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SEMISIMPLE RANDOM WALKS ON THE TORUS

WEIKUN HE AND NICOLAS DE SAXCÉ

Abstract. We study linear random walks on the torus and show a quantita-
tive equidistribution statement, under the assumption that the Zariski closure
of the acting group is semisimple.

1. Introduction

Let d ≥ 2 be an integer and Td = Rd/Zd the torus of dimension d. We study a
random walk (xn)n≥0 on Td given by

∀n ≥ 0, xn = gn . . . g1x0

where (gn)n≥1 is a sequence of independent identically distributed random variables
with law µ on GLd(Z). Let Γ denote the group generated by the support of µ, and G
be the Zariski closure of Γ in GLd(R). In their breakthrough paper [10], Bourgain,
Furman, Lindenstrauss and Mozes showed that if G acts strongly irreducibly and
proximally on Rd, then the random walk (xn)n≥0 equidistributes in law to the Haar
probability measure mTd as soon as x0 is irrational, i.e.

∀x0 6∈ Qd/Zd, µ∗n ∗ δx0 ⇀
∗
n→+∞ mTd .

Moreover, this result is quantitative : the rate of convergence is given in function
of how far away x0 is from rational points of small denominator. Following their
strategy, we showed recently in [22] that their theorem was still valid without the
proximality assumption, as long as the action of G is strongly irreducible. On the
other hand, the theory developed by Benoist and Quint in their series of articles
[2, 4, 5, 3] made it clear that when studying random walks on homogeneous spaces,
it was most natural to only assume that the acting algebraic group G was semisim-
ple. Indeed, under this assumption they obtained a full classification of stationary
measures [4, Theorem 1.1] from which they deduced in [5] very general equidistri-
bution results. It was therefore desirable to obtain quantitative convergence results
similar to those of [10] or [22] in this more general setting. This is the goal of the
present article.

Of course, without the irreducibility assumption, there can exist some proper
closed Γ-invariant subsets of Td, and the random walk may not equidistribute to
the Haar measure, even if the starting point x0 is irrational. So in order to state
our main result, we need to set up some notation. Let G◦ denote the identity
component of G for the Zariski topology. The subalgebra ofMd(R) generated by
G◦ is denoted by E. Since G is semisimple, we may write Rd = V0 ⊕ V1 ⊕ · · · ⊕ Vr
where for i = 0, . . . , r, Vi is a maximal sum of simple G-modules having the same
top Lyapunov exponent for the action of µ. We assume in addition that

[W.H.] The order does
not matter.λ1(µ, V1) > · · · > λ1(µ, Vr) > λ1(µ, V0) = 0.
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We define a quasi-norm on Rd by

|v| = max
0≤i≤r

‖vi‖
1

λ1(µ,Vi)

where v = v0 + . . . + vr is the decomposition of v according to the direct sum
Rd = ⊕ri=1Vi. By convention, we set 1

0 = +∞ and

‖v0‖+∞ =

{
0 if ‖v0‖ ≤ 1,

+∞ otherwise.

This quasi-norm induces a quasi-distance on Rd given by d̃(x, y) = |x − y|, which
projects to a quasi-distance on Td, still denoted by d̃. Our goal is the following
theorem.

Theorem 1.1 (Quantitative equidistribution of semisimple linear random walk on
Td). Let µ be a probability measure on GLd(Z) having a finite exponential moment.
Denote by G ⊂ GLd(R) the algebraic group generated by µ, by G◦ its identity
component, and let E be the subalgebra ofMd(R) generated by G◦. If the algebraic
group G is semisimple, then for every λ ∈ (0, 1), there exist C = C(µ, λ) ≥ 0 such
that the following holds.

Given x0 ∈ Td, assume that for some t ∈ (0, 1
2 ), a0 ∈ Zd \ {0}, and n ≥

C log ‖a0‖t ,

| ̂(µ∗n ∗ δx0)(a0)| ≥ t.
Then, there exists γ ∈ G such that, denoting W0 = (a0γE)⊥ and V0 the sum of all
compact factors of G in Rd,

d̃
(
x0 −

p

q
− v,W0

)
≤ e−nλ

for some v ∈ V0, p ∈ Zd and q ∈ Z \ {0} such that max(‖v‖, |q|) ≤
(
‖a0‖
t

)C
.

Here, of course, pq , v and W0 are identified with their projection to the torus Td.
If the sequence (µ∗n ∗ δx0) does not converge to the Haar measure mTd in the

weak-∗ topology, then, by Weyl’s equidistribution criterion, there are a0 ∈ Zd \ {0}
and t > 0 such that | ̂(µ∗n ∗ δx0)(a0)| ≥ t holds for an unbounded sequence of n ∈ N.
Letting n goes to infinity along this sequence, we deduce the following qualitative
statement from the quantitative statement.

Corollary 1.2 (Qualitative statement). Let µ be a probability measure on GLd(Z)
having a finite exponential moment. Denote by G ⊂ GLd(R) the algebraic group
generated by µ. Assume that G is semisimple. Then for any point x0 ∈ Td, either

µ∗n ∗ δx0 ⇀
∗ mTd ,

or
x0 ∈ Qd + V0 +W0 mod Zd,

where V0 denotes the sum of all compact factors of G in Rd and W0 is a rational
subspace of Rd invariant under the action of the identity component G◦ of G.

As a consequence, we recovers the classification of orbit closures due to Guivarc’h
and Starkov [20] and Muchnik [30].

Corollary 1.3 (Classification of orbit closures). Let Γ ⊂ GLd(Z) be a subgroup
whose Zariski closure G is a semisimple algebraic group. Let x0 ∈ Td. Then the
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orbit closure Γx is either the whole Td or contained in a Γ-invariant closed subset
of the form

1

q
Zd + BV0

(0, R) +
⋃

γ∈G/G◦
γW0 mod Zd

where q is a nonzero integer, BV0(0, R) is a ball in V0, the sum of all compact factors
of G in Rd and W0 is invariant under the action of the identity component G◦ of
G.

The qualitative statement could also be reformulated more simply as follows.

Corollary 1.4 (Equidistribution). Let µ be a probability measure on GLd(Z) having
a finite exponential moment. Denote by Γ ⊂ GLd(Z) the subgroup generated by µ.
Assume that the Zariski closure of Γ is semisimple. Then for any x0 ∈ Td, either
µ∗n ∗ δx0

⇀∗ mTd or x0 is contained in a proper Γ-invariant closed subset.

A particularly simple case of the above results is when the group Γ acts strongly
irreducibly on Qd, that is, when Γ preserves no nontrivial finite union of proper
subspaces of Qd. Then, for any a0 ∈ Zd \ {0} and any γ ∈ G, one must have
a0γE = (Rd)∗, so we obtain a simpler equidistribution statement.

Corollary 1.5 (Equidistribution of Qd-irreducible random walks). Assume that G
is semisimple and acts strongly irreducibly on Qd. Then for every λ ∈ (0, 1), there
exist C = C(µ, λ) ≥ 0 such that the following holds.

Given x0 ∈ Td, assume that for some t ∈ (0, 1
2 ), a0 ∈ Zd, and n ≥ C log ‖a0‖t ,

| ̂(µ∗n ∗ δx0
)(a0)| ≥ t.

Then there exists v ∈ V0, p ∈ Zd and q ∈ Z\{0} such that max(‖v‖, |q|) ≤
(
‖a0‖
t

)C
and

d̃
(
x0 −

p

q
− v, 0

)
≤ e−nλ.

In particular, if x0 does not lie on a rational translate of the V0 leaf in Td, then
µ∗n ∗ δx0 converges to mTd .

It was observed by Benoist and Quint [4, Corollary 1.4] that if G is semisimple
without compact factors and acts irreducibly on Qd, then mTd is the only atom-free
µ-stationary probability measure on Td. By the results of [5], this implies that the
Cesàro averages 1

n

∑n−1
k=0 µ

∗k ∗ δx0
converge to mTd . The above corollary immedi-

ately shows that convergence also holds without the averaging process. When µ
is a symmetric probability measure on SLd(Z), a general result of Timothée Bé-
nard [15, Theorem 1] implies this qualitative statement, but without the symmetry
assumption the result seems to be new.

Corollary 1.6. Assume that G is semisimple without compact factors and acts
strongly irreducibly on Qd. Then, for every x0 irrational in Td, the sequence of
measures (µ∗n ∗ δx0

)n≥0 converges in law to mTd .

Our main motivation to carry out the rather technical proof presented here, is its
application to the spectral gap property for subgroups of algebraic groups, modulo
arbitrary integers. Indeed, as we shall explain in a forthcoming paper, Theorem 1.1
can be used to answer a question of Salehi Golsefidy and Varjú [31, Question 2].

1.1. Outline of the proof. The paper is entirely devoted to the proof of Theo-
rem 1.1, for which we use the strategy introduced in [10], and more precisely the
variant used in [22] to avoid the proximality assumption. Section 2 deals with
discretized algebraic combinatorics in semisimple algebras: we prove some Fourier
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decay estimate for multiplicative convolutions of measures satisfying natural non-
concentration conditions, Theorem 2.1, generalizing results of Bourgain [9] for the
real line. The main input for our proof is a sum-product theorem for represen-
tations of real Lie groups [23, Theorem 1.1], which easily implies the discretized
sum-product theorem in semisimple algebras; then we use some L2-flattening lemma
similar to the one use by Bourgain and Gamburd in their work on the spectral gap
property.

After that, in order to apply the combinatorial results of the previous section to
the random walk, we need to check that the measure µ∗n appropriately rescaled
is not concentrated near proper affine subspaces of E, nor near singular elements;
this is done in Section 3. Just as in [22], the argument ultimately relies on the
spectral gap property modulo primes obtained by Salehi Golsefidy and Varjú [31].
However, because the rescaling automorphism is no longer a homothety, the proof
involves a detailed analysis of the behavior of the random walk with respect to a
quasi-norm on the algebra E. To help the reader understand the main ideas of
the proof without having to go through all the technical details, we start with the
simpler case where E is simple; even in that case, the argument is different and
simpler than the one presented in [22], where similar estimates are needed.

In Section 4, we prove Theorem 4.2, an important Fourier decay estimate for
the law of the random walk. This simply follows from a combination of the two
previous sections when the group G is connected, but becomes more complicated
without this assumption. We follow the argument used in [25, Appendix B], with
minor modifications.

Section 5 makes the link between the random walk on G and the random walk on
Td. The Fourier decay obtained in the previous section shows that if µ∗n∗δx0

has one
large Fourier coefficient, then reducing slightly the value of n, the measure µ∗n ∗δx0

has many large Fourier coefficients. Using a quantitative version of Wiener’s lemma,
one infers a first “granulation statement”: µ∗n ∗ δx0

is concentrated near a finite set
of well-separated points in Td.

To conclude the proof of Theorem 1.1, we run backwards the random walk,
starting from the granulation estimate mentioned above. The argument uses in
particular the diophantine properties of the random walk, and the exponential
unstability of closed invariant subsets, obtained using a drift function, as in Eskin-
Margulis [17] or Benoist-Quint [4]. This is the content of Section 6.

1.2. Concluding remarks. Affine random walks. After some first results of J.-B.
Boyer [14], it was explained in [24] how to obtain quantitative equidistribution of
affine random walks on the torus, under the assumption that the action on Rd is
strongly irreducible. The arguments in that paper could be adapted to our setting.

More general homogeneous spaces. Benoist and Quint [2, 4, 5] have obtained
equidistribution results that are valid in the much more general setting of homo-
geneous spaces of Lie groups. One drawback is that their convergence theorems
are not quantitative, and only concern the Cesàro averages 1

n

∑n−1
k=0 µ

∗n ∗ δx0
. So it

would be interesting to see whether the techniques used in the present paper can be
used to study random walks on homogeneous spaces like SLd(R)/ SLd(Z), or other
homogeneous spaces.

On this subject, the first author has recently obtained, in collaboration with
Lakrec and Lindenstrauss, some partial results for affine random walks on nilman-
ifolds [25]; these spaces may be seen as the simplest generalization of tori, but the
analysis already becomes much more intricate.

In a slightly different direction, W. Kim [26] studied effective equidistribution
of expanding translates in the space of affine lattices. Also in a different direction,
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Lindenstrauss and Mohammadi [29] studied effective density in some homogeneous
spaces. Although these equidistribution results do not deal with random walks,
some of the techniques used there are similar enough to ours to be mentioned here,
especially those inspired by [10].

1.3. Acknowledgement. It is a pleasure to thank Yves Benoist and Elon Linden-
strauss for useful discussions, in particular on the existence of satellite measures in
the presence of compact factors.

1.4. Notation. Here is a list of notation we use.
• f � g, g � f , f = O(g), there exists a constant C > 0 such that f ≤ Cg.
• f � g if f � g and g � f .
• B(x, r), the ball of center x and radius r.
• BV ( · , · ), ball in the ambient space V .
• V ∗, the space of linear forms on a linear space V .
• λ1(µ, V ), the top Lyapunov exponent associated to the random walk on

a Euclidean space V defined by a probability measure µ supported on a
group acting linearly on V .

• µ ∗ ν, multiplicative convolution.
• µ∗k = µ ∗ · · · ∗ µ, multiplicative convolution power.
• µ� ν, additive convolution.
• µ�k = µ� · · ·� µ, additive convolution power.
• µ� ν, the image measure of µ⊗ ν under the map (x, y) 7→ x− y.
• 1A(x) = 1 if x ∈ A, 1A(x) = 0 otherwise.
• #A, cardinality of a finite set A.
• |A|, Lebesgue measure for subsets A of an Euclidean space or a torus.
• | · |∼, a quasi-norm
• d̃( · , · ), a quasi-distance, usually associated to a quasi-norm.
• B̃( · , · ), ball with respect to d̃.
• P[ · ] and P[ · | · ], probability and conditional probability.
• f∗µ, image measure of µ under the map f .
• Md(R), the space of d× d real matrices.
• P(X), the space of Borel probability measure on a topological space.
• 〈 · , · 〉, according to the context, the natural pairing V ∗ × V → R or the

natural pairing Zd × Td → T.

2. Sum-product, L2-flattening and Fourier decay

In this section, we study multiplicative convolutions of measures on a semisimple
associative algebra E. Our goal is to derive Theorem 2.1 below, which shows that
under some natural non-concentration assumptions, such multiplicative convolu-
tions admit a polynomial Fourier decay. This generalizes results of Bourgain [9] for
E = R, of Li [28] for E = R⊕ · · · ⊕ R, and of [22] for a simple algebra E.

Let E be a normed real algebra of finite dimension. The determinant detE(a) of
an element a ∈ E is simply defined as the determinant of the multiplication map
E → E, x 7→ ax. Given ρ > 0, we let

SE(ρ) = {x ∈ E | |detE(x)| ≤ ρ }.

If W ⊂ E is any subset, we let W (ρ) denote the ρ-neighborhood of W , defined by

W (ρ) = {x ∈ E | ∃w ∈W : ‖x− w‖ < ρ }.

The following definition summarizes the non-concentration conditions we shall need
in order to prove some Fourier decay for multiplicative convolutions.
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Definition (Non-concentration conditions). Let ε > 0, κ > 0, τ > 0 be parameters.
We say a measure η on E satisfies NC0(ε, κ, τ) at scale δ > 0 if

(i) supp η ⊂ B(0, δ−ε);
(ii) for every x ∈ E, η(x+ SE(δε)) ≤ δτ ;
(iii) for every ρ ∈ [δ, 1] and every proper affine subspace W ⊂ E, η(W (ρ)) ≤

δ−ερκ.
We say that a measure η on E satisfies NC(ε, κ, τ) at scale δ > 0 if it can be written
as a sum of measures

η = η0 + η1 with
{
η0 satisfying NC0(ε, κ, τ)
η1(E) ≤ δτ .

Given a finite measure µ on E, its Fourier transform µ̂ is the function on the
dual space E∗ given by the expression

∀ξ ∈ E∗, µ̂(ξ) =

∫
E

e2iπ〈ξ,x〉dµ(x).

If ν is another finite measure on E, the multiplicative convolution µ ∗ ν is defined
as the image measure of µ ⊗ ν on E × E under the map (x, y) 7→ xy. It should
not be confused with the additive convolution µ� ν, image of µ⊗ ν under the map
(x, y) 7→ x+ y.

Theorem 2.1 (Fourier decay of multiplicative convolutions). Let E be a normed
finite-dimensional semisimple algebra over R. Given κ > 0, there exists s =
s(E, κ) ∈ N and ε = ε(E, κ) > 0 such that for any parameter τ ∈ (0, εκ) the
following holds for any scale δ > 0 sufficiently small.

If η1, . . . , ηs are probability measures on E satisfying NC(ε, κ, τ) at scale δ, then
for all ξ ∈ E∗ with δ−1+ε ≤ ‖ξ‖ ≤ δ−1−ε,

|(η1 ∗ · · · ∗ ηs)∧(ξ)| ≤ δετ .

For E = R, this is due to Bourgain [9, Lemma 8.43]. For algebras of the form
E = R ⊕ · · · ⊕ R, this is due to Li [28, Theorem 1.1]. We shall first prove this
theorem when all ηi are equal, i.e. η1 = · · · = ηs = η and then deduce the general
statement from this particular case following the argument in [24, Proof of Theorem
B.3]. Alternatively, one could adapt the first part of the proof to handle directly
the general case, but this would make notation cumbersome.

The proof we give for Theorem 2.1 follows a strategy originating in the work
of Bourgain, Glibichuk and Konyagin [13] on exponential sums in finite fields: one
deduces the bound on the exponential sum from a combinatorial “sum-product”
statement, using an L2-flattening statement. In our case, the combinatorial input
is a discretized sum-product theorem in semisimple algebras, which follows from a
general sum-product statement for representations of real Lie groups obtained in
[23, Theorem 2.3].

2.1. Sum-product in semisimple algebras. Sum-product estimates go back to
the work of Erdős and Szemerédi [16] who showed that there exists some positive
constant ε such that for any subset A of integers,

|A+A|+ |AA| ≥ |A|1+ε

where A + A and AA denote respectively the sum-set and the product-set of A,
defined by A+A = {a+ b ; a, b ∈ A} and AA = {ab ; a, b ∈ A}. In the following,
we consider a normed semisimple algebra E of finite dimension over R, and our goal
is to prove a similar statement for subsets A ⊂ E, with the cardinality replaced by
the covering number N (A, δ) of A at small scale δ > 0. Recall that by definition,
N (A, δ) is the minimal cardinality of a cover of A by balls of radius δ in E. In
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order to ensure that the covering number of A at scale δ grows under addition or
multiplication, one of course has to assume that A is not essentially equal to a ball
in some subalgebra of E. We make a stronger assumption and require that A is
not concentrated near any proper affine subspace of E.

Definition (Affine non-concentration). Let V be a Euclidean space, and ε, κ > 0
two parameters. We say a subset A ⊂ V satisfies ANC(ε, κ) at scale δ if

(i) A ⊂ B(0, δ−ε) and
(ii) for every ρ ≥ δ and every proper affine subspace W ⊂ V , N (A∩W (ρ), δ) ≤

δ−ερκN (A, δ).

Essentially, we want to show that if E is a semisimple algebra, then for every
κ > 0, there exists ε > 0 such that for any set A ⊂ BE(0, 1) satisfying ANC(ε, κ)
and δ−κ ≤ N (A, δ) ≤ δ− dimE+κ, one has N (A+A, δ) +N (AAA, δ) ≥ δ−εN (A, δ).
We shall prove a slightly more technical growth statement, involving the tensor
algebra E ⊗Eop, where Eop denotes the algebra with the same linear structure as
E but with multiplication (a, b) 7→ ba. Note that the algebra E⊗Eop acts naturally
on E by

∀a, x ∈ E, ∀b ∈ Eop, (a⊗ b)x = axb.

Theorem 2.2 (Sum-product in semisimple algebras). Let E be a finite-dimensional
real semisimple algebra. Given κ > 0, there exists ε = ε(E, κ) such that the follow-
ing holds for all δ > 0 sufficiently small.

(i) Let A be a subset of E satisfying ANC(ε, κ) and
(ii) δ−κ ≤ N (A, δ) ≤ δ− dimE+κ.
(iii) Let B ⊂ E ⊗ Eop be a subset satisfying ANC(ε, κ).

Then there exists f ∈ B such that

N (A+A, δ) +N (A+ fA, δ) ≥ δ−εN (A, δ).

The theorem above is almost equivalent to the fact that one can obtain from
A a small ball in E using a bounded number of sums and products. This is the
content of the proposition below, which we obtain as a simple application of [23,
Theorem 2.3]. For a subset A in an algebra E and s ∈ N∗, we let 〈A〉s denote the
set of elements in E that can be obtained as sums of at most s products of at most
s elements of A or −A.

Proposition 2.3 (Bounded generation in semisimple algebras). Let E be a finite-
dimensional real semisimple algebra. Given κ > 0 and ε0, there exists ε = ε(E, κ, ε0) >
0 and s = s(E, κ, ε0) ≥ 1 such that the following holds for all δ > 0 sufficiently
small. If A ⊂ B(0, δ−ε) satisfies ANC(ε, κ) at scale δ in E, then

B(0, δε0) ⊂ 〈A〉s + B(0, δ).

Proof. We consider the action of the multiplicative group G = E× on V = E. By
semisimplicity, we may decompose E into a sum of non-trivial irreducible represen-
tations E = ⊕iVi. Let πi : G → GL(Vi) denote the representation of G on Vi. By
[23, Theorem 2.3], there is a neighbourhood U of the identity in G and constants
ε = ε(E, κ, ε0) > 0 and s = s(E, κ, ε) ≥ 1 such that the following holds for all δ > 0
sufficiently small. Let A0 be a subset of U and A1 a subset of BV (0, 1). Assume

(i) for all i = 1, . . . , k, for all ρ ≥ δ, N (πi(A0), ρ) ≥ δερ−κ,
(ii) for any linear subspace W ⊂ V which is not G-invariant, there is a ∈ A0

such that d(a,StabG(W )◦) ≥ δε,
(iii) for any proper G-invariant linear subspace W ⊂ V , there is a ∈ A1 such

that d(a,W ) ≥ δε.
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Then
BV (0, δε0) ⊂ 〈A0, A1〉s + B(0, δ).

Here, 〈A0, A1〉s denotes the set of elements in V that can be obtained as sums of
at most s products of at most s elements of A0 and elements of A1 ∪ (−A1).

Our set A is not necessarily contained in the neighborhood U , but we may cover
A by translates of U in E, and then, by the pigeonhole principle, there is a ∈ A
such that A0 = (A− a) ∩ U satisfies

N (A0, δ)�U δO(ε)N (A, δ).

This set A0 satisfies ANC(O(ε), κ). This non-concentration condition applied to
the suspaces ⊕j 6=iVj shows that the first condition above is verified. Moreover, if
W ⊂ E is not G-invariant, then the algebra generated by StabG(W ) is a proper
subalgebra of E; so the second condition is also satisfied. To conclude, take A1 = A,
which certainly satisfies the third condition. �

In short, Theorem 2.2 will follow from Proposition 2.3 applied to the set B in
the tensor algebra E ⊗ Eop, and from the Plünnecke-Ruzsa inequality.

Proof of Theorem 2.2. For K ≥ 1, define

Rδ(A,K) =
{
f ∈ E ⊗ Eop

∣∣N (A+ fA, δ) ≤ KN (A, δ)
}
.

As explained in [21, Lemma 30], it follows from the Plünnecke-Ruzsa inequality
that if N (A + A, δ) ≤ KN (A, δ), then the set Rδ(A,K) is almost stable under
addition and multiplication. More precisely, for s ∈ N,

〈Rδ(A,K)〉s + BE⊗Eop(0, δ) ⊂ Rδ(A,KOs(1)).

Now assume for a contradiction that B∪{1} ⊂ Rδ(A, δ−ε). Since E is a semisimple
algebra, E ⊗ Eop is also one. Thus, by Proposition 2.3 applied to the set B ⊂
E ⊗ Eop, for any ε0 > 0, there is s = s(E, κ, ε0) ≥ 1 such that

BE⊗Eop(0, δε0) ⊂ 〈B〉s + B(0, δ)

and therefore,

BE⊗Eop(0, δε0) ⊂ 〈B〉s + B(0, δ) ⊂ Rδ(A, δ−Os(ε)).

In particular, δε0 ∈ Rδ(A, δ−Os(ε)). This certainly implies δ−ε0 ∈ Rδ(A, δ−Os(ε0+ε))
and then

BE⊗Eop(0, 1) ⊂ Rδ(A, δ−Os(ε0+ε)).

If ε0 and ε are chosen small enough, this contradicts Lemma 2.4 below. �

We are left to show the next lemma, stating that if A has ANC(ε, κ) at scale δ,
then BE⊗Eop(0, 1) is not contained in Rδ(A, δ−ε).

Lemma 2.4. Let E be a finite-dimensional real semisimple algebra with E = E1⊕
· · ·⊕Er being its decomposition into minimal two-sided ideals. We write πj : E → Ej
for the corresponding projections.

Given κ > 0, there exists ε = ε(E, κ) > 0 such that the following holds. Let
A ⊂ B(0, δ−ε) be a subset of E. Assume

(i) N (A, δ) ≤ δ− dimE+κ

(ii) for each j = 1, . . . , r, maxx∈Ej N (A ∩ π−1
j (BEj (x, ρ)), δ) ≤ ρκN (A, δ)

then there exists f ∈ BE⊗Eop(0, 1) such that

N (A+ fA, δ) > δ−εN (A, δ).
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Proof. The image of E⊗Eop in End(E) is equal to the image of
⊕r

j=1Ej⊗E
op
j . Let

fj , j = 1, . . . , r be a family of jointly independent random elements of BEj⊗Eop
j

(0, 1)

distributed according to the Lebesgue measure on Ej ⊗ Eop
j , and set

f = f1 + · · ·+ fr

regarded as a random element of End(E). In the following argument, probabilities
and expectations are taken with respect to these random variables. For each j,
since the algebra Ej is simple, the action of Ej ⊗ Eop

j on Ej is irreducible. Hence
Ej ⊗ Eop

j (y) = Ej for any non-zero y ∈ Ej and consequently,

(2.1) ∀δ > 0, ∀x, y ∈ Ej , P
[
‖fj(y)− x‖ ≤ δ

]
� δdimEj‖y‖− dimEj .

Consider the map
ϕ : A×A → E

(x, y) 7→ x+ fy

The energy of the map ϕ at scale δ > 0 is defined as

Eδ(ϕ,A×A) = N
(
{ (a, a′, b, b′) ∈ A×A×A×A | ‖ϕ(a)− ϕ(a′)‖ ≤ δ }, δ

)
.

By the Cauchy-Schwarz inequality — see also [21, Lemma 12(i)],

N (ϕ(A×A), δ) = N (A+ fA, δ) ≥ N (A, δ)4

Eδ(ϕ,A×A)
.

Taking expectations and applying Jensen’s inequality, we find

(2.2) E
[
N (A+ fA, δ)

]
≥ N (A, δ)4

E
[
Eδ(ϕ,A×A)

]
so it suffices to bound E

[
Eδ(ϕ,A×A)

]
from above.

For that, let Ã be a maximal δ-separated subset of A. By [21, Lemma 12(ii)],

E
[
Eδ(ϕ,A×A)

]
≤

∑
x,y,x′,y′∈Ã

P
[
f(y′ − y) ∈ B(x− x′, 5δ)

]
.

Let ρ = δ
κ

dimE+κ . We split the sum into two parts according to whether

∀j = 1, . . . , r, ‖πj(y′ − y)‖ ≥ ρ.

If this is the case, then (2.1) implies

P
[
f(y′ − y) ∈ B(x− x′, 5δ)

]
� δdimEρ− dimE .

Otherwise, there is j ∈ {1, . . . , r} such that πj(y′) ∈ B(πj(y), ρ). For fixed y the
number of such y′ in Ã is

#
(
Ã ∩ π−1

j (B(πj(y), ρ))
)
� N (A ∩ π−1

j (B(πj(y), ρ)), δ) ≤ ρκN (A, δ).

Moreover for fixed y, y′ and x, we have∑
x′∈Ã

P
[
f(y′ − y) ∈ B(x− x′, 5δ)

]
� 1

because the balls B(x′, 5δ) have overlap multiplicity at most O(1). Putting these
considerations together, we obtain

E
[
Eδ(ϕ,A×A)

]
� δdimEρ− dimEN (A, δ)4 + ρκN (A, δ)3

≤
(
δκρ− dimE + ρκ

)
N (A, δ)3

= δ
κ2

dimE+κN (A, δ)3

Combined with (2.2), this finishes the proof of the lemma. �
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2.2. L2-flattening. Our goal is now to translate the sum-product theorem ob-
tained above in terms of measures on the semisimple algebra E. The result we
obtain is an L2-flattening lemma for additive and multiplicative convolutions of
measures on E. Statements of this form already appear implicitly in the work of
Bourgain [8, 9] on the Erdős-Volkmann ring conjecture, and were later much popu-
larized by their application to the spectral gap problem by Bourgain and Gamburd
[12, 11]. They are usually derived from the analogous combinatorial growth state-
ment, via a decomposition of the measures into dyadic level sets, combined with an
application of the Balog-Szemerédi-Gowers lemma.

Before we can state our result, we give a non-concentration condition for mea-
sures on E, analogous to the one given for subsets in the previous paragraph.

Definition (Affine non-concentration for measures). Let V be a Euclidean space,
and ε, κ > 0 two parameters. We say that a measure η on V satisfies ANC(ε, κ) at
scale δ if

(i) supp η ⊂ B(0, δ−ε);
(ii) for every ρ ≥ δ and every proper affine subspaceW ⊂ V , η(W (ρ)) ≤ δ−ερκ.
In this paper, measures are often studied at some fixed small positive scale δ.

For that reason, it is convenient to define the regularized measure ηδ of a measure
η on E at scale δ by

ηδ = η � Pδ
where Pδ =

1B(0,δ)

|B(0,δ)| is the normalized indicator function of the ball of radius δ
centered at 0. The measure ηδ will be identified with its density with respect to
the Lebesgue measure on E, and we write

‖η‖2,δ = ‖ηδ‖2.
Proposition 2.5 (L2-flattening). Let E be finite-dimensional semisimple algebra
over R. Given κ > 0, there exists ε = ε(E, κ) such that the following holds for all
δ > 0 sufficiently small. Let η be a probability measure on E satisfying

(i) η is supported on E \ SE(δε);
(ii) η satisfies ANC(ε, κ) at scale δ on E;
(iii) δ−κ+ε ≤ ‖η‖22,δ ≤ δ− dimE+κ−ε.

Then,
‖η ∗ η ∗ η � η ∗ η ∗ η‖2,δ ≤ δε‖η‖2,δ.

We wish to deduce this proposition from Theorem 2.2. A first useful obser-
vation is that the non-concentration condition for measures is closely related to
non-concentration for subsets.

Lemma 2.6. Given an Euclidean space V , and parameters ε > 0 and κ > 0, the
following holds for all δ > 0 sufficiently small.

(i) If A ⊂ V has ANC(ε, κ) at scale δ, then there is a measure supported on A
which has ANC(2ε, κ) at scale δ.

(ii) Let η be a probability measure on V satisfying ANC(ε, κ) at scale δ. If
A ⊂ V is a subset such that η(A) ≥ δε then there is a subset A′ ⊂ A which
satisfies ANC(6ε, κ) at scale δ.

Proof. For the first item, let Ã be a maximal δ-separated subset of A. The nor-
malised counting measure on Ã satisfies the desired property. The second item is
slightly more subtle. Since the normalised restriction of η to A satisfies ANC(2ε, κ),
we may assume without loss of generality that A = suppµ. Let d denote the di-
mension of V . Set A0,0 = A and for integers 0 < i� log 1

δ + 1,

Ai,0 =
{
a ∈ A

∣∣∣ 2i−1 <
η(B(a, 2δ))

|B(0, δ)|
≤ 2i

}
.
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Then for all i ≥ 0, set Ai = A
(δ)
i,0 . It follows from this construction that

ηδ �
∑
i

2i 1Ai �
(

log
1

δ

)
η3δ + 1A0 .

Necessarily, there is some i ≥ 0 such that 2i|Ai| ≥ δε. It is then easy to check that
A′ = Ai,0 satisfies ANC(3ε, κ) at scale δ. �

The next lemma is similar in spirit to the previous one. Roughly speaking, given
measures η on V and µ on GL(V ) such that the convolution µ ∗ η� µ ∗ η has large
L2-norm at scale δ, we construct related subsets A ⊂ V and B ⊂ GL(V ) such
that A − BA is not much larger than A. This is the central part of the proof of
Proposition 2.5; it relies on the Balog-Szemerédi-Gowers lemma.

Lemma 2.7. Let V be a Euclidean space and µ a probability measure on GL(V )
such that

∀g ∈ suppµ, ‖g‖+ ‖g−1‖ ≤ δ−ε.
Let η be a probability measure on BV (0, δ−ε) such that

‖µ ∗ η � µ ∗ η‖2,δ > δε‖η‖2,δ.

Then there exist a subset A ⊂ BV (0, δ−O(ε)) and an element g1 ∈ suppµ such that

δ− dimV+O(ε)‖η‖−2
2,δ ≤ N (A, δ) ≤ δ− dimV−O(ε)‖η‖−2

2,δ

and
µ
({
g ∈ GL(V )

∣∣N (A− gg−1
1 A, δ) ≤ δ−O(ε)N (A, δ)

})
≥ δO(ε).

If moreover η satisfies ANC(ε, κ) in V at scale δ for some κ > 0 then A satisfies
ANC(O(ε), κ).

Proof. We use the following rough comparison notation : for positive quantities f
and g, we write f . g for f ≤ δ−O(ε)g and f ∼ g for f . g and g . f .

We have
‖µ ∗ ηδ � µ ∗ ηδ‖2 & ‖µ ∗ η � µ ∗ η‖2,δ & ‖ηδ‖2.

As in the proof of Lemma 2.6, we can approximate µδ using dyadic level sets : there
are δ-discretized sets1 (Ai)i≥0 in BV (0, δ−ε) such that Ai is empty for i � log 1

δ
and

(2.3) ηδ �
∑
i≥0

2i 1Ai . η3δ + 1A0 .

By the pigeonhole principle, there are i, j ≥ 0 such that

‖ηδ‖2 . ‖µ ∗ ηδ � µ ∗ ηδ‖2
. 2i+j‖µ ∗ 1Ai �µ ∗ 1Aj‖2

. 2i+j
∫

GL(V )×GL(V )

‖1gAi �1g′Aj‖2d(µ⊗ µ)(g, g′).

In the last inequality, we used g ∗ 1Ai = |det g|−1
1gAi and |det g| ∼ 1 for all

g ∈ suppµ. By the right inequality in (2.3), we have

2i|Ai| . 1 and 2j |Aj |
1
2 . ‖ηδ‖2

and similarly
2j |Aj | . 1 and 2i|Ai|

1
2 . ‖ηδ‖2.

By Young’s inequality and the estimate on det g, we have for all g, g′ ∈ suppµ,

2i+j‖1gAi �1g′Aj‖2 . ‖ηδ‖2.

1A δ-discretized set is a union of balls of radius δ.
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Thus, by the pigeonhole principle again, there exists g0 ∈ suppµ and a set B0 ⊂
suppµ such that µ(B0) & 1 and for all g ∈ B0,

‖ηδ‖2 & 2i+j‖1g0Ai �1gAj‖2 & ‖ηδ‖2.

By the above estimates, this implies

‖1g0Ai �1gAj‖22 & 2−2i−2j‖ηδ‖22
& 2−i−j |Ai|

1
2 |Aj |

1
2

& |Ai|
3
2 |Aj |

3
2

∼ |g0Ai|
3
2 |gAj |

3
2 .

By the Balog-Szemerédi-Gowers lemma [32, Theorem 6.10], for each g ∈ B0 there
are δ-discretized subsets Ag ⊂ Ai and A′g ⊂ Aj such that

|Ag| ∼ |Ai|, |A′g| ∼ |Aj |, and N (g0Ag − gA′g, δ) . N (g0Ag, δ)
1
2N (gA′g, δ)

1
2 .

By a Cauchy-Schwarz and pigeonhole argument there are g1 ∈ B0 and B1 ⊂ B0

such that µ(B1) & 1 and

∀g ∈ B1, |Ag1 ∩Ag| ∼ |Ag1 | ∼ |Ag| and |A′g1 ∩A
′
g| ∼ |A′g1 | ∼ |A

′
g|.

For subsets A,A′ ∈ V , write A ≈ A′ if N (A − A′, δ) . N (A, δ)
1
2N (A′, δ)

1
2 .

By Ruzsa’s triangle inequality (see [32, Lemma 3.2 and Section 6], if A ≈ A′ and
A′ ≈ A′′, then A ≈ A′′, and moreover, if A ≈ A′ for some sets A and A′, then
A ≈ A and A′ ≈ A′.

The above shows that for every g ∈ B0, g0Ag ≈ gA′g. This implies g0Ag ≈ g0Ag,
and since g is δ−ε-Lipschitz, Ag ≈ Ag. Therefore, for g1 ∈ B0 and g ∈ B1 as above,
we find Ag1 ≈ Ag1 ∩Ag ≈ Ag. Similarly, A′g1 ≈ A

′
g,. Finally

g0Ag1 ≈ g0Ag ≈ gA′g ≈ gA′g1 ≈ gg
−1
1 g0Ag1 ,

showing that A = g0Ag1 has all the desired properties.
For the "moreover" part, note that η(Ai) & 1. By the proof of Lemma 2.6(ii),

Ai satisfies ANC(O(ε), κ) and hence so does Ag1 and A. �

To prove Proposition 2.5 we use the above lemma for the action of E ⊗ Eop on
E, and the apply the sum-product theorem in E.

Proof of Proposition 2.5. Let µ be the image measure of η ⊗ η in GL(E), so that
µ ∗ η � µ ∗ η = η ∗ η ∗ η � η ∗ η ∗ η. Assume for a contradiction that

‖µ ∗ η � µ ∗ η‖2,δ > δε‖η‖2,δ.

Then by Lemma 2.7 there is a subset A ⊂ E satisfying the ANC(O(ε), κ) at scale
δ and an element g1 ∈ suppµ such that

δ−κ+O(ε) ≤ N (A, δ) ≤ δ− dimE+κ−O(ε).

and
µ
({
g ∈ GL(V )

∣∣N (A− gg−1
1 A, δ) ≤ δ−O(ε)N (A, δ)

})
≥ δO(ε).

By definition of µ, we may write g1 = a1 ⊗ b1, and the above inequality becomes

(η ∗ a−1
1 )⊗ (b−1

1 ∗ η)
({

(a, b) ∈ E × E
∣∣N (A− aAb, δ) ≤ δ−O(ε)N (A, δ)

})
≥ δO(ε).

Since a1, b1 6∈ SE(δε), the measures η ∗ a−1
1 and b−1

1 ∗ η satisfy ANC(O(ε), κ)
at scale δ. Moreover, Lemma 2.8 below shows that (η ∗ a−1

1 )⊗̇(b−1
1 ∗ η) satisfies

ANC(O(ε), κ2 ). In view of Lemma 2.6(ii), this contradicts Theorem 2.2, provided ε
is chosen small enough. �
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Lemma 2.8. Let V1 and V2 be finite-dimensional linear spaces. For each i = 1, 2,
let ηi be a measure on Vi and denote by η1⊗̇η2 the image measure of η1⊗ η2 by the
natural bilinear map V1 × V2 → V1 ⊗ V2.

Given two parameters ε, κ > 0, the following holds for δ > 0 sufficiently small.
If η1 and η2 both satisfy ANC(ε, κ) at scale δ, then η1⊗̇η2 satisfies ANC(2ε, κ2 ) in
V1 ⊗ V2 at scale δ.

Proof. Let v1 and v2 be independent random variables taking values respectively
in V1 and V2 and distributed according to η1 and η2. To establish ANC(2ε, κ2 ) for
η1⊗̇η2, it is enough to show that for any linear form ϕ ∈ (V1 ⊗ V2)∗ with ‖ϕ‖ = 1,
any t ∈ R and any ρ ≥ δ, we have

(2.4) P
[
|ϕ(v1 ⊗ v2)− t| < ρ

]
� δ−ερκ/2.

Note that (V1 ⊗ V2)∗ = V ∗1 ⊗ V ∗2 . Hence, letting (ψ1, . . . , ψd) be a orthonormal
basis of V ∗1 , we can write ϕ ∈ (V1 ⊗ V2)∗ as

ϕ = ψ1 ⊗ ϕ1 + · · ·+ ψd ⊗ ϕd

where ϕ1, . . . , ϕd ∈ V ∗2 are uniquely determined. Moreover,

(2.5) 1 = ‖ϕ‖2 = ‖ϕ1‖2 + · · ·+ ‖ϕd‖2.

On the one hand, when v2 is fixed, the map

v1 7→ ϕ(v1 ⊗ v2) =

d∑
i=1

ψi(v1)ϕi(v2)

is the linear form
∑d
i=1 ϕi(v2)ψi ∈ V ∗1 , which has norm

∑d
i=1|ϕi(v2)|2. Thus, by

independence of v1 and v2 and property ANC(ε, κ) for η1, we can estimate the
conditional probability

(2.6) P
[
|ϕ(v1 ⊗ v2)− t| < ρ

∣∣∣ d∑
i=1

|ϕi(v2)|2 ≥ ρ1/2
]
≤ δ−ερκ/2.

On the other hand, by property ANC(ε, κ) for η2, for each i = 1, . . . , d,

P
[
|ϕi(v2)| ≤ ρ1/2‖ϕi‖

]
≤ δ−ερκ/2.

Hence, on account of (2.5),

(2.7) P
[ d∑
i=1

|ϕi(v2)|2 < ρ1/2
]
≤ dδ−ερκ/2.

Inequalities (2.6) and (2.7) together imply (2.4) and finish the proof of the lemma.
�

2.3. Fourier decay. To prove Theorem 2.1 we apply the L2-flattening Proposi-
tion 2.5 repeatedly. The measures we obtain are images of tensor powers ηk under
polynomial maps Ek → E, and we need to compare their Fourier decay to that of
simple multiplicative convolutions of η. This is the content of the next lemma. This
technique will also be useful to weaken slightly the assumptions of Theorem 2.1,
see Corollary 2.11 below.

Lemma 2.9. Let E be any real associative algebra, and let η be a measure on E
with η(E) ≤ 1. Let µ = η ∗ η ∗ η � η ∗ η ∗ η then for any integer m ≥ 1,

∀ξ ∈ E∗, |η̂∗3m(ξ)|2
m

≤ |µ̂∗m(ξ)|.
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Proof. By [25, Lemma B.6], if η, η′, η′′ be probability measures on E, then the
Fourier transform of η ∗ (η′ � η′) ∗ η′′ takes non-negative real values and moreover,

∀ξ ∈ E∗, |(η ∗ η′ ∗ η′′)∧(ξ)|2 ≤
(
η ∗ (η′ � η′) ∗ η′′

)∧
(ξ).

By a simple renormalising argument we see that the same holds η, η′, η′′ are
measures with total mass η(E), η′(E), η′′(E) ≤ 1. Using this inequality m times
with measure η′ = η∗3, so that µ = η′ � η′, we get

|µ̂∗m(ξ)| ≥ | ̂µ∗(m−1) ∗ η∗3(ξ)|2 ≥ · · · ≥ |η̂∗3m(ξ)|2
m

.

�

We shall also need a lemma on Fourier decay for multiplicative convolutions
of measures with small L2-norm. In the case where E = R, such bounds origi-
nate in the work of Falconer [18] on projection theorems, and appear explicitly in
Bourgain [9, Theorem 7]. The result below is taken from [22, Lemma 2.9].

Lemma 2.10. Let E be a finite-dimensional real associative algebra with unit.
The following holds for any parameters κ > 0 and ε > 0 and any scale δ > 0 small
enough. Let η and ν be probability measures on E. Assume

(i) ‖η‖22,δ ≤ δ−κ,
(ii) supp η ⊂ B(0, δ−ε) and supp ν ⊂ B(0, δ−ε),
(iii) for every proper affine subspace W ⊂ E, ν(W (δ)) ≤ δ2κ.

Then for ξ ∈ E∗ with δ−1+ε ≤ ‖ξ‖ ≤ δ−1−ε,

|η̂ ∗ ν(ξ)| ≤ δ
κ

dimE+3−O(ε).

We can finally derive Theorem 2.1.

Proof of Theorem 2.1. First case: η1 = · · · = ηs = η.
For a measure η satisfying NC(ε, κ, τ) at scale δ, we write ess(η) to denote the
essential part of η, defined as a measure on E satisfying

(i) ess(η) ≤ η and ess(η)(E) ≥ η(E)− 3δτ ,
(ii) ess(η) is supported on B(0, δ−ε) \ SE(δε),
(iii) ess(η) satisfies ANC(ε, κ) at scale δ.
If η and η′ satisfy NC(ε, κ, τ) at scale δ, then η � η′, η � η′ and η ∗ η′ all satisfy

NC(O(ε), κ, τ2 ) at scale δ. We may therefore define inductively η0 = ess(η), and for
k ≥ 0,

ηk+1 = ess
(
η∗3k � η

∗3
k

)
,

to get, for each k ≥ 0,

(i) ηk(E) ≥ 1− δ
τ

Ok(1) ,
(ii) ηk is supported on B(0, δ−Ok(ε)) \ SE(δOk(ε)),
(iii) ηk satisfies ANC(Ok(ε), κ) at scale δ.

Note that ANC(Ok(ε), κ) implies

‖ηk‖22,δ ≤ δ− dimE+κ−Ok(ε).

By Proposition 2.5, there exists ε1 = ε1(E, κ) such that, provided ε > 0 is small
enough, we have for each 0 ≤ k ≤

⌈
dimE
ε1

⌉
, either ‖ηk‖22,δ ≤ δ−κ or

‖ηk+1‖22,δ ≤ δε1‖ηk‖22,δ.

Hence there exists s ≤
⌈

dimE
ε1

⌉
such that

‖ηs‖22,δ ≤ δ−κ.
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By Lemma 2.10, for ξ ∈ E∗ with δ−1+ε ≤ ‖ξ‖ ≤ δ−1−ε,∣∣η̂∗2s (ξ)
∣∣ ≤ δ κ

O(1)
−O(ε) ≤ δτ .

Now, a first application of Lemma 2.9 to µ = η∗3s−1 � η
∗3
s−1 with m = 2 yields

η̂∗2s (ξ) + δ
τ

Os(1) = µ̂∗2(ξ) ≥ |η̂∗2·3s−1 (ξ)|2
2

.

A second application of the same lemma to µ = η∗3s−2 � η
∗3
s−2 with m = 2 · 3 gives

η̂∗2·3s−1 (ξ) + δ
τ

Os(1) = µ̂∗2·31 (ξ) ≥ |η̂∗2·32

s−2 (ξ)|2
2·3

and repeating this process s times, we finally obtain∣∣η̂∗2·3s0 (ξ)
∣∣Os(1) ≤

∣∣η̂∗2s (ξ)
∣∣+ δ

τ
Os(1) ≤ δ

κ
O(1)
−O(ε) ≤ δ

τ
Os(1) .

This allows to conclude the proof of the theorem in this first case:∣∣η̂∗2·3s(ξ)∣∣ ≤ ∣∣η̂∗2·3s0 (ξ)
∣∣+Os(δ

τ ) ≤ δετ .
General case
To deduce the general case from the previous one, we follow [25, Proof of Theo-
rem B.3]. In short, one applies the previous case to the measures

ηλ = λ1(η1 � η1) + · · ·+ λs(ηs � ηs),

where λ = (λ1, . . . , λs) in Rs+ is such that λ1 + · · · + λs ≤ 1. The Fourier decay
for η1 ∗ · · · ∗ ηs can be deduced from that of ηλ ∗ · · · ∗ ηλ for every λ using the fact
that Fourier coefficients of ηλ ∗ · · · ∗ ηλ can be written as polynomials in λ whose
coefficients are essentially Fourier coefficients of η1 ∗ · · · ∗ ηs. The reader is referred
to [25] for details. �

We conclude this section by showing that the conclusion of Theorem 2.1 still
holds if the non-concentration assumption is only satisfied for some additive con-
volution of the measures ηi, i = 1, . . . , s. This will be useful when we study Fourier
decay of random walks on linear groups.

Corollary 2.11. Let E be a normed finite-dimensional semisimple algebra over R.
Given D ∈ N∗ and κ > 0, there exists s = s(E, κ) ∈ N and ε = ε(E, κ,D) > 0
such that for any parameter τ ∈ (0, εκ) the following holds for any scale δ > 0
sufficiently small.

If ηi, i = 1, . . . , s are probability measures on E such that each η�Di satisfies
NC(ε, κ, τ) at scale δ, then for all ξ ∈ E∗ with δ−1+ε ≤ ‖ξ‖ ≤ δ−1−ε,

|(η1 ∗ · · · ∗ ηs)∧(ξ)| ≤ δετ .

Proof. Let ξ ∈ E∗ with δ−1+ε ≤ ‖ξ‖ ≤ δ−1−ε. Since all the measures η�Di � η�Di ,
i = 1, . . . , s satisfy NC(ε, κ, τ) at scale δ, Theorem 2.1 shows that∣∣∣((η�D1 � η�D1 ) ∗ · · · ∗ (η�Ds � η�Ds )

)∧
(ξ)
∣∣∣ ≤ δετ .

Applying [25, Lemma B.6] repeatedly s times, we see that∣∣∣((η�D1 � η�D1 ) ∗ · · · ∗ (η�Ds � η�Ds )
)∧

(ξ)
∣∣∣

≥
∣∣∣((η�D1 � η�D1 ) ∗ · · · ∗ (η�Ds−1 � η

�D
s−1) ∗ ηs

)∧
(ξ)
∣∣∣2D

≥ . . .

≥ |(η1 ∗ · · · ∗ ηs)∧(ξ)|(2D)s

so that
|(η1 ∗ · · · ∗ ηs)∧(ξ)| ≤ δ

ετ
(2D)s .

�
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3. Non-concentration for random walks on semisimple groups

In this section we consider a probability measure µ on SLd(Z), and we prove some
non-concentration property for the law of the associated random walk, viewed as
a measure on the algebra generated by µ. Let Γ be the group generated by the
support of µ and G be the Zariski closure of Γ in SLd(R). We assume that G is
semisimple and Zariski connected.

Let E denote the R-linear span of G in Md(R), which is also the subalgebra
generated by G in Md(R). Since G is semisimple, one may decompose E into a
direct sum of irreducible G-modules. This gives a decomposition of E into minimal
left ideals, so that by the fundamental theorem of semisimple rings [33, §117], E is
a semisimple algebra. Let

(3.1) E = E1 ⊕ · · · ⊕ Er
be the decomposition of E into simple factors, i.e. into minimal two-sided ideals.
For j = 1, . . . , r, let πj : E → Ej denote the corresponding projections. Consider
the top Lyapunov exponent associated to µ on each of the factors Ej , defined by

λ1(µ,Ej) = lim
n→+∞

1

n

∫
log‖πj(g)‖dµ∗n(g).

In order to study the law at time n of the random walk, we shall use the rescaling
automorphism ϕn : E → E defined by

(3.2) ϕn(g) =

r∑
j=1

e−nλ1(µ,Ej)πj(g).

Recall that by Furstenberg’s theorem [19] on the positivity of the Lyapunov
exponent, one has λ1(µ,Ej) ≥ 0 with equality if and only if πj(G) is compact.
After reordering the factors, we may assume that λ1(µ,Ej) > 0 if and only if j ≤ s
for some integer s ≤ r. Let E′ = E1 ⊕ · · · ⊕ Es and π′ : E → E′ the corresponding
projection. Finally, for n ≥ 1 we define

µn = (π′ ◦ ϕn)∗(µ
∗n).

The goal of this section is as follows.

Proposition 3.1 (Non-concentration). Let µ be a probability measure on SLd(Z)
having a finite exponential moment. Let G denote the algebraic group generated by
µ. Assume that G is semisimple and Zariski connected, and denote by E ⊂Md(R)
the algebra generated by G. Writing D = dimE, there exists κ = κ(µ) > 0 such
that for any ε > 0 there exists τ > 0 such that µ�D

n satisfies NC(ε, κ, τ) at scale
e−n in E′ for all n sufficiently large.

The reader can easily convince themselves that µn does not satisfy NC(ε, κ, τ),
especially the nonconcentration condition near singular matrices. Hence taking an
additive convolution power is necessary.

3.1. Non-concentration near affine subspaces. In this subsection we show that
if µ is a probability measure on SLd(Z) generating a connected semisimple algebraic
group G, the law at time n of the random walk associated to µ is not concentrated
near proper affine subspaces of the algebra generated by µ.

We introduce a quasi-norm adapted to the random walk on the algebra E gener-
ated by µ. Given an element g in E, we write g =

∑r
i=1 gi according to the direct

sum decomposition (4.1) and set

|g|∼ = max
1≤i≤s

‖gi‖
1

λ1(µ,Ei) .
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Note that |g| = 0 if and only if g lies in the sum

E0 := Es+1 ⊕ · · · ⊕ Er
of all compact factors. We denote by d̃ the quasi-distance on E given by d̃(x, y) =
|x− y|∼. For instance, if W is any affine subspace of E, we write

d̃(g,W ) = inf
w∈W
|g − w|∼.

Our goal is the following proposition.

Proposition 3.2 (Affine non-concentration on E). Let µ and G be as in There
exists κ = κ(µ) > 0 such that for every n ≥ 0 and ρ ≥ e−n, for every affine
hyperplane W ⊂ E such that W −W ⊃ E0,

µ∗n
({
g ∈ G

∣∣ d̃(g,W ) < ρ min
j∈JW

|πj(g)|∼
})
� ρκ

where JW = { 1 ≤ j ≤ r |Vj 6⊂W −W }.

Remark. In general, it is not possible to replace the minimum minj∈JW |πj(g)|∼
by |g|∼. This can be seen for example by taking G = G1 ×G1 and µ = µ1 ⊗ µ1; in
other words, the random walk is the direct product of two independent copies of a
random walk on G1. By the central limit theorem for random matrix products, the
probability to obtain at time n an element g = (g1, g2) such that ‖g1‖ ≤ e−

√
n‖g2‖

has a positive limit c. Therefore, for large n,

µ∗n
({
g = (g1, g2) ∈ G

∣∣ ‖g1‖ < e−
√
n‖g‖

})
≥ c

2
.

and taking W = {0} × SpanR(G1), we find

µ∗n
({
g ∈ G

∣∣ d̃(g,W ) < e−
√
n|g|∼

}
) ≥ c

2
.

3.1.1. The case of a simple algebra. For clarity, we first explain the proof of Propo-
sition 3.2 when the algebra E generated by G is simple. In that case, the quasi-norm
is a norm on E and minj∈JW |πj(g)|∼ = ‖g‖. The key result in the proof is following
proposition, which we shall later apply to the irreducible action of G×G on E.

Proposition 3.3. Let µ be a probability measure on SLd(Z) with a finite exponen-
tial moment. Assume that the algebraic group G generated by µ is Zariski connected
and acts irreducibly on V = Rd. There exists κ = κ(µ) such that for every v ∈ V ,
and any affine hyperplane W ⊂ V ,

µ∗n
(
{ g ∈ G | d(gv,W ) ≤ ρ‖gv‖ }

)
� ρκ.

Proof. First step: escape from affine subvarieties.
There exists c > 0 such that for every affine map f on E that is not identically zero
on G,

µ∗n
(
{ g ∈ G | f(g) = 0 }

)
� e−cn.

Indeed, by [2, Lemme 8.5], the group G is semisimple. So the desired inequality
follows from the spectral gap property modulo prime integers [31], combined with
the Lang-Weil estimates on the number of points on algebraic varieties in finite
fields. We refer the reader to [22, Proposition 3.7] for a detailed argument.
Second step: a small neighborhood via a Diophantine property.
There exist C, c > 0 such that for every non-zero polynomial map f of degree at
most 1 on G,

µ∗n
(
{ g ∈ G | |f(g)| ≤ e−Cn‖f‖ }

)
� e−cn.

By the large deviation principle (see Theorem 3.11), there exists c > 0 such that
for all n large enough, µ∗n({g ∈ G | ‖g‖ > e2λ1(µ,V )}) ≤ e−cn. Therefore, to prove
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the desired inequality, it suffices to show that for C ≥ 0 large enough, the subset
An ⊂Md(Z) defined as

An =
{
g ∈ Γ

∣∣ |f(g)| ≤ e−Cn‖f‖ and ‖g‖ ≤ e2λ1(µ,V )
}

is included in G ∩ kerψ for some affine map ψ : E → R not identically zero on G.
Suppose for a contradiction that this is not the case. Letting k = dimR≤1[G] be

the dimension of the space of polynomial maps on G of degree at most 1, we may
choose g1, . . . , gk in An such that the linear map

L : R≤1[G] → Rk
ψ 7→ (ψ(g1), . . . , ψ(gk))

is bijective. Since it has integer coefficients and norm at most eC0n, we get ‖L−1‖ ≤
eC1n. In particular, ‖f‖ ≤ eC1n‖Lf‖ = eC1n max1≤i≤k|f(gi)| ≤ eC1ne−Cn‖f‖,
which is the desired contradiction.
Third step: distance to proper subspaces.
There exist C, c > 0 such that for every v ∈ V and every affine hyperplane W ⊂ V ,

µ∗n({g ∈ G | d(gv,W ) ≤ e−Cn‖v‖})� e−cn.

Then, let ϕW : V → R be an affine map such that kerϕW = W , and consider the
affine map on G given by

fv,W (g) =
ϕW (gv)

‖ϕW ‖
.

Note that |fv,W (g)| � d(gv,W ). Let B = BG(1, 1) denote the unit ball cen-
tered at the identity in G. Note that ‖v‖ � supg∈B |fv,W (g)| within constants
independent of v and W . Indeed, otherwise, we may find vn and Wn such that
supg∈B d(gvn,Wn)→ 0. Extracting subsequences if necessary, we may assume that
vn → v and Wn → W ; then for every g ∈ B, d(gv,W ) = lim d(gvn,Wn) = 0. This
implies that G · v ⊂ W and contradicts the assumption that G acts irreducibly on
V . The desired inequality therefore follows from the previous step.
Fourth step: scaling.
First observe that increasing C slightly, we can assume that for every v ∈ V and
every affine hyperplane W ⊂ V ,

µ∗n
(
{ g ∈ G | d(gv,W ) ≤ e−Cn‖gv‖ }

)
� e−cn.

Indeed, by the large deviation estimate,

µ∗n
(
{ g ∈ G | ‖gv‖ ≤ e2λ1n‖v‖ }

)
≥ 1− e−cn

where λ1 = λ1(µ, V ) is the top Lypunov exponent of µ.
Let κ = c

C , where C, c > 0 are the constants obtained above. Choose m ∈ N∗
such that ρ = e−Cm and write

µ∗n
(
{ g ∈ G | d(gv,W ) ≤ ρ‖gv‖ }

)
=

∫
µ∗m

(
{ g ∈ G | d(gg1v,W ) ≤ e−Cm‖gg1v‖ }

)
dµ∗(n−m)(g1)

≤ e−cm = ρκ.

�

Proof of Proposition 3.2, case where E is simple. For x ∈ E, let Lx : E → E and
Rx : E → E denote the left and right multiplication by x, respectively. Given a
probability measure µ on G, we define a probability measure µ̄ on GL(E) by

µ̄ =
1

2
L∗µ+

1

2
R∗µ.
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The group generated by µ̄ is isomorphic to G × G and acts irreducibly on E.
Moreover, in an appropriate basis, the elements of supp µ̄ have integer coefficients,
so we may apply Proposition 3.3 to µ̄, with vector v = 1E , the unit of E. Note that
if ḡ is a random element distributed according to µ̄∗n, then ḡ · 1E has law µ∗n, and
therefore we find, uniformly over all affine hyperplanens W ⊂ E,

µ∗n
(
{ g ∈ G | d(g,W ) ≤ ρ‖g‖ }

)
� ρκ,

which is exactly the content of Proposition 3.2 in the case where E is simple. �

3.1.2. General case. The proof of Proposition 3.2 in the general case follows the
same strategy as in the simple case, but the argument becomes slightly more tech-
nical, because the norm on E is replaced by a quasi-norm, and E contains proper
ideals.

To state the appropriate generalization of Proposition 3.3, we consider a proba-
bility measure µ on SLd(Z) with some finite exponential moment, and let G be the
algebraic group generated by µ. We assume that G is Zariski connected and that
the space V = Rd can be decomposed into a sum of irreducible representations of
G:

V = V1 ⊕ · · · ⊕ Vr.
We denote by πj : V → Vj , j = 1, . . . , r the corresponding projections. To define
a quasi-norm on V , we fix α = (α1, . . . , αs) an s-tuple of positive real numbers,
where s is some fixed integer 1 ≤ s ≤ r, and set

|v|∼ = |v|∼α = max
1≤j≤s

‖πj(v)‖αj .

For example, |v|∼ = 0 if and only if v ∈ V0 := Vs+1 ⊕ · · · ⊕ Vr. The quasi-distance
associated to | · |∼ on V is given by

d̃(v, w) = d̃α(v, w) = |v − w|∼α.

It satisfies a weak form of the triangle inequality:

∀u, v, w ∈ V, d̃(u,w)�α d̃(u, v) + d̃(v, w).

Given a subset W ⊂ V , and v ∈ V , we define the distance from v to W by

d̃(v,W ) = inf
w∈W

d̃(v, w).

Remark. In all our applications, we shall take s so that V0 = Vs+1 ⊕ · · · ⊕ Vr is
the sum of all compact factors and

αj =
1

λ1(µ, Vj)
for j = 1, . . . , s

to obtain a quasi-norm adapted to the random walk associated to µ, same as the
one defined in the introduction. However, the proof works in the more general
setting of any choice of s and α.

In the remainder of this subsection, s and α are fixed and the implied constants
in all Landau and Vinogradov notations may depend on d and α.

Proposition 3.4. Assume that G is Zariski connected and that the linear span of
G in End(V ) contains πj for j = 1, . . . , s. Then there exists κ = κ(µ, α) > 0 such
that for any v ∈ V and any affine hyperplane W ⊂ V with V0 ⊂W −W ,

∀n ≥ 0, ∀ρ ≥ e−n, µ∗n
({
g ∈ G

∣∣ d̃(gv,W ) < ρ min
j∈JW

|πj(gv)|∼
})
� ρκ

where JW = { 1 ≤ j ≤ r |Vj 6⊂W −W }.
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Remark. The requirement that the linear span of G contain πj , j = 1, . . . , s is
here to exclude examples such as V = V1 ⊕ V1, with G acting irreducibly on V1.
Indeed, in that case the diagonal subspace W = {(v1, v1) ; v1 ∈ V1} is stable under
G, so the proposition cannot hold.

In the proof, we will use Lemma 3.5 and Lemma 3.6, whose proofs will be given
right after.

Proof. First and second step: spectral gap and Diophantine property.
Arguing exactly as in the proof of Proposition 3.3 we obtain that there exist C, c > 0
such that for every polynomial map f of degree at most 1 on G,

µ∗n
(
{ g ∈ G | |f(g)| ≤ e−Cn‖f‖ }

)
� e−cn.

Third step: distance to proper subspaces.
There exist C1, c > 0 such that for every v ∈ V and every affine hyperplaneW such
that W −W ⊃ V0,

µ∗n
({
g ∈ G

∣∣ d̃(gv,W ) ≤ e−C1n min
j∈JW

|πj(v)|∼
})
� e−cn.

To prove this, Lemma 3.5 below shows that it is enough to show that if B is some
large ball in G, then

µ∗n
({
g ∈ G

∣∣ d̃(gv,W ) ≤ e−C1n sup
h∈B

d̃(hv,W )
})
� e−cn.

Now let ϕW : V → R be an affine map such that kerϕW = W , and denote by `W
the linear part of ϕW ; by Lemma 3.6 below, the distance to W for the quasi-norm
is given by

∀v ∈ V, d̃(v,W ) � min
i:`W (ui) 6=0

∣∣∣∣ϕW (v)

`W (ui)

∣∣∣∣αj(i) ,
where (ui)1≤i≤d is an orthonormal basis compatible with the quasi-norm and ui ∈
Vj(i) for i = 1, . . . , d. Therefore, if g satisfies d̃(gv,W ) ≤ e−C1n suph∈B d̃(hv,W ),
there must exist i such that∣∣∣∣ϕW (gv)

`W (ui)

∣∣∣∣αj(i) �α e
−C1n sup

h∈B

∣∣∣∣ϕW (hv)

`W (ui)

∣∣∣∣αj(i)
whence

|ϕW (gv)| �α e
− C1n
αj(i) sup

h∈B
|ϕW (hv)|.

If C1

αj(i)
> C, the previous step applied to the affine map f : g 7→ ϕW (gv) shows that

the µ∗n-measure of such points is bounded above by e−cn, so the desired statement
is proved.
Fourth step: scaling
Note that there are C2 = C2(µ, α) > 1 and c = c(µ) > 0 such that for any vector
v ∈ V and any affine hyperplane W ⊂ V with V0 ⊂W −W ,

(3.3) ∀n ≥ 0, µ∗n
({
g ∈ G

∣∣ d̃(gv,W ) ≤ e−C2n min
j∈JW

|πj(gv)|∼
})
� e−cn.

This readily follows from the previous step, and from the fact that, by the expo-
nential moment assumption, there are C3 = C3(µ) > 1 and c = c(µ) > 0 such
that

µ∗n
(
{ g ∈ G | ‖g‖ ≥ eC3n }

)
� e−cn.

Noting that for any j = 1, . . . , s, |πj(gv)|∼ ≤ ‖g‖αj |πj(v)|∼, we obtain (3.3) by
taking C2 = C1 + (max1≤j≤s αj)C3.
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Finally, given e−n ≤ ρ ≤ 1, set m =
⌊
− log ρ
C2

⌋
. Writing µ∗n = µ∗m ∗µ∗(n−m) and

using the fact that (3.3) holds uniformly in v, we find

µ∗n
({
g ∈ G

∣∣ d̃(gv,W ) < ρ min
j∈JW

|πj(gv)|∼
})

≤
∫
G

µ∗m
({
g ∈ G

∣∣ d̃(ghv,W ) ≤ e−C2m min
j∈JW

|πj(ghv)|∼
})

dµ∗(n−m)(h)

� e−cm

� ρc/C2 .

This finishes the proof of Proposition 3.4. �

We are left to show the two technical lemmas on quasi-norms and distances to
hyperplanes that we used in the proof.

Lemma 3.5. Assume that the linear span of G in End(V ) contains πj, for j =
1, . . . , s. Then there exists a ball B ⊂ G such that for any affine hyperplane W ⊂ V
with V0 ⊂W −W , and any v ∈ V ,

min
j∈JW

|πj(v)|∼ � sup
g∈B

d̃(gv,W ).

Proof. In the particular case r = 1 (irreducible case), one may assume that the
quasi-norm is equal to the euclidean norm. So the desired inequality with B =
BG(1, 1) has already been proved in the third step of the proof of Proposition 3.3.

For the general case, first observe that by working in the quotient space V/V0,
we may assume that V0 = {0}, that is, V = V1 ⊕ · · · ⊕ Vs. Then assume for a
contradiction that for arbitrarily large R and arbitrarily small c > 0, there exists
v ∈ V and W ⊂ V such that

(3.4) ∀g ∈ BG(1, R), d̃(gv,W ) ≤ c min
j∈JW

|πj(v)|∼.

Applying several times the irreducible case in each Vj , j = 1, . . . , s to the vector
πj(v), we obtain vectors

(3.5) vj,1, . . . , vj,dimVj ∈ BG(1, 1)πj(v)− πj(v)

forming a basis of Vj such that∥∥vj,1 ∧ · · · ∧ vj,dimVj

∥∥� ‖πj(v)‖dimVj .

Concatenate these bases to get a basis (u1, . . . , ud) of V , which has the property
that

(3.6) ‖u1 ∧ · · · ∧ ud‖ �
s∏
j=1

‖πj(v)‖dimVj .

Let W0 = W −W denote the direction of W . By assumption, for j = 1, . . . , s,
there exist constants βj,k ∈ R and elements gk in G such that

πj =
∑
k

βj,kgk.

Set R large enough so that for all k, gk BG(1, 1) ⊂ BG(1, R). Taking (3.4) and (3.5)
into account, this implies that for each i = 1, . . . , d,

d̃(ui,W0) ≤ 2c
∑
k

|βj,k| min
j∈JW

|πj(v)|∼.

For each i = 1, . . . , d, let wi ∈W0 be such that

d̃(ui, wi)� c min
j∈JW

|πj(v)|∼,
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where the involved constant depends on the numbers βj,k. Using the assumption
that

⊕
j 6∈JW Vj ⊂W0, after adjusting wi, we can moreover ensure that

wi − ui ∈
⊕
j∈JW

Vj .

We can bound

(3.7)
∥∥w1 ∧ · · · ∧ wd − u1 ∧ · · · ∧ ud

∥∥� c
minj

1
αj

s∏
j=1

‖πj(v)‖dimVj .

Indeed, developing the first wedge product using wi = ui + (wi − ui) and then
decomposing each vector along V1 ⊕ · · · ⊕ Vs and further developing the sum, we
can express w1 ∧ · · · ∧ wd − u1 ∧ · · · ∧ ud as a sum of wedge products of d vectors
of the following types

(i) (first type) πj(wi − ui) with j ∈ JW , or
(ii) (second type) πj(ui) with 1 ≤ j ≤ s.

In each wedge product, the first type appears at least once and the product is zero
unless πj appears exactly dimVj times. We can bound vectors of the first type by

‖πj(wi − ui)‖ ≤ d̃(wi, ui)
1
αj � c

1
αj ‖πj(v)‖

and vectors of the second type by

‖πj(ui)‖ � ‖πj(v)‖.

This proves (3.7).
We then choose c be to small enough so that (3.7) combined with (3.6) implies

w1 ∧ · · · ∧ wd 6= 0 contradicting the condition that W0 is a proper linear subspace
of V . �

The second lemma is an elementary computation using the definition of the
quasi-norm. It is instructive to convince oneself with a picture that the lemma
holds when the quasi-norm is simply the euclidean norm on Rd.

Lemma 3.6. Let (ui)1≤i≤d be a union of orthonormal bases of each of the Vj,
j = 1, . . . , r. For i = 1, . . . , d, denote by j(i) the unique integer such that ui ∈ Vj(i).

Let v ∈ V and let W ⊂ V be an affine hyperplane with with V0 ⊂ W −W . Let
ϕW : V → R be an affine map such that

W = { v ∈ V |ϕW (v) = 0 }.

Let `W : V → R denote the linear part of ϕW . We have for any v ∈ V ,

d̃(v,W ) � min
i:`W (ui)6=0

∣∣∣∣ϕW (v)

`W (ui)

∣∣∣∣αj(i) .
Proof. Note that `W (ui) 6= 0 implies that j(i) ∈ JW and JW ⊂ {1, . . . , s} because
V0 ⊂W −W . It follows that αj(i) is defined and positive.

For any i ∈ {1, . . . , d} with `W (ui) 6= 0, we have v − ϕW (v)
`W (ui)

ui ∈W . Hence

d̃(v,W ) ≤
∣∣∣∣ϕW (v)

`W (ui)

∣∣∣∣αj(i) .
Let u ∈ V be such that v − u ∈W . Write u =

∑d
i=1 xiui. Then

ϕW (v) = ϕW (v − u) + `W (u) =

d∑
i=1

xi`W (ui).
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It follows that there exists i with `W (ui) 6= 0 and such that

|xi| ≥
1

d

∣∣∣∣ϕW (v)

`W (ui)

∣∣∣∣ .
This allows to conclude since

d̃(v, v − u) = |u|∼ ≥ ‖πj(i)(u)‖αj(i) ≥ |xi|αj(i) .
�

To conclude, we explain how to obtain Proposition 3.2 from Proposition 3.4.
The argument is essentially the same as the one used in the particular case where
E is simple.

Proof of Proposition 3.2, general case. For x ∈ E, let Lx : E → E and Rx : E → E
denote the left and right multiplication by x, respectively. Then, define

L : E → EndE
x 7→ Lx

and R : E → EndE
x 7→ Rx

Given a probability measure µ on G, we define a probability measure µ̄ on GL(E)
by

µ̄ =
1

2
L∗µ+

1

2
R∗µ.

The group Ḡ generated by µ̄ is isomorphic to G×G and the decomposition of E into
irreducible Ḡ-submodules is simply the decomposition into simple ideals E = ⊕jEj .
By definition, the algebra generated by G contains the unit 1Ej of Ej for each j. It
follows that the linear span of Ḡ contains all projections πj : E → Ej . Moreover,
in an appropriate basis, the elements of supp µ̄ have integer coefficients, so we may
apply Proposition 3.4 to µ̄, with vector v = 1E . Note that if ḡ is a random element
distributed according to µ̄∗n, then ḡ ·1E has law µ∗n, and therefore we obtain κ > 0
such that uniformly over all affine hyperplanes W ⊂ E with W −W ⊃ E0,

∀n ≥ 0, ∀ρ ≥ e−n, µ∗n
({
g ∈ G

∣∣ d̃(g,W ) ≤ ρ min
j∈JW

|πj(g)|∼
}

)� ρκ.

�

3.2. Non-concentration at singular matrices. As in the previous paragraph,
µ denotes a probability measure on SLd(Z). We assume that the algebraic group
G generated by µ is semisimple and connected, and let E be the algebra generated
by G inMd(R). Recall that for x ∈ E, we defined detE(x) to be the determinant
of the map E → E, y 7→ xy. Note that detE is a homogeneous polynomial function
on E of degree equal to dimE. Recall also that

µn = (π′ ◦ ϕn)∗(µ
∗n),

where π′ : E → E′ is the projection to the direct sum E′ = E1⊕· · ·⊕Es of all simple
ideals with non-zero Lyapunov exponent, and ϕn : E → E is the renormalisation
map defined in (4.2).

Lemma 3.7. Given ω > 0 there exists c = c(µ, ω) > 0 such that the following
holds.

∀n ≥ 0, ∀y ∈ E′, µ�D
n

({
x ∈ E′

∣∣ |detE′(x− y)| ≤ e−ωn
})
� e−cn.

Note that for all x in E′, detE′(x) =
∏s
j=1 detEj (πj(x)) and hence for every

n ≥ 0, and every x ∈ E,

detE′(π
′ ◦ ϕn(x)) =

s∏
j=1

e−(dimEj)λ1(µ,Ej)n detEj (πj(x)).

This immediately reduces the proof of Lemma 3.7 to the following.
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Lemma 3.8. Given ω > 0 there exists c = c(µ, ω) > 0 such that the following holds
for every j = 1, . . . , s, all n ≥ 0 and all y ∈ Ej,

(µ∗n)�D
({
x ∈ E

∣∣ |detEj (πj(x)− y)| ≤ e(dimEj)λ1(µ,Ej)n−ωn
})
� e−cn.

The idea is to apply [22, Proposition 3.2], where the case where E is simple
were treated. However, upon projecting to a simple factor, the random walk might
no longer be defined with integer coefficients: simple factors of E are only defined
over a number field. So we could not apply [22, Proposition 3.2] as it is stated.
Nevertheless, we can remark that, in the proof of [22, Proposition 3.2], [22, Lemma
3.13] holds more generally for the projected random walk from E to each Ej and
then the rest of the proof of [22, Proposition 3.2] for a projected random walk is
identical.

Here is the detailed proof. We need two ingredients from [22]. For a probability
measure µ on a semisimple Lie group G and a finite dimensional linear representa-
tion (ρ, V ) of G over R, recall that

λ1(µ, V ) = lim
n→+∞

1

n

∫
G

log‖ρ(g)‖dµ∗n(g)

denotes the top Lyapunov exponent associated to the random walk induced on V .
By semisimplicity V is a sum of irreducible sub-representations. The sum of irre-
ducible sub-representations of same top Lyapunov exponent is a sum of isotypical
components. For λ ∈ R, we will denote by pλ : V → V the G-equivariant projection
onto ∑

V ′⊂V, irreducible
λ1(µ,V ′)≥λ

V ′.

The following is [22, Proposition 3.17].

Proposition 3.9. Let µ be a probability measure on SLd(Z) having a finite ex-
ponential moment. Let G denote the Zariski closure of the subgroup generated by
supp(µ) in SLd(R). Assume that G is semisimple and Zariski connected. Given
D ≥ 1, λ ≥ 0, and ω > 0, there is c = c(µ,D, λ, ω) > 0 such that the following
holds for every f ∈ R[G]≤D.

∀n ≥ 0, µ∗n
(
{ g ∈ G | |f(g)| ≤ e(λ−ω)n‖pλ(f)‖ }

)
� e−cn.

Here pλ : R[G]≤D → R[G]≤D is defined as above.

The following is [22, Lemma 3.18]. For k ≥ 1 and a measure µ on G, µ⊗k =
µ⊗ · · · ⊗ µ denotes the product measure on Gk = G× · · · ×G.

Lemma 3.10. Let V be a Euclidean space. Let µ be a Borel probability measure
on SL(V ) having a finite exponential moment. Let G denote the Zariski closure of
the subgroup generated by supp(µ) in SLd(R). Assume that G is Zariski connected,
is not compact and acts irreducibly on V .

Let E denote the R-span of G in End(V ). Let f ∈ R[E]≤D and let k ≥ dimE
be an integer. Define F ∈ R[Gk]≤D to be the polynomial function

∀(x1, . . . , xk) ∈ Gk, F (x1, . . . , xk) = f(x1 + · · ·+ xk).

Then we have
‖fD‖R[E]≤D �µ,D,k ‖pDλ1(µ,V )(F )‖R[Gk]≤D ,

where fD is the degree D homogeneous part of f and pDλ1(µ,V ) : R[Gk]≤D →
R[Gk]≤D denotes the projection to the sum of irreducible Gk-subrepresentations
M ⊂ R[Gk]≤D with λ1(µ⊗k,M) ≥ Dλ1(µ, V ).
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Proof of Lemma 3.8. Fix j = 1, . . . , s. Remember that Ej is a simple algebra over
R. Using Wedderburn’s structure theorem, we can find a irreducible faithful linear
representation Ej → End(Vj). It is easy to see that λ1(µ,Ej) = λ1

(
πj∗µ, Vj

)
. The

Zariski closure of the subgroup generated by supp(πj∗µ) is precisely πj(G). It spans
Ej , is Zariski connected, acts irreducibly on Vj and is not compact. Thus, we can
apply Lemma 3.10 to πj∗µ.

Let y ∈ Ej and consider the polynomial function f ∈ R[Ej ], f(x) = detEj (x−y).
The degree of f isDj = dimEj and its degreeDj homogeneous part is detEj . Recall
D = dimE. Consider F ∈ R[πj(G)D]≤Dj defined as

∀x1, . . . , xD ∈ πj(G), F (x1, . . . , xD) = f(x1 + · · ·+ xD).

By Lemma 3.10,∥∥pDjλ1(µ,Ej)(F )
∥∥
R[πj(G)D]≤Dj

� ‖detEj‖R[Ej ]≤Dj
�E 1.

The linear map Θj : R[πj(G)D]→ R[GD] obtained by precomposing (πj , . . . , πj)
is injective and sends irreducible πj(G)D-subrepresentations to irreducible GD-
subrepresentations. Moreover, for any irreducible πj(G)D-subrepresentation M ⊂
R[πj(G)D], we have

λ1

(
(πj∗µ)⊗D,M

)
= λ1

(
µ⊗D,Θj(M)

)
.

It follows that ∥∥pDjλ1(µ,Ej)(F ◦ (πj , . . . , πj))
∥∥
R[GD]≤Dj

�E 1.

Then we obtain Lemma 3.8 by applying Proposition 3.9 to the measure µ⊗D and
the polynomial function F ◦ (πj , . . . , πj) ∈ R[GD]≤Dj . �

3.3. Proof of Proposition 3.1. In order to obtain the required non-concentration
properties for the measure µn, we shall use the basic large deviation estimates for
matrix products that have already been used in the proof of Proposition 3.4. The
statement below is taken from Boyer [14, Theorem A.5], which generalizes previous
results of Le Page [27] and Bougerol [7, Theorem V.6.2].

Theorem 3.11 (Large deviation estimates). Let µ be a Borel probability measure
on GLd(R) having a finite exponential moment. For any ω > 0, there is c =
c(µ, ω) > 0, such that the following holds.

(i) For all n ≥ 1,

µ∗n
({

g ∈ Γ
∣∣∣ ∣∣∣∣ 1n log‖g‖ − λ1(µ,Rd)

∣∣∣∣ ≥ ω })�ω e
−cn.

(ii) Assume further that the group generated by supp(µ) acts irreducibly on Rd.
For all n ≥ 1 and all v ∈ Rd \ {0},

µ∗n
({

g ∈ Γ
∣∣∣ ∣∣∣∣ 1n log

‖gv‖
‖v‖

− λ1(µ,Rd)
∣∣∣∣ ≥ ω })�ω e

−cn.

To prove Proposition 3.1, we shall only need the first item; the second item will
be used later in Section 6.

Proof of Proposition 3.1. Note that condition NC(ε, κ, τ) was defined for algebras
endowed with a norm, and not with a quasi-norm. However, for some constants
α, β > 0, we have, for every v ∈ E′,{

‖v‖ ≤ |v|∼ α if ‖v‖ ≥ 1

‖v‖ ≤ |v|∼ β if ‖v‖ < 1.

So if some measure satisfies condition NC(ε, κ, τ) for the quasi-norm | · |∼ on E′,
then it satisfies NC(αε, κβ , τ) for the usual norm ‖·‖ on E′. It is therefore sufficient
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to check the non-concentration properties of µn with respect to the quasi-distance
d̃.

For that, let ε > 0 be some small parameter. By Theorem 3.11(i) applied to
each πj∗µ, there exists τ = τ(µ, ε) > 0 such that

µn
({
g ∈ E′

∣∣∀j = 1, . . . , s, |πj(g)|∼ ≥ e−εn
})
≥ 1− e−τn.

Let ν0 be the restriction of µn to such g and write

µn = ν0 + ν1

so that ν1(E) ≤ e−τn. By Proposition 3.2, there exists κ = κ(µ) > 0 such that for
any affine hyperplane W ⊂ E with E0 ⊂W −W ,

∀ρ ≥ e−n, µ∗n
({
g ∈ G

∣∣ d̃(g,W ) < ρ min
j∈JW

|πj(g)|∼
})
� ρκ.

By definition of ϕn and of the quasi-norm |·| on E, we have |ϕn(g)| = e−n|g| for
every g ∈ G and therefore, for every affine hyperplane W ⊂ E′,

∀ρ ≥ e−n, µn
({
g ∈ E′

∣∣ d̃(g,W ) < ρ min
j∈JW

|πj(g)|∼
})
� ρκ.

By definition of ν0, this implies

(3.8) ∀ρ ≥ e−n, ν
({
g ∈ E′

∣∣ d̃(g,W ) < ρe−εn
})
� ρκ

and this inequality is still valid for any convolution ν � η. On the other hand,
Lemma 3.7 shows that

(3.9) ∀y ∈ E′, µ�D
n

({
x ∈ E′

∣∣ |detE′(x− y)| ≤ e−ωn
})
� e−τn.

Let η0 be the restriction of ν � µ�(D−1)
n to BE′(0, e

2εn), and write

µ�D
n = η0 + η1.

By Theorem 3.11(i), we have η1(E′) ≤ eτn for some τ = τ(ε) > 0, and by equations
(3.8) and (3.9), the measure η0 satisfies NC0(2ε, κ2 , τ). �

4. Fourier spectrum of the random walk

Let µ be a probability measure on GLd(Z). Denote by Γ ⊂ GLd(Z) the subgroup
generated by supp(µ) and G ⊂ GLd(R) the Zariski closure of Γ in GLd(R). Under
the assumption that G is semisimple, we want to show some Fourier decay property
for the measure µ∗n on the algebra E generated by G.

4.1. Connected case. The result we need about Fourier decay for random walks
is particularly transparent and easy to prove when the algebraic group G generated
by µ is Zariski connected. So we first explain this particular case. Recall that
ϕn : E → E is the rescaling automorphism given by (4.2), that π′ : E → E′ denotes
the projection to the direct sum of all non-compact factors in E, and that for any
integer n ≥ 1, we let

µn = (π′ ◦ ϕn)∗(µ
∗n)

be the image of µ∗n after rescaling and projection to E′. We will denote by E′∗

the space of linear forms on E′ over the real numbers.

Theorem 4.1 (Fourier decay for random walks in E′). Assume that G is semisim-
ple and Zariski connected. Then there exists α0 = α0(µ) > 0 such that for every
α1 ∈ (0, α0), there exists c0 = c0(µ, α1) > 0 such that for all n sufficiently large,
for all ξ ∈ E′∗ with

eα1n ≤ ‖ξ‖ ≤ eα0n

the following estimate on the Fourier transform of µ∗n holds:

|µ̂n(ξ)| ≤ e−c0n.
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We let E′ act on E′∗ on the right by

∀ξ ∈ E′∗, ∀x, y ∈ E′, (ξ · x)(y) = ξ(xy).

Moreover, we let E act on E′∗ via π′.

Proof. Let D = dimE′, ε = ε(E′, κ,D) and s = s(E′, κ) be the quantities given by
Corollary 2.11. By Proposition 3.1, given α1 ∈ (0, 1), there exists κ > 0 such that
for any ε > 0, there exists τ > 0 such that µ�D

n satisfies NC(α1ε
2 , κ, τ) at scale e−n

in E′ for all n sufficiently large. This formally implies that µ�D
n satisfies NC(ε, κ, τ)

at all scales δ ∈ [e−n, e−
α1n
2 ].

Without loss of generality, we may of course assume that τ ∈ (0, εκ). Let ξ ∈ E′∗

be such that e
α1n
2 ≤ ‖ξ‖ ≤ en. Taking δ = ‖ξ‖−1, we have δ ∈ [e−n, e−

α1n
2 ] so

µ�D
n satisfies NC(ε, κ, τ) at scale δ. Therefore, Corollary 2.11 shows that µsn =
µn ∗ · · · ∗ µn satisfies

|µ̂sn(ξ)| ≤ e−ετn.
This shows the desired property if n ∈ sZ. In general, take α0 = 1

4s . For n large
and ξ ∈ E′∗ such that eα1n ≤ ‖ξ‖ ≤ eα0n, write n = sm+ r, with 0 ≤ r < s and

µ̂n(ξ) =

∫
G

µ̂sm(ξ · x)dµr(x).

Then, observe from the exponential moment assumption that outside of a set of
µr-measure at most e−cn, one has e−

α1n
2 ‖ξ‖ ≤ ‖ξ · x‖ ≤ e n2s ‖ξ‖ and so

e
α1m

2 ≤ e
α1n
2 ≤ ‖ξ · x‖ ≤ e n2s e n4s ≤ em.

For such ξ · x, we may bound

|µ̂sm(ξ · x)| ≤ e−ετm ≤ e− ετn2s

whence
|µ̂n(ξ)| ≤ e− ετn2s + e−cn ≤ e−c0n

with c0 = min( c2 ,
ετ
4s ). �

4.2. Disconnected case. As before, µ denotes a probability measure on GLd(Z),
and G the algebraic group generated by µ. We still assume that G is semisimple
but no longer that it is Zariski connected. The identity component G◦ is then a
finite index subgroup in G. We now write Ē for the subalgebra generated by G in
Md(R). As before, we decompose

(4.1) Ē = Ē1 ⊕ · · · ⊕ Ēr
into simple ideals and define the rescaling automorphism ϕn : Ē → Ē by

(4.2) ϕn(g) =

r∑
j=1

e−nλ1(µ,Ēj)πj(g)

where λ1(µ, Ēj) denotes the top Lyapunov exponent associated to µ on each of the
factors Ēj . Also, we assume that λ1(µ, Ēj) = 0 if and only if j > s and denote by
π′ : Ē → Ē′ = Ē1 ⊕ · · · ⊕ Ēs the projection to the non-compact factors.

Example. When G is not Zariski connected, we shall write Ē for the algebra
generated by G, and let E denote the algebra generated by the identity component

G◦ of G. Let a0 =

(
1 1
0 1

)
, a1 =

(
1 0
1 1

)
and w =

(
0 1
−1 0

)
. Then define by

blocks A0 =

(
w 0
0 a0

)
and A1 =

(
w 0
0 a1

)
in SL4(Z) and set

µ =
1

4
(δA0 + δA1 + δA−1

0
+ δA−1

1
).
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One has G ' (Z/4Z)×SL2(R) and Ē ' C×M2(R). On the other hand, the algebra

generated by G◦ is E ' R ×M2(R) if one identifies C ' {
(
a b
−b a

)
; a, b ∈ R}

and R ' R1. The law µ∗n of the random walk at time n is supported by E if n is
even, and by A0E ' iR×M2(R) if n is odd. It is always concentrated on a proper
subspace of Ē.

To overcome this issue, we shall use the algebra E ⊂ Ē generated by the identity
component G◦ in G. The group G◦ has finite index in G and we let

F = G/G◦.

With a slight abuse of notation, we identify F with a set of representatives in G
and write G as a disjoint union

G =
⊔
γ∈F

γG◦.

Any measure ν on G can then be decomposed uniquely in the form

ν =
∑
γ∈F

γ∗νγ

where each νγ is a measure on E. Finally, we let E′ = π′(E), and for n ≥ 1 and
γ ∈ F ,

µn,γ = (π′ ◦ ϕn)∗[(µ
∗n)γ ].

Fourier decay for (integer coefficient) random walks on non-connected semisimple
groups can be stated as follows.

Theorem 4.2 (Fourier decay for random walks in E′). Let µ, G, G◦ and F be as
above. Then there exists α0 = α0(µ) > 0 such that for every α1 ∈ (0, α0), there
exists c0 = c0(µ, α1) > 0 such that for all n sufficiently large, all γ ∈ F and ξ ∈ E′∗
with

eα1n ≤ ‖ξ‖ ≤ eα0n

the following estimate on the Fourier transform of µ∗n holds:

|µ̂n,γ(ξ)| ≤ e−c0n.

One can ask whether the same statement holds if supp(µ) is not assumed to have
integer coefficients.

4.3. Induced random walk on the identity component. In order to prove
Theorem 4.2, we shall use the induced random walk on G◦, whose definition is
given below. Since by definition G◦ is connected, this will allow us to use the
results of Section 3. The drawback is that we can no longer use the simple identity
µsn = µn ∗ · · · ∗µn; so we shall have to write µsn as a weighted sum of convolutions
related to the induced measure µ◦ on the identity component, which makes the
argument more technical.

Let (gn)n≥1 be a sequence of independent random variables distributed according
to µ. Consider the return times to G◦,

τ(1) = inf{n ≥ 1 | gn · · · g1 ∈ G◦ }
and recursively for m ≥ 2,

τ(m) = inf{n > τ(m− 1) | gn · · · g1 ∈ G◦ }.
Those are the return times of a Markov chain on the finite space G/G◦, so that for
every m ≥ 1, τ(m) is almost surely finite. In fact, by Kac’s formula [6, Lemma 5.4]

E[τ(1)] = [G : G◦].
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The random variables (gτ(m) . . . gτ(m−1)+1)m≥0 are independent and identically dis-
tributed with law µ◦, the law of gτ(1) · · · g1. Note that µ◦ is a probability measure
on G◦ and has the following properties [1, Lemmas 4.40 and 4.42].

Lemma 4.3. Let µ be a probability measure on a real algebraic group G and µ◦
the induced measure on the identity component G◦. Let T = [G : G◦]. If µ admits
some finite exponential moment, then:

(i) The measure µ◦ has some finite exponential moment;
(ii) For every ω > 0, there exists c = c(µ, ω) > 0 such that for all m sufficiently

large, P
[
|τ(m)− Tm| ≥ ωm

]
≤ e−cm.

In order to prove Theorem 4.2, we shall need to relate the random walk defined
by µ and the one defined by µ◦. For that, we introduce, for m ≥ 1 and ` ≥ 1, the
law ν` of the random variable

gτ(m) · · · g1 conditional to the event τ(m) = `.

Naturally, ν` is also the law of the variable g` · · · g1 conditional to τ(m) = `. On
the one hand, we may relate the measures ν` to (µ◦)∗m with the formula

(4.3) (µ◦)∗m =
∑
`∈N

p`ν`.

where p` = P[τ(m) = `]. Here, we are hiding the dependency of ν` and p` on m in
order to make notation less cumbersome.

On the other hand, writing `1 + · · · + `s + k = n for some natural integers n, s
and `1, . . . , `s, we have

(4.4) µ∗n =
∑

`1+···+`s+k=n

p`1 · · · p`sµ∗k ∗ ν`s ∗ · · · ∗ ν`1 + ((P[τ(sm) > n]))

where the notation ((t)) for some positive quantity t means some unspecified posi-
tive measure of total mass at most t. These two formulae will allow us to use the
non-concentration properties of (µ◦)∗m to prove some Fourier decay estimate for
µ∗n.

Before we derive Theorem 4.2, we note that the scaling automorphism ϕ◦m on E
associated to µ◦ is simply given by ϕ◦n = ϕmT , where T = [G : G◦]. This readily
follows from the fact that if Ēi is any simple ideal in Ē and V any G◦-irreducible
submodule of Ēi, then λ1(µ◦, V ) = Tλ1(µ, Ēi).

Proof of Theorem 4.2. Let α1 > 0 be a given small number. Since the algebraic
group generated by µ◦ is connected, Proposition 3.1 applies to the induced random
walk on G◦. We let κ = κ(µ◦) > 0 be the constant given by that proposition. Let
D = dimE and s = s(E, κ) ≥ 1 and ε = ε(E, κ,D) > 0 be the constants given by
Corollary 2.11.

Given α1 > 0, Proposition 3.1 shows that for all m large enough, the measure

(π′ ◦ ϕmT )∗
(
((µ◦)∗m)�D � ((µ◦)∗m)�D

)
satisfies NC(α1ε

2 , κ, τ) in E′ at scale e−m for some τ > 0. This implies that the
same measure satisfies NC( ε2 , κ, τ) in E′ at all scales δ ∈ [e−m, e−αm]. Without loss
of generality, we may assume that τ < κε/2 and τ < ε/2.

Let ω = ω(µ, α1) be a constant whose value is to be determined later. Fix n ≥ 1
large, and set m =

⌊
(1− 2ω) n

Ts

⌋
, where T = [G : G◦]. Everything below is true

for n sufficiently large (larger than some n0 depending on µ and α1). The letter c
denotes a small positive constant, whose value may vary from one line to the other,
depending on µ and α1 but independent of n.

By Lemma 4.3, we have

P[τ(sm) > n− ωn] ≤ e−cn
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and
P[τ(sm) < n− 3ωn] ≤ e−cn.

Put
L = { ` ∈ N | p` ≥ e−

α1τ
2D m }.

We can bound ∑
(`1,...,`s)6∈Ls

p`1 · · · p`s ≤ sne−
α1τ
2D m ≤ e−cn.

Thus, (4.4) becomes

µ∗n =
∑

`1,...,`s∈L, ωn≤k≤3ωn
`1+···+`s+k=n

p`1 · · · p`sµ∗k ∗ ν`s ∗ · · · ∗ ν`1 + ((e−cn)).

Let γ ∈ F . To finish the proof of the theorem, it suffices to establish an upper
bound of the form e−cn for the quantity

I`1,...,`s,k(ξ) :=

∫
γG◦

e
(
ξ ◦ π′ ◦ ϕn(γ−1g)

)
d
(
µ∗k ∗ ν`s ∗ · · · ∗ ν`1

)
(g)

=

∫∫
g∈γG◦

e
(
ξ ◦ π′

(
ϕn−smT (γ−1g)ϕsmT (h)

))
dµ∗k(g)d(ν`s ∗ · · · ∗ ν`1)(h)

=

∫
γG◦

(
(π′ ◦ ϕsmT )∗(ν`s ∗ · · · ∗ ν`1)

)∧(
ξ · ϕn−smT (γ−1g)

)
dµ∗k(g).

uniformly for all `1, . . . , `s ∈ L and ωn ≤ k ≤ 3ωn with `1 + · · ·+ `s + k = n.
First, we claim that uniformly for all ` ∈ L, the measure

(π′ ◦ ϕmT )∗
(
ν�D` � ν�D`

)
satisfies NC(ε, κ, 2τ) in E′ at all scales δ ∈ [e−m, e−α1m], provided that m ≥ 1 is
large enough. Indeed, developing ((µ◦)∗m)�D�((µ◦)∗m)�D using (4.3), we see that
for any ` ≥ 1,

((µ◦)∗m)�D � ((µ◦)∗m)�D = p2D
`

(
ν�D` � ν�D`

)
+ ((1)).

The inequality p2D
` ≥ e−α1τm for ` ∈ L together with the fact that the left-hand

side rescaled by π′ ◦ ϕmT satisfies NC( ε2 , κ, τ) in E′ at all scales δ ∈ [e−m, e−α1m]
show our claim. By Corollary 2.11, this implies, for all ζ ∈ (E′)∗ such that eα1m ≤
‖ζ‖ ≤ em, ∣∣((π′ ◦ ϕsmT )∗(ν`s ∗ · · · ∗ ν`1)

)∧
(ζ)
∣∣ ≤ e− α1ετ

(2D)s
m ≤ e−cn.

Note that for any g ∈ γG◦,

(4.5) ‖ξ‖‖g−1‖−1 � ‖ξ · ϕn−smT (γ−1g)‖ � ‖ξ‖‖ϕn−smT ‖‖g‖.

On the one hand, we have 0 ≤ n − smT ≤ 3ωn. Hence, there exists a constant
C = C(µ) ≥ 1 such that

‖ϕn−smT ‖ ≤ eCωn.
On the other hand, using the assumption that µ has a finite exponential moment
and Markov’s inequality, we can find a constant C = C(µ) ≥ 1 such that for any
k ≥ 1, the µ∗k-measure of the set of g ∈ Γ such that

(4.6) ‖g‖ ≤ eCk and ‖g−1‖ ≤ eCk

is at least 1− e−k.
Set α0 = 1

4Ts and let ξ ∈ (E′)∗ be such that eα1n ≤ ‖ξ‖ ≤ eα0n. Using k ≤ 3ωn,
we have, for any g ∈ supp(µ∗k) satisfying (4.6),

e(α1−4Cω)n ≤ ‖ξ · ϕn−smT (γ−1g)‖ ≤ e(α0+5Cω)n.
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With the choice ω = min{ α1

8C ,
1

20CTs}, we can guarantee that this implies

eα1m ≤ eα1n/2 ≤ ‖ξ · ϕn−smT (γ−1g)‖ ≤ em.

Putting everything together, we obtain

|I`1,...,`s,k(ξ)| ≤ e−cn + e−k ≤ e−cn + e−ωn.

for all `1, . . . , `s ∈ L, ωn ≤ k ≤ 3ωn with `1 + · · ·+ `s + k = n. This concludes the
proof of the theorem. �

5. From Fourier decay to granular structure

As in the previous section, µ denotes a probability measure on GLd(Z) and we
study the random walk associated to µ on Td, with starting distribution ν ∈ P(Td).
The law of the walk at time n is νn = µ∗n ∗ ν. The goal of this section is to show
that if νn has a large Fourier coefficient, then the starting distribution ν must have
some strong concentration property.

5.1. Concentration statement for the random walk. In order to state the
main proposition of this section, we need to set up some notation. As before, G
denotes the algebraic subgroup generated by µ, E ⊂ Md(R) denotes the algebra
generated by the identity component G◦ of G, F denotes the finite group G/G◦

and T = #F .
Changing notation slightly, we now consider a decomposition of E

E = E0 ⊕ E1 ⊕ · · · ⊕ Er

into maximal sums of minimal ideals with same Lyapunov exponent for the action
of µ◦. We assume that the summands are ordered so that

λ1(µ◦, E1) > · · · > λ1(µ◦, Er) > 0 = λ1(µ◦, E0).

Here, E0 is eventually trivial.
The group G acts naturally on the space V = Rd and for 1 ≤ j ≤ r, we let Vi

be the sum of all simple G◦-submodules W ⊂ V such that λ1(µ◦,W ) = λ1(µ◦, Ei).
Equivalently, Vi is also the sum of all simple G-submodules W ⊂ V such that
λ1(µ,W ) = 1

T λ1(µ◦, Ei). We have

V = V0 ⊕ V1 ⊕ · · · ⊕ Vr.

Let πi : V → Vi denote the corresponding projection. Define a quasi-norm on V by

|v|∼ = max
0≤i≤s

‖πi(v)‖
1

λ1(µ,Vi)

where by convention

‖π0(v)‖ 1
0 = ‖π0(v)‖+∞ =

{
0 if ‖π0(v)‖ ≤ 1

+∞ otherwise.

This induces a quasi distance on Td. For x, y ∈ Td, define

d̃(x, y) =

{
|v − w|∼ if there are lifts v ∈ V of x and w ∈ V of y such that ‖v − w‖ ≤ 1

2 ,
1 otherwise.

Neighborhoods of subsets of Td with respect to this quasi-distance will be denoted
by Ñbd( · , · ). Finally, for a rational subspace W ⊂ V , we let W mod Zd denote
its projection in Td, which is a subtorus.
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Proposition 5.1. Let µ be a probability measure on GLd(Z) and ν be a Borel
probability measure on Td. If the algebraic group G generated by µ is semisimple,
then there exist C = C(µ) ≥ 0 and τ > 0 such that the following holds.

Assume that for some t ∈ (0, 1
2 ),

|µ̂∗n ∗ ν(a0)| ≥ t for some a0 ∈ Zd and n ≥ C log
‖a0‖
t
.

Then, there exists γ ∈ F such that, denoting

W = (a0γE)⊥

there exists a finite subset X ⊂ Td such that

(X −X) ∩ Ñbd(W mod Zd, e−(1−2τ)n) = {0}
and

ν
(
X + Ñbd(W mod Zd, e−(1−τ)n)

)
≥ tO(1).

The proof of Proposition 5.1 is in two steps: First, using the results of Section 4,
one shows that the inequality |µ̂∗n ∗ ν(a0)| ≥ t implies that µ∗n ∗ ν has many
large Fourier coefficients (reducing slightly the value of n) and then, one applies a
Fourier analysis lemma originating in the work of Bourgain, Furman, Lindenstrauss
and Mozes [10, Proposition 7.5]. We start with the statement and proof of a general
version of that lemma adapted to our needs.

5.2. A quantitative version of Wiener’s lemma. Wiener’s lemma in harmonic
analysis states that a measure ν on the torus Td is atom-free if and only if its Fourier
series tends to zero in density, i.e. given t > 0, the proportion of vectors a ∈ Zd
in a large ball B(0, N) such that |ν̂(a)| ≥ t, tends to zero as N goes to infinity. In
their paper [10], Bourgain, Furman, Lindenstrauss and Mozes observed that this
statement could be made quantitative: If B(0, N) contains a proportion at least
s > 0 of integer vectors satisfying |ν̂(a)| ≥ t, then there exists a ball B = B(x, 1

N )

of radius 1
N in Td such that ν(B) � (st)3, where the involved constant depends

only on d. In order to later be able to use the quasi-norm adapted to a random
walk, we need to generalize this statement. It turns out to be most convenient to
formulate the lemma in terms of convex sets and polar pairs.

We will need to generalize slightly the notation N ( · , δ) of covering number.
Instead of covering a set by balls, we will use translates of a convex body. Given
a symmetric convex body B ⊂ Rd and A ⊂ V a bounded non-empty subset, we
define the covering number of A by B by

N (A,B) = min
{
N ≥ 1

∣∣∣∃x1, . . . , xN ∈ V, A ⊂
N⋃
i=1

(xi +B)
}
.

We shall also say that A is B-separated, if (A − A) ∩ B = {0}. Let us briefly list
some useful properties of covering numbers. These may be used without explicit
mention in the sequel; the elementary proofs are left to the reader.

• Let f : V → W be a linear map to another Euclidean space W . Then, for
any set A ⊂ V and any convex body B ⊂W ,

(5.1) N
(
f(A), f(B)

)
≤ N (A,B)

with equality if f is a linear isomorphism.
• Let B′ ⊂ V be another convex body, then

N (A,B′) ≤ N (A,B)N (B,B′).

• In A, maximal B-separated subsets have cardinality at least N(A,B).
• If B is symmetric and A is 2B-separated then N (A,B) ≥ #A.
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• Let f : V → W be a surjective linear map between Euclidean spaces. Let
B,C ⊂ V be convex bodies and let A ⊂ C be a subset of C. We have

(5.2)
N
(
f(A), f(B)

)
N
(
f(C), f(B)

) � N (A,B)

N (C,B)

where the implied constant in the � notation depends only on dimV .
Let Rd be endowed with the usual scalar product. Given a symmetric convex

body C ⊂ Rd, its polar set C∗ is defined by

C∗ = {x ∈ Rd | ∀y ∈ C, 〈x, y〉 ≤ 1 }.

If C ⊃ B(0, 2), then C∗ ⊂ B(0, 1
2 ) and we naturally identify C∗ with its projection

to Td. The quantitative version of Wiener’s lemma that we need is given by the
proposition below.

Proposition 5.2. Let ν be a probability measure on Td and write for t > 0

At = { a ∈ Zd | |ν̂(a)| ≥ t }.

Assume that for some symmetric convex subsets B ⊂ C ⊂ Rd containing B(0, 1),
we have, for some c0 ∈ Zd and some s > 0

(5.3) N (At ∩ (c0 + C), B) ≥ s · |C|
|B|

.

Then there exists a B∗-separated subset X ⊂ Td such that

ν(X + C∗)�d s
3/2t6.

Proof. The implied constants in the Vinogradov notation in this proof depend only
on d. We shall need two auxiliary functions; the first one corresponds to the pair
of convex sets (C,C∗), the second to (B,B∗):

(1) There exists a smooth function ψ : Td → R≥0 such that
(a)

∫
Td ψ = 1,

(b) ψ � 1
|C∗| 1C∗ ,

(c) ψ̂ � 12C∩Zd .
(2) There exists a smooth function ϕ : Td → R≥0 such that

(i) ϕ� 1B∗ ,
(ii) ϕ̂ is real and positive and ϕ̂� 1

|B|2 1B �1B ≤
1
|B| 12B .

One obtains ψ by taking any smooth symmetric bump function supported on 1
16C

∗

with integral
∫
ψ = 1. The third property follows from the fact that for every

ξ ∈ 2C ∩ Zd and x ∈ 1
16C

∗, one has 〈ξ, x〉 ≤ 1
8 and hence <

(
e(〈ξ, x〉)

)
≥ 1

2 . The

function ϕ can be given explicitly by the formula ϕ(x) =
∣∣∣ 1
|B|
∑
a∈ 1

8B∩Zd
e(〈a, x〉)

∣∣∣2
for all x in Td. The second item is immediate by definition of ϕ, and the first one
follows from the fact that by Minkowski’s first theorem on convex bodies, one has
#( 1

8B ∩ Zd)� |B|.
Pick a maximal 2B-separated subset A′ ⊂ At∩ (c0 +C) such that all coefficients

ν̂(a), a ∈ A′ fall in the same quadrant of C. One still has #A′ � N (At∩(c0+C), B)
and moreover ∣∣∣∑

a∈A′
ν̂(a)

∣∣∣ ≥ t#A′√
2
.

By the Cauchy-Schwarz inequality,∑
a,b∈A′

ν̂(a− b) =

∫
Td

∣∣∑
a∈A′

e(〈a, x〉)
∣∣2dν(x) ≥

∣∣∣∫
Td

∑
a∈A′

e(〈a, x〉)dν(x)
∣∣∣2 � t2(#A′)2.
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Hence, there exists a translate A of A′ such that A ⊂ A′ −A′ ⊂ 2C and∣∣∣∑
a∈A

ν̂(a)
∣∣∣� t2#A

and

(5.4) #A = #A′ � s · |C|
|B|

.

Consider the function f : Td → R defined by

∀x ∈ Td, f(x) =
∑
a∈A

e(〈a, x〉).

On the one hand, using the definition of f , the properties of ϕ and the fact that A
is 2B-separated, one has, for any y ∈ Td,∫

y+B∗
|f |2 =

∫
Td
1B∗(x− y)|f(x)|2dx

�
∑

a1,a2∈A

∫
ϕ(x− y)e(〈a1 − a2, x〉)dx

≤
∑

a1,a2∈A
ϕ̂(a1 − a2)

� 1

|B|
∑

a1,a2∈A
12B(a1 − a2)

� #A

|B|
.

On the other hand, from the properties of ψ and of those of A,∣∣∣∫
Td
fd(ν � ψ)

∣∣∣ =
∣∣∣∑
a∈A

ν̂(a)ψ̂(a)
∣∣∣� ∣∣∣∑

a∈A
ν̂(a)

∣∣∣� t2#A.

Let (yi)i∈I be a maximal family of (4B∗)-separated points in Td. Then the
translates (yi + B∗)i∈I are disjoint and have a total volume � 1. By Fubini’s
theorem, ∫

dx
∑
i∈I

∫
x+yi+B∗

fd(ν � ψ) =
∑
i∈I
|yi +B∗|

∫
Td
fd(ν � ψ).

Hence, translation all yi by some x ∈ Td if necessary, we may assume that

(5.5)
∑
i∈I

∣∣∣∫
yi+B∗

fd(ν � ψ)
∣∣∣� t2#A.

By the Cauchy-Schwarz inequality, for each i ∈ I,∣∣∣∫
yi+B∗

fd(ν � ψ)
∣∣∣ ≤√∫

yi+B∗
|f |2

√∫
yi+B∗

(ν � ψ)2

�

√
#A

|B|

√
(ν � ψ)(yi +B∗) max

yi+B∗
ν � ψ

� ν(yi +B∗ + C∗)

√
hi#A|C|
|B|
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where hi =
|C∗|maxyi+B∗ ν�ψ
ν(yi+B∗+C∗)

. Recalling (5.4) and (5.5), we obtain some constant
L = L(d) > 1 depending only on d such that∑

i∈I
ν(yi +B∗ + C∗)h

1/2
i ≥ s1/2t2

L
.

On the other hand, since for every x in Td, one has (ν�ψ)(x)� ν(x+C∗)
|C∗| , increasing

the value of L if necessary, we get

∀i, hi ≤ L.
Finally, (yi)i∈I is 4B∗-separated so∑

i∈I
ν(yi +B∗ + C∗) ≤

∑
i∈I

ν(yi + 2 ·B∗) ≤ 1

and we may set J = { i ∈ I |hi ≥ st4

4L2 } to find∑
i∈J

ν(yi +B∗ + C∗) ≥ s1/2t2

2L
.

For each i ∈ J , fix xi ∈ yi +B∗ such that

(ν � ψ)(xi) = max
yi+B∗

ν � ψ

and let
X = {xi ; i ∈ J}.

Since the family (yi)i∈I is 4B∗-separated, the set X is B∗-separated. For the second
property, note that for each i in J ,

ν(xi + C∗) ≥ |C∗|(ν � ψ)(xi) = hiν(yi +B∗ + C∗)� st4ν(yi +B∗ + C∗).

so that

ν(X + C∗) =
∑
i∈J

ν(xi + C∗)� st4
∑
i∈J

ν(yi +B∗ + C∗)� s3/2t6.

�

5.3. Proof of Proposition 5.1. To prove Proposition 5.1, we follow the same
pattern as in [22]. The only difference here is that we need to find the correct polar
pairs (B,B∗) and (C,C∗) to apply Proposition 5.2. First, let us state two lemmas
that are probably well-known.

Lemma 5.3 ([22, Lemma 4.3] Additive structure of large Fourier coefficients). Let
µ be a Borel probability measure on SLd(Z) and ν a Borel probability measure on
Td. If

|µ̂ ∗ ν(a0)| ≥ t0 > 0,

then for any integer k ≥ 1, the set

A =
{
g ∈Md(Z) | |ν̂(a0g)| ≥ t2k0 /2

}
satisfies (

µ�k � µ�k
)
(A) ≥ t2k0

2
.

Lemma 5.4 ([22, Lemma 4.4] Regularity from Fourier decay). Given D ≥ 1 and
α > 0 sufficiently small, there exist constants c = c(D,α) > 0 and C1 = C1(D,α) >
0 such that the following holds for all 0 < δ < ct. Let η be a Borel measure on RD,
of total mass µ(RD) ≤ 1. Let A be a subset of RD. Assume

(i) supp(η) ⊂ B(0, δ−α),
(ii) for all ξ ∈ RD with δ−α ≤ ‖ξ‖ ≤ δ−1−α, |η̂(ξ)| ≤ ‖ξ‖−C1 ,
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(iii) η(A) ≥ t.
Then there exists a ∈ RD such that

N (A ∩B(a, δβ), δ) ≥ ctD+1
(δβ
δ

)D
,

where β = (2D + 1)α.

We are ready to prove the main proposition of this section.

Proof of Proposition 5.1. We shall use Lemma 5.4 with D = dimE′ and

α =
min1≤i≤r λ1(µ, Vi)

3(2D + 1) maxi λ1(µ, Vi)
so β =

min1≤i≤r λ1(µ, Vi)

3 max1≤i≤r λ1(µ, Vi)
.

Let C1 = C1(D,α) be as in the lemma. Let α0 = α0(µ), α1 = αα0

2 and c0 =

c0(µ, α1) be as in Theorem 4.2. Set also k0 =
⌈
α0C1

c0

⌉
and k = Tk0, where T = #F .

Assume
|µ̂∗n ∗ ν(a0)| ≥ t.

By Lemma 5.3, there is a subset A ⊂Md(Z) such that

∀g ∈ A, |ν̂(a0g)| ≥ t2k

2

and (
(µ∗n)�k � (µ∗n)�k

)
(A) ≥ t2k

2
.

Note that µ∗n is supported on
⋃
γ∈F γE. We can cover µ∗n by its restrictions

(µ∗n)|γE to each subspace γE. Thanks to the choice of k and the commutativity
of additive convolutions, there exists γ ∈ F such that

(µ∗n)�k0|γE � (a probability measure)(A) ≥ t2k

2T 2k
.

Hence for some x1 ∈Md(Z), we have

(µ∗n)�k0|γE (x1 +A) ≥ t2k

2T 2k
.

Let η′ be the pushforward of (µ∗n)�k0|γE under the map g 7→ (π′ ◦ ϕn)(γ−1g) and let

A′ = (π′ ◦ ϕn)
(
E ∩ γ−1(x1 +A)

)
⊂ E′

so that

(5.6) η′(A′)� t2k.

Lemma 5.4 will be used at scale δ = e−
α0n
2 . By the definition of µn,γ in Section 4.

We have η′ = µ�k0
n,γ . By Theorem 4.2, for all ξ ∈ E′∗ with δ−α = eα1n ≤ ‖ξ‖ ≤

eα0n = δ−2, we have
|η̂′(ξ)| ≤ e−k0c0n ≤ ‖ξ‖−C1 .

In view of the large deviation principle for µ∗n, we may replace η′ by its restriction
to B(0, δ−α) while maintaining (5.6) and the conclusion of Theorem 4.2. Thus by
Lemma 5.4 applied to η′ and A′, there exists x2 ∈ BE′(0, δ

−α) such that

(5.7) N
(
A′ ∩B(x2, δ

β), δ
)
� tO(1)δ−D(1−β).

Now define convex bodies in E by

C0 = ϕ−n
(

BE′(0, δ
β)× BE0

(0, R)
)

and B0 = ϕ−n
(

BE′(0, δ)× BE0
(0, R)

)
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where R = Oµ(k) is a constant large enough so that γ−1A ⊂ E′×BE0
(0, R). Then

the inequality (5.7) implies that for some x3 in E,

N (γ−1A ∩ (C0 + x3), B0)� tO(1)δ−D(1−β) � tO(1) · |C0|
|B0|

.

Indeed, with
f1 : E → E′

x 7→ π′ ◦ ϕn(γ−1x1 + x)

one has f1(γ−1A) ⊃ A′, π′ ◦ ϕn(B0) = BE′(0, δ), and taking x3 ∈ E′ such that
π′ ◦ ϕn(γ−1x1 + x3) = x2, f1(C0 + x3) = BE′(x2, δ

β). The choice of R guarantees
that f1

(
γ−1A ∩ (C0 + x3)

)
= f1(γ−1A) ∩ f1(C0 + x3). One concludes using the

inequality (5.1) on f1.
Now let

C = a0γC0 + BRd(0, 2) and B = a0γB0 + BRd(0, 2)

and apply (5.2) to f : x 7→ a0γx to obtain, with c0 = a0γx3,

N
(
a0A ∩ (C + c0), B

)
N (C,B)

�
N
(
γ−1A ∩ (C0 + x3), B0

)
N (C0, B0)

� tO(1)

whence

N
(
a0A ∩ (C + c0), B

)
≥ tO(1) |C|

|B|
.

Since ν̂(a0g) ≥ tO(1) for every g ∈ A, Proposition 5.2 shows that there exists a
B∗-separated subset X ⊂ Td such that

ν(X + C∗) ≥ tO(1).

To conclude, it remains to describe the sets B∗ and C∗. For that, first consider a
decomposition of the space of linear forms on Rd into irreducible components under
the right action of G◦

(Rd)∗ = V ′ = V (1) ⊕ · · · ⊕ V (r)

and write pi, i = 1, . . . , k for the corresponding projections. Since a0γ is an integer
vector, and each V (i) is defined over a number field, by Liouville’s Theorem, there
exists a constant C > 0 such that for each i such that pi(a0γ) 6= 0, one has

‖a0‖−C � ‖pi(a0γ)‖ � ‖a0‖.

Therefore, for any ε > 0, we may choose Cε ≥ 0 such that n ≥ Cε log ‖a0‖t implies,
for i = 1, . . . , k,

pi(a0γ) = 0 or e−εn ≤ ‖pi(a0γ)‖ ≤ eεn.
Thus, if pi(a0γ) 6= 0 and λ1(µ, V (i)) 6= 0, then

pi(a0γ)B0 ⊂ BV (i)(0, e(λ1(µ,V (i))+ε)nδ)

and
pi(a0γ)C0 ⊃ BV (i)(0, e(λ1(µ,V (i))−ε)nδβ).

Now consider the decomposition of V = Rd according to Lyapunov exponents

V = V0 ⊕ V1 ⊕ · · · ⊕ Vr,

where for i = 0, . . . , r, Vi is the sum of all irreducible G-submodules of V with
Lyapunov exponent λ1(µ,Ei). Since W = (a0γE)⊥ is a submodule, it can be
written

W = W0 ⊕ · · · ⊕Wr, where Wi = W ∩ Vi, i = 0, . . . , r.



38 WEIKUN HE AND NICOLAS DE SAXCÉ

An elementary computation based on the above observations shows that for some
compact subset A0 ⊂ V0 containing BV0

(0, 1
2 ), (we identify subsets of BV (0, 1

2 ) with
their projections in Td)

B∗ ⊃ A0 ×
∏

1≤i≤r

{ vi ∈ Vi | d(vi,Wi) ≤ e−(λ1(µ,Vi)+ε)nδ−1 and ‖vi‖ ≤
1

2
}

and

C∗ ⊂ A0 ×
∏

1≤i≤r

{ vi ∈ Vi | d(vi,Wi) ≤ e−(λ1(µ,Vi)−ε)nδ−β and ‖vi‖ ≤
1

2
}.

Recalling δ = e−
α0n
2 and setting τ = α0

5 maxi λ1(µ,Vi)
> 0, we may choose ε > 0 small

enough so that

e−(λ1(µ,Vi)+ε)nδ−1 = e−(λ1(µ,Vi)+ε−α0
2 )n ≥ e−(1−2τ)λ1(µ,Vi)n

and
e−(λ1(µ,Vi)−ε)nδ−β = e−(λ1(µ,Vi)−ε− βα0

2 )n ≤ e−(1−τ)λ1(µ,Vi)n.

Finally, since A0 can be covered by a bounded number of translates of BV0
(0, 1

2 ), we
may assume replace A0 by BV0

(0, 1
2 ), and then B∗ ⊃ Ñbd(W mod Zd, e−(1−2τ)n)

while C∗ ⊂ Ñbd(W mod Zd, e−(1−τ)n). �

For a technical reason, instead of on the torus, we will have to work on a union
a tori Td ×F , where Γ acts diagonally. For a measure ν on Td ×F and a ∈ Zd, we
write µ̂∗n ∗ ν(a, 1) for the Fourier coefficient at frequency a of the restriction of ν
to Td × {1} viewed as a measure on Td.

A more careful look at the proof will give us the following slightly more precise
version of Proposition 5.1.

Corollary 5.5. Let µ be a probability measure on GLd(Z) Assume the algebraic
group G generated by µ is semisimple and write F = G/G◦. Let ν be a Borel
probability measure on Td×F . Then there exist C = C(µ) ≥ 0 and τ > 0 such that
the following holds.

Assume that for some t ∈ (0, 1
2 ),∣∣µ̂∗n ∗ ν(a0, 1)

∣∣ ≥ t for some a0 ∈ Zd and n ≥ C log
‖a0‖
t
.

Then, there exists γ ∈ F such that, denoting

W = (a0γE)⊥

there exists a finite subset X ⊂ Td × {γ−1} such that

(X −X) ∩ Ñbd(W mod Zd, e−(1−2τ)n) = {0}
and

ν
(
X + Ñbd(W mod Zd, e−(1−τ)n)

)
≥ tO(1).

Here, of course, the addition on Td × {γ−1} is defined for the torus coordinate.

6. Concentration and unstability of the random walk

In this section, we finally prove the main result of the paper. We consider a
probability measure µ on GLd(Z) and the associated random walk on the torus Td,
starting from a point x0 ∈ Td. Letting Γ be the group generated by suppµ and G
the Zariski closure of Γ, we assusme that G is semisimple as an algebraic group,
and we show — in a quantitative way — that if the law µ∗n ∗ δx0

of the random
walk is not exponentially close to the Haar measure on Td, then the starting point
x0 is exponentially close to a proper closed invariant subset.
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But let us first introduce a new space on which it is convenient to study the
random walk, especially to overcome issues related to being Zariski disconnected.
As before, G◦ denotes the identity component of G, and F = G/G◦. The subalgebra
of Md(R) generated by G◦ is denoted by E. In order to keep track of the coset
modulo G◦, we let

Y0 = Td × F

and let Γ act on Y0 diagonally.
Let W0 be a rational G◦-invariant subspace of V = Rd. We can define a factor

of Y0 → Y by

Y =
⊔
γ∈F

Rd/(γW0 + Zd)× {γ}.

The action of Γ on Y is defined in the obvious way. This way, the natural projection
Y0 → Y is Γ-equivariant.

Given a0 ∈ Zd for which the random walk µ∗n ∗ δx0 has large Fourier at a0. We
will set

W0 = V ◦ + (a0E)⊥

and study the random walk on Y associated to this W0, because information given
by the assumption is all contained in this factor.

In the introduction, we defined the quasi-distance adapted to the random walk
on V and on Td. Similarly, we can define a quasi-distance on each of the tori
Rd/(Zd + γW0) in Y . Together, theses quasi-distances define a quasi-distance on
Y by the formula

d̃
(
(x1, γ1), (x2, γ2)

)
=

{
d̃(x1, x2) if γ1 = γ2,

+∞ otherwise.

Below we will state a slightly more precise version of Theorem 1.1. Let V0

denote the sum of all compact factors of G in Rd, that is, the sum of irreducible
subrepresentationsW ⊂ V such that λ1(µ,W ) = 0. We fix a G-invariant Euclidean
norm on V0 and write BV0

(0, R) for the closed ball in V0 with radius R > 0 with
respect to this norm. Given some parameter Q > 0, we note that

BV0(0, Q) +
⋃
q≤Q

1

q
Zd ⊂ Rd

is Γ-invariant. As a consequence, the set

ZQ =
⊔
γ∈F

(
BV0

(0, Q) +
⋃
q≤Q

1

q
Zd mod γW0 + Zd

)
× {γ}

is a Γ-invariant closed subset of Y .

Theorem 6.1. Assume that µ has a finite exponential moment and the algebraic
group G is semisimple. Then for every λ ∈ (0, 1), there exist C = C(µ, λ) ≥ 0 such
that the following holds.

Given a0 ∈ Zd, let Y be defined as above. For any x0 ∈ Td, if

(6.1)
∣∣( ̂µ∗n ∗ δx0)(a0)

∣∣ ≥ t for some t ∈ (0,
1

2
) and n ≥ C log

‖a0‖
t
,

then there is γ0 ∈ F such that writing y0 = (x0 mod γ0W0, γ0) ∈ Y , we have

d̃(y0, ZQ) ≤ e−λn for some Q ≤
(
‖a0‖
t

)C
.
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[W.H.] If we want γ0
to be the neutral ele-
ment, Y needs to be
modified/shifted.

To obtain Theorem 1.1 from this theorem, it suffices lift y0 and ZQ to Y0 and
then project to Td.

We proceed to the proof of Theorem 6.1. We fix the meaning of a0 ∈ Zd,W0 ⊂ V ,
x0 ∈ Td as in the statement. By the pigeonhole principle, (6.1) implies that there
is γ0 ∈ F such that

(6.2)
∣∣ ̂µ∗n ∗ δ(x0,γ0)(a0, 1)

∣∣ ≥ t

#F
,

where the notation ̂µ∗n ∗ δ(x0,γ0)(a0, 1) is defined in the paragraph preceding Corol-
lary 5.5. This choice of γ0 determines y0 ∈ Y . We fix this y0 for the rest of the
proof.

6.1. Bootstrapping concentration. In order to prove Theorem 6.1, we start
from the granulation estimate obtained in the previous section as Proposition 5.1.
The first step is then to run backwards the random walk to increase the concentra-
tion.

Proposition 6.2 (High concentration). Assume (6.1). Given η > 0, there exists
n1 �η log ‖a0‖t and ρ > 0 with |log ρ| � n1 such that for some y ∈ Y ,

µ∗(n−n1) ∗ δy0(B̃(y, ρ)) ≥ ρη.
Proof. Using (6.2) and Corollary 5.5 and observing that (a0γE)⊥ = γ−1(a0E)⊥,
we obtain that for n0 ≥ log ‖a0‖t , there exists an e−(1−2τ)n0 -separated subset X0

contained in a single torus in Y such that

µ∗(n−n0) ∗ δy0
(

Ñbd(X0, e
−(1−τ)n0)

)
≥ tC0 .

Increasing C0 if necessary, we may also assume that #X0 ≤ eC0n0 . Fix some
large k ∈ N and then ε > 0 such that 2kε < 1. Starting with

m0 = bτn0

2d
c, r0 = e−(1−2τ)n0 , and ρ0 = e−(1−τ)n0 ,

we apply Lemma 6.3 below k times successively. This yields integers mi, and scales
ri > ρi, defined inductively by ri+1 = e−mi(1+ε)ri

ρi+1 = e−mi(1−ε)ρi
mi+1 = bmi(1− ε

d )c
and at each step, an ri-separated set Xi such that #Xi ≤ #X0 and

µ∗(n−n0−m0−···−mi) ∗ δy0
(
Ñbd(Xi, ρi)

)
≥
(
tC0

2

)di
.

Set n1 = n0 +m0 + · · ·+mk and ρ = ρk. One has #Xk ≤ #X0 and

µ∗(n−n1) ∗ δy0
(
Ñbd(Xk, ρ)

)
≥
(
tC0

2

)dk
so that for some y ∈ Xk,

µ∗(n−n1) ∗ δy0
(

B̃(y, ρ)
)
≥ 1

#X0

(
tC0

2

)dk
≥ e−C0n0

(
tC0

2

)dk
Now, since m0 + · · ·+mk ≥ km0

3 we may choose k large enough so that m0 + · · ·+
mk ≥ 3C0n0

η , and then n0 � log ‖a0‖t large enough to ensure that

ρ = ρk ≤ e−(1−ε)(m0+···+mk) ≤ e−
2C0n0
η ≤ e−

C0n0
η

(
tC0

2

) dk

η

.
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The proposition follows. �

After using Corollary 5.5, we can now forget how W0 is constructed from a0. All
what we need is that W0 is a G◦-invariant rational subspace containing V ◦.

We now prove the lemma that was used in the above proof. The notion of
r-seperated sets in Y are with respect to the quasi-distance on Y .

Lemma 6.3. For any ε > 0 there exist c > 0 and m0 ∈ N depending only on µ
and ε such that the following holds for any Borel probability measure ν on Y and
any m ≥ m0.
Let r > 0 and ρ > 0 be such that e(d+1)mρ < r. Set

r1 = e−m(1+ε)r and ρ1 = e−m(1−ε)ρ.

If X is an r-separated subset contained in a single torus in Y , then there is an r1-
separated subset X1 ⊂ Y , contained in a single torus, with cardinality #X1 ≤ #X
and such that

ν
(
Ñbd(X1, ρ1)

)
≥ (µ∗m ∗ ν)

(
Ñbd(X, ρ)

)d − e−cm.
Proof. In this proof, we write X(ρ) for Ñbd(X, ρ). By Jensen’s inequality and the
definition of µ∗m ∗ ν, (see [10, Lemma 7.6] for details),

(µ∗m ∗ ν)(X(ρ))d ≤
∑

g1,...,gd∈Γ

µ∗m(g1) . . . µ∗m(gd)ν(g−1
1 X(ρ) ∩ · · · ∩ g−1

d X(ρ)).

This implies that the set of d-tuples (gi)1≤i≤d such that

(6.3) ν(g−1
1 X(ρ) ∩ · · · ∩ g−1

d X(ρ)) ≥ (µ∗m ∗ ν)(X(ρ))d − e−cm

has (µ∗m)⊗d-measure at least e−cm. Using the fact that the large deviation esti-
mates Theorem 3.11(i) and (ii) are valid under the only assumption that the action
is irreducible, one readily checks that [22, Lemma 5.5] and its proof are also valid
under this assumption. Applying this lemma in each irreducible subrepresentation
of Rd, one obtains that if c is chosen small enough, there must exist g1, . . . , gd ∈ Γ
satisfying (6.3) and moreover,

(6.4) ∀v ∈ Rd/W0 \ {0}, e(1−ε)m ≤ max
1≤i≤d

|giv|∼

|v|∼

and (using the large deviation estimates again and the fact that −λdimW (µ,W ) <
(dimW − 1)λ1(µ,W ) for any G-invariant W ⊂ V )

(6.5) ∀i ∈ {1, . . . , d}, |gi|∼ ≤ e(1+ε)m and |g−1
i |

∼ ≤ e(d−1+ε)m.

We fix such elements g1, . . . , gd for the rest of the proof.
Since X is contained in a single torus, all the gi’s are contained in the same class

in G/G◦.
We claim that the set g−1

1 X(ρ)∩· · ·∩g−1
d X(ρ) is included in a union of at most #X

balls of radius ρ1 = e−(1−ε)mρ. Indeed, from (6.5) and the fact that e(d+1)mρ < r,
we find, for a given x ∈ X and i ≥ 1, that the set g−1

1 B̃(x, ρ) meets at most
one component g−1

i B̃(y, ρ), y ∈ X. Therefore, there are at most #X non-empty
intersections g−1

1 B̃(x1, ρ) ∩ · · · ∩ g−1
d B̃(xd, ρ), for x1, . . . , xd ∈ X.

If x, y lie inside such an intersection, then, for each i, d̃(gix, giy) ≤ ρ. Then
(6.4) and (6.5) implies that d̃(x, y) ≤ e−(1−ε)mρ = ρ1. Thus, each intersection
g−1

1 B̃(x1, ρ) ∩ · · · ∩ g−1
d B̃(xd, ρ) is included in a ball of radius ρ1.

Finally, using (6.5), we see that these ρ1-balls are separated by at least r1 =
e−(1+ε)mr. Moreover they are contained in the same torus in Y because the gi’s
are in the same G◦ coset. This finishes the proof of the proposition. �
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6.2. A diophantine property. From the high concentration property obtained
in the previous paragraph, we want to infer that µ∗(n−n1) ∗ δy0 is concentrated near
a proper Γ-invariant subset. The argument relies on a diophantine property of the
random walk, coming from the fact that µ is supported on GLd(Z).

Proposition 6.4 (Concentration near a closed invariant subset). Given β > 0,
there exists C > 0 such that the following holds.

Assume (6.1). Then there exist n1 ∈ N∗ such that 1
C log ‖a0‖t ≤ n1 ≤ C log ‖a0‖t

and ρ ∈ [e−Cn1 , e−
n1
C ] and Q ≤ ρ−β such that

µ∗(n−n1) ∗ δy0
(
Ñbd(ZQ, ρ)

)
≥ ρβ .

This proposition is an immediate consequence of Proposition 6.2 and of a dio-
phantine property of the random walk, given by the following lemma.

Lemma 6.5 (Diophantine property). For every β > 0, there exist constants C and
η > 0 depending on µ and β such that for any y0, y ∈ Y , if for n ≥ C|log ρ|, one
has

(µ∗n ∗ δy0)(B̃(y, ρ)) ≥ ρη

then d̃(y, ZQ) ≤ ρ1−β for some Q ≤ ρ−β.

Proof. Consider the action of G on VF =
⊔
γ∈F V/γW0×{γ}. Since V/W0 contains

no G◦-invariant vector, for every non-zero (v1, v2) in VF ×VF , the set { g | gv1 = v2 }
is a linear subvariety in G of dimension less than dimG. Using the spectral gap
property modulo prime numbers [31] (the same way it is used in the first step
of the proof of Proposition 3.3), we obtain that for m large enough, for some c0
independent of (v1, v2),

(6.6) µ⊗m({ (g1, . . . , gm) | gm · · · g1v1 = v2 }) ≤ e−c0m.
Fix m such that

e−
c0m
2 ≥ ρη > e−c0m.

If C is large enough, the condition n ≥ C|log ρ| ensures that n ≥ m. From the
assumed inequality, it follows that there exists some y1 ∈ Y such that

(µ∗m ∗ δy1)(B̃(y, ρ)) ≥ ρη,
which implies that the set

Am = { (g1, . . . , gm) ∈ (suppµ)m | d̃(gm . . . g1y1, y) ≤ ρ }
satisfies

µ⊗m(Am) ≥ ρη > e−c0m.

Using the finite exponential moment of µ and reducing the set Am, we can assume
further that for all (gi) ∈ Am, ‖gm · · · g1‖ ≤ eC0m for some C0 = C0(µ).

Write y1 = (x1, γ1) and y = (x, γ). Recalling (6.6) above, one infers that the
linear map

θ : V/γ1W0 × V/γW0 → (V/γW0)Am

(v1, v2) 7→ (gn . . . g1v1 − v2)(gi)∈Am

is injective. Moreover, in the canonical bases, its matrix has coefficients in Z
bounded by eC0m, so its inverse has coefficients in 1

QZ for some Q ≤ eC1m, and
bounded by eC1m. Therefore, any solution (v1, v2) in V/γ1W0 × V/γW0 to

∀(g1, . . . , gm) ∈ Am, gm . . . g1v1 − v2 ∈ B̃(0, ρ) + Zd mod γW0

can be written, for some w1, w2 ∈ Zd and u1, u2 in B̃(0, eC1mρ),

v1 =
1

Q
w1 + u1 mod γ1W0 and v2 =

1

Q
w2 + u2 mod γW0.
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This applies in particular to representatives of (x1, x) in V/γ1W0 × V/γW0. It
follows that

d̃(y, ZeC1m) ≤ eC1mρ.

If η > 0 is chosen so small that 2C1

c0
η < β, one has

eC1m = e
2C1
c0

c0m
2 ≤ ρ−

2C1
c0

η ≤ ρ−β

so the lemma is proved. �

6.3. Unstability of closed invariant subsets. To conclude the proof of Theo-
rem 6.1, we use a variant of the argument given in [24, §3]. It is based on Foster’s
exponential recurrence criterion, applied to a well-chosen function associated to a
closed invariant subset. This technique has been used extensively in homogeneous
dynamics since the work of Eskin and Margulis [17], in particular by Benoist and
Quint for their study of stationary measures [2, 4, 5, 3].

Lemma 6.6 (Margulis inequality). For every λ ∈ (0, 1), there exist constants
C,α > 0 depending only on µ such that the following holds. For Q ≥ 2, define a
function ϕQ : Y → R ∪ {+∞} by

ϕQ(y) =

{
d̃(y, ZQ)−α if d̃(y, ZQ) > 0
+∞ otherwise.

For all y ∈ Y and all integers n ≥ 1,∫
ϕQ(gy)dµ∗n(g) ≤ e−λαnϕQ(y) +QC .

The proof of such inequalities is an application of Furstenberg’s law of large
numbers [6, Theorem 4.28], using also the exponential moment assumption on µ.
Since it is rather standard, we leave it to the reader, and turn to the proof of
Theorem 6.1.

Proof of Theorem 6.1. Let C,α > 0 be the parameters given by Lemma 6.6 applied
with λ′ = 1+λ

2 instead of λ. Then set β = α
C+2 .

Proposition 6.4 shows that for some n1 �β log ‖a0‖t and some ρ ∈ [e−C1n1 , e−c1n1 ],
there exist Q ≤ ρ−β such that

µ∗(n−n1) ∗ δy0
(
Ñbd(ZQ, ρ)

)
≥ ρβ .

Applying Lemma 6.6 yields

ρ−α+β ≤
∫
ϕQ(gy0)dµ∗(n−n1)(g)

≤ e−λ
′α(n−n1)ϕQ(y0) +QC .

Note that QC ≤ ρ−Cβ ≤ 1
2ρ
−α+β and therefore

ϕQ(y0) = d̃(y0, ZQ)−α � eλ
′α(n−n1)ρ−α+β � eλ

′αne−C1α(1+ 1
C+2 )n1 .

Since n1 � log ‖a0‖t and λ′ = λ+ 1−λ
2 , taking n� 1

1−λ log ‖a0‖t yields

d̃(y0, ZQ) ≤ e−λn

and the theorem is proved. �



44 WEIKUN HE AND NICOLAS DE SAXCÉ

References

[1] R. Aoun. Random subgroups of linear groups are free. Duke Math. J., 160(1):117–173, 2011.
[2] Y. Benoist and J.-F. Quint. Mesures stationnaires et fermés invariants des espaces homogènes.

Ann. of Math. (2), 174(2):1111–1162, 2011.
[3] Y. Benoist and J.-F. Quint. Random walks on finite volume homogeneous spaces. Invent.

Math., 187(1):37–59, 2012.
[4] Y. Benoist and J.-F. Quint. Stationary measures and invariant subsets of homogeneous spaces

(II). J. Amer. Math. Soc., 26(3):659–734, 2013.
[5] Y. Benoist and J.-F. Quint. Stationary measures and invariant subsets of homogeneous spaces

(III). Ann. of Math. (2), 178(3):1017–1059, 2013.
[6] Y. Benoist and J.-F. Quint. Random walks on reductive groups, volume 62 of Ergebnisse der

Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics.
Springer, Cham, 2016.

[7] P. Bougerol and J. Lacroix. Products of random matrices with applications to Schrödinger
operators, volume 8 of Progress in Probability and Statistics. Birkhäuser Boston, Inc., Boston,
MA, 1985.

[8] J. Bourgain. On the Erdős-Volkmann and Katz-Tao ring conjectures. Geom. Funct. Anal.,
13(2):334–365, 2003.

[9] J. Bourgain. The discretized sum-product and projection theorems. J. Anal. Math., 112:193–
236, 2010.

[10] J. Bourgain, A. Furman, E. Lindenstrauss, and S. Mozes. Stationary measures and equidistri-
bution for orbits of nonabelian semigroups on the torus. J. Amer. Math. Soc., 24(1):231–280,
2011.

[11] J. Bourgain and A. Gamburd. On the spectral gap for finitely-generated subgroups of SU(2).
Invent. Math., 171(1):83–121, 2008.

[12] J. Bourgain and A. Gamburd. Uniform expansion bounds for Cayley graphs of SL2(Fp). Ann.
of Math. (2), 167(2):625–642, 2008.

[13] J. Bourgain, A. A. Glibichuk, and S. V. Konyagin. Estimates for the number of sums and
products and for exponential sums in fields of prime order. J. Lond. Math. Soc., II. Ser.,
73(2):380–398, 2006.

[14] J.-B. Boyer. On the affine random walk on the torus. arXiv e-prints, page arXiv:1702.08387,
Feb 2017.

[15] T. Bénard. Equidistribution of mass for random processes on finite-volume spaces, 2021.
[16] P. Erdős and E. Szemerédi. On sums and products of integers. Studies in Pure Mathematics,

Mem. of P. Turán, 213-218 (1983)., 1983.
[17] A. Eskin and G. Margulis. Recurrence properties of random walks on finite volume homoge-

neous manifolds. In Random walks and geometry. Proceedings of a workshop at the Erwin
Schrödinger Institute, Vienna, June 18 – July 13, 2001. In collaboration with Klaus Schmidt
and Wolfgang Woess. Collected papers., pages 431–444. Berlin: de Gruyter, 2004.

[18] K. J. Falconer. Hausdorff dimension and the exceptional set of projections. Mathematika,
29:109–115, 1982.

[19] H. Furstenberg. Noncommuting random products. Trans. Amer. Math. Soc., 108:377–428,
1963.

[20] Y. Guivarc’h and A. N. Starkov. Orbits of linear group actions, random walks on homogeneous
spaces and toral automorphisms. Ergodic Theory Dynam. Systems, 24(3):767–802, 2004.

[21] W. He. Discretized sum-product estimates in matrix algebras. J. Anal. Math., 139(2):637–
676, 2019.

[22] W. He and N. de Saxcé. Linear random walks on the torus, 2019. preprint.
[23] W. He and N. de Saxcé. Sum-product for real Lie groups. J. Eur. Math. Soc. (JEMS),

23(6):2127–2151, 2021.
[24] W. He, T. Lakrec, and E. Lindenstrauss. Affine Random Walks on the Torus. International

Mathematics Research Notices, 01 2021. rnaa322.
[25] W. He, T. Lakrec, and E. Lindenstrauss. Equidistribution of affine random walks on some

nilmanifolds, 2021. preprint.
[26] W. Kim. Effective equidistribution of expanding translates in the space of affine lattices, 2021.

preprint.
[27] E. Le Page. Théorèmes limites pour les produits de matrices aléatoires. In Probability mea-

sures on groups (Oberwolfach, 1981), volume 928 of Lecture Notes in Math., pages 258–303.
Springer, Berlin-New York, 1982.

[28] J. Li. Discretized sum-product and Fourier decay in Rn. J. Anal. Math., 143(2):763–800,
2021.



SEMISIMPLE RANDOM WALKS ON THE TORUS 45

[29] E. Lindenstrauss and A. Mohammadi. Polynomial effective density in quotients of H3 and
H2 × H2, 2021.

[30] R. Muchnik. Semigroup actions on Tn. Geom. Dedicata, 110:1–47, 2005.
[31] A. Salehi Golsefidy and P. P. Varjú. Expansion in perfect groups. Geom. Funct. Anal.,

22(6):1832–1891, 2012.
[32] T. Tao. Product set estimates for non-commutative groups. Combinatorica, 28(5):547–594,

2008.
[33] B. L. Van der Waerden. Modern Algebra. Volume II. Based in part on lectures by E. Artin

and E. Noether. Frederick Ungar Publishing Co., New York, transl. from the 3rd german
edition, 1950.

Email address: heweikun@kias.re.kr

CNRS – Université Paris 13, LAGA, 93430 Villetaneuse, France.
Email address: desaxce@math.univ-paris13.fr


	1. Introduction
	1.1. Outline of the proof
	1.2. Concluding remarks
	1.3. Acknowledgement
	1.4. Notation

	2. Sum-product, L2-flattening and Fourier decay
	2.1. Sum-product in semisimple algebras
	2.2. L2-flattening
	2.3. Fourier decay

	3. Non-concentration for random walks on semisimple groups
	3.1. Non-concentration near affine subspaces
	3.2. Non-concentration at singular matrices
	3.3. Proof of Proposition 3.1

	4. Fourier spectrum of the random walk
	4.1. Connected case
	4.2. Disconnected case
	4.3. Induced random walk on the identity component

	5. From Fourier decay to granular structure
	5.1. Concentration statement for the random walk
	5.2. A quantitative version of Wiener's lemma
	5.3. Proof of Proposition 5.1

	6. Concentration and unstability of the random walk
	6.1. Bootstrapping concentration
	6.2. A diophantine property
	6.3. Unstability of closed invariant subsets

	References

