
HAL Id: hal-03853493
https://hal.science/hal-03853493

Submitted on 15 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How Libraries Evolve: A Survey of Two Industrial
Companies and an Open-Source Community

Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil, Arnaud Thiefaine

To cite this version:
Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil, Arnaud Thiefaine. How Libraries Evolve:
A Survey of Two Industrial Companies and an Open-Source Community. 29th Asia-Pacific Software
Engineering Conference (APSEC 2022), Dec 2022, Virtual, Japan. �hal-03853493�

https://hal.science/hal-03853493
https://hal.archives-ouvertes.fr


How Libraries Evolve: A Survey of Two Industrial
Companies and an Open-Source Community

Oleksandr Zaitsev∗†, Stéphane Ducasse†, Nicolas Anquetil†, and Arnaud Thiefaine∗
∗Arolla, Paris, France

{oleksandr.zaitsev,arnaud.thiefaine}@arolla.fr
†Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

{stephane.ducasse,nicolas.anquetil}@inria.fr

Abstract—The evolution of software libraries is a process that
requires a joint effort of two groups of developers: the library
developers who prepare the release and client developers who need
to update their applications to the new versions. To build better
tools that support both library and client developers throughout
the evolution, we need to understand what problems they face
and how they react to those problems. In this paper, we present
the result of two surveys: one for library developers and one
for client developers. Our surveys involved developers from two
industrial companies and an open-source community. We assess
(1) how they perceive the impact of library evolution and (2)
what is the support that library developers can provide to their
clients. By approaching those questions from the perspectives of
library and client developers, we try to assess how challenging
library update is for each of those groups and how motivated
they are to overcome those challenges.

I. INTRODUCTION

Modern software depends on many reusable components
such as libraries, frameworks, microservices1, etc. [1]. For
simplicity, in this work, we will refer to all reusable com-
ponents as libraries and all software that depends on them as
client software. Like any other software, libraries evolve [2],
[3], [4] and release new versions. As a result, client software
that depends on those libraries must also change accordingly
to be compatible with the new versions. This process is called
the library update2, it involves two groups of developers: those
who maintain the libraries (we call them library developers)
and those who depend on them (we call them client devel-
opers). The efficient library evolution requires the joint effort
of both groups: the effort of client developers to update their
dependencies to the latest versions and the effort of library
developers to make the process of update simple and clear.

In recent years, many approaches were proposed to support
developers in the task of library update by building automated
tools. Some of those approaches are designed for client
developers: they allow them to infer the modifications that
need to be applied to their systems either by calculating the
textual and structural similarity between the source code of
the two versions of the library [5], [6] or by mining frequent
method call replacements either in library itself [7], [8] or in

1Microservice forms a library of reusable code of sorts, with the REST
API being analogous to the API of public methods of a library.

2Not to be confused with library migration — the process of changing a
dependency from one library to a different library.

other client systems that were already updated [9], [10]. Other
approaches help library developers support their clients by
annotating changed functions with transformation rules [11],
[12] or recording the refactorings that were performed on the
library to later “replay” them on client systems [13].

To build better tools for library update and efficiently
automate parts of this process, it is important to understand the
behavior of both library and client developers, the practices
that they adopt, the problems that they encounter. Several
empirical studies were performed, based either on the analysis
of source code [14], [15], [16], [17], [18], [19], [20], [21] or
surveying the developers [17], [22], [23], [24]. However, those
studies either focus only on one group of developers (library or
client) or ask questions about specific breaking changes found
in the code. Also, to the best of our knowledge, no previous
study focused on the type of help that library developers can
provide to their clients.

In this work, we present the results of two surveys: one
of library developers and another one of client developers.
Participants came from different backgrounds (open-source or
industry) and different projects, the questions were general
and not related to specific libraries or issues. The focus of
our study is the perception of the impact of library evolution
from different perspectives and the type of support that li-
brary developers can provide to help their clients. The main
contributions of this work are: (1) we perform two surveys: of
library and client developers from different communities; (2)
we are the first ones to ask client developers about the type of
support that they need; (3) we confirm the results of previous
studies [21], [23], [24] on the motivation of library developers
to introduce breaking changes and their perception of impact.

The rest of this paper is structured as follows: In Section II,
we discuss the state of the art. In Section III, we discuss the
methodology of this study and list the research questions. In
Section IV, we describe the population of developers who were
selected for this survey. In the following two sections, we
present the results from both of our surveys: first the library
developer survey in Section V and then the client developer
survey in Section VI. Finally, in Section VIII we present the
conclusions.



TABLE I: Empirical studies of library evolution characterized
by two criteria: is it based on a developer survey, on source
code analysys, or both; does it explore the client developer
perspective, the library developer perspective, or both

Paper Method Perspective
Robbes et al. 2012 [19] code an. client dev.
Jezek et al. 2015 [16] code an. both
Hora et al. 2015 [14] code an. client dev.
Bogart et al. 2016 [22] dev. survey both
Sawant et al. 2016 [20] code an. client dev.
Xavier et al. 2017 [21] code an. client dev.
Xavier et al. 2017 [24] dev. survey library dev.
Hora et al. 2018 [15] code an. client dev.
Kula et al. 2018 [17] both client dev.
Kula et al. 2018 [18] code an. library dev.
Brito et al. 2019 [23] dev. survey both
Our study dev. survey both

II. STATE OF THE ART

We start by discussing the existing empirical studies on
library evolution and discuss their shortcomings. In Table I,
we categorise the related studies using two criteria:

• Developer survey or code analysis? In literature, there
are two main techniques for studying library evolution
and its effect on clients:

1) Analysing the source code of the evolving li-
braries and/or client systems; i.e., “How do libraries
change, and how do those changes propagate?”

2) Surveying the developers to explore the human
side of library evolution; i.e. “How do developers
perceive this process?”.

• Client developer or library developer perspective? Li-
brary evolution can be explored from the perspective of
library developers or from the perspective of their clients.
Some studies (like this one) explore both sides.
a) Studies that analyse source code: There have been

multiple studies of the ripple effect caused by breaking
changes and how it propagates through client systems.
Robbes et al., [19] studied the reaction of clients in Pharo
ecosystem to the deprecation of API elements in their de-
pendencies. They conclude that many clients do not react to
library deprecations and when they do react, they often do
not apply adaptations to the entire project at once, leaving it
inconsistent. Sawant et al., [20] performed a partial replication
of this study on Java projects, considering almost 10 times
more client systems. They arrive to the same conclusions as
the ones derived from Pharo ecosystem. Hora et al., [14],
[15] extended the study of Robbes et al., [19] by exploring
the changes in non-deprecated API elements. They report
that half of the analysed API changes are missed deprecation
opportunities and suggest that recommender tools can be built
to help library developers introduce those deprecations. They
also observe that most API changes can be implemented
as rules and suggest that those rules can be used to help
client developers automatically update their code. Jezek et
al., [16] studied the evolution of Java libraries both from

library and client perspectives. They report that breaking
changes are very frequent (80% of version updates break
compatibility), however, this causes few actual problems in
real client systems. Xavier et al., [21] performed a large-scale
analysis of Java libraries and their clients to understand how
frequent are breaking changes, how do they evolve over time,
and how do they impact the clients. They discovered that on
the median, 15% of all changes in a library are breaking
changes and their frequency increases over time. However,
they also report that most breaking changes do not have big
impact on client systems and explain this with a hypothesis
that library developers try not to break highly impactful API
elements. Kula et al., [17], [18] performed two studies: one on
the client side and another one on the library side. In their first
study they report that most client systems rarely update their
libraries and 81.5% of client systems choose to remain with
the older popular version of the library. In their second study,
Kula et al., [18] explored the evolution of libraries and found
that while many breaking changes happen in non client-used
API and non API classes, the client-used API are less likely
to be broken.

b) Developer surveys: Bogart et al., [22] performed
a case study by interviewing developers of three software
ecosystems to understand how developers make decisions
about changes and document the practices that are used
in those communities. In the same study where Kula et
al., [17] discovered that most client systems have outdated
dependencies, they performed a survey of client developers
and found that 69% of them are unaware of their vulnerable
dependency. They also report that developers are reluctant to
update because they perceive it as extra workload. Xavier et
al., [24] performed a survey of seven core developers from
popular Java libraries. Based on this survey, they propose a
list of five reasons that motivate breaking changes: library
simplification, refactoring, bug fix, dependency changes, and
project policy. They report that all surveyed developers are
aware of the effect of breaking changes on clients. In their
follow-up study, Brito et al., [23] conducted a larger survey
of 56 library developers through a firehouse interview (i.e.,
contacting developers immediately when a breaking change is
detected). According to their study, the most common reason
for introducing breaking changes are the need to implement
new features (32%), to simplify the API (29%), and to improve
maintainability (24%). In the same study, Brito et al., [23]
also explored the actual impact of breaking changes on clients
by analysing the questions published on StackOverflow. They
report that 45% of all posts related to breaking changes are
client developers asking how to overcome the negative effect
of those changes on their code.

c) Shortcomings of the existing studies: Most surveys
that we discussed above either targeted specific developers
and asked them about breaking changes or vulnerable de-
pendencies that were detected by authors [17], [23], [24],
or analysed the questions related to breaking changes that
were published on StackOverflow [23]. To the best of our
knowledge, Bogart et al., [22] were the only survey that



contacted developers of different projects and asked them
general questions about the process of library evolution and
the practices that they use both from the perspective of library
and client developers (because most library developers are also
clients of other libraries). However, that study still mostly
focuses on library developer perspective. Also, no survey
asked client developers about what makes the process of
library update hard and what support do they expect from
library developers to make this process easier.

III. SURVEY SETUP

To address the shortcomings of the previous studies, we
propose to conduct a survey of two groups: library and
client developers. Each group should include developers from
different projects and different backgrounds (open-source and
industry). The survey must ask general questions about the
experiences and practices of developers and not be restricted
to specific cases of breaking changes.

In this work, we answer the following research questions:
a) Library Developer Survey:

• RQ.1 How do library developers perceive the impact of
library evolution on their clients?

• RQ.2 Why do library developers introduce breaking
changes?

• RQ.3 How motivated are library developers to support
their clients?

• RQ.4 How do library developers help their clients to
update?
b) Client Developer Survey:

• RQ.5 How do client developers perceive impact of library
evolution on their systems?

• RQ.6 What makes library update easy and what makes it
hard?

Considering the relatively small population size, we do not
perform statistical tests and derive conclusions from simple
descriptive statistics.

IV. DESCRIBING THE POPULATION

We conducted a survey of developers from two industrial
companies (Arolla and Berger-Levrault) and Pharo open-
source community. Both Arolla and Berger-Levrault are
medium size software companies. The key difference is that
Arolla is a consulting company where each developer works
on different project and Berger-Levrault is an international
software company with multiple teams where developers work
on their projects together. We selected those companies for
convenience: we are part of the Pharo community and by this
have a privilege access to its members. We also had privilege
access to some developers in both companies that participated
in the survey.

a) Developers selection: For Pharo and Arolla, we sent
emails to the mailing lists and messages to the official online
forums of each community. For Berger Levrault, we contacted
the director of research and asked him to spread the survey
among his colleagues. In all three cases, participation was

Fig. 1: The types of software developed by the library devel-
opers who took part in our study.

optional and all participants were informed that the survey
would be anonymous. We asked every software developer (no
matter what type of programming they do) to fill the client
developer survey. As for the library developer survey, we
explicitly asked it to be filled only by those developers who
work on libraries, frameworks, microservices, or any tools that
have API, several versions, and some users. Developers were
free to answer both surveys. In general there is no matching
between the libraries that client developers use and the ones
that library developers maintain.

b) Library Developers: We received the answers of 18
library developers. 11 of them belong to Pharo open-source
community, 4 are from Arolla, and one from Berger-Levrault.3

Two participants decided not to specify the community to
which they beong. We asked developers to evaluate their level
of expertise as either Absolute Novice (0 dev.), Beginner (0
dev.), Intermediate (3 dev., 18%), Advanced (9 dev., 53%),
or Expert (5 dev., 29%). Twelve developers work on open-
source projects, 5 developers work on closed-source projects,
and one developer works on both. We asked developers to
specify the kind of software that they develop. Their answers
can be seen in Figure 1. We also asked library developers to
specify approximately how many client developers (users) they
have. The estimates scattered among the following options: 1
to 10 clients (6 dev., 33%), 11 to 50 clients (5 dev., 28%),
51 to 100 clients (3 dev., 7%), 101 to 500 clients (4 dev.,
22%). No library developer in our survey claimed to have
more than 500 clients. As will be discussed in Section VII,
we acknowledge that the relatively small size of libraries
developed by the participants of our survey may pose a threat
to external validity. But we also consider this to be a novelty
because the surveys that only focus on largest or most popular
open-source libraries are often biased by their size.

c) Client Developers: We received 37 answers from
client developers, 22 of which were from Pharo community, 5
from Arolla, and 4 from Berger Levrault. Also, 4 developers
preferred not to specify their affiliation, and other 2 developers
listed other open-source communities that they belong to.

3It should be noted that getting library developers in companies is rarer
than library users. This proportion is different in the context of open-source
because many open-source projects are proposing libraries to other developers
(whose code may often be closed source).



Fig. 2: The types of software developed by the client devel-
opers who took part in our study.

As can be seen in Figure 2, over selection covers a variety
of domains by the types of projects that client developers
work on. They range from library, frameworks, web, desktop
applications but also tool development and even compiler ones.
As we mentioned before, the developers in our study were
free to participate in both surveys. This and the fact that
most respondents come from the open-source community, may
explain that 22 out of 37 client developers also develop li-
braries. We further discuss this in Section VII. We asked client
developers to evaluate their level of expertise as either Absolute
Novice (0 dev.), Beginner (2 dev., 6%), Intermediate (6 dev.,
18%), Advanced (18 dev., 53%), or Expert (8 dev., 24%). As
with library developers, we asked client developers to specify
the kind of software that they develop. Their answers can be
seen in Figure 2. We also asked client developers to specify
approximately how many dependencies do they have. The
most popular answers were 1 to 10 (15 dev., 42%) and 11 to
50 (16 dev., 44%). 4 developers said that they have between
51 and 100 dependencies and one developer claimed to have
more than 100 dependencies.

V. RESULTS OF THE LIBRARY DEVELOPER SURVEY

Now we present the results of the survey following the
research questions mentioned before. To answer research ques-
tions that are rather general, we had to ask specific questions in
our questionaires. That is why, each research question in our
study is associated with one or more survey questions. In this
section, we discuss the results of a library developer survey
and in Section VI, we will present the results of a survey of
client developer.

A. RQ.1 - How do library developers perceive the impact of
library evolution on their clients?

To answer this research question, we asked two questions
in our survey: one to assess their perception of the impact
of breaking changes on client systems and one to understand
how they estimate the time that clients need to update. The
answers are presented in Figures 3 and 4.

As can be seen in the Figures, both questions were answered
by all 18 library developers who took part in this survey. 9

Fig. 3: Do you think that breaking changes in your releases
have big impact on clients?

of them believe that the impact of breaking changes on their
clients is moderate, 6 (33%) that it is big, and 2 (11%) that it
is very big. One developer (6%) assessed the impact as very
small.

As for the time that is needed to update the client systems
to the new versions of their libraries, opinions of library
developers are different. When presented with a five-option
scale between less than an hour and a week or more, the
estimates scattered among them with less than an hour being
the most popular option, selected by 7 developers (39%), and
a week or more being the least popular one, selected by one
developer (6%). We hypothesise that different answers to this
question are caused by different complexity of changes in
library releases. Some library updates are simple and can be
done in less than an hour. Others are hard and may require a
week or more.

Fig. 4: How much time do you think client developers need
to update to the new version of your library?

The answers to the second question about the time to
update could have been influenced by Deprewriter [12] —
the automatic deprecation update mechanism that is used by
the Pharo community. It allows library developers to annotate
method deprecations with transformation rules that will be
used to automatically rewrite the call-sites in the client code.
This mechanism considerably eases the update of deprecated
methods. Since most of the library developers answering the
survey were members of the Pharo community, this is a factor
to take into account.



Summary:
• Most library developers in our survey agree that

the impact of breaking changes on their clients is
not small: 50% believe that the impact is moderate,
44% say that the impact is big or very big.

• Library developers had different opinions on how
long it takes their clients to update. The most
common estimate is less than an hour (39%) but
some developers claim that it can take multiple
days.

B. RQ.2 - Why do library developers introduce breaking
changes?

This question has previously been answered by Brito et
al., [23] using the firehouse interview (sending an email to
the developer as soon as the breaking change was detected).
They reported that the most common reasons for introducing
breaking changes are the need to implement new features
(32%), API simplification (29%), and improving maintainabil-
ity (24%). To verify those results, we asked a similar question
in our survey of library developers. This was a checkbox ques-
tion and the list of options was the same as the factors iden-
tified by Brito et al., [23]. We also added an “Other” option
and an optional open text field to identify additional factors.
All 18 library developers answered this question. As can be
seen in Figure 5, 12 developers identified implementing a new
feature as a primary reason for introducing breaking changes;
11 developers identified API simplification and 11 developers
selected improving maintainability; 6 developers selected bug
fixing. This confirms the results that were previously reported
by Brito et al., [23]. Two developers also provided additional
reasons: research transfer and performance.

Fig. 5: What are your primary reasons for introducing breaking
changes?

We also asked developers an open question: “Were there
specific scenarios when you had to sacrifice backward com-
patibility to introduce important changes? Can you describe
them briefly?”. We received 15 answers to this question. In
addition to the four reasons listed above, 3 developers wrote
that breaking changes are caused by system redesign and
architectural changes, 2 developers mentioned refactorings.
Also, 3 developers wrote that breaking changes in their APIs
were caused by changes in their dependencies — a process that
is known as the ripple effect, when a change in one library

can impact other libraries that depend on it and propagate
through the ecosystem from client to client. Two developers
mentioned security issues related to authentication and one
developer wrote that they break the API when they need to
improve names or remove features that are not used.

Summary: The most common reasons for introducing
breaking changes are the implementation of new fea-
tures (12 dev. out of 18), API simplification (11 dev.),
and improving maintainability (11 dev.), bug fixing was
selected by 6 developers. This confirms the results of
the previous study conducted by Brito et al., [23].
Among other reasons mentioned by developers are
architectural changes, refactorings, security issues, and
changes in other libraries.

C. RQ.3 - How motivated are library developers to support
their clients?

As we mentioned before, recently there were many studies
that proposed automated tools to support developers in the
process of library update. Some of those approaches are
designed for client developers, while others are for library
developers. For the second group of approaches, it is important
to understand what is the motivation of library developers to
support their clients.

To answer this question, we asked library developers two
questions: “How important is it for you to maintain backward
compatibility?” and “How important is it for you to encourage
clients to update to the latest version?”. Those questions
are different, because, as we seen in Section V-B, library
developers have many good reasons to introduce breaking
changes (and thus break compatibility) even if they want their
clients to update easily.

Fig. 6: How important is it for you to maintain backward
compatibility?

In Figure 6, we present the answers to the first question.
4 developers (22%) specified that it is of little importance.
For 5 developers (28%), backward compatibility is of average
importance. 8 of the surveyed developers (44%) stated that it is
very important for them, and for one developer it is absolutely
essential to be backward compatible.

In Figure 7, we present the answers to the second question.
Only one library developer specified that encouraging clients
to update is of little importance. For 5 developers (28%) it



is of average importance, for 8 developers (44%) it is very
important, and for 4 developers (22%) it is absolutely essential.

Fig. 7: How important is it for you to encourage clients to
update to the latest version?

Summary:
• Maintaining backward compatibility is very im-

portant or absolutely essential for 50% of surveyed
library developers.

• Encouraging clients to update is very important or
absolutely essential for 66% of surveyed library
developers.

D. RQ.4 - How do library developers help their clients to
update?

To understand what library developers do to help their
clients, we asked two questions in our survey. First, a check-
box question (multiple selection) intended to understand the
software development practices adopted before the release:
“What software development practices do you use to improve
the stability of your API?”. Second, an open question about
the practices after the release: “When you are forced to break
backward compatibility, what do you do to reduce the negative
impact on users?”.

The first question was answered by all 18 developers. We
gave them three options: weak coupling (selected by 15 dev.),
abstraction layer (13 dev.), and microservice architecture (5
dev.). In the “Other” section of this question, developers men-
tioned three more practices: “design patterns”, “automatic
transformation of deprecated methods”, and “independent
software that checks the stability of the API and the continuity
of its expected behaviour”.

The open question was answered by 16 out of 18 surveyed
developers. We analysed their responses and identified four
practices that library developers use to reduce the negative
effect of breaking changes on their clients:

• Documentation (8 dev.), including migration guide
(4 dev.), release notes (1 dev.), and deprecation comments
(1 dev.).

• Deprecation (4 dev.).
• Automation (4 dev.), including rewriting deprecations

(2 dev.).
• Communication (3 dev.): including communication be-

fore making the change (1 dev.) and live workshops to

help clients update (1 dev.).

Two developers explicitly said that they do nothing to help
client developers. One developer, who mentioned that he/she
uses the tools for automatic adaptation of source code, has
also expressed discontent with such automation techniques:
“. . . usually, the devs prefers to see exactly how the code will
be modified in the context of the application. When the change
requieres actions on many part of the software, manually going
through all the mofications by hand help to put again "in
context" the impact of the modification”.

Summary:
• Among the software development practices that

improve the stability of API, the most popular
were weak coupling (18 dev.) and abstraction
layer (15 dev.). Developers also mention the mi-
croservice architecture, design patterns, and au-
tomation tools such as rewriting deprecations and
API stability checks.

• Among the library developers who answered our
survey, the most common practices to support
clients after the introduction of breaking changes
are: documentation (8 dev.), deprecation (4 dev.),
automation (4 dev.), and communication (3 dev.).

VI. RESULTS OF THE CLIENT DEVELOPER SURVEY

In this section we present and discuss the results of the
survey of client developers. As before, each research question
is associated with one or more survey questions.

A. RQ.5 - How do client developers perceive impact of library
evolution on their systems?

We asked the client developers two questions that mirror
the questions that were answered by library developers and
discussed in Section V-A. Each question was answered by 36
out of 37 client developers that took part in our survey.

First, we asked client developers to estimate, how much they
are affected by the evolution of their dependencies. Notice that
this question is slightly different from the library developer
question in which we asked about the impact of breaking
changes. As can be seen in Figure 8, the answers are almost
equally distributed around the midpoint somewhat affected
(14 dev.): 11 developers answered that they are affected a
little, 10 developers — significantly affected, one developer
claims to be affected to a great extent.

Then we asked client developers to estimate how long it
usually takes them to update a dependency. As can be seen
in Figure 9, the answers are scattered between “less than an
hour” and “several days”. Only one developer answered “one
week or more”. This trend is similar to the one we observed in
Section V-A. Again, we hypothesise that the different answers
are caused by different complexity of changes in libraries on
which clients depend. Some libraries take less than an hour to
update, others can take days.



Fig. 8: How much are you affected by the evolution of your
dependencies? (e.g., when one of your dependencies releases
a new version or drops support for the old one)

Fig. 9: How much time does it usually take you to update your
dependencies?

Finally, we asked client developers to estimate how often
they have to deal with the task of updating dependencies.
As can be seen in Figure 10, out of 36 client developers
who answered this question, 17 (47%) have to update their
dependencies three times a year or more often, 10 (28%) have
to do it twice a year. The other two options: once a year and
less often each have 3 developers who selected them. Also, 3
developers stated that they do not update their dependencies
regularly.

Fig. 10: Try to estimate how often do you have to deal with
the task of updating dependencies

Summary:
• Most client developers in our study do not think

that they are greatly affected by library evolution.
• The time required to update a library dependency

can be different: from less than an hour to several
days. Only one developer has claimed that it may
take a week or more.

• 27 out of 36 client developers in our study have to
update their dependencies at least twice a year; 17
developers do it three times a year or more often.

B. RQ.6 - What makes library update easy and what makes
it hard?

To answer this research question, we asked client developers
two open questions in the survey: “When updating a depen-
dency is easy, what makes it easy?” and “When updating a
dependency is hard, what makes it hard?”. Each question was
answered by 34 out of 37 client developers who took part in
the survey. We analysed their answers and summarise them in
Tables II and III.

TABLE II: When updating a dependency is easy, what makes
it easy? Second column (dev.) is the number of developers
who mentioned this factor in an open question.

Factor dev.
Documentation 15
Absence of breaking changes 11
Test coverage 6
Tool support 5
Deprecations 4
Simple breaking changes 4
Community support 3

TABLE III: When updating a dependency is hard, what makes
it hard? (only factors that were mentioned by at least 2
developers).

Factor dev.
Breaking changes 11
Absent or bad documentation 10
Indirect dependencies 7
Big changes to the API 7
Poor tests coverage 4
Removed functionality 3
Changed hooks or abs. classes 3
No community support 2
Behavioral changes 2

The most common factors that make library update easy
are good documentation (mentioned by 15 developers, 44%)
and the absence of breaking changes (11 dev., 32%). Other
factors include test coverage of client code, tool support
such as dependency managers and automated code rewriting,
deprecations that are introduced before removing functionality,
simple breaking changes such as method renaming, and com-
munity support. The most commonly mentioned factors that
make library update hard are breaking changes (mentioned by



11 developers, 32%), absent or bad documentation (10 dev.,
29%), indirect dependencies to other libraries that can result
in version conflicts (7 dev., 21%), and big changes to the API
that force clients to change the logic of how the library is used
(7 dev., 21%). Other factors that were mentioned 2-4 times
are poor test coverage of client code, removed functionality,
changed hooks and abstract classes, absence of community
support, and behavioral changes. There are also factors that
were mentioned only once: strong coupling, expertise required,
security issues, naming collisions with other libraries, absence
of deprecations, bugs and compilation errors. We did not
include those factors in Table III.

Summary: The two most important factors affecting
the complexity of library update are breaking changes
and documentation. 11 out of 37 client developers
in our study mentioned that breaking changes make
updating hard, and also 11 developers mentioned that
their absence makes it easy; 15 developers mentioned
that good documentation makes updating easy, and
10 developers mentioned that missing or misleading
documentation makes it hard.

VII. THREATS TO VALIDITY

We discuss the four types of validity threats that were
presented by Wohlin et al., [25]: internal, external, construct,
and conclusion validity.

a) Internal Validity:
• We did not ask the participants to focus on a single

project but rather to answer the questions based on their
general experience. This makes it hard to further analyse
the contexts that originate certain situations/decisions.

• Some questions in our survey are hard to answer gen-
erally. The answers can vary depending on the project
that developer has in mind or specific situations on the
client side. For example, when we asked how much time
it takes for clients to update, the answer could depend on
how much of the API was used by a particular client.

• The transforming deprecation mechanism of Pharo [12]
may have affected how Pharo developers answered this
survey.

• Inside the three mentioned communities, the surveys were
public and participation was optional. This means that
many library developers could also have answered the
client developer survey. We can not verify this because
the surveys were fully anonymous and we did not want
to restrict participation to only one survey because each
library developer might also be a client developer for
other libraries.
b) External Validity:

• For convenience, in this study we surveyed developers
from an open-source community that we (authors) are
part of and two industrial companies that collaborate with
our research group. The participation was optional, which
means that the developers who responded to our call

might be the ones who know us personally and have
interest in our research. This might have introduced a
bias.

• The library developers in our survey are responsible for li-
braries with no more than 500 clients. Those libraries can
be considered small compared to the top-1000 libraries in
NPM and Maven. This means that our study may not be
representative of the large libraries and frameworks, but
more focused on the smaller libraries that are also more
common. Although, we list it as a threat, we also believe
this to be a novelty of our study because most related
works focus only on large libraries, which introduces a
bias on their side.
c) Construct Validity:

• Some research questions in this survey can not be fully
expressed with specific survey questions. For example,
to measure the impact of library evolution on clients, we
ask questions about the perception of this impact (too
general) and another question about the time it takes to
update (too specific).

• To save the time of our participants, most questions in
our survey were not open but contained a list of options
to choose from. This poses a threat to construct validity
because developers were limited and biased by those
options. To address this threat, we tried to provide a
diverse list of options for each question, taking inspiration
from the literature (e.g., the options for RQ2 were the
same as the ones identified by Brito et al., [23]) or by
discussing them with our colleague developers.

• Measuring the impact of breaking changes on clients may
be seen as a "self-fulfilling prophecy": by definition they
do have an impact. Whether this impact is experienced
or not depends on the actual use of the library.
d) Conclusion Validity:

• The population size is relatively small. Our study in-
volved 18 library developers and 37 client developers.
Although it is comparable to other surveys in this field
(e.g., Bogart et al., [22] surveyed 28 developers, Xavier et
al., [24] — 7 dev., Kula et al., [18] — 16 dev., and Brito et
al., [23] — 102 dev.), this population might be too small
to claim statistical significance.

• Considering the relatively small population size, we did
not perform statistical tests and derived conclusions from
simple descriptive statistics.

VIII. CONCLUSION

In this article, we presented the results of a first survey of
the perception of library evolution by both client developers
(who need to update their software to new versions of libraries
they use) and library developers (who produce new versions
of libraries). The survey involved software developers from
two industrial companies: Arolla and Berger Levrault, and
one open-source community: Pharo. We have confirmed the
results of a previous study performed by Brito et al., [23]
who reported that the most common reasons for introducing



breaking changes are new features, API simplification, and
maintainability improvement. We have also identified what
makes library update easy and what makes it hard for clients,
and the kind of support library developers can provide them.
The survey results presented in this article can help better
understand the process of library update from the perspective
of library and client developers, identify the challenges that
they face and what can be done to overcome those challenges.

REFERENCES

[1] M. T. Baldassarre, A. Bianchi, D. Caivano, and G. Visaggio, “An
industrial case study on reuse oriented development,” in 21st IEEE
International Conference on Software Maintenance (ICSM’05). IEEE,
2005, pp. 283–292.

[2] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, 2002.

[3] M. Lehman, “Laws of software evolution revisited,” in European Work-
shop on Software Process Technology. Berlin: Springer, 1996, pp.
108–124.

[4] T. Mens, J. F. Ramil, and M. W. Godfrey, “Analyzing the evolution of
large-scale software: Issue overview,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 16, no. 6, pp. 363–365, Nov.
2004.

[5] M. Kim, D. Notkin, and D. Grossman, “Automatic inference of struc-
tural changes for matching across program versions,” in International
Conference on Software Engineering (ICSE’07). IEEE, 2007, pp. 333–
343.

[6] E. Xing, ZhenchangandStroulia, “API-evolution support with diff-
catchup,” IEEE Transactions on Software Engineering, vol. 33, pp. 818
– 836, 2007.

[7] B. Dagenais and M. P. Robillard, “Recommending adaptive changes for
framework evolution,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 20, no. 4, pp. 1–35, 2011.

[8] A. Hora, A. Etien, N. Anquetil, S. Ducasse, and M. T. Valente, “Apievo-
lutionminer: Keeping api evolution under control,” in Proceedings of the
Software Evolution Week (CSMR-WCRE’14), 2014.

[9] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage changes
from instantiation code,” in International Conference on Software En-
gineering (ICSE). New York, NY, USA: ACM, 2008, pp. 471–480.

[10] C. Teyton, J.-R. Falleri, and X. Blanc, “Automatic discovery of function
mappings between similar libraries,” in Working Conference on Reverse
Engineering (WCRE). IEEE, 2013, pp. 192–201.

[11] K. Chow and D. Notkin, “Semi-automatic update of applications in
response to library changes.” in International Conference on Software
Maintenance (ICSM), vol. 96, 1996, p. 359.

[12] S. Ducasse, G. Polito, O. Zaitsev, M. Denker, and P. Tesone, “De-
prewriter: On the fly rewriting method deprecations,” JOT, 2022.

[13] J. Henkel and A. Diwan, “CatchUp!: capturing and replaying refactor-
ings to support API evolution,” in Proceedings International Conference
on Software Engineering (ICSE 2005), 2005, pp. 274–283.

[14] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T.
Valente, “How do developers react to api evolution? the Pharo ecosystem
case,” in International Conference on Software Maintenance (ICSM’15),
2015, pp. 251–260.

[15] A. Hora, R. Robbes, M. Tulio Valente, N. Anquetil, A. Etien, and
S. Ducasse, “How do developers react to api evolution? a large-scale
empirical study,” Software Quality Journal, vol. 26, pp. 161–191, Mar.
2018.

[16] K. Jezek, J. Dietrich, and P. Brada, “How java apis break–an empirical
study,” Information and Software Technology, vol. 65, pp. 129–146,
2015.

[17] R. G. Kula, D. M. German, and A. O. andTakashi Ishio andKatsuro
Inoue, “Do developers update their library dependencies?” Empirical
Software Engineering, vol. 23, pp. 384–417, 2018.

[18] R. G. Kula, A. Ouni, D. M. German, and K. Inoue, “An empirical study
on the impact of refactoring activities on evolving client-used apis,”
Information and Software Technology, vol. 93, pp. 186–199, 2018.

[19] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react to
API deprecation?: The case of a smalltalk ecosystem,” in International
Symposium on the Foundations of Software Engineering (FSE). New
York, NY, USA: ACM, 2012, pp. 56:1–56:11.

[20] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to
deprecation of 25,357 clients of 4+1 popular java APIs,” in International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2016, pp. 400–410.

[21] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact
analysis of API breaking changes: A large-scale study,” in Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2017, pp. 138–147.

[22] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api:
cost negotiation and community values in three software ecosystems,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 109–120.

[23] A. Brito, M. T. Valente, L. Xavier, and A. Hora, “You broke my code:
understanding the motivations for breaking changes in APIs,” Empirical
Software Engineering, pp. 1–35, 2019.

[24] L. Xavier, A. Hora, and M. T. Valente, “Why do we break APIs?
first answers from developers,” in International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2017, pp. 392–
396.

[25] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: an introduction.
Norwell, MA, USA: Kluwer Academic Publishers, 2000.


	Introduction
	State of the Art
	Survey Setup
	Describing the Population
	Results of the Library Developer Survey
	RQ.1 - How do library developers perceive the impact of library evolution on their clients?
	RQ.2 - Why do library developers introduce breaking changes?
	RQ.3 - How motivated are library developers to support their clients?
	RQ.4 - How do library developers help their clients to update?

	Results of the Client Developer Survey
	RQ.5 - How do client developers perceive impact of library evolution on their systems?
	RQ.6 - What makes library update easy and what makes it hard?

	Threats to Validity
	Conclusion
	References

