed strategies.

– ROM dictionary 3 uses the ROM-oriented dissimilarity δ (sine dissimilarity in the solution space). This
is the strategy we have introduced in this paper for dictionary-based ROM-nets. Like ROM dictionary 2,
it relies on a physics-informed cluster analysis, but with another dissimilarity.

In this section, the comparison is presented for K = 6 and N = ns = 3, the configuration identified in the previous
section thanks to the gain curves and the projection error curves. Projection errors as defined in Equation (34) are
computed for the 500 test examples for each strategy, which enables estimating their probability density functions
using Gaussian kernel density estimation (see section 6.6.1. of [43]). The violin plots of the projection errors are
given in Figure 9, and the values of the quartiles and expectations are given in Table 1. The third ROM dictionary
using the ROM-oriented dissimilarity clearly outperforms the other strategies. Although using a physics-informed
clustering procedure, ROM dictionary 2 fails to improve the performances of global ROMs on this specific example.
This result illustrates the fact that the Euclidean distance is not always appropriate for model order reduction purposes.
ROM dictionary 1 gives the worst results, showing that integrating physics in cluster analyses is crucial when the final
objective is to build local approximation spaces. Interestingly, these results also show that using local ROBs can
deteriorate the performances of a global ROB when choosing an improper dissimilarity measure for clustering. In
this example, the three global ROMs give approximately the same projection errors. These errors are lower than those
obtained with ROM dictionary 1 and ROM dictionary 2 because the global ROMs have more relevant snapshots, since
they use KN well-distributed snapshots instead of N badly-distributed snapshots. Hence, the dissimilarities δX and
δH both define inefficient notions of locality in this example.

Table 1: Quartiles and means of the projection errors for different model order reduction strategies, with (K,N, ns) = (6, 3, 3).

Strategy Dissimilarity Q1 Median Q3 Mean
Global ROM 1 δX 0.3863 0.5735 0.7477 0.5636
Global ROM 2 δH 0.3611 0.5427 0.7208 0.5397
Global ROM 3 δ 0.3460 0.5666 0.7346 0.5480

ROM dictionary 1 δX 0.5434 0.7412 0.9379 0.7071
ROM dictionary 2 δH 0.2874 0.6280 0.8038 0.5586
ROM dictionary 3 δ 0.1482 0.2369 0.4584 0.3132

Remark 6.3. Figure 9 gives projection errors obtained when choosing the correct cluster and thus the most suitable
local ROB. The ROM-net’s classification errors would have the effect of moving the distribution of ROM dictionary
3 towards larger errors, reducing the gap between the errors made by the different model order reduction strategies.
Therefore, particular attention must be paid to the training of the ROM-net’s classifier.

Figure 10 plots the projection error against the dissimilarity measure δX (left), δH (middle) and δ (right) separating
a test example from its closest snapshot. One can clearly see the correlation between the projection error and our
ROM-oriented dissimilarity δ, contrasting with the absence of correlations between the projection error and the other
dissimilarities. This figure also shows that the dissimilarity with the closest snapshot is generally larger than the
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Fig. 9: Violin plots of the projection errors for different model order reduction strategies, with (K,N, ns) = (6, 3, 3).

projection error onto the POD basis. Indeed, for this time-independent problem, the sine dissimilarity corresponds
to the relative projection error; the closest snapshot for this dissimilarity is therefore a better approximation of the
solution than the orthogonal projection onto the POD basis, because the POD basis does not perfectly approximate
each of its snapshots.

Fig. 10: Scatter plots giving the projection error (y-axis) for test data against the dissimilarity with the closest snapshot (x-axis). From the left to
the right: Euclidean distances in the parameter space, Euclidean distances in the solution space, and ROM-oriented dissimilarity.

In the following Sections 6.2-6.5, we compare the performances of dictionaries of local ROMs obtained by clus-
tering using the L2 and ROM-oriented dissimlarity measures for various physics problems.

6.2. 2D advection equation

We consider the following advection equation:
∂u
∂t
+ c

∂u
∂ξ1
= 0

u(ξ1, ξ2, t = 0) = U0 exp

−ξ2
1 +

(
ξ2 − ξ

0
2

)
l2

 , (57)
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where (ξ1, ξ2) ∈ [0, 1]2 and t ∈ [0, 100]. The analytical solution is known: u(ξ1, ξ2, t) = U0 exp

− (ξ1 − ct)2 +
(
ξ2 − ξ

0
2

)
l2

.
The quantities l = 0.1 and c = 1 are constants, while U0 ∈ {0.1, 1} and ξ0

2 ∈ {0, 0.5, 1} are the parameters of the prob-
lem. Some snapshots are illustrated on a mesh with 10201 vertices in Figure 11, for various values of U0, ξ0

2 and t. A
total of 600 snapshots are generated.

Fig. 11: Snapshots of the solution u of Equation (57) for various values of U0, ξ0
2 and t.

Figure 12 shows the number of POD modes for each local basis with respect to the number of clusters, for various
accuracy criterions of the POD truncature. For all the considered levels of truncature, the clustering carried out using
the sine dissimilarity measure leads to the smallest maximal size of local reduced-order basis.

Fig. 12: Number of POD modes for each local basis with respect to the number of clusters, for various accuracy criterions of the POD truncature,
applied to the advection problem.

Figure 13 shows the projection errors with respect to the number of clusters, for different size of the local POD
basis. For all the considered size of local reduced-order basis, the clustering carried out using the sine dissimilarity
measure leads to the smallest projection errors.

Figure 14 shows MultiDimensional Scaling (MDS) representations of L2 and sine dissimilary measures, with col-
oring depending on cluster affectation for 5 clusters. A 2-dimensional MDS representation aims to locate points, each
representing a solution of the considered physical problem, in such a fashion that the 2D Euclidean distances between
each pair of points is as close as possible to the corresponding dissimilarities. In the L2 dissimilarity case, all the
snapshots corresponding to U0 = 0.1 in the MDS representation are very close to each other, which means that their
corresponding L2 pairwise distances are small compared to the rest of the pairwise distances. It is explained by the
fact that the L2 norm quantifies magnitudes. Hence, when applying a k-medoid clustering algorithm, all the snapshots
corresponding to U0 = 0.1 are affected to the same cluster. However, these small-magnitude snapshots contain all
the independant directions of the solution function space described by the whole snapshot set. As a consequence,
the local reduced-order model corresponding to the cluster containing these small-magnitude snapshots has the same
reducibility as the complete set, for any accuracy level and even when increasing the number of clusters. This is illu-
trated in Figure 12, where the L2 dissimilary case exhibits one local reduced-order model having a number of mode
very close to the global reduced-order model. On the contrary, the MDS for the sine dissimilarity in Figure 14 shows
three trajectories corresponding to the three different values of ξ0

2 . Actually, each pair of snapshots corresponding of
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Fig. 13: Box plots for the projection errors with respect to the number of clusters, for different size of the local POD basis, applied to the advection
problem. The box plots show the median, first and third quartiles, as well as extremal values (in the form of green dots if outliers).

same values of ξ0
2 and t, for U0 = 0.1 and 1, are at the same location of the MDS representation, which means that

their pairwise sine dissimilarities are zero. Hence, a new snapshot collinear to an existing snapshot do not increase
the number of independant directions in the snapshot set. The corresponding clustering produces balanced clusters,
having local small-sized reduced-order basis as seen in Figure 12.

Fig. 14: MDS representations of L2 and sine dissimilary measures, with coloring depending on cluster affectation for 5 clusters, applied to the
advection problem.

Since the same analysis can be done in the following three additional numerical experiments, we do not repeat it
and simply explain the new physical settings.

6.3. 2D incompressible Navier-Stokes
We consider the 2D incompressible Navier-Stokes equations in the setting illustrated in Figure 15: the air flows

from the left to the right in the rectangular domain, with a uniform Dirichlet boundary condition for the velocity U on
Γin, outflow boundary condition on Γin, and no-slip boundary condition on the walls Γwall and on the circular object
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Γob ject. The mesh is constituted of 19818 vertices; the low-Mach number solver YALES2 [98] for unstructured grids is
used. The parameters of the problem are components U0

x and U0
y of the uniform incoming velocity boundary condition,

and we consider 6 temporal simulations for (U0
x ,U

0
y ) ∈ {(0.025, 0.025) , (0.075, 0.075), (0.25, 0.25), (0.025,−0.025),

(0.075,−0.075), (0.25,−0.25)} leading to a total of 600 snapshots. The last time step of each of these simulations is
illustrated in Figure 16.

Fig. 15: Setting and mesh for the Navier-Stokes problem.

Fig. 16: Snapshots of the solution velocity field U of the Navier-Stokes problem: last time step for
(
U0

x ,U
0
y

)
∈ {(0.025, 0.025) , (0.075, 0.075),

(0.25, 0.25), (0.025,−0.025), (0.075,−0.075), (0.25,−0.25)}.

The improved performance of the sine dissimilarity based clustering, with respect to the L2 one, is illustrated in
Figures 17-18.

The MDS representations in Figure 19 shows the advantages of the sine dissimilarity in the same fashion as the
previous section: with L2-based clustering, snapshots are grouped by magnitude, where all the small-magnitude ones
are tightly packed in a single cluster, whereas with sine-based clustering, snapshots are grouped by direction of the
initial condition.

6.4. 2D heat equation
We consider the 2D transient linear heat equation on a square domain, with a localized volumetric heat source

term. The parameters of the problem are the location of the source term and its magnitude; only the final time step
is kept, see Figure 20 for examples of snapshots. The mesh is composed of 2601 vertices and 500 snapshots for 500
random values of the parameters are computed using the finite-element software Z-set [99].

The improved performance of the sine dissimilarity based clustering, with respect to the L2 one, is illustrated in
Figures 21-22.
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Fig. 17: Number of POD modes for each local basis with respect to the number of clusters, for various accuracy criterions of the POD truncature,
applied to the Navier-Stokes problem.

Fig. 18: Box plots for the projection errors with respect to the number of clusters, for different size of the local POD basis, applied to the Navier-
Stokes problem. The box plots show the median, first and third quartiles, as well as extremal values (in the form of green dots if outliers).

6.5. 3D nonlinear structural mechanics

We consider a 3D quasistatic nonlinear structural mechanics problem: an object is rotated along an axis intersect-
ing the center of gravity of this object. The material is modeled by a viscoplastic constitutive law with a Von Mises
criterion and a Norton flow. The orientation of the axis is the parameter of the problem; only the final time step in
kept and the quantity of interest is the accumulated plastic strain, see Figure 23 for examples of snapshots. The mesh
is composed of 61741 vertices and 100 snapshots for 100 random values of the parameters are computed using the
finite-element software Z-set [99].

The improved performance of the sine dissimilarity based clustering, with respect to the L2 one, is illustrated in
Figure 25.

7. Conclusion

Dictionaries of local ROBs are commonly used for nonlinear model order reduction. A natural way of building
such dictionaries is to partition the parameter space or the solution space with a clustering algorithm, and then define
one local basis per cluster. This article shows that the choice of the dissimilarity measure for clustering is crucial,
as it highly affects the performances of the local ROBs. In particular, it is shown that using Euclidean distances
in the parameter space or in the solution space can lead to local bases whose performances are worse than those
of a global ROB with the same number of modes. To remedy this problem, a ROM-oriented dissimilarity measure
involving the principal angles between subspaces spanned by simulation results is introduced. It enables focusing on
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Fig. 19: MDS representations of L2 and sine dissimilary measures, with coloring depending on cluster affectation for 5 clusters, applied to the
Navier-Stokes problem.

Fig. 20: Snapshots of the solution temperature field T of the 2D heat problem for various values of the parameters.

Fig. 21: Number of POD modes for each local basis with respect to the number of clusters, for various accuracy criterions of the POD truncature,
applied to the 2D heat problem.

the shape of simulation results rather than their magnitudes. The strength of this dissimilarity comes from its link
with the projection error appearing in the definition of the Kolmogorov N-width. The resulting dictionary of ROBs
can be integrated in a ROM-net, where a classifier is used in the exploitation phase for fast and automatic model
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Fig. 22: Box plots for the projection errors with respect to the number of clusters, for different size of the local POD basis, applied to the 2D heat
problem. The box plots show the median, first and third quartiles, as well as extremal values (in the form of green dots if outliers).

Fig. 23: Snapshots of the accumulated plasticity field evrcum of the mechanical problem for various values of the parameters.

Fig. 24: Number of POD modes for each local basis with respect to the number of clusters, for various accuracy criterions of the POD truncature,
applied to the mechanical problem.

recommendation. The present paper gives an a priori efficiency criterion enabling hyperparameters calibration before
time-consuming steps of the ROM-net’s training phase. Future work will consider the application of this methodology
to complex three-dimensional problems and their simulations with local ROMs.

Abbreviations

DEIM: Discrete Empirical Interpolation Method; LDEIM: Localized Discrete Empirical Interpolation Method; PCA:
Principal Component Analysis; PDE: Partial Differential Equation; POD: Proper Orthogonal Decomposition; ROB:
Reduced-Order Basis; ROM: Reduced-Order Model; SVD: Singular Value Decomposition.
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Fig. 25: Box plots for the projection errors with respect to the number of clusters, for different size of the local POD basis, applied to themechanical
problem. The box plots show the median, first and third quartiles, as well as extremal values (in the form of green dots if outliers).
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Appendix A: Properties of the normalized Kolmogorov width

Property 7.1 (Inequalities on Kolmogorov widths). IfM is bounded and contains at least one nonzero element, then:

∀N ∈ N∗, dN(M) ≤ sup
v∈M
||v||H d̃N(M). (58)

Proof. The boundedness ofM implies the existence of sup
v∈M
||v||H , thus for all u ∈ M \ {0}:

||u − πHN (u)||H ≤ sup
v∈M
||v||H

||u − πHN (u)||H
||u||H

, (59)

which implies Equation (58).

Proof of Property 4.2. Given that ∡H (u,HN) ∈ [0; π/2], the sine of the angle ∡H (u,HN) satisfies:

sin∡H (u,HN) = | sin∡H (u,HN) |
=

√
1 − cos2 ∡H (u,HN)

=

√
1 − cos2 inf

v∈HN

arccos
(
|⟨u, v⟩H |
||u||H ||v||H

)
,

(60)

and, since the function α→
√

1 − cos2 α is increasing on the interval [0; π/2]:

sin∡H (u,HN) = inf
v∈HN

√
1 − cos2 arccos

(
|⟨u, v⟩H |
||u||H ||v||H

)
= inf

v∈HN

√√
1 −

⟨u, v⟩2
H

||u||2
H
||v||2
H

. (61)

Furthermore:
||u − πspan({v})(u)||2

H

||u||2
H

=
||u − ⟨u, v

||v||H
⟩H

v
||v||H
||2
H

||u||2
H

= 1 −
⟨u, v⟩2

H

||u||2
H
||v||2
H

, (62)

where πspan({v})(u) is the orthogonal projection of u on span({v}). Using Equation (62) in Equation (61) yields:

sin∡H (u,HN) = inf
v∈HN

||u − πspan({v})(u)||H
||u||H

= inf
v∈HN

inf
w∈span({v})

||u − w||H
||u||H

. (63)
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Finally, given that ∪
v∈HN

span({v}) = HN :

sin∡H (u,HN) = inf
v∈HN

||u − v||H
||u||H

, (64)

which ends the proof.

Appendix B: Properties of the dissimilarity measure

Proof of Property 4.8. Let us first develop the square of the right-hand side of Equation (31), denoted by fn(u, v)2,
using Equation (30), the bilinearity of the L2 inner product and the orthonormality of the bases Ψn(u) and Ψn(v):

fn(u, v)2 =

n∑
i=1

||ψi(u)||2L2(Ω) − 2
n∑

i=1

n∑
j=1

⟨ψi(u), ψ j(v)⟩2L2(Ω)

+

n∑
i=1

n∑
j=1

n∑
k=1

⟨ψi(u), ψ j(v)⟩L2(Ω)⟨ψi(u), ψk(v)⟩L2(Ω)⟨ψ j(v), ψk(v)⟩L2(Ω)

= n − 2
n∑

i=1

n∑
j=1

⟨ψi(u), ψ j(v)⟩2L2(Ω)

+

n∑
i=1

n∑
j=1

n∑
k=1

⟨ψi(u), ψ j(v)⟩L2(Ω)⟨ψi(u), ψk(v)⟩L2(Ω)δ jk

= n −
n∑

i=1

n∑
j=1

⟨ψi(u), ψ j(v)⟩2L2(Ω),

(65)

where δ jk is the Kronecker delta function. Let C ∈ Rn×n be the matrix whose entries are the inner products
⟨ψi(u), ψ j(v)⟩L2(Ω). Its SVD reads C = V cosΘ WT where Θ is a diagonal matrix containing the principal angles
θk(Vn(u),Vn(v)), and where V and W are orthogonal matrices. Then, we obtain:

fn(u, v)2 = n − tr(CT C)
= n − tr

(
W cos (Θ)T VT V cos (Θ) WT

)
= n − tr

(
WT W cos (Θ)T VT V cos (Θ)

)
= n − tr

(
cos (Θ)T cos (Θ)

)
= n −

n∑
k=1

cos2 θk(Vn(u),Vn(v))

=

n∑
k=1

1 − cos2 θk(Vn(u),Vn(v))

=

n∑
k=1

sin2 θk(Vn(u),Vn(v))

= δ̃n(u, v)2.

(66)

These equations remain true when exchanging u and v, which ends the proof.

Proof of Property 4.9. Since the Hilbert-Schmidt inner product on HS (L2(Ω)) does not depend on the choice of the
orthonormal basis of L2(Ω), let us choose a basis that is relevant for calculations. For u ∈ L2(Ω × [0; t f ]), the n-
dimensional elementary basis Ψn(u) is completed with an orthonormal basis of the orthogonal complement ofVn(u)
in L2(Ω). The resulting orthonormal basis of L2(Ω) is denoted by {ψk(u)}k∈N∗ , where the n first basis vectors are those
of the basis Ψn(u). Let us now expand the term ||πVn(u) − πVn(v)||

2
HS (L2(Ω)):

||πVn(u) − πVn(v)||
2
HS (L2(Ω)) = ||πVn(u)||

2
HS (L2(Ω)) + ||πVn(v)||

2
HS (L2(Ω)) − 2⟨πVn(u), πVn(v)⟩HS (L2(Ω)). (67)
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Using the definition of the Hilbert-Schmidt inner product given by Equation (5), one has:

⟨πVn(u), πVn(v)⟩HS (L2(Ω)) =

∞∑
i=1

⟨πVn(u)(ψi(u)), πVn(v)(ψi(u))⟩L2(Ω)

=

n∑
i=1

⟨ψi(u), πVn(v)(ψi(u))⟩L2(Ω)

=

n∑
i=1

n∑
j=1

⟨ψi(u), ψ j(v)⟩2L2(Ω),

(68)

where the last equality results from the expression of πVn(v)(ψi(u)) given by Equation (30). Furthermore:

||πVn(u)||
2
HS (L2(Ω)) =

∞∑
i=1

⟨πVn(u)(ψi(u)), πVn(u)(ψi(u))⟩L2(Ω)

=

n∑
i=1

⟨ψi(u), ψi(u)⟩L2(Ω)

= n.

(69)

Similarly, one can prove that ||πVn(v)||
2
HS (L2(Ω)) = n. Finally:

||πVn(u) − πVn(v)||
2
HS (L2(Ω)) = 2n − 2

n∑
i=1

n∑
j=1

⟨ψi(u), ψ j(v)⟩2L2(Ω) = 2 fn(u, v)2 = 2δ̃n(u, v)2, (70)

where fn(u, v) was introduced in the proof of Property 4.8.

Property 7.2. For all n ∈ [[1;N]], the sine dissimilarity is a pseudometric on L2(Ω × [0; t f ]).

Proof. The sine dissimilarity δ̃n is nonnegative and symmetric. Equation (32) implies that for all u ∈ L2(Ω × [0; t f ]),
δ̃n(u, u) = 0. Equation (32) also yields:

δ̃n(u, v) =
1
√

2
||πVn(u) − πVn(v)||HS (L2(Ω)) =

1
√

2
||πVn(u) − πVn(w) + πVn(w) − πVn(v)||HS (L2(Ω)), (71)

so the triangle inequality on the Hilbert-Schmidt norm gives the triangle inequality δ̃n(u, v) ≤ δ̃n(u,w) + δ̃n(w, v).

Note that δ̃n(u, v) = 0 does not imply that u = v, which is the reason why the sine dissimilarity is not a metric on
L2(Ω × [0; t f ]). This is not a problem since we want this dissimilarity measure to be zero for all pairs of functions
(u, v) ∈ L2(Ω × [0; t f ])2 whose trajectories over time in L2(Ω) give the same POD approximation space. The next
property shows the link between the sine dissimilarity and the Grassmann dissimilarity used in [48] for dictionary-
based ROM-nets:

Property 7.3 (Equivalence with the Grassmann dissimilarity for small angles). Given n ∈ [[1;N]], let θn denote the
vector of principal angles between Vn(u) and Vn(v) for two square-integrable functions u and v. As ||θn||2 tends
towards zero, the sine dissimilarity is asymptotically equivalent to the Grassmann dissimilarity ||θn||2, that is, using
Bachmann-Landau notations:

δ̃n(u, v) ∼
||θn ||2→0

||θn||2. (72)

Proof. One must show that:
|| sin θn||2 = ||θn||2 + o(||θn||2). (73)

As ||θn||2 tends towards zero:

|| sin θn||2 =

 n∑
i=1

sin2 θn,k

1/2

=

 n∑
i=1

(θn,k + o(θ2
n,k))2

1/2

=
(
||θn||

2
2 + o(||θn||

2
2)
)1/2

, (74)

which gives:
|| sin θn||2 = ||θn||2

√
1 + o(1) = ||θn||2 + o(||θn||2). (75)
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