Self-Reaction of Acetonyl Peroxy Radicals and Their Reaction with Cl Atoms
Mohamed Assali, Christa Fittschen

To cite this version:
Mohamed Assali, Christa Fittschen. Self-Reaction of Acetonyl Peroxy Radicals and Their Reaction with Cl Atoms. Journal of Physical Chemistry A, 2022, 126 (28), pp.4585-4597. 10.1021/acs.jpca.2c02602 : hal-03853304

HAL Id: hal-03853304
https://hal.science/hal-03853304
Submitted on 15 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Self-reaction of Acetonyl Peroxy Radicals and their Reaction with Cl-Atoms

Mohamed Assali and Christa Fittschen*

Université Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l’Atmosphère, F-59000 Lille, France

*Corresponding author: christa.fittschen@univ-lille.fr

Revised version
Submitted to
Journal of Physical Chemistry A
Abstract

The rate constant for the self-reaction of the acetonyl per oxy radicals, CH₃C(O)CH₂O₂, has been determined using laser photolysis / continuous wave Cavity Ring Down Spectroscopy (cw-CRDS). CH₃C(O)CH₂O₂ radicals have been generated from the reaction of Cl-atoms with CH₃C(O)CH₃, and the concentration time profiles of four radicals (HO₂, CH₃O₂, CH₃C(O)O₂ and CH₃C(O)CH₂O₂) have been determined by cw-CRDS in the near infrared. The rate constant for the self-reaction was found with \(k = (5.4 \pm 1.4) \times 10^{-12} \text{ cm}^3\text{s}^{-1} \) in good agreement with a recently published value (Zuraski et al., J Phys Chem A, 124, 8128 (2020)), however the branching ratio for the radical path was found with \(\phi_{1b} = (0.6 \pm 0.1) \) well above the recently published value (0.33 ± 0.13). The influence of a fast reaction of Cl-atoms with the CH₃C(O)CH₂O₂ radical became evident at some conditions, and therefore this reaction has been investigated in separate experiments. Through simultaneous fitting of all four radical profiles to a complex mechanism, a very fast rate constant of \(k = (1.35 \pm 0.8) \times 10^{-10} \text{ cm}^3\text{s}^{-1} \) was found and experimental results could only be reproduced if Cl-atoms would partially react through H-atom abstraction to the formation of the Criegee intermediate with a branching fraction of \(\phi_{\text{Criegee}} = (0.55 \pm 0.1) \). Modeling the HO₂ concentration-time profiles was only possible if a subsequent reaction of the Criegee intermediate with CH₃C(O)CH₃ was included in the mechanism leading to HO₂ formation with a rate constant of \(k = (4.5 \pm 2.0) \times 10^{-14} \text{ cm}^3\text{s}^{-1} \).

Keywords: Peroxy radicals, Criegee intermediate, acetone, laser photolysis, cw-CRDS

Introduction

Acetone is emitted directly by vegetation and is an intermediate in the degradation of biogenic VOCs. It is one of the most abundant volatile organic compounds (VOC) in the atmosphere \(^1-^4\) and major degradation paths are through reaction with OH radicals, with a rate constant \(^5\) of \(k = 1.8 \times 10^{-13} \text{ cm}^3\text{s}^{-1} \), and photolysis, leading to an estimated tropospheric lifetime of around 33 and 19 days for reaction with OH and photolysis, respectively\(^4\). The reaction with OH radicals leads to the formation of the resonantly-stabilized 1-methylvinoxy radicals, CH₃C(O)CH₂, also known as acetonyl radical. Vinoxy radicals are known to react with O₂ in equilibrium reactions\(^6-^7\), however under tropospheric conditions the equilibrium is on the adduct-side and 1-methylvinoxy leads exclusively to the formation of the acetonyl per oxy radical, CH₃C(O)CH₂O₂. In polluted environments, the major fate of this radical is reaction with NO\(^8\), leading to the formation of the aceto noxy radical, CH₃C(O)CH₂O, which rapidly
decomposes to formaldehyde, CH$_2$O, and the acetyl radical, CH$_3$C(O), no evidence for a reaction of CH$_3$C(O)CH$_2$O with O$_2$ has been found under atmospheric conditions9. In pristine environments, self-reaction, cross reactions with other peroxy radicals or reaction with HO$_2$ becomes the major fate10.

The self- and cross-reactions of CH$_3$C(O)CH$_2$O are rather poorly known, the rate constants and branching ratios for the reaction with CH$_3$C(O)O$_2$, CH$_3$O$_2$ and HO$_2$ have rarely been measured$^{11-13}$. As for the self-reaction, three reaction reaction paths are thought to occur, with two of them leading to stable products, and one (1b) maintaining the radical pool:

$$2 \text{CH}_3\text{C(O)CH}_2\text{O} \rightarrow \text{CH}_3\text{C(O)CH}_2\text{OH} + \text{CH}_3\text{C(O)CHO} + \text{O}_2 \quad (1a)$$

$$\rightarrow 2 \text{CH}_3\text{C(O)CH}_2\text{O} + \text{O}_2 \quad (1b)$$

$$\rightarrow \text{CH}_3\text{C(O)CH}_2\text{OOCH} + \text{CH}_3\text{C(O)CH}_3 + \text{O}_2 \quad (1c)$$

The rate constant k_1 has been measured three times: In 1990, Cox et al.14 obtained an upper limit of $k_1 \leq 8.3 \times 10^{-12}$ cm3s$^{-1}$, deduced from measuring the decay of CH$_3$C(O)CH$_2$O radicals by UV-absorption without accounting for secondary reactions, which might accelerate the decay of CH$_3$C(O)CH$_2$O radicals and hence only an upper limit has been given. The result is in good agreement with Bridier et al.11, who obtained by detailed kinetic modeling of UV-absorption profiles a rate constant of $k_1 = (8.0 \pm 0.2) \times 10^{-12}$ cm3s$^{-1}$. In 2020 however, a new determination of k_1 by Zuraski et al.13 is in strong contradiction: they find $k_1 = (4.8 \pm 0.8) \times 10^{-12}$ cm3s$^{-1}$ using a selective detection of HO$_2$ and OH radicals by near- and mid-IR spectroscopy and UV-absorption for CH$_3$C(O)CH$_2$O radicals. The branching ratio has been measured three times for the radical channel (1b) and no agreement is found with values varying between (0.75\pm0.1)11, (0.50\pm0.05)15 and (0.33\pm0.13)13. The branching fraction for (1c) has been inferred once16 to $\phi_{1c} = 0.16$ by measuring the rate constant of the product appearance for channel (1c). The currently available literature data, together with the results obtained in this work, are summarized in Table 1.

Table 1: Summary of available literature data for the rate constant and the branching ratio of (1)

<table>
<thead>
<tr>
<th>$k_1 / 10^{-12}$ cm3s$^{-1}$</th>
<th>k_{1b} / k_1</th>
<th>k_{1c} / k_1</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 8.3</td>
<td>-</td>
<td>-</td>
<td>Cox et al.14 (1990)</td>
</tr>
<tr>
<td>8.0 ± 0.2</td>
<td>0.75 \pm 0.1</td>
<td>-</td>
<td>Bridier et al.11 (1993)</td>
</tr>
<tr>
<td>4.8 ± 0.8</td>
<td>0.33 \pm 0.13</td>
<td>-</td>
<td>Zuraski et al.13 (2020)</td>
</tr>
<tr>
<td>-</td>
<td>0.50 \pm 0.05</td>
<td>-</td>
<td>Emrich and Warneck15 (2003)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0.16</td>
<td>Berndt et al.16 (2018)</td>
</tr>
<tr>
<td>8.0 ± 8</td>
<td>0.63 \pm 0.2</td>
<td>-</td>
<td>IUPAC5</td>
</tr>
<tr>
<td>5.4 ± 1.4</td>
<td>0.6 \pm 0.1</td>
<td>-</td>
<td>This work</td>
</tr>
</tbody>
</table>
Given the large disagreement between the few literature studies, we present in this work a new determination of the rate constant and branching ratio, based on a different and more selective detection technique: laser photolysis coupled to a detection of the key radicals CH$_3$C(O)CH$_2$O$_2$, CH$_3$C(O)O$_2$, CH$_3$O$_2$ and HO$_2$ by near infrared cw-cavity ring down spectroscopy. As in all previous studies, the radicals have been generated by the reaction of Cl-atoms with CH$_3$C(O)CH$_3$. During the data evaluation it appeared that the reaction of Cl-atoms with the acetonyl peroxy radical CH$_3$C(O)CH$_2$O$_2$ is fast enough to have some influence on the concentration-time profiles under certain experimental conditions. Therefore, the rate constant of this reaction and the branching ratio to the formation of the Criegee intermediate has also been investigated in independent experiments.

Experimental set-up

The experimental set-up has been described in detail several times$^{17-20}$, and only a brief description is given here. The reactor consists of a 79 cm long stainless-steel tube with 6 cm inner diameter. The reaction is initiated by excimer laser photolysis (Lambda Physik LPX 202i), whereby the beam is delimited to a width of 2 cm. Two cw-CRDS paths are installed in a small angle with respect to the photolysis laser, leading to an overlap between photolyzed volume and probe beam of 28.8 cm. Ring down times are measured in a time-resolved way with respect to the photolysis pulse and allow obtaining time resolved concentration profiles of radicals. Ring-down events occur randomly and are collected over typically 30 – 50 photolysis shots in order to obtain a good description of the absorption behavior, see for example Figure 1: each dot corresponds to a ring-down event having occurred randomly with respect to the photolysis pulse. Ring-down times from events having occurred before the photolysis pulse (up to -500 ms) are all averaged and used to convert ring-down times after the laser pulse into absorption coefficients α.

The cw-CRDS absorption set-ups runs in the near infrared range and the two paths have been equipped with highly reflective mirrors efficient in different wavelength ranges, allowing to cover \approx1400 – 1600 nm on one path and \approx1300 – 1400 nm on the other path. Three different distributed feedback (DFB) lasers are used for the detection of the species (CH$_3$C(O)O$_2$: Alcatel A1905LMI 3CN004 1 0CR, 6497±18 cm$^{-1}$, HO$_2$: NEL NLK1E5GAAA, 6629±17 cm$^{-1}$, on CRDS path 1, CH$_3$O$_2$ and CH$_3$C(O)CH$_2$O$_2$: NEL NLK1B5EAAA, 7480±20 cm$^{-1}$ on CRDS path 2). Typical ring-down times in the empty cavity can be up to $\tau_0 = 100 \mu$s with very clean mirrors and good alignment. With an estimated measurable decrease in ring-down time of 1µs (i.e. $\tau = 99\mu$s) the detection limits in 100 Torr O$_2$ vary from \sim4×1010 cm$^{-3}$ for HO$_2$
to \(\approx 1.5 \times 10^{-12} \text{ cm}^3\) for CH\(_3\)C(O)CH\(_2\)O\(_2\). More details on the experimental set-up are given in earlier papers\(^{17-20}\) and more details on the radical detection and quantification will be given further down.

Laser photolysis of Cl\(_2\) at 351 nm at a repetition rate of 0.3 Hz has been used in all experiments to generate radicals:

\[
\text{Cl}_2 + h\nu_{351\text{nm}} \rightarrow 2 \text{Cl} \quad (2)
\]

\[
\text{Cl} + \text{CH}_3\text{C(O)CH}_3 \rightarrow \text{CH}_3\text{C(O)CH}_2 + \text{HCl} \quad (3)
\]

The rate constants of (3) is \(k_3 = 2.1 \times 10^{-12} \text{ cm}^3\text{s}^{-1}\), leading with typical CH\(_3\)C(O)CH\(_3\) concentration between \((0.5 - 7.2) \times 10^{16} \text{ cm}^{-3}\) to pseudo-first-order rate constants of \(k_3^\text{1st} = (0.1 - 1.5) \times 10^5 \text{ s}^{-1}\). All experiments have been carried at a total pressure of 100 Torr O\(_2\), leading to

\[
\text{CH}_3\text{C(O)CH}_2 + \text{O}_2 \rightarrow \text{CH}_3\text{C(O)CH}_2\text{O}_2 \quad (4)
\]

With \(k_4 = 1.2 \times 10^{-12} \text{ cm}^3\text{s}^{-1}\), reaction (4) is completed within a few \(\mu\)s and is considered as the only fate of the CH\(_3\)C(O)CH\(_2\) radical.

Rate constants and branching ratios for the two title reactions have been deduced by simultaneously adjusting the concentration-time profiles of the 4 key radicals (CH\(_3\)C(O)CH\(_2\)O\(_2\), CH\(_3\)C(O)O\(_2\), CH\(_3\)O\(_2\) and HO\(_2\)), obtained under different initial concentrations, to a complex model (given in Table 3).

Typical concentrations were: Cl\(_2\) = \((4 - 9) \times 10^{15} \text{ cm}^{-3}\), CH\(_3\)C(O)CH\(_3\) = \((0.5 - 7.2) \times 10^{16} \text{ cm}^{-3}\). O\(_2\) (Alphagaz 2, Air Liquide) was used without further purification. Concentrations have been calculated from pressure measurements (Baratron, 1000 Torr) and calibrated flowmeters (Tylan and Bronkhorst).

Results and discussion

Detection of radicals

The self-reaction of CH\(_3\)C(O)CH\(_2\)O\(_2\) is thought to have three reaction paths, whereof (1a) and (1c) lead to stable products, not influencing the kinetic measurements of our experiments, while path (1b) leads to formation of radicals through rapid decomposition of the initially formed alkoxy radical:

\[
\text{CH}_3\text{C(O)CH}_2\text{O} \rightarrow \text{CH}_3\text{CO} + \text{CH}_2\text{O} \quad (5)
\]

which in the presence of O\(_2\) will rapidly lead to formation of the acetyl peroxy radical, CH\(_3\)C(O)O\(_2\), as well as to the formation of a few percent of OH and HO\(_2\) radicals\(^{21-22}\):

\[
\text{CH}_3\text{CO} + \text{O}_2 \rightarrow \text{CH}_3\text{C(O)O}_2 \quad (6a)
\]

\[
\text{CH}_3\text{CO} + \text{O}_2 \rightarrow \text{products} + \text{OH} / \text{HO}_2 \quad (6b)
\]
The CH₂C(O)CH₂O₂ decay will subsequently be perturbed by complex secondary chemistry:

\[
\begin{align*}
\text{CH}_2\text{C(O)CH}_2\text{O}_2 + \text{CH}_3\text{C(O)O}_2 & \rightarrow \text{CH}_2\text{C(O)OH} + \text{CH}_3\text{C(O)CHO} + \text{O}_2 \quad (7a) \\
& \rightarrow \text{CH}_2\text{C(O)O} + \text{CH}_3\text{C(O)CH}_2\text{O} + \text{O}_2 \quad (7b)
\end{align*}
\]

with an estimated rate constant\(^{11}\) of \(k_2 = (5.0 \pm 2.0) \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}\) and a branching ratio of \(\phi_7 = (0.5 \pm 0.2)^{12}\). The product of (7b), CH₃C(O)CH₂O, will rapidly decompose to regenerate the CH₃C(O)O₂ radicals while the other product, CH₂C(O)O, rapidly decomposes and leads to formation of CH₂O₂ radicals. These radicals will induce further secondary chemistry:

\[
\begin{align*}
\text{CH}_2\text{C(O)CH}_2\text{O}_2 + \text{CH}_3\text{O} & \rightarrow \text{CH}_2\text{C(O)CH}_2\text{O} + \text{CH}_3\text{O} + \text{O}_2 \quad (8a) \\
\text{CH}_2\text{C(O)CH}_2\text{O} & \rightarrow \text{stable products} \quad (8b)
\end{align*}
\]

Products from (8a) will rapidly lead to formation of CH₃C(O)O₂ and HO₂ radicals, with the latter one reacting also with CH₃C(O)CH₂O₂ radicals:

\[
\begin{align*}
\text{CH}_2\text{C(O)CH}_2\text{O}_2 + \text{HO}_2 & \rightarrow \text{CH}_2\text{C(O)CH}_2\text{O} + \text{OH} + \text{O}_2 \quad (9a) \\
\text{CH}_2\text{C(O)CH}_2\text{O} & \rightarrow \text{stable products} \quad (9b)
\end{align*}
\]

Concomitantly, the self-reaction of CH₃C(O)O₂ radicals (10) will also leads to formation of CH₂O₂ radicals, while their cross reaction with CH₃O₂ (11) leads to more HO₂ and their cross-reaction with HO₂ leads to more CH₂O₂ and also to OH (12). Simultaneous self-reaction of CH₂O₂ (13), its cross reaction with HO₂ (14) as well as the self-reaction of HO₂ (15) further complicates the system. In order to better quantify this complex reaction system induced by the self-reaction (1) and with the goal of measuring \(k_2\), it is therefore highly desirable to selectively detect all these key radicals. Here, we determined the concentration-time profiles of the four main radicals: HO₂, CH₃O₂, CH₃C(O)O₂ and CH₃C(O)CH₂O₂ by using cw-CRDS in the near IR.

- \(\text{HO}_2\) has been detected in the \(2\nu_1\) transition at 6638.20 cm\(^{-1}\). The spectrum of this radical has been measured several times\(^{23-29}\) and is very structured. A highly selective quantification can be obtained by removing the contribution of possible broadband absorbers (CH₃C(O)O₂ in this system\(^{24}\)) by measuring profiles on top of the absorption line (red circles in Figure 1a) and at a wavelength just next to it (black circles in Figure 1a): HO₂ profiles are then obtained by subtracting online – offline (red dots in Figure 1a). The absorption cross sections of this transition has been determined several times and a cross section of \(\sigma_{\text{HO}_2,100\text{Torr}} = (2.0 \pm 0.3) \times 10^{-19} \text{ cm}^2\) is used in this work.

- \(\text{CH}_2\text{C(O)O}_2\) is quantified in the \(\tilde{\text{A}}-\tilde{\text{X}}\) electronic transition at 6497.94 cm\(^{-1}\) (blue dots on right y-scale in Figure 1b) with an absorption cross section of \(\sigma_{\text{CH}_2\text{C(O)O}_2} = 3.3 \times 10^{-20} \text{ cm}^2\) \(^{30}\). Even though the
transition is less structured than the HO\textsubscript{2} spectrum, absorption time profiles at different wavelengths always lead to identical shapes: in Figure 1b is shown again the offline HO\textsubscript{2} signal from Figure 1a, now scaled on the left \(y \)-axis to overlay with the CH\textsubscript{3}C(O)O\textsubscript{2} signal. These identical shapes at distant wavelengths confirms (a) that the detection of CH\textsubscript{3}C(O)O\textsubscript{2} radicals at 6497.94 cm\(^{-1}\) in this reaction system is selective and (b) that the HO\textsubscript{2} offline signal is due to CH\textsubscript{3}C(O)O\textsubscript{2} radicals.

Figure 1: Absorption time profiles for HO\textsubscript{2} and CH\textsubscript{3}C(O)O\textsubscript{2}. Both graphs: black circles is offline HO\textsubscript{2} measured at 6637.15 cm\(^{-1}\). Graph a: Online HO\textsubscript{2} measured at 6638.2 cm\(^{-1}\) (red circle), red dots is difference between online and offline. Graph b: Online CH\textsubscript{3}C(O)O\textsubscript{2} (blue dots on right \(y \)-axis).

- CH\textsubscript{3}C(O)CH\textsubscript{2}O\textsubscript{2} has to our knowledge never been detected in the near IR range. The absorption spectrum of the electronic transition of the CH\textsubscript{3}C(O)CH\textsubscript{2}O\textsubscript{2} radical can reasonably well be expected in the wavelength range of other alkyl peroxy radicals, and therefore we have tentatively tested for absorption of this radicals in the wavelength range accessible with the DFB laser used for the CH\textsubscript{3}O\textsubscript{2} radical (NEL NLK1B5EAAA, 7480\(\pm\)20 cm\(^{-1}\)). The absorption coefficient at 7491.31 cm\(^{-1}\) has been measured following the 351 nm photolysis of Cl\textsubscript{2} in presence of CH\textsubscript{3}C(O)CH\textsubscript{3} and 100 Torr O\textsubscript{2}, leading through the reaction sequence (2) to (4) to rapid formation of CH\textsubscript{3}C(O)CH\textsubscript{2}O\textsubscript{2}. The absolute absorption cross section has then been determined in back-to-back experiments by replacing CH\textsubscript{3}C(O)CH\textsubscript{3} with CH\textsubscript{3}OH, which leads to rapid formation of HO\textsubscript{2}, which in turn can be quantified (see above). This way, the initial Cl-atom concentration is determined, and under the hypothesis, that in both experiments all Cl-atoms are converted into either CH\textsubscript{3}C(O)CH\textsubscript{2}O\textsubscript{2} or HO\textsubscript{2}, the absorption cross section of CH\textsubscript{3}C(O)CH\textsubscript{2}O\textsubscript{2} is then determined relative to the HO\textsubscript{2} absorption cross section. The radicals decay mostly by self-reaction, therefore a linear regression of a plot of \(1/\alpha = f(t) \) allows a more reliable extrapolation to \(\alpha_{\text{on/off}}\), the absorption coefficient just after the photolysis pulse26. Figure 2 shows a typical example with 4 different Cl-concentrations: graph (a) shows a plot of \(1/\alpha \text{ 6638.58 cm}^{-1} = f(t)\) for the experiments with CH\textsubscript{3}OH, graph (b) shows \(1/\alpha \text{ 7491.31 cm}^{-1} = f(t)\) for the same Cl-concentration in presence of CH\textsubscript{3}C(O)CH\textsubscript{3}. In graph (c) the absorption coefficient at 7491.31 cm\(^{-1}\) has been plotted against the concentration of HO\textsubscript{2}, whereby the concentration has been obtained from \(\alpha \text{ 6638.58 cm}^{-1}\) converted to [HO\textsubscript{2}] by using \(\sigma = 2.1 \times 10^{-20}\) cm\(^{2}\). This line has been used
for quantification of Cl-atoms only, because the line at 6638.20 cm\(^{-1}\), used for all other measurements, is too strong and would lead to saturation under the high Cl-atom concentrations. Linear regression of these data leads to an absorption cross section of the CH\(_3\)C(O)CH\(_2\)O\(_2\) radical at 7491.31 cm\(^{-1}\) of \(\sigma = (6.5 \pm 0.5) \times 10^{-21}\) cm\(^2\). Experiments at a different wavelength (7489.16 cm\(^{-1}\)) resulted in an identical absorption cross section, indicating a broad, non-structured absorption feature of CH\(_3\)C(O)CH\(_2\)O\(_2\) in this wavelength range. Measuring the absorption spectrum of this radical in a larger wavelength range is certainly desirable to identify possible structures, unfortunately currently we do not have light sources that would allow such measurements.

![Figure 2](image)

Figure 2: Absorption time profiles for HO\(_2\) (graph a) and CH\(_3\)C(O)CH\(_2\)O\(_2\) (graph b), expressed as \(1/\alpha = f(t)\) at 4 different initial Cl\(_2\) concentration (in 10\(^{15}\) cm\(^{-3}\)) : 4.0 (black), 5.7 (green), 7.3 (blue) and 9.0 (red) with [CH\(_3\)C(O)CH\(_3\)] = 7.2 \times 10^{16} \text{ cm}^{-3} at 100 Torr O\(_2\). Graph c. shows \(\alpha_{7491.31 \text{ cm}^{-1} \text{ at } t=0}\) from graph b. as a function of [HO\(_2\)]\(_0\) from graph a., open circle are other data sets. Linear regression leads to \(\sigma = (6.5 \pm 0.2) \times 10^{-21}\) cm\(^2\). Error bars are statistical 95% confidence interval.

- CH\(_3\)O\(_2\) has been quantified in the \(\tilde{A}-\tilde{X}\) transition at 7489.16 cm\(^{-1}\). The absorption spectrum of CH\(_3\)O\(_2\) has some maxima on a broad background\(^{31}\), similar to the one of CH\(_3\)C(O)O\(_2\). Therefore, it is not straightforward to reach selectivity through online and offline measurements. In our recent work on the CH\(_3\)C(O)O\(_2\) self-reaction we have shown, that the CH\(_3\)O\(_2\) is not selective anymore because absorption-time profiles registered on and off the peak wavelength clearly do not have the same shape. From different experiments it was concluded that CH\(_3\)C(O)O\(_2\) is still absorbing in the CH\(_3\)O\(_2\) wavelength range\(^{31}\). This has also to be considered in this work, because CH\(_3\)C(O)O\(_2\) is a reaction
product of the CH$_2$C(O)CH$_2$O self-reaction. In the present work, the situation is even more complex, as it has just been shown that the CH$_3$C(O)CH$_2$O radical also absorbs in this wavelength range. Therefore, in this reaction system the absorbance around 7489.16 cm$^{-1}$ needs to be expressed as the sum of the 3 radicals CH$_3$O$_2$, CH$_3$C(O)O$_2$ and CH$_3$C(O)CH$_2$O with absorption cross sections such as given in Table 2.

Table 2: Absorption cross sections at 100 Torr O$_2$ of HO$_2$, CH$_3$O$_2$, CH$_3$C(O)O$_2$ and CH$_3$C(O)CH$_2$O

<table>
<thead>
<tr>
<th></th>
<th>σ / cm2 at 7491.31 cm$^{-1}$</th>
<th>σ / cm2 at 7489.16 cm$^{-1}$</th>
<th>σ / cm2 at 6638.20 cm$^{-1}$</th>
<th>σ / cm2 at 6638.58 cm$^{-1}$</th>
<th>σ / cm2 at 6497.94 cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO$_2$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH$_3$O$_2$</td>
<td>6.1 x 10$^{-21}$</td>
<td>2.4 x 10$^{-20}$</td>
<td>2.0 x 10$^{-19}$</td>
<td>2.1 x 10$^{-20}$</td>
<td>-</td>
</tr>
<tr>
<td>CH$_3$C(O)O$_2$</td>
<td>4.3 x 10$^{-21}$</td>
<td>4.3 x 10$^{-21}$</td>
<td>8.3 x 10$^{-21}$</td>
<td>-</td>
<td>3.3 x 10$^{-20}$</td>
</tr>
<tr>
<td>CH$_3$C(O)CH$_2$O</td>
<td>6.5 x 10$^{-21}$</td>
<td>6.5 x 10$^{-21}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 3 shows two absorption time profiles, measured under the same experimental conditions, with graph (a) showing the profile obtained at the CH$_3$O$_2$ peak wavelength, while graph (b) shows the profile obtained off the main CH$_3$O$_2$ absorption feature. It can be seen that both profiles show the same absorbance at short reaction times ($\alpha_{t=0} \approx 6 \times 10^{-7}$ cm$^{-1}$), while the evolution of the shape at longer reaction times is very different at both wavelengths. The only radical present in sizeable concentrations just after the photolysis pulse is CH$_3$C(O)CH$_2$O, and hence the initial absorption can be assigned to this radical. The colored lines in **Figure 3** indicate the absorption time profiles such as obtained from modeling (see further down), and the black line represents the sum of the absorption of the three species. In the first few ms, the shape of graph (a) is dominated by the formation of CH$_3$O$_2$ radicals (green) with the absorption cross section of CH$_3$O$_2$ being nearly 4 times larger than the absorption cross section of CH$_3$C(O)CH$_2$O, while graph (b) is dominated by the decay of the CH$_3$C(O)CH$_2$O radical (red) because at this wavelength the absorption cross section of both radicals are comparable and the concentration of CH$_3$C(O)CH$_2$O is high compared to CH$_3$O$_2$. The absorbance due to CH$_3$C(O)O$_2$ (blue) is only minor at both wavelength due to the small absorption cross section together with the relatively low concentration of this radical. Moreover, its absorbance can be accurately accounted for by simultaneous and selective measurement of this radical at its peak wavelength 6497.94 cm$^{-1}$. From this example it can be seen that, even though full selectivity cannot be achieved, simultaneous simulation of absorption time-profiles at three wavelengths allows to well-describe the profiles of both radicals, CH$_3$O$_2$ and CH$_3$C(O)CH$_2$O.
As a conclusion from this paragraph it can be summarized that the concentrations of the four key radicals involved in this system can be obtained as follows:

- CH$_3$C(O)O$_2$ at 6497.94 cm$^{-1}$ using $\sigma = 3.3\times10^{-20}$ cm2
- HO$_2$ at 6638.20 cm$^{-1}$ using $\sigma = 2.0\times10^{-19}$ cm2 after subtraction of offline measurements, carried out at the same condition
- CH$_3$O$_2$ at 7489.16 cm$^{-1}$ using $\sigma = 2.4\times10^{-20}$ cm2 and taking into account minor contributions from CH$_3$C(O)CH$_2$O$_2$ ($\sigma = 6.5\times10^{-21}$ cm2) and CH$_3$C(O)O$_2$ ($\sigma = 4.3\times10^{-21}$ cm2). For practical purposes, absorption-time profiles at 7489.16 cm$^{-1}$ are converted to concentration-time profiles using $\sigma=2.4\times10^{-20}$ cm2 and the profiles are then expressed as sum of

$$[CH_3O_2]_{sum} = [CH_3O_2] + 0.18 \times [CH_3C(O)O_2] + 0.27 \times [CH_3C(O)CH_2O_2]$$

with 0.18 = 4.3\times10$^{-21}$ / 2.4\times10$^{-20}$ and 0.27 = 6.5\times10$^{-21}$ / 2.4\times10$^{-20}$ (see Figures 4, 6, 7 and 8).

- CH$_3$C(O)CH$_2$O$_2$ at 7491.31 cm$^{-1}$ using $\sigma=6.5\times10^{-21}$ cm2 and taking into account minor contributions from CH$_3$O$_2$ ($\sigma = 6.1\times10^{-21}$ cm2) and CH$_3$C(O)O$_2$ ($\sigma = 4.3\times10^{-21}$ cm2). For practical purposes, absorption-time profiles at 7491.31 cm$^{-1}$ are converted to concentration-time profiles using $\sigma=6.5\times10^{-21}$ cm2 and the profiles are then expressed as sum of

$$[CH_3C(O)CH_2O_2]_{sum} = [CH_3C(O)CH_2O_2] + 0.66 \times [CH_3C(O)O_2] + 0.94 \times [CH_3O_2]$$

with 0.66 = 4.3\times10$^{-21}$ / 6.5\times10$^{-21}$ and 0.94 = 6.1\times10$^{-21}$ / 6.5\times10$^{-21}$ (see Figures 4, 6, 7 and 8).
Reaction of Cl-atoms with CH$_3$C(O)CH$_2$O$_2$

The rate constant of the reaction of CH$_3$C(O)CH$_3$ with Cl-atoms is with $k_j = 2.17 \times 10^{12}$ cm3 s$^{-1}$ not very fast and is leading with our typical CH$_3$C(O)CH$_3$ concentrations between $(0.5 - 7.2) \times 10^{16}$ cm3 to pseudo-first-order rate constants of $k^{1st}_3 = (0.1 - 1.5) \times 10^5$ s$^{-1}$. The consecutive formation of peroxy radicals in 100 Torr O$_2$ is more than 10 times faster and can be considered instantaneous. The reaction of Cl-atoms with the CH$_3$C(O)CH$_2$O$_2$ radical has to our knowledge never been measured, but the comparable reaction between Cl-atoms and CH$_3$O$_2$ radicals has been found very fast with rate constants up to 2×10^{-10} cm3 s$^{-1}$. Similar to CH$_3$O$_2$, the reaction can be expected to proceed by an initial addition of the Cl-atom to the oxygen atom and to continue to react over submerged barriers.

By comparison with CH$_3$O$_2$, the following three reaction paths can then be expected for the reaction of Cl-atoms with the CH$_3$C(O)CH$_2$O$_2$:

$$\text{CH}_3\text{C(O)CH}_2\text{O}_2 + \text{Cl} \rightarrow \text{CH}_3\text{C(O)CH}_2\text{O} + \text{ClO} \quad (18a)$$
$$\rightarrow \text{CH}_3\text{C(O)CHO}_2 + \text{HCl} \quad (18b)$$
$$\rightarrow \text{CH}_3\text{C(O)CHO} + \text{HOCl} \quad (18c)$$

The possible abstraction of an H-atom from the remaining CH$_3$-group can be neglected, because the rate constant for (18) has been found around 100 times faster than the rate constant for the reaction of Cl-atoms with CH$_3$C(O)CH$_3$: it is not likely that replacement of an H-atom in γ-position by O$_2$ leads to a strong increase of the rate constant.

Such a fast reaction could play some role in the present reaction system: due to the fact that the self-reaction of CH$_3$C(O)CH$_2$O$_2$ is not too fast (see below), initial Cl-atom concentrations were typically around 10^{14} cm3 in order to induce a sizeable reactivity on the tens of millisecond timescale. Under such conditions, the reaction of Cl-atoms with CH$_3$C(O)CH$_2$O$_2$ might become competitive with (1). We have therefore in a first step investigated this reaction by carrying out experiments that promote this reaction: high Cl-atom concentration next to low CH$_3$C(O)CH$_3$ concentration.
Figure 4: Absorption-time profiles for all 4 radicals: [Cl] = 1.1 × 10^{14} \text{ cm}^{-3}, [CH_3C(O)CH_3] = 7.2, 3.5, 1.2, 0.41 \times 10^{16} \text{ cm}^{-3} and [CH_3O] = 4.2 \times 10^{13} \text{ cm}^{-3} for red, blue, green and black symbols, respectively. Full lines are obtained using the model in Table 3, for CH_3O_2 and CH_3C(O)CH_2O_2 data points and full lines are expressed corresponding to (16) and (17), respectively. Insert in graph b. is a zoom on grey-shaded area for highest and lowest Cl-atom concentration, decreasing curves are simulated Cl-atom concentrations. Dashed lines in graph a. and c. show contribution of CH_3C(O)CH_2O_2 and CH_3O_2 radicals to the total signal for the highest and lowest CH_3C(O)CH_3 concentration. Dashed line in graph d. shows HO_2 signal without contribution of (19).

Figure 4 shows the profiles of all 4 species from the reaction of [Cl]_0 = 1.1 \times 10^{14} \text{ cm}^{-3} in presence of 4 different CH_3C(O)CH_3 concentrations, decreasing from 7.2 \times 10^{16} \text{ cm}^{-3} (red) to 4.1 \times 10^{15} \text{ cm}^{-3} (black). The full lines describe the output of the model given in Table 3.

In graph (4a) it can be seen that the initial CH_3C(O)CH_2O_2 concentration decreases with decreasing CH_3C(O)CH_3; this is due to an increased competition for Cl-atoms between CH_3C(O)CH_3 and CH_3C(O)CH_2O_2. For the two highest CH_3C(O)CH_3 concentration the impact is barely visible, i.e. the CH_3C(O)CH_3 concentration is high enough to be the major fate for Cl-atoms. However for the two lowest CH_3C(O)CH_3 concentrations the increasing influence of (18) is clearly visible. This decrease in initial CH_3C(O)CH_2O_2 concentration with decreasing CH_3C(O)CH_3 is very sensitive to the overall rate constant of (18) and through simultaneous modelling of the concentration time profiles of all radicals an overall rate constant of k_{18} = (1.35 \pm 0.2) \times 10^{10} \text{ cm}^{-3}\text{s}^{-1} has been obtained.

Graph (4b) shows the CH_3C(O)O_2 profiles: while this radical is the products of path (1b) of the self-reaction of CH_3C(O)CH_2O_2, it is also the product of path (8a), (9a) and of the reaction of Cl-atoms with
CH$_3$C(O)CH$_2$O$_2$ (18a). The insert of graph (4b) shows a zoom for the first 500 µs for the highest and lowest CH$_3$C(O)CH$_3$ concentration, together with the simulated Cl-atom decays (a secondary y-axis applies for Cl-atoms, starting at 1.1x1014 cm$^{-3}$). It can be seen that for the highest CH$_3$C(O)CH$_3$ concentration the Cl-atoms have decayed well before a noticeable rise of the CH$_3$C(O)O$_2$ concentration: under these conditions, reaction (1b) is the main source for CH$_3$C(O)O$_2$. For the lowest CH$_3$C(O)CH$_3$ concentration, the major rise of CH$_3$C(O)O$_2$ occurs during the Cl-atom decay, and it can be concluded that under these conditions path (18a) is the major source, while path (1b) is less important due to the lower CH$_3$C(O)CH$_2$O$_2$ concentration. The subsequent decay is due to cross-reactions with the other radicals. Simulating these profiles (together with the HO$_2$ profiles) has a high sensitivity to the branching fraction of (18a) and best results were obtained with a branching fraction of $\phi_{18a} = 0.45$. Because path (18c) is decreasing the overall radical concentration, the observed profiles of all four species could only be reproduced with a negligible branching fraction and is hence considered $\phi_{18c} = 0$.

This is in agreement with experiments on CH$_3$O$_2$ and C$_2$H$_2$O$_2$, where the products corresponding to this reaction path, have never been observed. From these considerations we predict the formation of the Criegee intermediate (18b) to be the major path for the reaction of Cl-atoms with CH$_3$C(O)CH$_2$O$_2$ with a branching fraction of $\phi_{18b} = (0.55\pm0.1)$. The uncertainty for the branching fraction has been estimated from using models with different ratios of k_{18a}/k_{18b}, and an example is given in Figure S1.

Graph (4c) shows the CH$_3$O$_2$ signal. For this radical, the major source is the cross reaction between CH$_3$C(O)CH$_2$O and CH$_3$C(O)O$_2$ radicals, (R18) does not contribute to this radical concentration. From the modelled CH$_3$O$_2$ profiles for the highest and lowest CH$_3$C(O)CH$_3$ concentration (dashed lines) it can be seen that CH$_3$O$_2$ radicals are formed delayed, the time necessary to build up the CH$_3$C(O)O$_2$ concentration. The difference in absolute concentration is then due to the difference in CH$_3$C(O)CH$_2$O$_2$ concentration.

Graph (4d) shows the HO$_2$ concentration time profiles which turned out to be very sensitive to (18). Very rapid HO$_2$ formation is observed under all conditions, and a strong increase of this concentration occurs with decreasing CH$_3$C(O)CH$_3$ concentration. In absence of (18), HO$_2$ is formed only from secondary reactions involving products of initial reactions, and therefore this rapid HO$_2$ formation was a surprise. However, test experiments using different photolysis repetition rates confirmed a suspicion, that HO$_2$ is formed from the fast reaction of Cl-atoms with residual CH$_2$O:

\[
\text{Cl} + \text{CH}_2\text{O} \rightarrow \text{HCl} + \text{HCO} \xrightarrow{O_2} \text{CO} + \text{HO}_2
\]

with $k_{19} = 7.2\times10^{-11}$ cm3s$^{-1}$ around 35 times faster than k_9, and therefore even small concentrations of CH$_2$O can compete with CH$_3$C(O)CH$_3$. CH$_2$O is one of the final products of (1b), but also a product of other cross reactions in this system. The gas mixture is renewed roughly every 2 laser shots, with an
additional refreshment of the gas mixture through diffusion out of the photolyzed volume (less than 10% of the volume is photolyzed at each shot due to the cell volume being much larger than the photolyzed volume). Some residual CH$_2$O possibly remains in the observation volume and is the major HO$_2$ source at very short reaction times, with the concentration increasing with decreasing CH$_3$C(O)CH$_3$ concentrations. Therefore, a variable initial CH$_2$O concentration (typically $1 - 4 \times 10^{13}$ cm$^{-3}$) has always been added to the model such as to adjust the initial HO$_2$ concentration. As other carbonyl compounds, CH$_3$C(O)CH$_3$ reacts in an equilibrium reaction with HO$_2$ radicals: a recent measurement13 finds an equilibrium constant of $K_c = (1.4\pm0.8) \times 10^{-18}$ cm3 molecule$^{-1}$, which is around 10 and 500 times smaller than the corresponding equilibrium constants for CH$_3$CHO and CH$_2$O36. The establishment of the equilibrium is rapid, thus resulting in an overall reduced HO$_2$ concentration profile. Adding the equilibrium reaction from Zuraski et al. to the model results in an HO$_2$ decrease between 1 – 12% for the lowest to the highest CH$_3$C(O)CH$_3$ concentration and this decrease can be compensated for by a slight increase of the residual CH$_2$O concentration, without any effect on the rate constant of the title reactions.

Following the rapid HO$_2$ formation initiated by (19), the subsequent evolution of the HO$_2$ concentration is governed by its formation through some cross- and self-reactions (8a, 11a and 13a) and its consumption through other cross- and self-reactions (9, 12, 14 and 15). For this reason, the concentrations of all four HO$_2$ traces in Figure 4 converge to similar concentrations at longer reaction times, given by the equilibrium between formation and consumption and depending on the overall radical concentration. However, in a first try it was found impossible to simulate the approach of the HO$_2$ profiles to this equilibrium in the first few ms, the result is shown as dashed lines in Figure 4d: for high CH$_3$C(O)CH$_3$ concentration (red), some rapid HO$_2$ formation was missing, while for low CH$_3$C(O)CH$_3$ concentration (black) the decay was too fast and also the concentrations decayed to too low levels. The overall radical concentration in this case is low due to a non-negligible fraction of Cl-atoms reacting through (18), so cross reactions between the different peroxy radicals are too slow to maintain the HO$_2$ concentration up to the observed level. Therefore, different reactions leading to formation of HO$_2$ following (18) were tested in the model.

The product of (18a) will decompose to CH$_2$O and, after addition of O$_2$, to CH$_3$C(O)O$_2$, and thus leads only through subsequent cross reactions to HO$_2$ formation. Pathway (18c) leads to stable reaction products only and cannot be the candidate. Therefore, the participation of the Criegee intermediate, reaction product of (18b), was considered as an additional HO$_2$ source. Figure 5 shows again the HO$_2$ profiles from Figure 4d, now using the unimolecular decomposition of the CH$_3$C(O)CHO$_2$ radical as source of HO$_2$ radicals:
Such a model does not allow to reproduce the HO$_2$ profiles for all concentrations: a low rate constant ($k_{20} = 250$ s$^{-1}$, graph a.) allows reproducing the profile obtained with low CH$_3$C(O)CH$_3$ concentration (black), but still underpredicts the signal at high CH$_3$C(O)CH$_3$ concentration (red). The red profile on the other hand can be well adjusted using $k_{20} = 3000$ s$^{-1}$ (graph b.), but then the black profile is strongly overpredicted. Therefore, the unimolecular decomposition of CH$_3$C(O)CHO$_2$ doesn’t seem to play any major role for the HO$_2$ profiles in our system. This is in good agreement with Vereecken et al.$^{37-38}$, who developed a SAR for unimolecular reactions of Criegee intermediates. They predict as the preferred channel for the CH$_3$C(O)CHO$_2$ radical the formation of dioxirane with a rate constant of 19 and 0.06 s$^{-1}$ for the Z- and E-isomer, respectively. Such rate constants lead to lifetimes of ≈ 50 ms and ≈ 15 s, respectively, while the observed HO$_2$ formation in our experiments occur in a few ms.

A reaction of Cl$_2$ with the Criegee intermediates, which has never been investigated, is probably also not involved in explaining the radical profiles: with the same Cl$_2$ concentration for all experiments such reaction would have in the Figure 4 experiments the same consequence as a unimolecular reaction and is therefore not a candidate for explaining the observed profiles. An upper limit for the rate constant of this reaction of 2.5×10^{-14} cm3s$^{-1}$ can be estimated from these experiments. Experiments focused on investigating the reaction of Criegee intermediates with Cl$_2$ through direct observation of the Criegee intermediate combined with theoretical calculations can be carried out to better understand this completely unknown class of reaction.
From this observation we have then considered a bi-molecular reaction of the Criegee intermediate with CH$_3$C(O)CH$_3$. The reaction has been studied several times $^{39-42}$ for the simplest Criegee intermediate, CH$_3$OO, and pressure dependent rate constants in the range 2.3×10^{-13} cm3s$^{-1}$ at 4 Torr He 39 up to a high pressure limit of 4.7×10^{-13} cm3s$^{-1}$ at 100 Torr N$_2$ 40 have been obtained. In our CH$_3$C(O)CH$_3$ concentration range, the high-pressure limit of the rate constant would result in pseudo-first order rate constants between $1800 - 34000$ s$^{-1}$, i.e. much faster than the observed profiles. The reactivity of the more complex Criegee intermediate, CH$_3$C(O)CHO$_2$, has to our knowledge never been studied, but a lower reactivity can be expected43 and therefore this reaction could be a candidate for explaining our observed HO$_2$ profiles. We have integrated into the model the reaction

$$\text{CH}_3\text{C(O)CH}_3 + \text{CH}_3\text{C(O)CHO}_2 \rightarrow \rightarrow \text{HO}_2 + \text{products} \quad (21)$$

and the full lines in Figure 5 show the model using $k_{22} = 4.5 \times 10^{-14}$ cm3s$^{-1}$, i.e. one order of magnitude slower than the same reaction for the simplest Criegee. Excellent agreement for all HO$_2$ profiles over the full range of CH$_3$C(O)CH$_3$ concentration is obtained this way. We express by the double arrow that HO$_2$ formation does not occur in an elementary reaction, but in a reaction sequence. Addition of Criegee to CH$_3$C(O)CH$_3$ it a 1,3-bipolar cycloaddition which might lead to OH radicals, which in a subsequent rapid reaction with peroxy radicals could lead to HO$_2$ radicals. The given rate constant of (21) is therefore the rate-limiting step and the initial addition of CH$_3$C(O)CHO$_2$ to CH$_3$C(O)CH$_3$ might be faster. However, from the current experiments we cannot make the difference, and additional experiments, preferably with a direct detection of the Criegee intermediate, should be carried out to unravel the details of the HO$_2$ formation.

In Figure 6 is shown again a series of experiments where (18) plays a role: the same low CH$_3$C(O)CH$_3$ concentration and the Cl-atom concentration varying between $(4.4 - 9.0) \times 10^{13}$ cm$^{-3}$, from purple to red. The full lines show the simulation corresponding to the model in Table 3 and demonstrate the good performance of the implemented chemistry following the reaction of Cl-atoms with CH$_3$C(O)CH$_2$O$_2$. The dashed lines show the simulated profiles from Table 3 without considering the reaction of Cl-atoms with CH$_3$C(O)CH$_2$O$_2$ radicals: the CH$_3$C(O)CH$_2$O$_2$ and the CH$_3$O$_2$ profiles are well reproduced and the reason for the disagreement could be searched for in some unexpected missing radical concentration. However, the HO$_2$ and the CH$_3$C(O)O$_2$ profiles cannot be reproduced without considering the reaction of Cl-atoms with CH$_3$C(O)CH$_2$O$_2$. Even for the lowest Cl-atom concentration the influence is clearly visible.
Figure 6: Concentration-time profiles for all 4 radicals: [Cl] = 9.0, 7.2, 6.0 and 4.4×10^{13} cm$^{-3}$ for red, blue, green and purple symbols, respectively. $[\text{CH}_3\text{C(O)CH}_2\text{O}_2] = 7.0 \times 10^{15}$ cm$^{-3}$ for all experiments. Coloured lines are obtained using the model in Table 3, for CH$_3$O$_2$ and CH$_3$C(O)CH$_2$O$_2$ data points and full lines are expressed corresponding to (16) and (17), respectively. Dashed lines show modelled profiles without contribution of Cl + CH$_3$C(O)CH$_2$O$_2$ for the highest and lowest Cl-atom concentration.

Another possible bi-molecular reaction of the Criegee intermediate CH$_3$C(O)CHO$_2$ would be a reaction with peroxy radicals: this reaction has been investigated several times$^{44-47}$ and is known to lead to formation of OH radicals. The OH radicals might then lead in subsequent reactions with peroxy radicals to HO$_2$$^{48-51}$. This reaction sequence has tentatively been implemented into the model, but no rate constants could be found that resulted in satisfactorily results for all conditions. However, a minor participation of this reaction together with (21) cannot be excluded from the present results, separate experiments would be necessary to conclude on the detailed mechanism of the subsequent chemistry of CH$_3$C(O)CHO$_2$. Such experiments are out of the scope of this paper.

Self-reaction of CH$_3$C(O)CH$_2$O$_2$
Finally, the secondary Cl-atom chemistry presented in the model in Table 3 allowed to very well reproduce the observed profiles under conditions where the reaction of Cl-atoms with peroxy radicals was favored. This mechanism has then been used to simulate experiments designed for measuring the rate constant of the self-reaction of CH$_3$C(O)CH$_2$O$_2$: high CH$_3$C(O)CH$_3$ concentrations, corresponding to the red symbols in Figure 4 and Figure 5, have always been used in these experiments, conditions where (18) plays only a very minor role. The rate constants and branching ratios for the reaction of CH$_3$C(O)CH$_2$O$_2$ with CH$_3$C(O)O$_2$, CH$_3$O$_2$ and HO$_2$ are only poorly known$^{11-13}$ and the model in Table 3 uses the current recommendations of the IUPAC committee5.

Table 3: Full mechanism used to model the experimental data

<table>
<thead>
<tr>
<th>No</th>
<th>Reaction</th>
<th>k / cm3 s$^{-1}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cl + CH$_3$C(O)CH$_3$ → CH$_3$C(O).CH$_2$ + HCl</td>
<td>2.17 × 10$^{-12}$</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>CH$_3$C(O)CH$_3$ + O$_2$ → CH$_3$C(O)CH$_2$O$_2$</td>
<td>1.2 × 10$^{-12}$</td>
<td>6</td>
</tr>
<tr>
<td>1a</td>
<td>2 CH$_3$C(O)CH$_2$O$_2$ → stable products</td>
<td>2.2 × 10$^{-12}$</td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>2 CH$_3$C(O)CH$_2$O$_2$ → 2 CH$_3$C(O)CH$_2$O + O$_2$ → 2 CH$_3$C(O) + 2 CH$_2$O</td>
<td>3.2 × 10$^{-12}$</td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>CH$_3$C(O) + O$_2$ → CH$_3$C(O)O$_2$</td>
<td>5.0 × 10$^{-12}$</td>
<td>5</td>
</tr>
<tr>
<td>6b</td>
<td>CH$_3$C(O) + O$_2$ → product + HO$_2$</td>
<td>1 × 10$^{-13}$</td>
<td>30</td>
</tr>
<tr>
<td>6c</td>
<td>CH$_3$C(O) + O$_2$ → product + OH</td>
<td>2 × 10$^{-13}$</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Secondary peroxy radical chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>CH$_3$C(O)CH$_2$O$_2$ + CH$_3$C(O)O$_2$ → CH$_3$C(O)CH$_2$O + CH$_3$C(O)O + O$_2$</td>
<td>2.5 × 10$^{-12}$</td>
<td>5</td>
</tr>
<tr>
<td>7b</td>
<td>CH$_3$C(O)CH$_2$O$_2$ + CH$_3$C(O)O$_2$ → stable products</td>
<td>2.5 × 10$^{-12}$</td>
<td>5</td>
</tr>
<tr>
<td>8a</td>
<td>CH$_3$C(O)CH$_2$O$_2$ + CH$_3$O$_2$ → CH$_3$C(O)CH$_2$O + CH$_3$O + O$_2$</td>
<td>1.14 × 10$^{-12}$</td>
<td>5</td>
</tr>
<tr>
<td>8b</td>
<td>CH$_3$C(O)CH$_2$O$_2$ + CH$_3$O$_2$ → stable products</td>
<td>2.66 × 10$^{-12}$</td>
<td>5</td>
</tr>
<tr>
<td>9a</td>
<td>CH$_3$C(O)CH$_2$O$_2$ + HO$_2$ → CH$_3$C(O)CH$_2$O + OH + O$_2$</td>
<td>1.35 × 10$^{-12}$</td>
<td>5</td>
</tr>
<tr>
<td>9b</td>
<td>CH$_3$C(O)CH$_2$O$_2$ + HO$_2$ → stable products</td>
<td>7.65 × 10$^{-12}$</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>2 CH$_3$C(O)O$_2$ → 2 CH$_3$C(O) + O$_2$</td>
<td>1.35 × 10$^{-11}$</td>
<td>21</td>
</tr>
<tr>
<td>11a</td>
<td>CH$_3$C(O)O$_2$ + CH$_3$O$_2$ → CH$_3$C(O)O + CH$_3$O + O$_2$</td>
<td>1.35 × 10$^{-11}$</td>
<td>21</td>
</tr>
<tr>
<td>11b</td>
<td>CH$_3$C(O)O$_2$ + CH$_3$O$_2$ → stable products</td>
<td>7.05 × 10$^{-12}$</td>
<td>21</td>
</tr>
<tr>
<td>12a</td>
<td>CH$_3$C(O)O$_2$ + HO$_2$ → CH$_3$C(O)O + OH + O$_2$</td>
<td>8 × 10$^{-12}$</td>
<td>52</td>
</tr>
<tr>
<td>12b</td>
<td>CH$_3$C(O)O$_2$ + HO$_2$ → stable products</td>
<td>8 × 10$^{-12}$</td>
<td>52</td>
</tr>
<tr>
<td>13a</td>
<td>2 CH$_3$O$_2$ → 2 CH$_3$O + O$_2$</td>
<td>1.3 × 10$^{-13}$</td>
<td>5</td>
</tr>
<tr>
<td>13b</td>
<td>2 CH$_3$O$_2$ → stable products</td>
<td>2.2 × 10$^{-13}$</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>CH$_3$O$_2$ + HO$_2$ → CH$_3$OOH + O$_2$</td>
<td>5.5 × 10$^{-12}$</td>
<td>5</td>
</tr>
<tr>
<td>Reactions</td>
<td>Rate Constants</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>$2 \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$</td>
<td>1.7×10^{-12}</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>$\text{CH}_3\text{C}(\text{O})\text{O} \rightarrow \text{CH}_3 + \text{CO}_2$</td>
<td>$5.2 \times 10^8 \text{s}^{-1}$</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>$\text{CH}_3\text{O} + \text{O}_2 \rightarrow \text{CH}_2\text{O} + \text{HO}_2$</td>
<td>1.9×10^{15}</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>$\text{CH}_3\text{O} + \text{HO}_2 \rightarrow \text{products}$</td>
<td>1.1×10^{10}</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>$\text{HO}_2 + \text{CH}_3\text{C}(\text{O})\text{CH}_3 \leftrightarrow \text{CH}_3\text{C}(\text{O})\text{CH}_3\text{•HO}_2$</td>
<td>$K_c = 1.4 \times 10^{-18}$</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

Secondary Cl-atom chemistry

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Rate Constants</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>$18a \quad \text{Cl} + \text{CH}_3\text{C}(\text{O})\text{CH}_2\text{O}_2 \rightarrow \text{CH}_3\text{C}(\text{O})\text{CH}_2\text{O} + \text{ClO}$</td>
<td>6×10^{-11}</td>
<td>This work</td>
</tr>
<tr>
<td>$18b \quad \text{Cl} + \text{CH}_3\text{C}(\text{O})\text{CH}_2\text{O}_2 \rightarrow \text{CH}_3\text{C}(\text{O})\text{CHO}_2 + \text{HCl}$</td>
<td>7.5×10^{-11}</td>
<td>This work</td>
</tr>
<tr>
<td>$19 \quad \text{Cl} + \text{CH}_3\text{O} + \text{O}_2 \rightarrow \text{HO}_2 + \text{CO} + \text{HCl}$</td>
<td>7.3×10^{-11}</td>
<td>5</td>
</tr>
<tr>
<td>$21 \quad \text{CH}_3\text{C}(\text{O})\text{CHO}_2 + \text{CH}_3\text{C}(\text{O})\text{CH}_3 \rightarrow \text{HO}_2 + \text{products}$</td>
<td>4.5×10^{-14}</td>
<td>This work</td>
</tr>
</tbody>
</table>

OH chemistry

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Rate Constants</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>$26 \quad \text{OH} + \text{CH}_3\text{C}(\text{O})\text{CH}_3 \rightarrow \text{CH}_3\text{C}(\text{O})\text{CH}_2 + \text{H}_2\text{O}$</td>
<td>1.76×10^{-13}</td>
<td>5</td>
</tr>
<tr>
<td>$27 \quad \text{OH} + \text{CH}_3\text{O} + \text{O}_2 \rightarrow \text{HO}_2 + \text{CO} + \text{H}_2\text{O}$</td>
<td>8.36×10^{-12}</td>
<td>5</td>
</tr>
<tr>
<td>$28 \quad \text{OH} + \text{CH}_3\text{C}(\text{O})\text{CH}_2\text{O}_2 \rightarrow \text{CH}_3\text{C}(\text{O})\text{CH}_3\text{OOOH}$</td>
<td>1×10^{-10}</td>
<td>$^{49, 56}$</td>
</tr>
<tr>
<td>$29 \quad \text{OH} + \text{CH}_3\text{O}_2 \rightarrow \text{CH}_3\text{O} + \text{HO}_2$</td>
<td>1.2×10^{-12}</td>
<td>17</td>
</tr>
</tbody>
</table>

Figure 7 shows a series of experiments with high CH$_3$C(O)CH$_3$ concentration and Cl-atom concentration varying between 0.36 - 1.3 \times 1014 cm$^{-3}$. The colored lines represent the simulation using the model from **Table 3**, and an excellent reproduction of the profiles of all four species is obtained over the entire Cl-concentration range.
Figure 7: Absorption-time profiles for all 4 radicals: [Cl] = 1.3, 1.0, 0.69 and 0.36 × 10\(^{14}\) cm\(^{-3}\) for red, blue, green and black symbols, [CH\(_3\)C(O)CH\(_3\)] = 6.0 × 10\(^{16}\) cm\(^{-3}\) for all experiments. Coloured lines are obtained using the model in Table 3, for CH\(_2\)O and CH\(_3\)C(O)O\(_2\) data points and full lines are expressed corresponding to (16) and (17), respectively.

Figure 8 shows the profiles for the highest Cl-concentration from Figure 7 (red symbols), but now all four species in one graph: CH\(_3\)C(O)CH\(_3\)O\(_2\) (green, right y-axis applies), CH\(_3\)C(O)O\(_2\) (blue), CH\(_3\)O\(_2\) (black) and HO\(_2\) (red). Different parameters have been varied compared to the model in Table 3:

- Graph a. shows again the best model from Table 3 as full lines with a branching ratio of \(\phi_{1b} = 0.6\), while the dashed lines show the simulation with the same total rate constant \(k_1\), but lower radical yield: \(\phi_{1b} = 0.4\), the dotted lines show the simulation with higher yield: \(\phi_{1b} = 0.8\). With the lower and the higher radical yield, the profile of CH\(_3\)C(O)CH\(_3\)O\(_2\) is still reasonably well reproduced, but the concentrations of the three other radical species are clearly under/overestimated. From such simulations we estimate an uncertainty of the branching ratio of ± 0.1.

- Graph b. shows the sensitivity of the model to the overall rate constant \(k_1\), while keeping \(\phi_{1b} = 0.6\): the dashed lines correspond to \(k_1 = 8.1 \times 10^{-12}\) cm\(^3\)s\(^{-1}\), i.e. an increase of 50%, the dotted lines represent the model with \(k_1\) decreased by 50% (\(k_1 = 3.6 \times 10^{-12}\) cm\(^3\)s\(^{-1}\)): none of these variations allows to reproduce all profiles. From such simulations we estimate an uncertainty of the rate constant \(k_1\) of ±25%.
- Graph c. shows the simulation using the rate constant and branching ratio as currently recommended by IUPAC: k_1 is slightly faster than the current value, but the branching ratio is very similar (see Table 1). The CH$_3$C(O)CH$_2$O$_2$ and CH$_3$O$_2$ profiles are well reproduced, however the CH$_3$C(O)O$_2$ concentration is overestimated at short reaction times, with (1b) being the major source of the CH$_3$C(O)O$_2$ radicals. This leads also to an overestimation of HO$_2$ which has its major source in the cross reaction between CH$_3$C(O)O$_2$ and CH$_3$O$_2$ radicals.

- Graph d. shows the simulation using the rate constant and branching ratio from Zuraski et al. while the rate constant is in excellent agreement with the current work, the branching ratio is with 0.33 much lower than our value. The resulting concentration-time profiles are much too low compared to the measurements. The reason for the very low branching ratio obtained by Zuraski et al. is possibly due to the fact that relatively low CH$_3$C(O)CH$_3$ (~2×10^{15} cm$^{-3}$, three times lower than typically used in this work) together with high Cl-atom concentrations (~1-2$ \times 10^{14}$ cm$^{-3}$) have been used in their experiments, conditions under which (18) plays a non-negligible role. However, no secondary Cl-atom chemistry has been integrated into their model, which certainly biased the results extracted from simulation of experimental radical profiles.

Figure 8: Absorption-time profiles for all 4 radicals (CH$_3$C(O)CH$_2$O$_2$ (green, right y-axis applies), CH$_3$C(O)O$_2$ (blue), CH$_3$O$_2$ (black) and HO$_2$ (red)) for the highest Cl-concentration from Figure 7 ([Cl] = 1.3×10^{16} cm$^{-3}$, red symbols). Graph a: branching ratio for (1) is $\phi_{1b} = 0.6$ (full lines, best model), 0.4 (dashed lines) and 0.8 (dotted lines). Graph b: dashed lines: $k_1 = 8.1 \times 10^{-12}$ cm3s$^{-1}$ (50% increase compared to best model), dotted lines: $k_1 = 3.6 \times 10^{-12}$ cm3s$^{-1}$ (50% decrease compared to best model). Graph c: current recommendation for k_1 and branching ratio from IUPAC committee. Graph d: model with rate constant and branching ratio for (1) from Zuraski et al.
Conclusion

The rate constant and the branching ratio of the self-reaction of the acetonyl peroxy radical, \(\text{CH}_3\text{C(O)CH}_2\text{O}_2 \), has been determined. This is a complex reaction system, because one of the products of the self-reaction is the acetyl peroxy radical, \(\text{CH}_3\text{C(O)O}_2 \), which induces a rich, unavoidable secondary chemistry influencing the concentration-time profile of the \(\text{CH}_3\text{C(O)CH}_2\text{O}_2 \) radical. In this work, we present a selective detection of the four key species involved in the secondary chemistry of this system: cw-cavity ring down spectroscopy in the near infrared region. From modeling the concentration-time profiles of the four species (\(\text{HO}_2 \), \(\text{CH}_3\text{O}_2 \), \(\text{CH}_3\text{C(O)O}_2 \) and \(\text{CH}_3\text{C(O)CH}_2\text{O}_2 \)), measured simultaneously in a large range of initial concentrations, a rate constant for the self-reaction of \(k_1 = (5.4 \pm 1.4) \times 10^{-12} \text{ cm}^3\text{s}^{-1} \) has been obtained, in good agreement with a recent publication\(^{13}\). The branching ratio for the radical path however was found with \(\phi_{1b} = (0.6 \pm 0.1) \) well above the most recently published value (0.33 ± 0.13). This is a large disagreement, because the branching ratio of the radical path has a strong influence on the profiles of the different species and thus the agreement on the rate constant between both works, obtained with different branching ratios, must be fortuitous. It turned out that the reaction of Cl-atoms with \(\text{CH}_3\text{C(O)CH}_2\text{O}_2 \) is very fast, and can have an impact on the profiles, depending on the initial concentrations. Therefore, this reaction has been investigated in separate experiments with initial condition chosen to promote this reaction. A rate constant of \(k_{18} = (1.35 \pm 0.8) \times 10^{-10} \text{ cm}^3\text{s}^{-1} \) was obtained by simultaneous modeling the concentration time profiles of all four radicals, and experimental results were best reproduced using a branching fraction of \(\phi_{18b} = (0.55 \pm 0.1) \) leading through H-atom abstraction to the formation of the Criegee intermediate, \(\text{CH}_3\text{C(O)CHO}_2 \). In order to well reproduce the \(\text{HO}_2 \) profiles, a reaction of \(\text{CH}_3\text{C(O)CHO}_2 \) with the precursor acetone, \(\text{CH}_3\text{C(O)CH}_3 \), with a rate constant of \(k_{21} = (4.5 \pm 2.0) \times 10^{-14} \text{ cm}^3\text{s}^{-1} \) needed to be added to the model. It is thought that this secondary Cl-atom chemistry is the reason for the disagreement in the branching ratio between this work and Zuraski et al.\(^{13}\).

Supporting information

Figure S1: data from Figure 6 with different branching ratios for (18); Excel files containing all data presented in the figures (\(\alpha = f(t) \) for all wavenumbers and all concentrations).
Acknowledgment

This project was supported by the French ANR agency under contract No. ANR-11-Labx-0005-01 CaPPA (Chemical and Physical Properties of the Atmosphere), the Région Hauts-de-France, the Ministère de l'Enseignement Supérieur et de la Recherche (CPER Climibio) and the European Fund for Regional Economic Development.

References

21. Assali, M.; Fittschen, C. Rate Constants and Branching Ratios for the Self-Reaction of Acetoxperoxy (CH3C(O)O2) and Its Reaction with CH3O2. *Atmosphere* 2022, 13, 186

27. DeSain, J. D.; Ho, A. D.; Taatjes, C. A. High-resolution diode laser absorption spectroscopy of the O–H stretch overtone band (2,0,0)(0,0,0) of the HO2 radical. *J. Mol. Spectrosc.* 2003, 219, 163-169

33. Daele, V.; Poulet, G. Kinetics and products of the reactions of CH$_3$O$_2$ with Cl and ClO. *Journal de Chimie Physique* 1996, 93, 1081-1099

52. Hui, A. O.; Fradet, M.; Okumura, M.; Sander, S. P. Temperature Dependence Study of the
Kinetics and Product Yields of the HO\textsubscript{2} + CH\textsubscript{3}C(O)O\textsubscript{2} Reaction by Direct Detection of OH and HO\textsubscript{2}
53. Zhou, Y. Z.; Li, S.; Li, Q. S.; Zhang, S. W. Theoretical investigation of the decarboxylation
reaction of CH\textsubscript{3}CO\textsubscript{2} radical. Journal of Molecular Structure: THEOCHEM 2008, 854, 40-45
54. Assaf, E.; Schoemaecker, C.; Vereecken, L.; Fittschen, C. The reaction of fluorine atoms with
methanol: yield of CH\textsubscript{3}O/CH\textsubscript{2}OH and rate constant of the reactions CH\textsubscript{3}O + CH\textsubscript{3}O and CH\textsubscript{3}O + HO\textsubscript{2}.
Kolb, C. E.; Kurylo, M. J., et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric
Schoemaecker, C. ROOOH: a missing piece of the puzzle for OH measurements in low-NO