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In many geophysical and astrophysical flows, suppression of fluctuations along one direction
of the flow drives a quasi-2D upscale flux of kinetic energy, leading to the formation of strong
vortex condensates at the largest scales. Recent studies have shown that the transition towards
this condensate state is hysteretic, giving rise to a limited bistable range in which both the
condensate state as well as the regular 3D state can exist at the same parameter values. In
this work, we use direct numerical simulations of thin layer flow to investigate whether this
bistable range survives as the domain size and turbulence intensity are increased so that
geophysically-relevant conditions are approached. By studying the time scales at which rare
transitions occur from one state into the other, we find that the bistable range grows as the
box size and/or Reynolds number Re are increased. We furthermore predict a crossover from
a bimodal regime at low box size, low Re to a regime of pure hysteresis at high box size, high
Re, in which any transition from one state to the other is prohibited at any finite time scale.

Key words:

1. Introduction
Ever since the seminal works of Batchelor (1969) and Kraichnan (1967), it has been known
that in 2D turbulence, contrary to what is observed in 3D turbulence, kinetic energy cascades
inversely, from the smaller scales at which it is injected to ever larger and larger scales. While
the forward cascade that is observed in 3D turbulence is always arrested once it arrives at the
scales at which viscosity becomes effective in dissipating the kinetic energy, such a stopping
mechanism does not always exist at the large scales to saturate the inverse cascade. In that
case, kinetic energy piles up at the largest available length scale of the flow system into what
is referred to as a condensate. This condensate typically manifests as a strong vortex structure
at the system size, also known as the Large-Scale Vortex, see figure 1.
Even in 3D flow systems, quasi-2D dynamics can be observed if fluctuations in one
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Figure 1: A vortex condensate in thin layer flow, visualised through a snapshot of vertical
vorticity.

direction are strongly suppressed, allowing an inverse cascade to develop (Alexakis&Biferale
2018). In forced rotating turbulence (Biferale et al. 2016; Mininni et al. 2009; Smith et al.
1996; Smith & Waleffe 1999), rotating convection (Favier et al. 2014; Guervilly et al.
2014; Julien et al. 2012; Rubio et al. 2014) or rotating stratified turbulence (Pouquet &
Marino 2013; Marino et al. 2013, 2014; van Kan &Alexakis 2020), such quasi-2D dynamics
develops as a consequence of the Coriolis force that suppresses fluctuations along the axis of
rotation according to the Taylor-Proudman theorem. Alternatively, such suppression could
occur through for example magnetic forces (Alexakis 2011; Baker et al. 2018; Favier et al.
2010; Reddy et al. 2014) or plainly through geometric confinement as observed in thin layer
flow (Celani et al. 2010; Benavides & Alexakis 2017; Musacchio & Boffetta 2017, 2019).
This type of constrained dynamics is of eminent importance to many geo- and astrophysical
flow settings, where (a combination of) the aforementioned mechanisms renders the flow
quasi-2D. Examples can be found in our oceans (King et al. 2015; Scott & Wang 2005), in
the atmosphere (Byrne & Zhang 2013; Nastrom et al. 1984) and on gas giant planets such as
Jupiter and Saturn (Heimpel & Aurnou 2007; Heimpel et al. 2016; Stellmach et al. 2016).
This work focuses on the transition towards the condensate state of such quasi-2D

systems. Remarkably, in spite of the inherently widely different nature of the considered
flow systems, recent studies revealed that all across forced rotating turbulence (Alexakis
2015; Seshasayanan & Alexakis 2018; Yokoyama & Takaoka 2017), thin layer turbulence
(van Kan & Alexakis 2019) and even the natural system of rotating convection (Favier et al.
2019; de Wit et al. 2021), the transition into the condensate is discontinuous and shows
hysteresis. This gives rise to a limited bistable range in which both the quasi-2D condensate
state and the 3D flow state can exist at the same parameters.
Since it is now known that this bistability can also survive in natural forcing conditions

(Favier et al. 2019; de Wit et al. 2021) and the condensate can also form, albeit at more
extreme parameters, between realistic no-slip walls (Aguirre Guzmán et al. 2020), we aim
to investigate whether the bistable range in the condensate transition could also survive
under parameter conditions that are relevant to geo- and astrophysical flows. Motivated by
the remarkable similarities in the condensate transition across the different flow systems,
we focus on the conceptually and computationally most basic system of forced thin layer
turbulence. Specifically, we are interested in the dependence on the system size and the
strength of turbulent forcing, quantified through the injection-scale Reynolds number Re, in
order to investigate whether the bistable range of the condensate transition shrinks or grows
as system size and Re are increased. We focus on very moderate values of the system size and
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Re in order to be able to gather computationally demanding statistics about the bistable range
and the rare transitions into and out of the condensate state. We then extrapolate our findings
to the limits of large system size and large Re that are relevant to geo- and astrophysics in
order to ultimately predict whether this bistable range could be observed in real-world natural
flow settings.

2. Numerical approach
In order to study thin layer turbulence, we consider the idealised case of forced incompressible
3D flow in a triply periodic box of dimensions 𝐿 × 𝐿 ×𝐻, where the vertical direction is thin
𝐻 ≪ 𝐿. The flow system is identical to the one described in van Kan & Alexakis (2019). We
consider a Cartesian coordinate system (𝑥, 𝑦, 𝑧) with unit vectors (𝒆𝑥 , 𝒆𝑦 , 𝒆𝑧), where the thin
vertical direction is chosen along 𝒆𝑧 . The flow 𝒖(𝒙, 𝑡) is then governed by the incompressible
forced Navier-Stokes equations

𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇)𝒖 = −∇𝑃 + 𝜈∇2𝒖 + 𝒇 , (2.1a)

∇ · 𝒖 = 0, (2.1b)

where 𝑃(𝒙, 𝑡) denotes the pressure divided by the constant density and 𝜈 represents the
kinematic viscosity of the fluid. We consider a stochastic forcing 𝒇 (𝒙, 𝑡) that is vertically
invariant (𝜕 𝒇 /𝜕𝑧 = 0) and acts exclusively in the (𝒆𝑥 , 𝒆𝑦) plane, i.e. in the 2D2C (2-
dimensional, 2-component) manifold. Furthermore, the forcing is divergence-free and acts
only sharply on wavenumber† 𝑘 𝑓 ≡ 2𝜋/ℓ, where its random phase is white noise (delta-
correlated) in time. This results in a fixed mean injection rate ⟨𝒖 · 𝒇 ⟩ = 𝜖 that is solely
prescribed by the forcing amplitude (Novikov 1965). Here, ⟨·⟩ is used to represent the
ensemble average. The choice of forcing is motivated by simplicity and comparability with
previous studies. In general, one may consider various 3D forcing functions (Poujol et al.
2020).
The input parameters of the thin layer flow system are combined to give three dimensionless

numbers. We define an injection-scale Reynolds number Re ≡ (𝜖ℓ4)1/3/𝜈, the ratio between
the forcing scale and the domain height𝑄 ≡ ℓ/𝐻 and the ratio between the forcing scale and
the width of the domain 𝐾 ≡ ℓ/𝐿. Finally, we define a forcing time scale 𝜏 𝑓 ≡ (ℓ2/𝜖)1/3 and
energy scale 𝐸 𝑓 ≡ (𝜖ℓ)2/3 that are used to non-dimensionalise the different temporal and
energetic quantities reported in this work, respectively.
Equations (2.1a)-(2.1b) are solved numerically in the triply periodic domain using a

pseuspectral code that is an adapted version of the Geophysical High-Order Suite for
Turbulence (Ghost) as introduced by Mininni et al. (2011), employing 2/3-dealiasing. In
order to investigate the dependence of the condensate transition and its bistable range on Re
and the box size, we take the results in van Kan et al. (2019) as a starting point and extend
them to smaller and larger Re and 𝐾 . For each value of 𝐾,Re we vary the thinness of the
fluid layer 𝑄 as the principal control parameter in close vicinity to the condensate transition.
An overview of the full set of input parameters that are considered in this work is provided
in table 1.
Resolutions 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 are chosen such that we maintain the same ratio between the

grid spacing 𝐿/𝑁𝑥,𝑦 and Kolmogorov length 𝜂 = (𝜈3/𝜖)1/4 as used in van Kan et al. (2019)
of 𝐿/𝑁𝑥,𝑦 ≈ 3.2𝜂 in the horizontal directions and we resolve finer than that in the vertical
direction. For the vertical, we ensure that we keep 16 grid cells in order to maintain sufficient
degrees of freedom in the thin direction.

† Specifically, exclusively the modes (𝑘𝑥 , 𝑘𝑦) = (±𝑘 𝑓 , 0) and (0,±𝑘 𝑓 ) are forced.
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Table 1: The different series of input parameters used in this work for varying box size (left)
and varying Re (right).

1/𝐾 Re 𝑄 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

6 192 [1.53 : 1.70] 96 × 96 × 16
7 192 [1.53 : 1.69] 112 × 112 × 16
8 192 [1.44 : 1.81] 128 × 128 × 16
9 192 [1.44 : 1.73] 144 × 144 × 16

1/𝐾 Re 𝑄 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

8 76 [1.00 : 1.13] 64 × 64 × 16
8 131 [1.29 : 1.48] 96 × 96 × 16
8 192 [1.44 : 1.81] 128 × 128 × 16
8 329 [1.74 : 2.05] 192 × 192 × 16

For each unique set of input parameters (𝑄, 𝐾,Re), at least 40 independent runs are carried
out by using a different random seed for the stochastic forcing in order to obtain statistics
about the rare transitions from one state into the other. The combination of this need for
a multitude of independent runs with the fact that the large-scale dynamics is very slow
compared to the background smaller-scale 3D dynamics renders only the rather moderate
parameters that are considered here computationally accessible. The simulations in this work
comprise more than ∼1.0 million CPU hours.
The main diagnostic quantity that we use here to probe the strength of the condensate is

the 2D large-scale energy 𝐸ls, defined from the Fourier components 𝒖̂(𝒌) of the flow as

𝐸ls =
1
2

∑︁
𝒌

|𝒌 |⩽𝑘max
𝑘𝑧=0

(
|𝒖̂(𝒌) · 𝒆𝑥 |2 + |𝒖̂(𝒌) · 𝒆𝑦 |2

)
, (2.2)

where the cut-off wavenumber 𝑘max =
√
2(2𝜋/𝐿).

3. Bistability, bimodality and rare transitions
Bistability and bimodality are often met in dynamical systems. Here we refer to bistability as
the presence of two independent stable attractors, coexisting for the same value of parameters,
whilst by bimodality we refer to the case that two attractors are linked by some trajectories that
when followed the system jumps from one attractor to the other and vice-versa. In the former
case, a hysteresis loop can exist when one of the parameters of the system is continuously
varied. In an inherently fluctuating dynamical system like the one at hand however, the precise
extent of the bistable range in the hysteresis loop can be ambiguous as rare sudden transitions
from one hysteretic branch into the other may exist at very long time scales near both ends
of the hysteresis loop. This raises the question how we can unambiguously define the precise
extent of the bistable range in the hysteretic transition.
Earlier works that studied the bistable range in the quasi-2D condensate transition would

typically simulate up to a certain time scale that is constrained by computational limits
and call a state stable if no further transitions are observed (Favier et al. 2019; van Kan
& Alexakis 2019; de Wit et al. 2021; Yokoyama & Takaoka 2017). However, in the view
of the rare transitions, this amounts to an in principle arbitrary cut-off at a certain time
scale, neglecting any possible transitions occurring at larger time scales. We refer to this as
finite-time hysteresis.
However, in the case of pure hysteresis, in strict sense, all transitions from one state into

the other are prohibited at any finite time scale, such that the system is absolutely bistable.
This would require the time scales of the rare transitions to diverge at a certain asymptote.
The existence of such asymptotes is the principal assumption in this work. As we will show
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(a) (c)

(b)

Figure 2: Left: Examples of time series of different realisations for build-up (a) and decay
(b) (at 𝑄 = 1.67 (a) and 𝑄 = 1.49 (b) and 1/𝐾 = 9, Re = 192). Horizontal dashed lines
represent the threshold energy at which the build-up time 𝑡𝑏 or decay time 𝑡𝑑 is defined and
the simulation is terminated. First blue run is continued for demonstration purposes. Right:
Examples of distributions of 𝑡𝑏,𝑑 , shown through the empirical cumulative density function
(at 1/𝐾 = 8 and Re = 192). Dashed lines represent fits of the exponential distribution.

in section 4, we can define such asymptotes based on the scaling of the time scales of the
rare transitions that we observe, allowing us to study how these asymptotes shift as we vary
the box size and Re in order to get a completely time scale independent and unambiguous
method for comparing our results at these different parameters.
To analyse the rare transitions between both states, we separately consider build-up events

from the 3D state into the condensate state and decay events vice-versa. The build-up events
are studied by initialising the simulations with a tiny perturbation onto a state of no flow
and continuing until the condensate state is reached. For the decay events, we initialise the
simulation with a snapshot from a condensate state at higher𝑄 and we continue the run until
the condensate has decayed and the 3D state is obtained.
Figures 2a-b show examples of different realisations of such rare transitions for one choice

of parameters. The works of van Kan et al. (2019) and de Wit et al. (2021) have revealed
that the waiting time that is spent until these sudden transitions from one state into the other
commence is exponentially distributed, signifying that the transition process is memoryless.
The typical meanwaiting time 𝜏𝑊 can be obtained by defining representative thresholds in the
large-scale energy and analysing the distribution of times 𝑡b,d after which these thresholds
are crossed. Examples of the obtained empirical cumulative distributions are depicted in
figure 2c, showing that it closely follows the aforementioned exponential distribution. We
can then obtain 𝜏𝑊 by fitting the empirical cumulative distribution function CDF with a
(shifted) exponential as

CDF(𝑡b,d) = 1 − exp
(
− 𝑡b,d − 𝜏0

𝜏𝑊

)
. (3.1)

This process can be repeated to obtain the waiting time scales 𝜏𝑊 for build-up events and
decay events at different values of 𝑄, varying it across the full extent of the hysteretic
transition. This results in a series of typical waiting times 𝜏𝑊 as a function of 𝑄, which can
in turn be repeated for different box sizes and Re.
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(a) (b)

(c) (d)

Figure 3: Waiting times 𝜏𝑊 (a,c) for build-up (circles) and decay (triangles) events and
their power law transformation (b,d) for varying box size 1/𝐾 at Re = 192 (a,b) and varying
Re at 1/𝐾 = 8 (c,d). Crosses on the horizontal axis in (b,d) denote the estimates for the
asymptotes 𝑄0. These asymptotes are also depicted in (c) by the vertical lines for build-up
(dashed) and decay (dashed-dotted), but are omitted in (a) for readability.

4. Time-scale statistics
The results for the series of transition time scales for varying box size and varying Re are
provided in the left panels of figure 3. As the transition is approached 𝜏𝑊 increases faster
than exponentially (see van Kan et al. 2019). This implies that either 𝜏𝑊 increases in a
non-diverging superexponential fashion (e.g. 𝜏𝑊 ∝ exp[exp(𝑄)], as is typical for certain
transitions controlled by extreme events (Goldenfeld et al. 2010; Nemoto & Alexakis 2018,
2021; Gomé et al. 2021)), or that it diverges at some critical value 𝑄0. To determine which
of the two holds for the present system is beyond the scope of this work. We will thus assume
that the latter case applies, although one could alternatively interpret𝑄0 as the value at which
super-exponential behaviour starts in the former case. To determine 𝑄0 we fit the transition
time to a power-law divergence

𝜏𝑊 ∝ 1
|𝑄 −𝑄0 |𝑝

. (4.1)

By plotting 1/𝜏1/𝑝
𝑊
as a function of 𝑄, we can then obtain 𝑄0 from a linear fit to the data

(right panels of figure 3). Empirically, we find that 𝑝(build-up) = 3 and 𝑝(decay) = 2 result in a
satisfactory linearisation of our data. These asymptotes then predict the location in 𝑄 where
the transition time becomes infinite, such that we can say that beyond the asymptote, the
transition can not occur at any finite time scale.
Comparing the results at different box sizes and different Re, we find first of all that the
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(a) (b)

Figure 4: Phase diagrams of the condensate for varying box size at Re = 192 (a) and varying
Re at 1/𝐾 = 8 (b). Red and blue lines denote the asymptotes of waiting times for build-up
and decay events, respectively.

transition is observed in a similar range of 𝑄 for the varying box sizes, while it clearly
shifts as Re is varied, in agreement with the observations in van Kan & Alexakis (2019).
More importantly, we observe that the branches of build-up and decay times move further
apart as Re and box-size are increased. The branches cross for the runs with Re ⩽ 192 or
for 𝐾 ⩽ 8, such that at small box size and/or small Re, a bimodal range of 𝑄 exists for
𝑄
(build-up)
0 < 𝑄 < 𝑄

(decay)
0 where the build-up and decay time scales are simultaneously finite

(and in fact computationally accessible). Hence in this range, the flow continually transitions
back and forth between the 3D state and the condensate state.
Conversely, for the largest box size and largest Re that we consider, the branches of the

build-up and decay branches never cross as the asymptotes reside on opposite ends. This
indicates a profoundly different regime, where the decay times have diverged before the
build-up times become finite, such that in the range 𝑄(decay)0 < 𝑄 < 𝑄

(build-up)
0 , both states

are absolutely stable as no transition from one state into the other can occur in any finite
time. This corresponds to a regime of pure hysteresis in which the system is (absolutely)
bistable. Indeed, it is this range that is arguably themost unambiguous time-scale independent
definition of the bistable range of the system. These results are summarised in figure 4. It
is thus evident from our results that the bistable range grows as the box size and/or Re are
independently increased.
We argue that the strengthening of the bistability for large box sizes and Re is intuitive from

the increase of the condensate energy level (compared to the 3D-state energy) as Re, 1/𝐾 is
increased, making it harder to jump from one state into the other. Our results thus indicate that
bistability is not a finite size, finite Re effect and such states can be found in the geophysical
limit where both Re and domain size are large.

5. Conclusions and outlook
In this work, we have demonstrated that the bistability observed in the transition to the quasi-
2D condensate state can survive under the geophysically relevant conditions of increasing box
size and increasing Re. By studying the time scales at which rare transitions from one state
into the other occur we quantified the precise extent of the bistable range. Fitting the mean
time scales of these transitions with a diverging power law, we measured the locations of
the asymptotes beyond which the transition is prohibited at any finite time scale. Since these
asymtotes show a crossover as we vary the box size and/or Re, this predicts a profound regime
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change from a bimodal regime at small box size and/or Re to a regime of pure hysteresis at
large box size and/or Re, as summarised in figure 4. Since we find that the branches of time
scales of build-up transitions into the condensate and decay transition out of the condensate
at both ends of the bistable range only separate further and further as the box size and/or Re
is increased, we conclude that this bistability is not a finite size or finite Re effect, but that
the bistable range grows as we progress towards the geophysical limit.
We remark that the method proposed here for quantifying the precise extent of the bistable

range in a hysteretic transition using the time scales of rare transitions is entirely general and a
similar procedure can be followed in the context of any other fluctuating hysteretic dynamical
system within or beyond fluid dynamics. However, we must note that the motivation of (4.1)
is ad hoc here. Although the agreement with our data as shown in 3 is satisfactory, a more
fundamental physical motivation, supported by a larger dynamic range of parameters, would
be needed to rigorously prove the validity of (4.1) as well as our choice of exponents. Indeed,
although the waiting time increases faster than exponentially, the existence of an asymptote
for 𝜏𝑊 in the first place is ultimately an assumption in itself and the possibility of the relation
being any other superexponential relation without divergence can in principle not be ruled
out by numerical simulations alone. Nonetheless, while the existence of pure hysteresis
certainly constrains the underlying physical mechanism of the transition, one may argue that
it does not hold immediate implications in geophysical practice whether the time scales of
transitions are strictly infinite or merely beyond any practical finite time scale. Moreover,
we argue that the satisfactory agreement of (4.1) with our data in itself does convincingly
prove our central result: that the bistable range is not an effect of finite box size and/or finite
Re, but that it grows as we progress towards the geophysical conditions. Indeed, this holds
either in the strict terms of absolute bistability, or in the terms of exceeding a certain finite
superexponential time scale.
While recent investigations have started to unveil different aspects of this peculiar type

of transition between turbulent flow states, much of the underlying physical mechanism still
remains poorly understood. In particular, which specific physical events trigger the flow
to commence the transition, for example either a series of vortex merging events, or rare
fluctuations directly at the largest scale, remains an open question. Answering such questions
would contribute greatly to our understanding of this flow phenomenon and our work may
act as a numerical inspiration as well as a quantitative benchmark to such theoretical studies.
Specifically, understanding the physical mechanism behind the transition may motivate the
theoretical validity of relation (4.1), which we have motivated only empirically here.
In order to push the analysis in this work further towards the geophysical conditions

of yet larger box size and Re, direct numerical simulations quickly become computationally
unfeasible, as both spatial resolution requirements as well as time scale requirements increase
rapidly. A promising solution may lie in the application of rare event algorithms (Cérou &
Guyader 2007; Lestang et al. 2018). Such algorithms are more efficient in probing rare
transitions and have been successfully applied in various other flow contexts (Gomé et al.
2021; Bouchet et al. 2019; Rolland 2018). By progressing further towards the extreme
geophysical conditions, we may for example investigate whether the growth of the bistable
range of the condensate transition saturates at some point, which can not be studied from the
moderate parameters considered in our work. Finally, we remark that it also seems attractive
now to study the condensate transition and its bistable behaviour from experiments in which
more extreme parameters may be more easily accessible, or perhaps even from observations
in real-world geophysical or astrophysical flows.
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