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Random walks with bounded first moment on
finite-volume spaces

Timothée Bénard∗ and Nicolas de Saxcé

Abstract

Let G be a real Lie group, Λ ≤ G a lattice, and Ω = G/Λ. We study the equidistri-
bution properties of the left random walk on Ω induced by a probability measure µ on G.
It is assumed that µ has a finite first moment, and that the Zariski closure of the group
generated by the support of µ in the adjoint representation is semisimple without compact
factors. We show that for every starting point x ∈ Ω, the µ-walk with origin x has no
escape of mass, and equidistributes in Cesàro averages toward some homogeneous mea-
sure. This extends several fundamental results due to Benoist-Quint and Eskin-Margulis
for walks with finite exponential moment.
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1 Introduction
A homogeneous Markov chain on a finite-volume real homogeneous space is formally incarnated
by a triple (G,Λ, µ) where G is a real Lie group, Λ a discrete subgroup of finite covolume in G,
and µ a Borel probability measure on G. The chain in question then corresponds to the left
µ-random walk on the quotient Ω = G/Λ. In other words, the transition law at a point x ∈ Ω
is given by the convolution µ ∗ δx, image of µ under g 7→ gx.

In the last 20 years, the study of walks on finite-volume spaces has known spectacular
advances, which were achieved in analogy with Ratner’s theorems describing the dynamics
of Ad-unipotent flows on Ω. The first milestone was set by Eskin-Margulis who proved that
the n-th step distribution of a homogeneous chain essentially remains in a compact set [14].
A few years later, Benoist-Quint managed to classify all the µ-invariant probability measures
[3, 6], and extrapolated in [7] that almost every trajectory of the random walk equidistributes
in some finite-volume homogeneous subspace. However, all these statements require stringent
moment assumptions on the measure µ, such as compact support or finite exponential moment,
the latter meaning that for some α > 0, we have∫

G

‖Ad g‖α dµ(g) <∞.

In a recent paper, Eskin and Lindenstrauss [13] extended the techniques developed by Benoist
and Quint, and showed that their measure classification was still valid in the case where µ only
has a finite first moment. Our goal is to weaken in the same way the moment assumptions in the
Eskin-Margulis recurrence theorem and in the Benoist-Quint equidistribution theorems. This
answers a question formulated by Benoist-Quint in the 10th Takagi Lectures [4, Question 2].

1.1 Main results
Let G be a real Lie group, Λ a lattice in G, and set Ω = G/Λ. We fix a Borel probability
measure µ on G and denote by Γ the semigroup generated by the support of µ. The algebraic
group generated by its adjoint representation is denoted by H = Ad Γ

Z
, and we call Hnc its

non-compact part, defined as the smallest normal algebraic subgroup of H such that H/Hnc

is compact. All the theorems to follow are presented under the next two assumptions.

1. The non-compact part Hnc of H is semisimple.

2. The measure µ has a finite first moment :∫
G

log‖Ad g‖dµ(g) <∞

To state our results, we need to introduce the notion of homogeneous subspace.

Definition 1.1. A closed subset Y of Ω is homogeneous if its stabilizer GY = {g ∈ G, gY = Y }
acts transitively on Y . We add that Y has finite volume if the action of GY on Y preserves
a Borel probability measure on Y . Such a measure is then unique and denoted by νY . If the
semigroup Γ is included in GY (and acts ergodically on (Y, νY )), we say that Y is Γ-invariant
(and Γ-ergodic).

We denote by SΩ(Γ) the set of Γ-invariant ergodic finite-volume closed homogeneous subsets
of Ω.

Our first result states that the µ-walk on Ω essentially evolves in a compact subset. Such
statements originate in the work of Eskin, Margulis and Mozes [15] on the quantitative Oppen-
heim conjecture and can be seen as an analog for random walks of the Dani-Margulis recurrence
theorem on Ad-unipotent flows [12]. Under an exponential moment assumption, the theorem
below was proved by Benoist and Quint [5], generalizing previous work of Eskin and Margulis
[14].

2



Theorem A (Non-escape at infinity). For every compact set K ⊂ Ω and every ε > 0, there
exists a compact set K ′ ⊂ Ω such that for every x ∈ K,

(i) for every n ≥ 0, (µ∗n ∗ δx)(K ′) > 1− ε;

(ii) for µ⊗N
∗
-almost every instructions (gi)i≥1,

lim inf
n→+∞

1

n
card{k ∈ {1, . . . , n} | gk . . . g1x ∈ K ′} > 1− ε.

Conclusion (i) means the mass of the n-th step distribution of the walk does not escape
at infinity. Conclusion (ii) expresses some positive recurrence of the walk’s trajectories. The
result actually holds under the slightly weaker assumption that the image measure (Ads)∗µ of
µ under the adjoint representation on the largest semisimple quotient of g without compact
factors generates an algebraic group with semisimple non-compact part (see Theorem A′ in
Section 4).

Our second result states that the µ-walk on Ω does not accumulate on a µ-invariant homo-
geneous subspace, unless it is trapped inside it.

Theorem B (Unstability of invariant homogeneous subspaces). Let Y ∈ SΩ(Γ) and consider
a compact subset K ⊆ Ω r Y . For every ε > 0, there exists a neighborhood O′ of Y in Ω such
that for all x ∈ K,

(i) for every n ≥ 0, (µ∗n ∗ δx)(O′) < ε ;

(ii) for µ⊗N
∗
-almost every instructions (gi)i≥1,

lim sup
n→+∞

1

n
card{k ∈ {1, . . . , n} | gk . . . g1x ∈ O′} < ε.

For the purpose of studying the equidistribution of µ-trajectories, we prove a more general
version (Theorem B′) where Y is replaced by its orbit L0Y under a compact subset L0 of the
centralizer of Hnc in G. Conclusion (ii) is obtained in [7] under the assumption that µ has a
finite exponential moment. If the space Ω = G/Λ is compact, item (i) can be readily deduced
from the arguments given in [6, Section 6], but it appears to be new when Ω is not compact,
even under exponential moments assumptions.

Our third result states that each µ-walk trajectory on Ω equidistributes in its closure to-
ward some homogeneous measure. It can be seen as an analog for random walks of Ratner’s
equidistribution theorem [20] for Ad-unipotent flows on Ω. As observed in [6, 13], the assump-
tion on H must be strengthened in order to guarantee homogeneity. We ask that H be Zariski
connected semisimple without compact factors, or equivalently H = Hnc semisimple.

Theorem C (Equidistribution in Cesàro-averages). Suppose as well H = Hnc. For every
x ∈ Ω, we have:

(i) The orbit closure Y = Γ · x ⊂ Ω is a Γ-invariant ergodic finite-volume closed homogeneous
subset.

(ii) The sequence of measures ( 1
n

∑n−1
k=0 µ

∗k ∗ δx)n≥1 converges to νY in the weak-∗ topology.

(iii) For µ⊗N
∗
-almost every instructions (gi)i≥1, the sequence of empirical measures ( 1

n

∑n−1
k=0 δgk...g1x)n≥1

converges to νY in the weak-∗ topology.

Theorem C follows from [7] in the case where µ has a compact support, which implies
in particular that Γ is compactly generated. It is a well-known conjecture that the Cesàro-
averages in the second item should not be necessary. This will be proven in a follow-up paper
[1] in the case where two powers of µ are not mutually singular.
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1.2 Dynamics of the proofs
In order to prove Theorem A, we use a variant of Foster’s recurrence criterion for walks with
a negative drift, applied to an appropriate proper drift function on the space of lattices. This
strategy is generally credited to Margulis, and goes back to the works [15] and [14]. It was
further developed by Benoist and Quint [5]. In those papers, the authors make an exponential
moment assumption, and use the elementary Proposition 1.2 below 1 , whose first item is due
to Eskin-Margulis [14, Lemma 3.1] and the second to Benoist-Quint [7, Proposition 3.9].

Proposition 1.2 (Eskin-Margulis, Benoist-Quint). Let Ω be a measurable space, f : Ω→ R+

a measurable function and (Xn)n≥0 a measurable Markov chain on Ω. Assume

(EM) ∃α0 > 0, supx∈Ω Ex
(
eα0|f(X1)−f(x)|) <∞

(D) ∃R0, λ1 > 0, ∀x ∈ f−1(R0,+∞), Ex(f(X1)) ≤ f(x)− λ1

Then for all ε > 0, there exists R > 0 such that for x ∈ Ω,

(i) ∀n ≥ nx, Px[f(Xn) > R] < ε

(ii) Px − almost surely,

lim sup
n→+∞

1

n
card{k ∈ {1, . . . , n} | f(Xk) > R} < ε.

In order to remove the exponential moment condition in the Benoist-Quint theory, our most
important task will be to obtain an analogous recurrence criterion that applies to homogeneous
random walks with only a finite first moment assumption.

A first approach would be to simply try weakening the requirement (EM) above. And
indeed we shall see that Proposition 1.2 is still true if we replace (EM) by the condition that
the increments of the walk are uniformly bounded in L1+η for some η > 0:

(Mη) ∃M > 0, ∀x ∈ Ω, Ex
(
|f(X1)− f(x)|1+η

)
< M.

However, carefully constructed (continuous) Markov chains on R+ show that conclusions
(i) and (ii) may not hold for walks with negative drift and increments uniformly bounded in L1,
in other words if (EM) above is replaced by (M0) (see Section 2, Examples 1 and 2). We need
a new point of view, which reflects more refined properties of homogeneous chains than the
drift in expectation expressed by (D). Our crucial claim is that the height of a homogeneous
walk evolving in the cusps of a finite-volume space Ω = G/Λ must decrease faster than a chain
on R with i.i.d. increments of negative mean. We formalize this concept by the notion of
stochastic dominance.

Definition 1.3. Given real random variables Z and (Zi)i∈I , we say that (Zi)i∈I is stochasti-
cally dominated by Z if for every i ∈ I, t ∈ R

P(Zi > t) ≤ P(Z > t).

The abstract version of Proposition 1.2 we shall need is the following.

Theorem D (Recurrence of Markov chains with stochastic dominance). Let Ω be a measurable
space, f : Ω→ R+ a measurable function, and (Xn)n≥0 a measurable Markov chain on Ω.

Assume there exist a sublevel set K := {f ≤ R0} and integrable real random variables Z0,
Z1 with E[Z1] := −λ1 < 0 such that

1. (f(X1)− f(X0)|X0 = x)x∈K is stochastically dominated by Z0;

2. (f(X1)− f(X0)|X0 = x)x∈ΩrK is stochastically dominated by Z1.
1To be more accurate, those papers rather use a contraction property of the form Ex[F (X1)] ≤ aF (x) + b,

for some a ∈ (0, 1) and b ∈ R. It is not hard to see that under the assumptions of the above proposition, the
function F (x) = ef(x) has the desired contraction property. The recurrence criterion under the contraction
property is sometimes called “geometric recurrence criterion”, or “exponential recurrence criterion”.
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Then for all ε > 0, there exists R > 0 such that for all x ∈ Ω,

(i) ∀n ≥ 1, Px[f(Xn) > R] < ε+ f(x)
nλ1

.

(ii) Px − almost surely,

lim sup
n→+∞

1

n
card{k ∈ {1, . . . , n} | f(Xk) > R} < ε.

It is pleasant to note that conclusion (i) gives an optimal bound on the time n at which
the distribution Xn starts to accumulate on the sublevel set {f ≤ R} (see discussion below
Proposition 2.5).

Once Theorem D is established, we use it to show that homogeneous random walks do not
escape at infinity, namely Theorem A. Theorem D will be applied to a proper drift function
f : Ω → R+ extracted from Benoist-Quint’s paper [5]. This function was itself inspired by
a former construction due to Eskin, Margulis, and Mozes [14, 15]. Checking the stochastic
condition of Theorem D will require some work, mostly done in Section 3.

The proof of Theorem B is inspired by [6, Section 6] which obtains item (ii) when µ has a
finite exponential moment. However, several important changes are needed. The approach of
[6] consists in showing that the first return random walk induced on a large compact subset
Q drifts away from Y ∩ Q in expectation. It is not possible to extract information on the
original n-th step distribution µn ∗ δx from this induced random walk, so conclusion (i) cannot
be obtained with such a strategy. Moreover, checking that the induced walk does satisfy the
new conditions of stochastic dominance formulated in Theorem D would raise other significant
difficulties.

Our solution instead is to construct a global drift function for every closed invariant finite-
volume homogeneous subset Y ; this is done by gluing together the Benoist-Quint drift function
with a function that drifts away from Y on a compact subset. We believe this new technique
could be useful to construct drift functions in other contexts.

Finally, the equidistribution of each µ-trajectory in its closure stated in Theorem C results
from a combination of Theorems A, B, the Eskin-Lindenstrauss classification of stationary
probability measures [13, Theorem 1.3], and the general strategy of [7]. The proof roughly
goes as follows. Consider a starting point x ∈ Ω, a typical sequence of instructions (gi)i≥1 and
write for n ≥ 1,

νn =
1

n

n−1∑
k=0

δgk...g1x.

Breiman’s law of large numbers and Theorem A imply that any weak-∗ limit ν of (νn)n≥1 is
a µ-stationary probability measure. By Theorem B, ν does not give mass to the Γ-invariant
homogeneous subspaces which do not contain x. The Eskin-Lindenstrauss classification of
stationary measures implies that ν = νY for some Y ∈ SΩ(Γ) and necessarily Y := Γ.x. This
yields the equidistribution statement.

Structure of the paper
Section 2 is dedicated to Theorem D. We first explain in greater detail the role of the domi-

nance hypothesis and then prove the result, subdivided into two propositions (Propositions 2.5
and 2.7). We also check that the conclusions still hold for walks with a negative drift and
increments bounded in L1+η.

Section 3 converts Theorem D into a more handleable recurrence criterion for homogeneous
random walks. It will be used in Sections 3 and 4 to show that homogeneous walks accumulate
neither at infinity, nor around any proper invariant homogeneous subspace.

Section 4 deals with Theorem A. We check that the Benoist-Quint drift function satisfies
the controlled drift assumption of Section 3.
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Section 5 deals with Theorem B. The main part of the argument is the construction of
a new drift function for invariant homogeneous closed subsets. It is obtained by gluing the
Benoist-Quint function with some function which drifts away from the homogeneous subspace
on a compact set.

Section 6 contains the proof of Theorem C. It combines Theorems A, B and the classification
of stationary measures of Eskin-Lindenstrauss.

Section 7 concludes the paper with some possible further directions of research.

Acknowledgements. We are indebted to Yves Benoist and Jean-François Quint for sev-
eral helpful discussions on the subject. It is a pleasure to thank them here for sharing their
knowledge, and for organizing the Arbeitsgemeinschaft on rigidity of stationary measures at
the Mathematisches Forschungsinstitut Oberwolfach, where we learned about these problems.
We also thank Jean-Philippe Dru for his help in finding reference [22].

2 Markov chains with a negative drift
The goal of this section is to prove Theorem D stating that Markov chains on a stratified state
space and satisfying some stochastic dominance condition have neither escape of mass nor
escape of empirical measures. We also note that these conclusions are still valid if the chain is
assumed to have a negative drift and increments uniformly bounded in L1+η for some η > 0.
Counterexamples are given if η = 0.

Recurrent aspects of general Markov chains is a classical subject in probability theory, and
the books [21] and [19] will provide a thorough introduction to the subject to the interested
reader. We note that many recurrence results for Markov chains on continuous state spaces
make some irreducibility assumption such as ψ-irreducibility, or Harris-recurrence. Those are
natural assumptions that remove the dependency of the Markov chain on the starting point, and
they are certainly necessary to obtain some convergence statement such as [19, Theorem 13.0.1],
but they are not satisfied by random walks on homogeneous spaces.

However, in this section, we shall only be interested in weaker statements such as non-
escape of mass, and for that, one can compensate the lack of irreducibility by making a stronger
moment assumption, or a stochastic dominance assumption. It is only through the Benoist-
Quint classification of stationary measures, a result that relies heavily on the specific structure
of homogeneous spaces, that we shall be able to derive an equidistribution theorem from the
result on non-escape of mass.

For the whole section, we fix a measurable space Ω, a non-negative measurable function
f : Ω → R+, and a Markov chain (Xn)n≥0 on Ω. Given a point x ∈ Ω, the notations Ex and
Px will refer to the expectation and probability conditional to X0 = x.

2.1 Dominance condition and return times
We first give some perspective to the stochastic dominance assumptions in Theorem D. For
future reference, these assumptions will be denoted by (SD). Recall for clarity:

(SD) There exist a sublevel set K := {f ≤ R0} and integrable real random variables Z0, Z1

with E[Z1] := −λ1 < 0 such that every x ∈ Ω, t ∈ R,

Px(f(X1)− f(x) > t) ≤ P(Z0 > t)1K(x) + P(Z1 > t)1ΩrK(x).

We begin by observing that (SD) is a very natural condition as it is satisfied for Markov
chains with a well-behaved negative drift. This criterion is expressed in Lemma 2.2 below. It
will further be adapted to homogeneous chains in Section 3. The statement uses the notion of
standard realisation of a random variable which we first recall.

Definition 2.1 (Standard realisation). Let Z be a real random variable. The random variable
on the probability space ([0, 1],B([0, 1]), leb|[0,1]) defined by

Z ′ : [0, 1] → R
s 7→ max{t ∈ R, P(Z ≥ t) ≥ s}
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has the same law as Z. We call it the standard realisation of Z.

Remark. This notion allows a second formulation of stochastic dominance: Z1 is dominated
by Z2 if and only if their standard realisations Z ′1, Z ′2 satisfy Z ′1 ≤ Z ′2 everywhere on [0, 1].

Lemma 2.2 (Criterion for stochastic dominance). Let (Ω, f, (Xn)) as above. Assume there
exist a probability space (E,P), an integrable random variable Z : E → R+ and constants
R0, λ, α > 0 such that

1. ∀x ∈ Ω,
f(x) > R0 =⇒ Px(f(X1) ≤ f(x)− λ) ≥ 1− α

2. ∀x ∈ Ω, t ∈ R+,
Px(f(X1)− f(x) > t) ≤ P(Z > t)

3. Denoting by Z ′ the standard realisation of Z we have

E(Z ′1[0,α]) < λ(1− α)

Then (Ω, f, (Xn)) satisfies the dominance condition (SD) with constants (R0, λ1) where λ1 :=
λ(1− α)− E(Z ′1[0,α]).

Proof. Given x ∈ Ω, we denote by Yx the variable f(X1)−f(x) varying under Px. Assumption
2. of the lemma yields that for any x ∈ Ω, Yx is stochastically dominated by Z. In particular,
we may choose Z0 = Z.

We now define Z1. Let x ∈ Ω r K and Y ′x, Z
′ : [0, 1] → R be the standard realisations

of Yx, Z defined above. By assumption 1), we have Y ′x ≤ −λ on (α, 1], hence we can write
everywhere on [0, 1]

Y ′x ≤ Z ′1[0,α] − λ1(α,1]

The right-hand side defines a random variable Z1 independently of the point x ∈ ΩrK chosen
earlier. Moreover, assumption 3. yields

E(Z1) ≤ E(Z ′1[0,α])− λ(1− α) < 0

which concludes the proof.

Remark. The idea behind Lemma 2.2 can easily be understood through the graphs of the
repartition functions, as in Figure 2.1 below. Recall that the repartition function of a real
random variable X is defined by FX(t) = P(X ≤ t) for t ∈ R.

t

1

1− α

0−λ

Ff(X1)−f(x)(t)
FZ1

(t)
FZ(t)

Figure 1: Stochastic domination by Z1 with E[Z1] < 0.
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One can readily compute the expectation of Z1 from the above picture:

E[Z1] =

∫
R
tdFZ1

(t)

= −(1− α)λ+

∫
1{FZ(t)≥1−α}dFZ(t)

= −(1− α)λ+ E[1[0,α]Z
′] = −λ1 < 0.

We now turn to the first implications of condition (SD). Its crucial input is that it allows
to bound the tail probabilities of the return time to the sublevel set K independently of the
starting point x ∈ K, and so that the resulting sequence of bounds is summable. This will
be the key ingredient to show that the mass of the n-th step distribution and the empirical
measures do not escape at infinity. Such bounds are also available if the walk has a negative
drift and increments uniformly bounded in L1+η for some η > 0, so the non-escape estimates
are equally valid in this case. This latter observation will not be used in the other sections,
but seems general enough to be of independent interest. It also extends the results based on
exponential moment conditions used in [14, 7].

Lemma 2.3 (Return times). Suppose (Ω, f, (Xn)) satisfy condition (SD), or conditions (D)
and (Mη) for some η > 0. Denote by

τ = inf{n ≥ 1 | Xn ∈ K}

the first return time to K. Then ∑
n≥1

sup
x∈K

Px(τ ≥ n) <∞.

A weaker version of this result can be directly deduced from the so-called Foster’s recurrence
criterion, which only assumes negative drift and bounds the expectation of the return time τ .
This criterion, or at least an exponential variant, was used in [6, 7]. It will also play a role in
several proofs below so we record the precise statement.

Lemma 2.4 (Foster’s criterion). Suppose (Ω, f, (Xn)) satisfy conditions (D) and (M0). Then
for every x ∈ Ω rK, we have

Ex(τ) ≤ f(x)

λ1
.

In particular, the expectation of τ is uniformly bounded when the starting point of the
chain varies in K so that supx∈K

∑
n≥1 Px(τ ≥ n) < ∞. The goal of Lemma 2.3 is precisely

to strengthen this inequality by allowing to switch the supremum and the sum.

Proof of Lemma 2.4. It is a classical result, see for instance [19, Proposition 11.3.2], or Foster’s
original paper [16]. We recall the proof for completeness. Let x ∈ Ω rK be a starting point.
For n ≥ 0, set Yn = 1τ>nf(Xn), and Fn the σ-algebra generated by (X1, . . . , Xn). We can
bound

Ex[Yn+1|Fn] = Ex[1τ>n+1f(Xn+1)|Fn]

≤ Ex[1τ>nf(Xn+1)|Fn]

= 1τ>nEx[f(Xn+1)|Fn]

≤ 1τ>n(f(Xn)− λ1).

where the case n = 0 uses that x /∈ K. Taking expectation, we obtain

0 ≤ Ex[Yn+1] ≤ Ex[Yn]− λ1Px(τ > n) ≤ · · · ≤ Ex[Y0]− λ1

n∑
k=0

Px(τ > k)

8



and passing to the limit, we conclude that

Ex[τ ] =
∑
k≥0

Px(τ > k) ≤ f(x)

λ1
.

Proof of Lemma 2.3. Case 1: (SD) is satisfied.
Denote by (Yn) the Markov chain on R with i.i.d. increments given by Z1 and set

τ (Y ) = {inf n ≥ 1, Yn ≤ R0}

the first return time of (Yn) to (−∞, R0]. Using the dominance condition (SD), one sees by
induction on n that for every x ∈ Ω such that f(x) > R0, we have

Px(τ ≥ n) ≥ Pf(x)(τ
(Y ) ≥ n).

Now for n ≥ 2, x ∈ K, we can write

Px(τ ≥ n) =

∫
(R,+∞)

PX1
(τ ≥ n− 1) dPx(X1)

≤
∫

(R,+∞)

Pf(X1)(τ
(Y ) ≥ n− 1) dPx(X1)

≤
∫

(R,+∞)

PR+Z0
(τ (Y ) ≥ n− 1) dP(Z0)

where the last inequality is obtained using assumption (SD) and the fact that t 7→ Pt(τ (Y ) ≥
n − 1) is increasing on (R,+∞). Observing that the right-hand side no longer depends on x
and summing over n we get∑

n≥2

sup
x∈K

Px(τ ≥ n) ≤
∫

(R,+∞)

∑
n≥2

PR+Z0
(τ (Y ) ≥ n− 1) dP(Z0)

=

∫
(R,+∞)

ER+Z0
(τ (Y )) dP(Z0).

However, Foster’s criterion (Lemma 2.4) gives for every t > R, the bound Et(τ (Y )) ≤ (t−R)/λ1.
Hence we may conclude that∑

n≥2

sup
x∈K

Px(τ ≥ n) ≤ 1

λ1

∫
(R,+∞)

Z0 dP(Z0)

<∞.

Case 2: (D) and (Mη) are satisfied from some η > 0.
We can assume η ∈ (0, 1). Since Px(τ ≥ n) ≤ 1

n1+ηEx[τ1+η], it is enough to prove that the
family of return times (τ |X0 = x)x∈K is uniformly bounded in L1+η. More generally, we show
that for every x ∈ Ω,

Ex(τ1+η) ≤
(
f(x)

λ1

)1+η

+M
f(x)

λ1
+M1 (1)

where M1 = 1 + 4
(

(M
1

1+η +R0)1+η + M(M+R0)
λ1

)
.

We first bound the return time for a starting point oustide of K. On the one hand, notice
that we already know by Foster’s criterion that for every x ∈ Ω r K, Ex(τ) ≤ f(x)

λ1
. In

particular, Jensen’s inequality gives

Ex(τη) ≤
(
f(x)

λ1

)η
. (2)

9



On the other hand, the combination of (D) and (Mη) yields a strong negative drift for f(X1)1+η

as we now explain. Observe that the inequality

(1 + t)1+η ≤ 1 + (1 + η)t+ |t|1+η

where −1 ≤ t ≤ +∞, applied to t = f(X1)−f(x)
f(x) gives

f(X1)1+η ≤ f(x)1+η + (1 + η) (f(X1)− f(x)) f(x)η + |f(X1)− f(x)|1+η,

Taking expectation, we obtain for every x ∈ Ω rK,

Ex(f(X1)1+η) ≤ f(x)1+η − (1 + η)λ1f(x)η +M. (3)

Inequalities (2) and (3) allow to apply a general result of Tweedie [22, Theorem 3(iii)] (with
A = K, ψ(k) = (1 + η)λ1+η

1 kη −M , g(x) = f(x)1+η, g1(x) = (1 + η)λ1f(x)η −M) to obtain
for all x ∈ Ω rK,

Ex(τ1+η) ≤
(
f(x)

λ1

)1+η

+MEx(τ)

so by Foster’s criterion again, for x ∈ Ω rK,

Ex(τ1+η) ≤
(
f(x)

λ1

)1+η

+M
f(x)

λ1
.

The general bound announced in (1) for every x in Ω follows using the moment condition (Mη).

2.2 Conservation of mass
We show conclusion (i) in Theorem D: random walks on Ω satisfying the stochastic dominance
assumption (SD), or having a negative drift and increments uniformly bounded in L1+η, have
no escape of mass.

Proposition 2.5. Suppose (Ω, f, (Xn)) satisfy condition (SD), or conditions (D) and (Mη)
for some η > 0. Then for all ε > 0, there exists R > 0 such that for x ∈ Ω, n ≥ 1,

Px[f(Xn) > R] < ε+
f(x)

nλ1

Remark. Choosing ε very small, we see that the first time n ≥ 1 such that Px[f(Xn) > R] < 1

is bounded above by f(x)
λ1(1−ε) '

f(x)
λ1

. When f(x)→ +∞, this bound is essentially optimal, as
one can see by considering a deterministic walk by translation of −λ1, for which the return
time is equal to f(x)−R

λ1
.

The key is to use Lemma 2.3 to show the following renewal estimate.

Lemma 2.6 (Renewal estimate). Suppose (Ω, f, (Xn)) satisfy condition (SD), or conditions
(D) and (Mη) for some η > 0. Then for any α > 0, there exists ` ≥ 0, such that for all x ∈ K,
n ≥ `,

Px(∃i ∈ {n− `, . . . , n} : Xi ∈ K) > 1− α.

In words, this lemma states that for any interval of integers I ⊆ N of large length `, the
walk starting from an arbitrary point in K has a very good chance to come back to K during
I.

Proof. Let α > 0. According to Lemma 2.3, we may choose ` ≥ 0 such that∑
n≥`

sup
x∈K

Px(τ > n) < α.

10



Let us check that ` satisfies the conclusion of the lemma. Given n ≥ `, it is convenient to set
In = {n− `, . . . , n}. Assume that An ∈ R+ is a constant such that for x ∈ K, k ∈ {`, . . . , n},
we have

Px(∀i ∈ Ik, Xi /∈ K) ≤ An.

We can write

Px(∀i ∈ In+1, Xi /∈ K) ≤ Px(∀i ∈ In+1, Xi /∈ K; τ ≤ n) + Px(τ > n)

≤
n−∑̀
k=1

Px(∀i ∈ In+1, Xi /∈ K; τ = k) + Px(τ > n)

≤
n−∑̀
k=1

AnPx(τ = k) + Px(τ > n)

≤ An + Px(τ > n).

Hence, defining a sequence (An)n≥` by{
A` = 0
∀n ≥ `, An+1 = An + supx∈K Px(τ > n)

we can see by induction on n using the above inequality that for all x ∈ K, n ≥ `,

Px(∀i ∈ In, Xi /∈ K) ≤ An < α.

Let us now prove the conservation of mass anounced above.

Proof of Proposition 2.5. We first deal with the case where x ∈ K. We denote by ` ≥ 0 the
constant given by Lemma 2.6 for α = ε/2, then choose the constant R > 0 large enough so
that for every x ∈ K and every n ≤ `,

Px(f(Xn) > R) < ε/2.

By Lemma 2.6, this yields for x ∈ K, and arbitrary n ≥ `

Px(f(Xn) > R) < ε/2 + Px(f(Xn) > R; ∃i ∈ {n− `, . . . , n}, Xi ∈ K)

< ε.

To deal with the complementary case x ∈ Ω rK, denote by τ the first return time to K and
notice that for n ≥ 0,

Px(f(Xn) > R) < Px(f(Xn) > R; τ ≤ n) + Px(τ > n)

< ε+
Ex[τ ]

n
.

In view of Foster’s criterion recalled in Lemma 2.4, we have Ex[τ ] ≤ f(x)
λ1

as soon as f(x) > R0.
Hence, we obtain

Px (f(Xn) > R) < ε+
f(x)

nλ1

which finishes the proof of Proposition 2.5

We conclude Section 2.2 by a counterexample to Proposition 2.5 when the walk (Ω, f,Xn)
is only assumed to satisfy (D) and (M0).

11



Example 1 (Escape of mass). Let [0, 1
2 ] → [0, 1), x 7→ αx be a continuous map such that

α−1(0) = 0. We consider the Markov chain (Xn)n≥0 on Ω = [0,+∞) whose transition proba-
bility measures are given by

µ0 = δ0
µx = (1− αx)δx + αxδα−1

x
if 0 < x ≤ 1/2

µx = (2x− 1)δ0 + (2− 2x)µ 1
2

if 1/2 ≤ x ≤ 1

µx = δx−1 if x ≥ 1.

Note that µx depends continously on x. Letting f = Id, the random walk (Xn)n≥0 satisfies

sup
x∈Ω

Ex[|f(X1)− f(x)|] ≤ 1 and sup
x∈(1,+∞)

Ex[f(X1)− f(x)] = −1.

However, given a fixed x0 ∈ (0, 1/2], one can choose the family (αx)x∈[0,1/2] so that for every
R > 0, there exists n ≥ 0 such that

Px0(f(Xn) > R) ≥ 1/2. (4)

To see this, first observe that a trajectory with origin x0 ∈ (0, 1
2 ] stays at x0 for some time,

then jumps out of [0, 1] and comes back to it with constant increments of −1 until reaching a
point x1 ∈ [0, 1]. Then, if x1 ∈ (0, 1

2 ], the process repeats itself to give some point x2 ∈ [0, 1],
and so on. Arguing step by step, we can choose the coefficients αx such that the return points
x0, x1, x2, . . . form an infinite sequence in (0, 1

2 ], satisfy xi > xi+1, (xi)i≥0 → 0, and so that
the sequence (αxi)i≥0 decreases to 0 fast enough to have for every i ≥ 1, some ni ≥ 1 for which

Px0(Xni = xi) ≥ 1− 1/i.

Let us now check the property (4) announced above. Fix R > 0. For i, k ≥ 0,

Px0
(Xni+k ≤ R) = Px0

(Xni+k ≤ R;Xni = xi) + Px0
(Xni+k ≤ R;Xni 6= xi)

≤ Pxi(Xk ≤ R) + 1/i. (5)

Assume i to be large enough so that α−1
xi > R and set ki = bα−1

xi − Rc the greatest integer
smaller than α−1

xi −R. We can then write

Pxi(Xki ≤ R) = Pxi(X1, . . . , Xki = xi)

= (1− αxi)ki

= eki log(1−αxi ) −→
i→+∞

e−1. (6)

Equations (5) and (6) give that for large i,

Px0
(Xni+ki ≤ R) ≤ 1/2

as announced in (4).

2.3 Recurrence of empirical measures
We show conclusion (ii) in Theorem D: random walks on Ω satisfying the stochastic dominance
assumption (SD), or having a negative drift and increments uniformly bounded in L1+η, must
have positive recurrent trajectories.

Proposition 2.7. Suppose (Ω, f, (Xn)) satisfy condition (SD), or conditions (D) and (Mη)
for some η > 0. For every ε > 0, there exists R > 0 such that for every x ∈ Ω, Px-almost
every (Xn),

lim sup
n→+∞

1

n
card{k ∈ {1, . . . , n} | f(Xk) > R} < ε.
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Proof. We start with some notation. Let τi be the i-th return time in K. More precisely,
τ0 = 0 by convention, and for all i ≥ 1,

τi = inf{n > τi−1 | Xn ∈ K}.

We also let Zi = τi − τi−1 be the length of the i-th excursion and

Zexti = card{n ∈ {τi−1, . . . , τi − 1} | f(Xn) > R}

the time spent outside of {f ≤ R} during the excursion.
To prove Proposition 2.7, it is sufficient to show that if R > 0 is large enough, then for any

x ∈ K, Px-almost surely, one has for large n ≥ 0,

n∑
i=1

Zexti < ε

n−1∑
i=1

Zi. (7)

We explain how to obtain (7). The assumption (SD), or the conditions (D) and (Mη), both
guarantee that

sup
x∈K

Px(Zext1 6= 0) −→
R→+∞

0. (8)

Indeed, we can write for x ∈ K,

Px(Zext1 6= 0) ≤ Px(Zext1 6= 0; τ ≤ N) + Px(τ ≥ N)

≤ Px(∃i ≤ N, f(Xi) > R; τ ≤ N) + Px(τ ≥ N)

≤
∑
i≤N

Px(f(Xi) > R) + Px(τ ≥ N)

≤ N(R0 +NM)

R
+ sup
y∈K

Py(τ ≥ N)

where M > 0 is a fixed uniform L1-bound on the positive increment of the walk, i.e. such
that Ex[max (0, f(X1)− f(x))] < M . The right-hand side of the inequality does not depend
on x ∈ K. In view of Lemma 2.3, we can choose N large, then R even larger, to have the
right-hand side arbitrarily close to 0, whence (8).

Observing that Ex(Zext1 ) ≤ Ex(τ1Zext1 6=0) and using the uniform integrability of the vari-
ables (τ |X0 = x)x∈K given by Lemma 2.3, we deduce from (8) that

sup
x∈K

Ex(Zext1 ) −→
R→+∞

0.

In particular, we can choose R so that supx∈K Ex(Zext1 ) < ε/2. Fix x ∈ K. Denote by Fi the
sub σ-algebra of Ω generated by (X0, . . . , Xτi). The random variables Zexti , i ≥ 1, statisfy for
n ≥ 1,

Px(Zexti ≥ n | Fi−1) ≤ sup
y∈K

Py(τ ≥ n).

As the right-hand side of the inequality is summable by Lemma 2.3, we may apply Kolmogorov’s
law of large numbers for dependent variables [9, Theorem A.6] and obtain that Px-almost surely,

1

n

n∑
i=1

Zexti =
1

n

n∑
i=1

Ex[Zexti | Fi−1] + o(1).

Moreover, by our choice for R, we have Ex[Zexti | Fi−1] < ε/2. We infer that for large n ≥ 0,

1

n

n∑
i=1

Zexti < ε
1

n

n−1∑
i=1

Zi

keeping in mind that by definition Zi ≥ 1. This concludes the proof of inequality (7), whence
the proposition.
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We conclude with a counterexample to Proposition 2.5 when the walk (Ω, f,Xn) is only
assumed to satisfy (D) and (M0).

Example 2 (Escape of empirical measures). Given a real number r ∈ R, we denote by brc
the largest integer k such that k ≤ r. Fix a sequence (xi)n≥3 ∈ (0, 1)N≥3 decreasing to 0, and
consider the Markov chain (Xn)n≥0 on Ω = [0,+∞) whose transition probability measures are
given by 

µ0 = δ0
µxi = (1− 1

i log i )δxi+1
+ 1

i log iδxi+1+bi
√

log ic for i ≥ 3

µx = δx−1 if x > 1
x 7→ µx affine on each segment [xi+1, xi].

The chain (Xn)n≥0 has a continuous family of transition probability measures and satisfies,
for f = Id,

sup
x∈Ω

Ex[|f(X1)− f(x)|] ≤ 3 and sup
x∈(1,+∞)

Ex[f(X1)− f(x)] = −1.

However, for Px3 -almost every trajectory (Xn)n≥0, for every ε,R > 0, there exists n0 ≥ 1 such
that

1

n0
card{k ∈ {1, . . . , n0} | f(Xk) ≤ R} < ε. (9)

To see this, denote by τj the j-th return time to [0, 1]. In other words, τ0 = 0 by convention,
and for all j ≥ 1,

τj = inf{n > τj−1 | Xn ∈ [0, 1]}.

The random variables (τj − τj−1)j≥1 varying under Px3
are independent of respective laws

(1− 1

(j + 2) log(j + 2)
)δ1 +

1

(j + 2) log(j + 2)
δb(j+2)

√
log(j+2)c+1

(j ≥ 1)

As the sequence ( 1
n logn )n≥3 is not summable, the converse of the Borel-Cantelli lemma yields

that Px3
-almost surely we have lim supj→+∞

τj−τj−1

j = +∞. In particular, given ε,R > 0,
there exists j0 ≥ 1 such that

j0 <
ε

R+ 1
τj0 .

Setting n0 = τj0 , we get

card{k ∈ {1, . . . , n0} | Xk ≤ 1} < ε

R+ 1
n0.

Finally, observing that for any k ≥ 0 such that Xk ≤ R there exists a time j ∈ {k, . . . , k+bRc}
for which Xj ∈ [0, 1], we conclude

card{k ∈ {1, . . . , n0} | Xk ≤ R} < εn0

as announced in (9).

3 Recurrence criterion for homogeneous chains
We apply the results of the previous section to the particular case of homogeneous random
walks and obtain a handy criterion to check that the mass or the empirical measures of the
walk do not accumulate near a given subset (Proposition 3.3 below). This criterion will be
applied in two different contexts, first to prove non-escape at infinity, and later to derive
non-accumulation on invariant homogeneous subspaces.
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3.1 The controlled drift condition
In the whole section we fix Ω a locally compact topological space, Γ a topological semigroup
acting continously on Ω, and µ a Borel probability measure on Γ. We call µ-walk on Ω the
Markov chain on Ω whose law of transition at x ∈ Ω is µ ∗ δx, image of µ under g 7→ gx. We
denote by Ω = Ω∪{∞} the Alexandroff compactification of Ω, and write P(Ω) the collection of
its subsets. Given S ⊆P(Ω)×P(Ω), we have a decomposition S = ∪Y ∈p1(S){Y }×SY where
p1 is the first coordinate projection map and SY ⊆ P(Ω) is the fibre above Y in S. Finally,
given a finite-dimensional real vector space V , we set SL±(V ) = {g ∈ GL(V ) | det g = ±1}.

Definition 3.1. Let S ⊆P(Ω)×P(Ω), A ⊆P(Ω). We say that the µ-walk has a controlled
drift away from S on A if:

• There exists a linear representation Φ : Γ→ SL±(V ) on a finite-dimensional normed real
vector space V such that ∫

G

log ‖Φ(g)‖ dµ(g) < +∞.

• There exist constants λ,C > 0 such that for any α > 0, there exists N ≥ 1 such that
for n ≥ N , for any Y ∈ p1(S), any compact subset K ⊆ Ω such that K ∩ Y = ∅, any
Q ∈ A, there is Y ′ ∈ SY , and a measurable function f : Ω → [0,+∞] which is bounded
on K, whose upper level sets are neighborhoods of Y ′, and which satisfies

(i) ∃T ∈ [0,+∞), ∀x ∈ Q ∩ f−1[T,+∞),

µ∗n(g ∈ G | f(gx) ≤ f(x)− nλ) ≥ 1− α (probable decrease)

(ii) ∀x ∈ f−1[0,+∞), ∀g ∈ Γ,

f(gx)− f(x) ≤ C log‖Φ(g)‖. (control of variations)

Remark. 1) Strictly speaking, the definition expresses a drift away from some Y ′ ∈ SY which
could have nothing to do with Y . However, in all the applications below, we will always have
that Y ⊆ Y ′ for all Y ′ ∈ SY , so in particular, the walk does drift away from Y too. We choose
to sum it up using the terminology of drift away from S.

3) The condition (ii) implies that f−1[0,+∞) is Γ-invariant.
2) If A = {Ω} then we simply say that the µ-walk has a controlled drift away from S. If

additionally, S = {∞,∞}, we talk about controlled drift away from infinity. Note that f is
proper in this case: its sublevel sets have compact closure in Ω.

4) The map Φ will later be referred to as the control function for the drift. Indeed, its role
is to bound the growth of f in the unlikely event its value goes up along the walk.

To get more familiar with the notion of controlled drift, we start by exploring some stability
properties. Given S0,S1 ⊆ P(Ω) ×P(Ω), we denote by S0 ∨ S1 the set of pairs (Y, Y ′0 ∪ Y ′1)
where Y ∈ p1(S0) ∩ p1(S1), Y ′0 ∈ S0,Y , Y ′1 ∈ S1,Y .

Lemma 3.2. a) If the µ-walk on Ω has a controlled drift away from both S0,S1, then it has
a controlled drift away from S0 ∨ S1.

b) If the µ-walk on Ω has a controlled drift away from infinity and a controlled drift away
from S on compact sets of Ω, then it has a controlled drift away from S.

We explain a). The proof of the second assertion is much more involved and postponed to
Section 5 where it will be used.

Proof of Lemma 3.2 a). We respectively index by 0 and 1 the notations referring to S0, S1.
Let Ci, λi be the constants given by the controlled drift assumption 3.1 for Si. Set C =
max(C0, C1), λ = min(λ0, λ1). Let α > 0, then Ni as in 3.1. Set N = max(N0, N1), n ≥ N .
Let Y ∈ p1(S0)∩ p1(S1) and consider a compact set K ⊂ ΩrY . Let Y ′i , fi, Ti be given by 3.1.
We set Y ′ = Y ′0 ∪ Y ′1 ,

f = max(f0, f1)
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and claim that the map f satisfies all the requirements in Definition 3.1 (with 2α instead of α).
Indeed, all the conditions are obvious except the one entitled “probable decrease”. To check it,
we choose T ≥ max(T0, T1) and large enough so that

µ∗n(g ∈ Γ |T0 + C0Φ0(g) ≤ T − nλ) ≥ 1− α

and the same holds when we replace 0 by 1. Now let x ∈ f−1[T,+∞). If f1(x) = f(x), then

µ∗n(g ∈ Γ | f1(gx) ≤ f(x)− nλ1) ≥ 1− α

On the other hand, distinguishing the cases f0(x) < T0 and f0(x) ≥ T0, the condition on T
guarantees that

µ∗n(g ∈ Γ | f0(gx) ≤ f(x)− nλ) ≥ 1− α

so combining these inequalities

µ∗n(g ∈ Γ | f(gx) ≤ f(x)− nλ) ≥ 1− 2α.

The same holds if f0(x) = f(x) by symmetry.

3.2 Application to recurrence
The proposition below states that a walk that drifts away from S does not accumulate on S. In
particular, when S = {∞,∞}, the conclusion exactly means that the walk has neither escape
of mass nor escape of empirical measures at infinity.

Proposition 3.3. Let (Ω, G, µ) be as above and S ⊆ P(Ω) ×P(Ω). Assume that the µ-
walk on Ω has a controlled drift away from S. Then for every Y ∈ p1(S), every compact set
K ⊆ Ω r Y , there is Y ′ ∈ SY such that for every ε > 0, for some neighborhood O′ of Y ′, for
all x ∈ K,

(i) for every n ≥ 0, (µ∗n ∗ δx)(O′) < ε;

(ii) for µ⊗N
∗
-almost every instructions (gi)i≥1,

lim sup
n→+∞

1

n
card{k ∈ {1, . . . , n} | gk . . . g1x ∈ O′} < ε.

The proof can be summarized as follows. If α > 0 is small enough, n ≥ N is large enough,
then for every Y ∈ p1(S), every compact set K ⊆ Ω r Y , the function f given by the drift
property 3.1 satisfies the assumptions of Lemma 2.2 for the µ∗n-random walk on f−1[0,+∞)
for some n ∈ N∗, whence the stochastic dominance condition (SD). Theorem D then applies
and leads to non-accumulation results for the µ∗n-walk on f−1[0,+∞) which can be extended
to the µ-walk.

We begin with a lemma that will allow to check condition 3. in Lemma 2.2.

Lemma 3.4. Let Φ : Γ → SL±(V ) be a linear representation of Γ on a finite-dimensional
normed vector space V such that ∫

G

log ‖Φ(g)‖ dµ(g) < +∞

Then for all η > 0, there exists α > 0, N ′ ≥ 0 such that for all n ≥ N ′, if Z ′n denotes the
standard realisation of Zn = log‖Φ(g)‖ for µ∗n, then

E[Z ′n1[0,α]] ≤ nη.

16



Proof. The law of large numbers [9, Lemma 4.27] guarantees that there exists a constant
` ≥ 0 such that the sequence of real random variables ( 1

nZn)n≥1 converges to ` in L1. This
convergence also holds for ( 1

nZ
′
n)n≥1 as it has the same law. Now let α > 0, n ≥ 1.

1

n
E[Z ′n1[0,α]] ≤ α`+ E[| 1

n
Z ′n − `|]

≤ α(`+ 1)

if n is large enough. The result follows if we specify α = η
`+1 above.

We now apply the results of Section 2 with the drift function f constructed above to derive
Theorem A′.

Lemma 3.5. Assume that the µ-walk on Ω has a controlled drift away from S. Then there
exists α0 > 0, n0 ≥ N such that for any Y ∈ p1(S), any compact K ⊆ Ω r Y , any map f as
in Definition 3.1, the µ∗n0-walk on f−1[0,+∞) satisfies condition (SD) with drift function f .

Proof. Let λ,C > 0 be given by Definition 3.1. Choose a small α0 ∈ (0, 1/2) as in Lemma 3.4
for η = λ

2C . Fix an integer n0 ≥ max(N,N ′) where N,N ′ are the constants given respectively
by Definition 3.1 and Lemma 3.4 for our choice of α. Consider Y ∈ p1(S), a compact set
K ⊆ Ω r Y , and a map f as in Definition 3.1.

We show that the µ∗n0-random walk on f−1[0,+∞) satisfies the stochastic dominance
condition (SD). To do so, we only need to check that the assumptions of Lemma 2.2 do hold
in the present context.

1. By Definition 3.1, there exists T > 0 such that for x ∈ f−1[T,+∞),

µ∗n0(g ∈ Γ | f(gx) ≤ f(x)− n0λ) ≥ 1− α0.

2. For every x ∈ f−1[0,+∞), g ∈ Γ, we have f(gx) − f(x) ≤ C log ‖Φ(g)‖. In particular,
denoting by Z the variable C log ‖Φ(g)‖ where g varies with respect to µ∗n0 , the law of
f(gx)− f(x) for µ∗n0 is stochastically dominated by Z.

3. Lemma 3.4 and our choice of constants imply that, writing Z ′ the standard realisation
of Z,

E[Z ′1[0,α0]] ≤
n0λ

2
.

Hence the conditions of Lemma 2.2 are satisfied, which implies that (SD) holds for the µ∗n0-
walk on f−1[0,+∞).

Proof of Proposition 3.3. Fix α0 > 0, n0 ≥ N as in Lemma 3.5, Y ∈ p1(Ω), a compact
K ⊆ ΩrY , and let Y ′ ∈ SY , f : Ω→ [0,+∞] be given by the drift condition 3.1. Let us check
the conclusions of the proposition with O′ = {f > M} for some sufficiently large M . Lemma
3.5 combined with Theorem D already yields the result for the µ∗n0-walk: for any ε > 0, there
is R > 0 such that for all x ∈ K,

(i) for every q ≥ 0, µ∗qn0(g ∈ Γ | f(gx) > R) < ε;

(ii) for µ⊗N
∗
-almost every trajectory (gi)i≥1,

lim sup
n→+∞

1

q
card{k ∈ {1, . . . , q} | f(gkn0

. . . g1x) > R} < ε.

To conclude, we just check that (i) and (ii) also hold for µ (i.e. if n0 = 1) up to increasing
R and doubling ε.

For (i), choose R1 > 0 such that for every 1 ≤ m < n0,

µ∗m(g ∈ G | log‖Φ(g)‖ > R1) ≤ ε.
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Let R2 = R + CR1 and n ≥ 0. Writing n = qn0 +m for some integers q,m ≥ 0 with m < n0,
we obtain for every x ∈ K

µ∗n(g ∈ G | f(gx) > R2) ≤ µ∗qn0(g ∈ G | f(gx) > R)

+ µ∗m(g ∈ G | log‖Φ(g)‖ > R1)

< 2ε.

For (ii), the argument is very similar. Given R3 > 0, set for q ≥ 1

Yq = 1{∃n∈{qn0+1,...,qn0+n0}: log‖Φ(gn...gqn0+1)‖>R3}.

The random variables Yq are independent, identically distributed, and satisfy E[Yq] < η if R3

is chosen large enough. Therefore, by the classical law of large numbers,

lim sup
q→+∞

1

q
card{k ∈ {1, . . . , q} | ∃ kn0 < n ≤ n0(k + 1) : log‖Φ(gn . . . gkn0+1)‖ > R3} < ε.

Setting R4 = R+ CR3, we get for µ⊗N
∗
-almost every (gi)i≥1 ∈ GN∗ ,

lim sup
n→+∞

1

n
card{k ∈ {1, . . . , n} | f(gk . . . g1x) > R4} < 2ε

which finishes the proof of the proposition.

4 Non-escape at infinity
We now apply the results of the previous section to show that random walks on finite-volume
homogeneous spaces have neither escape of mass nor escape of empirical measures at infinity.
In what follows, G denotes a real Lie group, g its Lie algebra, r its amenable radical, s = g/r
the largest quotient of g which is semisimple without compact factors, and we denote by
Ads : G → Aut s the adjoint action of G on s. Given a probability measure µ on G, we let
Hs ⊂ Aut s be the real algebraic group generated by the support of (Ads)∗µ and call Hnc

s

its non-compact part, i.e. the smallest normal algebraic subgroup of Hs such that Hs/H
nc
s is

compact.
Our goal is to show the following theorem, which is due to Benoist and Quint [5, Theo-

rem 1.1] in the case where µ has a finite exponential moment on s.

Theorem A′. (Recurrence of semisimple random walks) Let G be a real Lie group, Λ a lattice
in G, and Ω = G/Λ. Assume that µ is a probability measure on G such that

1. µ has a finite first moment on s:
∫
G

log‖Ads g‖ dµ(g) < +∞ ;

2. Hnc
s is semisimple.

Then, for every compact set K ⊂ Ω and every ε > 0, there exists a compact set K ′ ⊂ Ω such
that for every x ∈ K,

(i) for every n ≥ 0, (µ∗n ∗ δx)(K ′) > 1− ε;

(ii) for µ⊗N
∗
-almost every instructions (gi)i≥1,

lim inf
n→+∞

1

n
card{k ∈ {1, . . . , n} | gk . . . g1x ∈ K ′} > 1− ε.

Remark. In particular, every Radon µ-stationary measure on Ω must have finite mass.

By Proposition 3.3, the proof of Theorem A′ reduces to showing that the µ-walk on Ω has
a controlled drift away from infinity. We first check that this is the case if Ω = SLd(R)/ SLd(Z)
and then deduce the result for general quotients Ω = G/Λ.
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4.1 The Benoist-Quint drift function on SLd(R)/ SLd(Z)

We prove Theorem A′ in the particular case where G = SLd(R), Λ = SLd(Z) for some d ≥ 2.
The drift functions we use were defined (in an exponential form) by Benoist and Quint in [5].
They are inspired by former works of Eskin, Margulis, Mozes [14, 15]. We begin by recalling
their construction.

Fix a probability measure µ on SLd(R), and let H be the algebraic group generated by the
support of µ. We assume that the non-compact part Hnc of H is semisimple, or equivalently
that H is reductive with compact center. Consider the representation of H on the exterior
algebra V = ∧∗Rd and decompose it into its isotypical components for the induced action of
Hnc:

V = ⊕j∈JV (j).

Alternatively, denoting by H◦ the identity component of H in the Zariski topology, each V (j)

is obtained by summing together all the irreducible subrepresentations of H◦ on V with a given
highest weight. The action of H on V then induces an action of the group of connected compo-
nents F = H/H◦ on the set {V (j), j ∈ J} which stabilizes the subspace V H

nc

of Hnc-invariant
vectors. By the law of large numbers [9, Theorem 10.9, Corollary 10.12], we can associate to
each representation V (j) a Lyapunov exponent λ(j)

1 ∈ R, that quantifies the exponential growth
rate of the walk on V (j) and only depends on the F -orbit of V (j). Moreover, by semisimplicity
of Hnc, we have λ(j)

1 ≥ 0, with λ(j)
1 = 0 if and and only if V (j) = V H

nc

[9, Theorem 10.9 (f)].
Fix Hc ⊆ H a maximal compact subgroup of H and some Hc-invariant Euclidean norm

on Rd. This induces a natural Hc-invariant Euclidean norm on the exterior algebra V . Given
v ∈ V , write v =

∑
j∈J v

(j) according to the above decomposition of V , and define

|v| = max
j∈J
‖v(j)‖

1

λ
(j)
1

with the convention that 1
0 = +∞ and

‖v(j)‖+∞ =

{
0 if ‖v(j)‖ < 1
+∞ if ‖v(j)‖ ≥ 1.

The following lemma expresses that the µ-walk on V uniformly expands the quasi-norm of
vectors v whose Hnc-invariant component is not too weighty.

Lemma 4.1. Given k ≥ 1, λ ∈ (0, 1), α > 0, there exists n0 ≥ 0 such that for every n ≥ n0,
for every finite family v1, . . . , vk of non-zero vectors in ∧∗Rd satisfying 0 < |v`| < +∞ for each
`, one has

µ∗n
(
g ∈ H

∣∣∣∣ min
1≤`≤k

log
|gv`|
|v`|

≥ nλ
)
≥ 1− α.

Proof. Up to replacing α by α/k, we may assume that k = 1. For v ∈ V such that 0 < |v| <
+∞, write v =

∑
j∈J v

(j), and let

Jv = {j ∈ J | |v(j)| > 0}.

Then, for every g ∈ H, one can bound

min
j∈Jv

log
|gv(j)|
|v(j)|

≤ log
|gv|
|v|
≤ max

j∈Jv
log
|gv(j)|
|v(j)|

. (10)

For the left inequality, just consider j such that |v| = |v(j)|, and for the right inequality, choose
j for which |gv| = |gv(j)|.

By the law of large numbers for product of random matrices [9, Theorem 4.28 (b)], on each
representation V (j) such that λ(j)

1 > 0, the sequence of functions

(gi)i≥1 7→
1

n
log
|gn . . . g1v

(j)|
|v(j)|
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converges to 1 in L1(GN∗ , µ⊗N
∗
), uniformly over all non-zero v(j) ∈ V (j). Combining this fact

and the left inequality of (10) yields the lemma.

To define the Benoist-Quint drift function on the set Ω = SLd(R)/ SLd(Z) of unimodular
lattices of Rd, we need to enhance some convexity property of the above quasi-norm on V . For
that, we make the following definition.

Definition 4.2 (Corrected quasi-norm). Given a large parameter A > 0 and i ∈ {1, . . . , d−1},
define a corrected version |·|A of the quasi-norm |·| by

∀v ∈ ∧iRd, |v|A =
∣∣∣eAi(d−i)v∣∣∣

We can also view ‖.‖, |·| and |·|A as functions on discrete subgroups of Rd, by identifying
∆ = Za1 ⊕ · · · ⊕ Zai with ±a1 ∧ · · · ∧ ai ∈ ∧iRd. This allows to define a function φA with
values in [−∞,+∞] by setting:

φA(∆) = log
1

|∆|A
if rank∆ /∈ {0, d} and φA(∆) = 0 otherwise.

Remark. A discrete subgroup ∆ ⊆ Rd of rank i ∈ {1, . . . , d− 1} satisfies φA(∆) = +∞ if and
only if ∆ ∈ V Hnc and ‖∆‖ < e−Ai(d−i). Since H acts by isometries on V H

nc

, it follows that
the set {φA = +∞} is H-invariant.

Definition 4.3 (Benoist-Quint function). For A > 0, define a function fA on Ω with values
in [0,+∞] by

fA(x) = max
∆≤x

φA(∆).

A few comments are in order. First of all, the notation ∆ ≤ x means that ∆ varies in the
set of subgroups of the lattice x. As ∆ can be chosen of rank 0 or d, our conventions for φA
impose that fA ≥ 0.

Note also that the maximum defining fA is well defined. Indeed, one can observe that if
∆ ≤ x satisfies φA(∆) > 0 then rank(∆) /∈ {0, d} and ‖∆(j)‖ < 1 for each j ∈ J . Since ∧∗x is
a discrete subset of V = ∧∗Rd, the set of subgroups ∆ ≤ x such that φA(∆) > 0 is finite.

Finally, observe that the set ΩA := {fA < +∞} is H-invariant, because this is the case
for {φA = +∞}. Moreover, for every compact subset K ⊂ Ω, the norm ‖∆‖ of non-trivial
subgroups of lattices x ∈ K is uniformly bounded away from 0 as x varies in K. This implies
that K ⊂ ΩA for large enough A.

Proposition 4.4 (Drift for the Benoist-Quint function on SLd). Let µ be a probability measure
on G = SLd(R) and H the algebraic subgroup generated by µ. Assume that µ has a finite
moment of order 1, and that Hnc is semisimple.

(i) ∀λ ∈ (0, 1), ∀α > 0, ∃N ≥ 0, ∀n ≥ N, ∃A0, A1 > 0, ∀A ≥ A1, ∀x ∈ f−1
A (A0,+∞),

µ∗n(g ∈ G | fA(gx) ≤ fA(x)− nλ) ≥ 1− α

(ii) ∃C > 0, ∀A > 0, ∀x ∈ φ−1
A (R), ∀g ∈ H,

φA(gx)− φA(x) ≤ C log‖g‖

which implies the same inequality with fA instead of φA.

The proof of this proposition is based on a convexity property of φA, Lemma 4.5 below,
which is a reformulation of [5, Lemma 4.2]. The first statement should be understood as follows:
if two primitive subgroups ∆,∆′ ≤ x take large values under φA, then one can obtain an even
larger value by considering the intersection ∆ ∩∆′ or the sum ∆ + ∆′.

20



Lemma 4.5 (Weak submodularity property [5]). For every A0 > 0, there exists A1 > 0, such
that for all A ≥ A1, for every lattice x ∈ Ω, all primitive subgroups ∆,∆′ ≤ x satisfying
∆ ( ∆′, ∆′ ( ∆ and φA(∆), φA(∆′) > 0,

min (φA(∆), φA(∆′)) +A0 < max (φA(∆ ∩∆′), φA(∆ + ∆′)) .

In particular, given x ∈ ΩA such that fA(x) > A0, for each i ∈ {1, . . . , d − 1}, there exists at
most one primitive subgroup ∆i ≤ x of rank i such that

φA(∆i) ≥ fA(x)−A0

Proof. We check that [5, Lemma 4.2] does imply Lemma 4.5. We first explain why our notations
correspond to those of [5]. Fix a Cartan subspace a in the Lie algebra of H compatible with
our choice of maximal compact subgroup Hc, and an open Weyl chamber a++ ⊆ a. Each
isotypical component V (j) corresponds to a highest weight λ(j) ∈ a∗, and by [9, Lemma 8.18]
one has

λ
(j)
1 = 〈λ(j), σµ〉 (11)

where σµ ∈ a++ is the Lyapunov vector of µ, given by the law of large numbers [9, Theo-
rem 10.9].

Now set δλ = 〈λ, σµ〉 for λ ∈ {λ(j), j ∈ J} and δi = i(d − i), i ∈ {1, . . . , d − 1}. Then, for
every A > 0 and every discrete subgroup ∆ in Rd of rank 1 ≤ i < d, the function φA can be
expressed from the function ϕε0 used in [5] by

φA(∆) = logϕε0(∆), where ε0 = e−A.

Let us now check that [5, Lemma 4.2] does imply the weak submodularity property. Fix
A2 > 0 such that for A ≥ A2, any ∆, the inequality φA(∆) > 0 implies ‖∆‖ < 1. Let A ≥ A2,
and consider x ∈ Ω, as well as two primitive subgroups ∆ 6= ∆′ ≤ x which are not included in
one another and such that φA(∆), φA(∆′) > 0. Let (u1, . . . , ur) be a basis for ∆∩∆′ and com-
plete it into basis (u1, . . . , ur, v1, . . . , vs), (u1, . . . , ur, w1, . . . , wt) of ∆ and ∆′. The assumption
∆ ( ∆′, ∆′ ( ∆ guarantees that s, t ≥ 1. Note also that (u1, . . . , ur, v1, . . . , vs, w1, . . . , wt) is
a basis for ∆ + ∆′.

We now apply [5, Lemma 4.2] to u = (ui), v = (vj), w = (wk). Note that case iv) cannot
occur as the conditions A ≥ A2 and φA(∆), φA(∆′) > 0 impose that if r = 0 and s + t = d,
then ‖∆ + ∆′‖ = ‖v ∧ w‖ < 1 which is absurd for a sublattice of a unimodular lattice. Hence
we are left with cases i), ii), iii). As long as A > C1 where C1 > 1 is some constant depending
only on H, they all express the inequality

min (φA(∆), φA(∆′)) +R(A) < max (φA(∆ ∩∆′), φA(∆ + ∆′))

with R(A) = 1
2 (maxλ∈P+ δλ)−1(A− logC1). To conclude, for any A0 > 0 choose A1 > 0 such

that A > A2, C1 and R(A1) > A0 to get the announced result.
For the second statement, assume for a contradiction that ∆′i ≤ ∆ is another primitive

subgroup of rank i satisfying φA(∆′i) ≥ fA(x) − A0. The above inequality applied to ∆i and
∆′i implies

fA(x) ≤ min (φA(∆i), φA(∆′i)) +A0 < max (φA(∆i ∩∆′i), φA(∆i + ∆′i)) ≤ fA(x)

which is absurd.

We are now ready to prove Proposition 4.4.

Proof of Proposition 4.4. Item (ii) is an immediate consequence of our definitions, so we only
prove (i).

Let λ ∈ (0, 1) and α > 0. By Lemma 4.1, there exists N ≥ 0 such that for all n ≥ N , for
all v1, . . . , vd in V with 0 < |vi| < +∞,

µ∗n
(
g ∈ H

∣∣∣∣ min
1≤i≤k

log
|gvi|
|vi|

≥ nλ
)
≥ 1− α

2
. (12)
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Fix such n ≥ N , let C > 0 be such that (ii) holds, and choose a constant A0 > 0 large enough
so that

µ∗n
(
g ∈ H

∣∣∣∣ C log ‖g‖ ≤ 1

2
A0

)
≥ 1− α

2
.

Let A1 > 0 be the parameter given by Lemma 4.5, and A ≥ A1. Then let x ∈ ΩA such that
fA(x) > A0 and D := {∆ ≤ x | ∆ primitive , φA(∆) ≥ fA(x)−A0}. The second statement of
Lemma 4.5 guarantees that cardD ≤ d. In particular, by our choice for n, and observing that
|g∆|
|∆| = |g∆|A

|∆|A ,

µ∗n (g ∈ H | ∀∆ ∈ D , φA(g∆) ≤ φA(∆)− nλ) ≥ 1− α

2
.

Moreover, as |φA(gx)− φA(x)| ≤ C log ‖g‖, we have

µ∗n(g ∈ H | fA(gx) = max
∆∈D

φA(g∆)) ≥ 1− α

2

which concludes the proof.

4.2 General quotients G/Λ

This paragraph concludes Section 4 by the proof of Theorem A′ for general quotients G/Λ.
We follow the argument of [5, Section 6].

Proposition 4.6. Let (G,Λ,Ω, µ) be as in Theorem A′. Then the µ-walk on Ω has a controlled
drift away from infinity.

Proof sketch. First case: G is a semisimple Q-group and Λ = G(Z).
If G ↪→ SLN is an embedding defined over Q, it induces a proper map

G/Λ ↪→ SLN (R)/SLN (Z),

Hence the controlled drift away from infinity in SLN (R)/SLN (Z) given by Proposition 4.4
induces by restriction the result on G/Λ.
Second case: G = Aut g with g semisimple of real rank 1.
Here, the construction does not use the Benoist-Quint function. We recall the argument given
in [5, Section 6]. By the results of Garland and Raghunathan [17] on reduction theory for
lattices in semisimple Lie groups of real rank 1 (see also [5, Proof of Lemma 6.3, 2nd case]),
there exists a representation V of G and a finite family of vectors v1, . . . , vr in V such that

(i) each Λ-orbit Λvi is discrete in V ;

(ii) for each i = 1, . . . , r, the orbit G · vi is compact in P(V ) and contains no Hnc-invariant
element;

(iii) a sequence (gnΛ)n≥0 goes to infinity in G/Λ if and only if

lim
n→∞

(
min

1≤i≤r
min
γ∈Λ
‖gnγvi‖

)
= 0;

(iv) for every A0 ≥ 0, there exists δ > 0 such that for every g ∈ G, if

min
1≤i≤r

min
γ∈Λ
‖gγvi‖ = ‖gγ0vi0‖ ≤ δ,

then for every γvi 6= γ0vi0 , ‖gγ0vi0‖ ≤ e−A0‖gγvi‖.

The function
f(gΛ) = max

1≤i≤r
max
γ∈Λ

log
1

‖gγvi‖
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is therefore proper on G/Λ. One can easily adapt the proof of Proposition 4.4 to show that it
has the properties of “probable decrease” and “control of variation” required for the controlled
drift 3.1 away from infinity.
Third case: G = Aut g where g is semisimple without compact ideal.
Replacing Λ by a finite-index subgroup if necessary, we may decompose Ω = G/Λ into a finite
product

Ω = Ω1 × · · · × Ωr,

where Ωi = Gi/Λi is the quotient of a semisimple group Gi without compact factors by an
irreducible lattice Λi. By the Margulis Arithmeticity Theorem [18, Theorem 1.16, page 299],
either Gi has real rank one, or Λi is an arithmetic subgroup. In both cases, we have already
shown that the µ-walk on Ωi has a controlled drift away from infinity. This is equivalent to
saying that the random walk on Ω has a controlled drift away from Si = (∞, Si) where Si is
the product of the (Ωj)j 6=i and ∞i, the point at infinity in Ωi. Proposition 3.2 then implies
that the µ-walk on Ω drifts away from S1 ∨ · · · ∨ Sr, i.e. from (∞,∞).
Fourth case: General case.
Let Ads : G→ Aut s be the adjoint action of G on s. By [8, Lemma 6.4], the image ΛS = Ads Λ
is a lattice in S, and the induced map pS : Ω → Aut s/ΛS is proper. By what precedes, the
walk on Aut s/ΛS drifts away from infinity, and denoting by f (S) the drift function involved,
we obtain a drift function for G/Λ by setting

f = f (S) ◦ pS .

5 Non-accumulation on invariant subspaces
The goal of this section is to prove Theorem B′, stating that a random walk on G/Λ does not
accumulate on a proper invariant subset unless it is stuck inside it. The statement is slightly
more technical than its naive counterpart Theorem B of the introduction. It is indeed the
version we need to show that the equidistribution results of Benoist and Quint [7] hold under
a finite first moment assumption. The proof of Theorem B′ is based on the construction of an
appropriate drift function as in Definition 3.1.

Theorem B′. (Unstability of invariant homogeneous subspaces) Let G be a real Lie group, Λ
a lattice in G, and Ω = G/Λ. Let µ be a probability measure on G and denote by H ⊆ Aut(g)
the real algebraic group generated by the support of Ad∗ µ. We assume that µ has a finite first
moment and that Hnc is semisimple. Denote by L the centralizer of Hnc in G. Let Y ∈ SΩ(Γ),
and consider compact subsets L0 ⊆ L, K ⊆ Ω r L0Y .

Then, for every ε > 0, there exists a neighborhood O′ of L0Y in Ω such that for all x ∈ K,

(i) for every n ≥ 0, (µ∗n ∗ δx)(O′) < ε;

(ii) for µ⊗N
∗
-almost every instructions (gi)i≥1,

lim sup
n→+∞

1

n
card{k ∈ {1, . . . , n} | gk . . . g1x ∈ O′} < ε.

Remark. 1) More precisely, the notation L refers to the subgroup of G defined by the Lie
algebra l = {v ∈ g | ∀a ∈ Hnc, a(v) = v}. Note that this subgroup may not be closed in G.

2) In the context of Theorem B′, for any Y ∈ SΩ(Γ), x ∈ Ω r LY , we have

1. Every weak limit ν of (µ∗n ∗ δx)n≥0 satisfies ν(LY ) = 0.

2. For µ⊗N
∗
-almost every trajectory (gn)n≥1, every weak limit ν of the sequence of empirical

measures ( 1
n

∑n−1
k=0 δgk...g1x)n≥1 satisfies

ν(LY ) = 0.
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To prove Theorem B′, we show that the µ-walk on Ω drifts away from L-neighborhoods of
Y .

Proposition 5.1. Let (G,Λ,Ω, µ) be as in Theorem B′. Let SL be the collection of pairs
(Y, UY ) where Y ∈ SΩ(Γ) and U ⊆ L is a neighborhood of 1 ∈ L.

Then the µ-walk on Ω has a controlled drift away from SL.

It is easy to check that Proposition 5.1 implies Theorem B′.

Proof of Theorem B′. For every ` ∈ L0, we have K ⊆ Ω r `Y . Proposition 5.1 implies that
the µ-walk on Ω has a controlled drift away from the collection S of {(`Y, U`Y )} where U
varies among the neighborhoods of 1 in L. Choose an arbitrary U` such that the conclusions
of Proposition 3.3 hold for the µ-walk on Ω. As L0 is compact, there exists a finite covering
L0 ⊆ U`1`1∪ · · ·∪U`m`m. Let ε > 0, and for i = 1, . . . ,m, choose a neighborhood O′i of U`i`iY
as in Proposition 3.3 for the constant ε/m. Then O′ = ∪mi=1O

′
i is a neighborhood of L0Y which

satisfies the recurrence properties (i) and (ii) announced in Theorem B′.

The rest of the section is dedicated to the proof of Proposition 5.1. It can be decomposed
into two independent statements.

Lemma 5.2. The µ-walk on Ω has a controlled drift away from SL on compact subsets of Ω.

Lemma 3.2 b). In the general context of Section 3, if a random walk has controlled drift away
from infinity and controlled drift from some S ⊆ P(Ω) ×P(Ω) on compact subsets, then it
has controlled drift away from S.

5.1 Local drift
Let us prove Lemma 5.2. To construct a local drift function for some UY , we exhibit a
transverse direction to UY which is expanded by the walk. The Lie algebra g of G is endowed
with an arbitrary norm, and given a subspace t ⊆ g, we set Bt(0, δ) = {v ∈ t | ‖v‖ < δ}.

Lemma 5.3 (Transverse coordinate). Let Y ∈ SΩ(Γ), denote by s be the Lie algebra of GY =
StabG Y , l the Lie algebra of L, and fix an H-invariant subspace t ⊆ g such that

g = t⊕ (l + s).

For any compact subset M ⊂ Ω, there exists a neighborhood U of 1 in L and δ > 0 such that
for every x ∈M , there is at most one v ∈ Bt(0, δ) for which x ∈ evUY .

Proof of Lemma 5.3. Let l′ ⊂ l be a subspace such that l + s = l′ ⊕ s, and O a relatively
compact open neighborhood of M in Ω. There exist small neighborhoods of the origin Vt ⊂ t,
Vl′ ⊂ l′ and Vs ⊂ s such that

Vt × Vl′ × (Y ∩O) → Ω
(vt, vl′ , y) 7→ evtevl′ y

induces a diffeomorphism on its image and eVl′ eVs contains a neighborhood U of 1 in L.
Moreover, reducing those neighborhoods if necessary, we may assume that

eVse−Vl′ e−VtM ⊂ O.

Given x ∈M , assume that for some vi ∈ Vt, ui ∈ U0 and yi ∈ Y , i = 1, 2,

x = ev1u1y1 = ev2u2y2.

Writing ui = u′isi, with u′i ∈ eVl′ and si ∈ eVs , we find ev1u′1(s1y1) = ev2u′2(s2y2) and since
siyi = siu

−1
i e−vix ∈ Y ∩O, this implies u′1 = u′2, s1y1 = s2y2, and v1 = v2.
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We now use the previous lemma to prove local drift away from some UY . Given Y ∈ SΩ(Γ),
and U ⊆ L a neighborhood of 1 ∈ L, we introduce for every x ∈ Ω, the set tx = {v ∈
Bt(0, 1) | x ∈ evUY } and define a function on Ω by

fUY (x) =

{
maxv∈tx log 1

‖v‖ if tx 6= ∅
0 otherwise.

The proof of Lemma 5.2 will follow from the observation that for any Y ∈ SΩ(Γ) and any
compact set Q ⊆ Ω, we can choose U small enough so that the function fUY statistically
decreases when the walk passes through Q.

Proof of Lemma 5.2. Let b ⊆ g be the unique H-invariant subspace such that g = b⊕ l. Since
b intersects l trivially, the law of large numbers [9, Theorem 4.28] and Furstenberg’s theorem
on the positivity of the first Lyapunov exponent [9, Theorem 4.32] show that there exists λ > 0
such that for every α > 0, there exists N ≥ 0 such that for every n ≥ N , and every v ∈ b\{0},

µ∗n
(
g ∈ G

∣∣∣∣ log
‖gv‖
‖v‖

≥ nλ
)
≥ 1− α

3
. (13)

Fix n ≥ N . Let Y ∈ SΩ(Γ) and consider K,Q ⊆ Ω compact sets with K ∩ Y = ∅. We can
assume l + s 6= g otherwise UY is open in Ω for any open set U ⊆ L, and the drift statement
follows trivially by letting f be infinite on UY and null elsewhere. Consider a compact set
M ⊆ Ω such that

µ∗n(g ∈ G | gQ ⊆M) ≥ 1− α

3
(14)

and choose t ⊆ b, U ⊆ L, δ > 0 as in Lemma 5.3, with U open relatively compact in L, and
so that K ∩ UY = ∅. Set Y ′ = UY and f = fUY . We show that f satisfies the properties
required for controlled drift. The fact that f is bounded on K comes from the observation
that UY is closed which, combined with the condition K ∩UY = ∅, imposes that the distance
between K and UY is bounded below by some positive constant. The condition on upper-level
sets is straightforward.

Let us check the condition (i) of 3.1. Set T > 0 so large that

µ∗n(g ∈ G | ‖Ad g‖ < eT δ) ≥ 1− α

3
. (15)

Let x ∈ Q such that T ≤ f(x) < +∞, i.e. x ∈ evUY with 0 < ‖v‖ ≤ e−T . Let g ∈ G
be any element satisfying conditions (13), (14), and (15). By (15) one has gx ∈ eAd(g)vUY
with ‖Ad(g)v‖ ≤ ‖Adg‖‖v‖ < δ. As gx ∈ M by (14), our choice for (U, δ) yields that
tgx = {Ad(g)v}, hence f(gx) = log 1

‖Ad(g)v‖ . By (13),

f(gx) ≤ f(x)− nλ.

To check (ii), observe that for g ∈ Γ, one has ‖Ad g−1‖−1 ‖v‖ ≤ ‖Ad gv‖ and ‖Ad g−1‖ ≤
‖Ad g‖κ for some constant κ > 0 depending only on the normed vector space (g, ‖.‖). So C = κ
leads to the bound announced in the lemma.

5.2 From local drift to global drift
Proof of Lemma 3.2 b). In this proof, the notations of 3.1 referring to the drift away from
infinity will be indexed by 0, and those referring to the drift away from S on compact subsets
will be indexed by 1. Now let (Φi, λi, Ci)i=0,1 be given by 3.1. Set c > 1 such that c > λ0,∞
and cλ0

2 > 2C1λ1,∞ where λi,∞ ≥ 0 is the first Lyapunov exponent of Φi∗µ. Fix α > 0
and denote by N0, N1 ≥ 0 the associated constants in 3.1. Fix n ∈ N large enough so that
n ≥ max(N0, N1) and

µ∗n(g ∈ G | log ‖Φ0(g)‖ ≤ cn) ≥ 1− α

µ∗n(g ∈ G | log ‖Φ1(g)‖ ≤ cλ0

2C1
n) ≥ 1− α
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Let Y ∈ SΩ(Γ), let K ⊆ Ω r Y be a compact set. The controlled drift away from infinity
associates to K a proper drift function f0 : Ω→ [0,+∞] and a threshold T0 > 0 as in 3.1. Let
T ′ > 0 be a large parameter which will be specified later. Choose a compact subset Q1 ⊆ Ω
containing K ∪ {f0 ≤ T ′}, and consider the objects Y ′ ∈ SY , f1 : Ω → [0,+∞], T1 > 0
associated to (K,Q1) as in 3.1 for the drift away from S on compact sets.

We are now all set up to define our drift function: for x ∈ Ω, set

f(x) = cxf0(x) + f1(x)

where

cx =


c if f0(x) ≥ T ′

c · f0(x)−T0

T ′−T0
if T0 ≤ f0(x) ≤ T ′

0 if f0(x) ≤ T0.

Let us check that f satisfies the properties enumerated in Definition 3.1. The only non-
trivial conditions to check are those enumerated as (i) and (ii).

Probable decrease
We prove that if the parameter T ′ above is chosen sufficiently large, then f satisfies the property
(i) in 3.1, with T = cT ′ + T1 and λ = 1

2 min(λ0, λ1). Let x ∈ Ω such that f(x) ∈ [T,+∞).
We study separately different cases, according to the values of f0(x), f1(x). Observe that the
definition of T imposes that f0(x) > T ′ or f1(x) > T1.

(a) f0(x) > T ′

In this case, the conditions
{
cgxf0(gx) ≤ cf0(x)− ncλ0

C1 log‖Φ1(g)‖ ≤ ncλ0

2

are simultaneously satisfied

with µ∗n-probability at least 1− 2α and ensure that

f(gx) ≤ f(x)− ncλ0

2

(b) T0 < f0(x) ≤ T ′ and f1(x) > T1

Then, with µ∗n-probability at least 1− 2α, one has both
{
f0(gx) ≤ f0(x)− nλ0

f1(gx) ≤ f1(x)− nλ1.
This

certainly implies cgx ≤ cx and therefore

f(gx) ≤ f(x)− nλ1.

(c) f0(x) ≤ T0 and f1(x) > T1

With µ∗n-probability at least 1− 2α, one has
{
f0(gx) ≤ T0 + C0cn
f1(gx) ≤ f1(x)− nλ1.

This implies

cgxf0(gx) ≤ c · C0cn

T ′ − T0
f0(gx) ≤ c · C0cn

T ′ − T0
(T0 + C0cn) ≤ nλ1

2

up to choosing T ′ large enough in the definition of f , and therefore

f(gx) ≤ f(x)− nλ1

2
.

Putting together (a), (b), (c), we obtain for every x ∈ f−1[T,+∞),

µ∗n(g ∈ G | f(gx) ≤ f(x)− nλ) ≥ 1− 2α

where λ = 1
2 min(λ0, λ1) > 0.
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Control of variations
We show that if T ′ is chosen large enough in the definition of f , then we have the bound (ii)
of 3.1. with C = 3cC0 + C1 and Φ = Φ0 ⊕ Φ1. Let x ∈ Ω, g ∈ Γ. We can write

f(gx)− f(x) = (cgxf0(gx)− cxf0(x)) + (f1(gx)− f1(x)) .

Definition 3.1 guarantees that

f1(gx)− f1(x) ≤ C1 log ‖Φ1(g)‖

so it remains to bound the first term. We can assume that f0(x) ≤ f0(gx). Then,

cgxf0(gx)− cxf0(x) = cgx (f0(gx)− f0(x)) + f0(x)(cgx − cx)

≤ cC0 log ‖Φ0(g)‖+ f0(x)(cgx − cx)

If f0(x) > T ′, then cx = cgx = c and we are done. Otherwise, observing that

cgx − cx ≤ c ·
f0(gx)− f0(x)

T ′ − T0
≤ c · C0 log‖Φ0(g)‖

T ′ − T0

we obtain

f0(x)(cgx − cx) ≤ T ′

T ′ − T0
cC0 log‖Φ0(g)‖

≤ 2cC0 log‖Φ0(g)‖

provided T ′ is chosen large enough in the definition of f . In any case, we conclude that for
x ∈ f−1[0,+∞), g ∈ Γ,

f(gx)− f(x) ≤ 3cC0 log ‖Φ0(g)‖+ C1 log ‖Φ1(g)‖.

6 Equidistribution
The goal of this section is to establish Theorem C. We shall need the following lemma, obtained
by Benoist and Quint [7, Proposition 2.1] in the greater generality of S-adic Lie groups, but
with the additional assumption that Γ is compactly generated. The proof is almost the same
as in [7], but we include it to explain in detail how to modify their argument to avoid this
assumption.

Lemma 6.1. Let G be a real Lie group, Λ a lattice in G, Γ a subgroup of G and denote by L
be the centralizer of Γ in G. Assume that Ad Γ

Z
is Zariski connected semisimple and without

compact factors. Then the set SΩ(Γ) is a countable union of L-orbits.

Proof. Fix a dense countable subset D ⊂ Γ. Given Y ∈ SΩ(Γ), there exists a finite family of
elements g1, . . . , gs in D generating a group Γf such that Ad Γf

Z
= Ad Γ

Z
and that moreover

Γf acts transitively on the (finite) set of connected components of Y . Let g ∈ G be such that
gΛ ∈ Y , and write

H = g−1ΓfG
◦
Y g.

Since HΛ = g−1Y has finite volume, H ∩ Λ is a lattice in H, and H◦ ∩ Λ is a lattice in H◦.
Because H and H◦ are compactly generated, the groups Σ = H ∩Λ and ∆ = H◦ ∩Λ are both
finitely generated, and since Λ contains only countably many finitely generated subgroups, we
may assume that they are fixed. (The finitely generated group Γf was introduced precisely to
ensure that H be compactly generated, so we can use the argument of [7].) Then, H belongs
to the set T (G,∆,Σ) of closed subgroups such that

(i) Σ is a lattice in H;
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(ii) ∆ = Σ ∩H◦ is a lattice in H◦;

(iii) there exists a subgroup Γ′ inG such that Ad Γ′
Z
is connected semisimple without compact

factors and acts ergodically on H/Σ.

By [7, Lemma 2.5], this set is countable, so we may assume that H is fixed. Let Lf denote
the centralizer of Γf in G, and note that L◦f = L◦ as their Lie algebras are given by the sets

of invariant vectors of Ad Γf
Z

= Ad Γ
Z
. By [7, Lemma 2.2], the set of fixed points of Γf in

G/H is a countable union of L◦f -orbits, and therefore also a countable union of L-orbits. Since
Y = gHΛ and gH is a fixed point of Γf in G/H, the lemma follows.

Proof of Theorem C. With Theorem A, Theorem B′, Lemma 6.1, and [13, Theorem 1.3] at
hand, the theorem follows from the argument given in [7, §2.3 and §4.1]; we include the proof
for completeness. We show the following assertion, which implies items (i), (ii) and (iii): for
every x ∈ Ω, there exists a Γ-invariant ergodic finite-volume homogeneous closed subset Y
containing x such that

(
1
n

∑n−1
k=0 δgk...g1x

)
n≥1

converges to νY .

Let (gn)n≥1 be a µ⊗N
∗
-typical sequence of instructions, and ν any weak limit of the sequence(

1
n

∑n−1
k=0 δgk...g1x

)
n≥1

. By Theorem A, ν is a probability measure. Moreover, by Breiman’s

law of large numbers [10] (see also [7, Lemma 3.2]) the measure ν is µ-stationary. Consider a
disintegration

ν =

∫
ναdP(α)

where each να is an ergodic µ-stationary measure. By the classification of stationary mea-
sures [13, Theorem 1.3], each να is equal to a homogeneous measure νYα for some invariant
ergodic finite-volume homogeneous closed subset Yα. Using Proposition 6.1, we may rewrite
this integral as a countable sum

ν =
∑
i∈N

νi, (16)

where each νi is a µ-stationary measure supported on LYi, for some Yi ∈ SΩ(Γ). If x 6∈ LY ,
Theorem B′ implies that ν(LY ) = 0, so there must exist Y ∈ SΩ(Γ) such that x ∈ Y . Choose
such Y of minimal dimension. Replacing G by GY = {g ∈ G | gY = Y }, the proof boils down
to the case where Ω ∈ SΩ(Γ), x does not belong to any proper Z ∈ SΩ(Γ), and we need to
show that ν = νΩ. This comes directly from a second application of the decomposition (16)
combined with Theorem B′.

7 Conclusion
To conclude, we mention a few problems that were not discussed here, but might lead to
interesting continuations of our study.

Compact factors. When the group H = Ad Γ
Z
is semisimple but is allowed to have compact

factors, it is still possible to describe all ergodic µ-stationary measures on Ω. Some
might not be homogeneous, but they can nevertheless be written as an integral average of
homogeneous measures [13]. It should be possible to obtain a generalization of Theorem C
to this setting.

Drift function on G. On a general quotient G/Λ, the Benoist-Quint drift function is essen-
tially constructed by embedding G/Λ into some space of lattices SLd(R)/SLd(Z). It
would be desirable to have an intrinsic construction of such a function, at least in the
case where G is a linear algebraic group defined over Q and Λ = G(Z) an arithmetic
subgroup. For example, this would lead to simple formulas for the optimal return time
to a compact set, similar to those available for SLd(R)/ SLd(Z).
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Unipotency assumption. It was originally suggested in [14] that Theorem A could hold
under the assumption that H = Ad Γ

Z
is generated by unipotents. As observed by

Emmanuel Breuillard [11, Proposition 10.4], this is not true for conclusion (i) in general.
But this might be the case for (ii), and (i) would then hold for the Cesàro averages
1
n

∑n−1
k=0 µ

∗k ∗ δx. In a slightly different direction, the theorem could be valid as stated if
H is assumed to be perfect, i.e. if its Lie algebra h satisfies h = [h, h].

No moment assumption. As suggested at the end of [2], one may hope that the results on
homogeneous random walks obtained here, and in particular Theorem A, are still valid
without any moment assumption.
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