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On Cheeger constants of hyperbolic surfaces

It is a well-known result due to Bollobas that the maximal Cheeger constant of large d-regular graphs cannot be close to the Cheeger constant of the d-regular tree. We prove analogously that the Cheeger constant of closed hyperbolic surfaces of large genus is bounded from above by 2/π ≈ 0.63... which is strictly less than the Cheeger constant of the hyperbolic plane. The proof uses a random construction based on a Poisson-Voronoi tessellation of the surface with a vanishing intensity. Figure 1 -From left to right: Poisson-Voronoi tessellations of the hyperbolic plane with decreasing intensity. Their limit (on the right) is the pointless Voronoi tessellation of the hyperbolic plane whose cells have been colored in black/white uniformly at random. This object has an average "linear" density equal to 2 × 2 π per unit of area.

Introduction

Let S be a closed hyperbolic surface. If A ⊂ S is a subset of S, we define h * (A) = |∂A|/|A| where |∂A| is the length of its boundary and |A| is its area. If one of these quantities is not well defined, then h * (A) = +∞ by convention. The Cheeger constant of S is

h(S ) = inf {h * (A)|A ⊂ S with |A| | S|/2} . (1) 
Theorem 1. For g 2, let M g be the moduli space of all isometry classes of closed hyperbolic surfaces of genus g. Then we have lim sup

g→∞ sup S∈M g h(S ) 2 
π .

We recall that the Cheeger constant of the hyperbolic plane H is equal to 1, which is asymptotically attained by large disks. As such, our result shows a gap between the maximal Cheeger constant of a large, closed hyperbolic surface and that of its universal cover. The presence of this gap was conjectured by Wright and Lipnowski [START_REF] Wright | A tour through Mirzakhani's work on moduli spaces of Riemann surfaces[END_REF] building upon [START_REF] Brooks | On the asymptotic isoperimetric constants for Riemann surfaces and graphs[END_REF] and inspired by similar results in graph theory. It also follows from our result that Cheeger's inequality [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF] -the original reason for which the Cheeger constant was introduced -cannot be used to show that a closed hyperbolic surface of large genus has an optimal spectral gap. Finally, Theorem 1 implies recent results by Shen-Wu on random Belyȋ surfaces and random covers of the Bolza surface [START_REF] Shen | Large degree asymptotics for Cheeger constants of covering hyperbolic surfaces[END_REF][START_REF]The Cheeger constants of random Belyi surfaces[END_REF].
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Context and sketch of proof

Before sketching the proof of Theorem 1, let us place it into context by telling the analogous story in the case of d-regular graphs. We will use similar notation as in the case of hyperbolic surfaces, so that the reader may follow the parallels more easily.

Warm-up: the graph case

Fix an integer d 3 and consider the set G d (n) of all connected simple graphs on n vertices having all degree d (we assume that d • n is even so that G d (n) is not empty). If g n ∈ G d (n) and A is a subset of the vertices of g n , the isoperimetric constant of A is defined as

h * (A) = |∂A| |A| ,
where |A| is the number of vertices of A and |∂A| is the number of edges having one endpoint in A and the other outside A. The Cheeger constant of g n is then

h(g n ) := inf {h * (A) | A ⊂ g n with |A| n/2} .
It is easy to construct graphs g n ∈ G d (n) with small Cheeger constant, for example if they contain a large piece which looks roughly one-dimensional. On the other hand, we have

c d := lim inf n→∞ sup g n ∈G d (n) h(g n ) > 0,
since there are (families of) graphs, called expanders, whose Cheeger constant is uniformly bounded from below. The existence of such graphs has famously been proved by Margulis [START_REF] Margulis | Explicit constructions of expanders[END_REF] through an explicit construction and Pinsker [START_REF] Pinsker | On the complexity of a concentrator[END_REF] using a probabilistic argument. Ramanujan graphs [START_REF] Lubotzky | Ramanujan graphs[END_REF][START_REF]Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators[END_REF] are very good expanders and their existence shows that c d d

2 -O( √ d) when d → ∞,
which can also be proved using random graphs [START_REF] Bollobás | The isoperimetric number of random regular graphs[END_REF]. Conversely, an easy argument shows that the Cheeger constant of a large d-regular graph is asymptotically bounded from above by that of the d-regular tree T d , which is equal to d -2, so that in particular c d d -2. This bound is not sharp and in fact Bollobas [START_REF] Bollobás | The isoperimetric number of random regular graphs[END_REF], later sharpened by Alon [START_REF] Alon | On the edge-expansion of graphs[END_REF], proved that

c d 1 2 (d -2) for all d 3 (2) 
(and even

c d = d 2 -O( √ d) asymptotically as d → ∞).
This gap between the largest Cheeger constant of large d-regular graphs and that of T d is the graph analog of our Theorem 1. The idea of the proof of ( 2) is surprisingly simple: fix a large graph g n ∈ G d (n) and color uniformly at random half of its vertices black and the other half white. Consider then the subset A of size n/2 consisting of the black vertices. Since an edge is counted in |∂A| if and only its endpoints have different colors, the probability that a given edge contributes to |∂A| is approximately 1 2 . We thus have

E[|∂A|] ≈ 1 2 |Edges(g n )| = 1 2 • dn 2 , (3) 
and so h(g n ) E[h * (A)] d 2 asymptotically when n is large. To get the better bound h(g n ) d-2 2 , the idea is to first regroup the vertices of g n into connected "regions" R 1 , ..., R k of vertices which are all large (i.e.

1 |R i |), but not too large (i.e. |R i | n).
In particular k must be large. In the graph case, one can perform such a splitting in various deterministic ways, e.g. using a spanning tree of g n as in [1, Section 3]. Since those regions are large and connected we have the crude bound valid on d-regular trees

h * (R i ) d -2 + o(1). (4) 
Hence, the number of edges whose endpoints lie in two different regions R i = R j is roughly n(d-2)

2

. We can then proceed as above and color each region uniformly at random in black or white. Since the regions are not too large, a standard concentration argument shows that the black vertices form a subset à of approximately n/2 vertices. Again, a given edge is counted in |∂ Ã| if its endpoints lie in two different regions with different colors. By the same computation as in (3) for E |∂ Ã| , we deduce

h * ( Ã) 1 2 • n(d -2) 2 • 2 n = d -2 2 .

Hyperbolic surfaces

Let us now draw the parallel with the case of hyperbolic surfaces. A first difficulty is that the a priori crude bound (4) does not hold in the continuous setting: there is no upper bound on the Cheeger constant of a connected set since there are such sets with a nasty fractal boundary having a large one-dimensional measure. However, the global inequality

h(S g ) h(H) + o(1) = 1 + o(1) as g → ∞
is still true for any hyperbolic surface S g of genus g 2. This can e.g. be derived by spectral considerations, combining works of Cheeger [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF] and Cheng [START_REF] Cheng | Eigenvalue comparison theorems and its geometric applications[END_REF]. Here also, the existence of "expander surfaces" of large genus with Cheeger constant bounded away from 0 is known. The known constructions essentially fall into three (overlapping) categories. First of all, there are multiple ways to compare the Cheeger constant of a hyperbolic surface to that of a graph [START_REF] Buser | Cubic graphs and the first eigenvalue of a Riemann surface[END_REF][START_REF] Brooks | Combinatorial problems in spectral geometry[END_REF]. Secondly, just like in the case of graphs, it is known, due to Buser [START_REF]A note on the isoperimetric constant[END_REF], that spectral expansion implies isoperimetric expansion. As such, the many examples of surfaces with a spectral gap -the first examples are due to Selberg [START_REF] Selberg | On the estimation of Fourier coefficients of modular forms[END_REF] and recently near optimal spectral expanders were found by Hide and Magee [START_REF] Hide | Near optimal spectral gaps for hyperbolic surfaces[END_REF] -also give rise to surfaces with large Cheeger constants. Finally, multiple random constructions [START_REF] Mirzakhani | Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus[END_REF][START_REF] Brooks | Random construction of Riemann surfaces[END_REF] are known to provide examples.

Let us now try to mimic the proof of the graph case to prove a strict inequality in the last display. Obviously, taking half of the points of S g does not make sense, and one wants to first split our deterministic surface S g into regions R 1 , ..., R k satisfying 1

|R i | g before coloring them in black and white with equal probability. In [START_REF] Brooks | On the asymptotic isoperimetric constants for Riemann surfaces and graphs[END_REF] Brooks and Zuk roughly speaking postulated the existence of such a decomposition based on balls where the isoperimetric constants h * (R i ) of the regions in question are close to 1. Given those hypothetical decompositions, the coloring argument would yield h(S g ) 1 2 when g → ∞. We were not able to prove that such decompositions actually exist on every hyperbolic surface and rather use a random splitting of S g based on a Voronoi decomposition. More precisely, we consider a Poisson point process with points X 1 , ..., X N of intensity given by λ • µ S g , where µ S g is the hyperbolic area measure on S g with total mass 4π(g -1), and λ > 0 is a small constant. Those points decompose S g into the Voronoi regions Vor λ (S g ) := {C 1 , ..., C N } where

C i = x ∈ S g : d S g (x, X i ) = min 1 j N d S g (x, X j ) .
When the intensity parameter λ is small, the typical area of a region is of order 1/λ and so one can expect (see Lemma 1 below) that indeed we have 1 |C i | |S g | at least for most regions. Now recall that we have no a priori upper bound for the Cheeger constant of these regions (contrary to the graph case). The crux of the argument boils down to showing that, at least on average, we have h * (C i ) = 4 π . More precisely, we will show (see Proposition 2) that the expected length of the union ∂Vor λ (S g ) of the boundaries of the Voronoi cells C 1 , . . . , C N satisfies

lim sup λ→0 sup g 2 sup S g ∈M g 1 |S g | E ∂Vor λ (S g ) 2 π . (5) 
Given the above display, one can then run the same proof as in the graph case: we color uniformly the Voronoi cells in black and white and consider the resulting black component. Its volume is concentrated around 1 2 |S g | and its boundary size is less than

|S g | • 1 2 • ( 2 π + ε)
for g large when λ is small, so that h(S g ) ( 2π + ε) asymptotically as claimed in Theorem 1.

The pointless Voronoi tessellation of H

Let us gain some intuition on the proof of (5) done in Proposition 2. Suppose first that the systole of S g tends to ∞ as g → ∞. In that situation, the neighborhood of each point in S g looks like a piece of the hyperbolic plane and the Voronoi tessellation Vor λ (S g ) converges in distribution (in the local Hausdorff sense) towards the Voronoi tessellation Vor λ (H) of the hyperbolic plane with intensity λ, see Figure 1. This classical object has been studied in stochastic geometry [START_REF] Isokawa | Some mean characteristics of Poisson-Voronoi and Poisson-Delaunay tessellations in hyperbolic planes[END_REF][START_REF] Calka | Poisson-Voronoi tessellation on a Riemannian manifold[END_REF] and in particular in relation to its percolation properties [START_REF] Benjamini | Percolation in the hyperbolic plane[END_REF][START_REF] Hansen | Poisson-Voronoi percolation in the hyperbolic plane with small intensities[END_REF][START_REF]The critical probability for Voronoi percolation in the hyperbolic plane tends to 1/2[END_REF]. In particular, Isokawa [START_REF] Isokawa | Some mean characteristics of Poisson-Voronoi and Poisson-Delaunay tessellations in hyperbolic planes[END_REF] computed the mean characteristics of a typical1 cell C λ in Vor λ (H) : this cell is an almost surely finite convex hyperbolic polygon satisfying

E[C λ ] = 1 λ and E[|∂C λ |] = 8 √ πλ ∞ 0 e -u u + u 2 4πλ du.
In particular, the "average Cheeger constant" of cells of Vor λ (H) satisfies in the small intensity limit

E[|∂C λ |] E[|C λ |] --→ λ→0 4 π ,
which explains (5) in the case when Systole(S g ) → ∞. Note that recently percolation on hyperbolic Poisson-Voronoi tessellation with small intensity has been studied in [START_REF] Hansen | Poisson-Voronoi percolation in the hyperbolic plane with small intensities[END_REF]. Underneath the convergence of the above display as the intensity tends to 0 lies the fact that Vor λ (H) converges (in distribution for the Hausdorff topology on compact sets of H) towards a limiting object that we name the pointless Poisson-Voronoi tessellation of the hyperbolic disk (see Figure 1) and whose construction and properties will be studied in a forthcoming work. Finally, in order to deal with the case in which the systole is not large, we will need to study ∂Vor λ (S g ) in the neighbourhood of a point x of S g . To do so, we will replace the hyperbolic plane by the Dirichlet domain -a specific fundamental domain -of S g around x. We will prove that in order to prove [START_REF] Brooks | Combinatorial problems in spectral geometry[END_REF], it will be enough to understand ∂Vor λ (S) inside the Dirichlet domain, thus also reducing the general case to computations in the hyperbolic plane.

Proof

Let us recall some basic notions and fix notation before starting the proof.

Preliminaries

The hyperbolic plane. We recall that the hyperbolic plane H is the unit disk {z ∈ C : |z| < 1}, equipped with the Riemannian metric 4|dz| 2 (1-|z| 2 ) 2 . This metric has constant curvature -1 and is invariant under Möbius transformations. We will denote by d H (x, y) the hyperbolic distance in H. For several computations in the paper, it will be useful to use polar coordinates on H. More precisely, for r > 0 and θ ∈ [0, 2π), we denote by [r; θ] the point of H of the form z = ρ(r)e iθ , where ρ(r) > 0 is such that d H (0, z) = r. We note that the area measure on H can be written as sinh(r) dr dθ.

Hyperbolic surfaces and Dirichlet domains. We recall that a closed hyperbolic surface S of genus g 2 is a Riemannian surface which is locally isometric to H, or equivalently which is the quotient of H by a discrete, torsion-free, cocompact group G of isometries. We denote by d S and µ S (or just d and µ if no confusion is possible) the hyperbolic metric and area measure on S. If A ⊂ S is a Borel subset we write |A| for µ(A) and |∂A| for the length of its boundary. If x is a point of a hyperbolic surface and r 0, we denote by B r (x) the closed ball of radius r around x.

We will make important use of the Dirichlet domain, which is a particular choice of a fundamental domain for the action of G on H, see [2, Section 9.4]. More precisely, let x be a point of a hyperbolic surface S = H/G, and let p : H → S be its universal cover, so that p(0) = x. We denote by D(S, x) the set of those points y ∈ H such that d H (0, y ) = d S (x, p(y )). In other words, this means that the image under p of the geodesic from 0 to y is still a shortest path in S. Dirichlet domains are convex polygons of H [2, Theorem 9.4.2]. For (almost) every point y ∈ S, we will denote by p -1 (y) the unique point of D(S, x) which is sent to y. Note that the maps p : D(S, x) → S and p -1 : S → D(S, x) are measure-preserving.

Poisson point processes. The surface S or the hyperbolic plane H both carry a Borel measure µ S which is of finite mass 4π(g -1) in the case of S and µ H which is σ-finite in the case of H. They have no atoms, so one can define a Poisson point process on those spaces with intensity λ • µ • . This is a cloud of distinct random points that is characterized by the fact that for any disjoint measurable subsets A 1 , ..., A k , the number of points falling inside A i are independent Poisson random variables of mean |A i |, see [START_REF] Kingman | Poisson processes[END_REF] for details.

Poisson-Voronoi tessellation. Let S be a hyperbolic surface of (large) genus g. As announced above, to bound its Cheeger constant from above, we shall build a random subset A λ of S in the following way. We first throw a Poisson point process Π = {X 1 , ..., X N } on S with intensity λ • µ S , where λ > 0 is a small constant. In particular the random variable N follows a Poisson law with mean λ • 4π(g -1). We then consider the closed Voronoi cells Vor λ (S) = {C 1 , ..., C N } it defines and denote by C(x) the Voronoi cell containing the point x ∈ S (with ties broken arbitrarily). Conditionally on Π, each cell is colored black or white independently with probability 1 2 and we let A λ ⊂ S be (the closure of) the union of the black cells. On the one hand, we will prove (Lemma 1) that unless h(S ) is very small (in which case our main result is trivial), the area |A λ | is close to |S| 2 if the surface is large enough. On the other hand, we will show (Proposition 2

) that E [|∂A λ |] is close to 1 π |S| if the intensity λ is chosen small enough.

Area estimate

We start with the area estimate. We believe that Lemma 1 below should be true even without the Cheeger constant assumption, but we could not find a short argument to prove the general statement.

Lemma 1 (Area estimate). For any λ > 0 and δ > 0, there is g 0 2 with the following property. For every hyperbolic surface S of genus g g 0 such that h(S ) δ, if the random subset A λ of S is built as described above, we have

P |A λ | |S| - 1 2 > δ < δ.
Proof. Let S be a hyperbolic surface with Cheeger constant at least δ. It follows immediately from our setup that E [|A λ |] = |S| 2 , so we only need to bound the variance of |A λ |. By conditioning on Vor λ (S), we have

Var (|A λ |) = E 1 4 N ∑ i=1 |C i | 2 = 1 4 S 2 P (C(x) = C(y)) µ(dx) µ(dy).
To bound P (C(x) = C(y)) from above, we will first argue that the assumption h(S ) δ implies a lower bound on the volume of balls around x and y for "most" points x, y ∈ S.

More precisely, for all x ∈ S and r > 0, by the Cheeger constant assumption we have

d dr |B r (x)| = |∂B r (x)| δ |B r (x)| .
Therefore, let r 1 > r 0 > 0 (the values of r 0 and r 1 , depending only on δ and λ, will be specified later), and assume that g is large enough to have 2π(cosh(r 1 ) -1) < |S| 2 . We have

|B r 1 (x)| e δ(r 1 -r 0 ) |B r 0 (x)| .
On the other hand, by the collar lemma, we know that there is an absolute constant C > 0 such that, if r 0 is small enough, we have |{x ∈ S | InjRad(x) r 0 }| Cr 0 • |S|.

But if the injectivity radius around x is larger than r 0 , then |B r 0 (x)| = 2π (cosh(r 0 ) -1) and we get a lower bound on |B r 1 (x)|. In particular, by taking r 0 small enough, we find

x ∈ S | |B r 1 (x)| < e δ(r 1 -r 0 ) 2π (cosh(r 0 ) -1)

δ 3 |S|. ( 6 
)
We denote by K r 1 ⊂ S 2 the set of pairs (x, y) such that d(x, y) > 2r 1 and neither x nor y satisfies the event in the left-hand side of (6). Let (x, y) ∈ K r 1 . If x and y belong to the same Voronoi cell, since B r 1 (x) and B r 1 (y) are disjoint, at least one of these two balls contains none of the points X i . It follows that

P (C(x) = C(y)) exp (-λ|B r 1 (x)|) + exp (-λ|B r 1 (y)|) 2 exp -2πλe δ(r 1 -r 0 ) (cosh(r 0 ) -1) .
In particular, if we have chosen a large enough value for r 1 , this probability is smaller than δ 3 . Therefore, we get

Var (|A λ |) δ 3 |S| 2 4 + S 2 \K r 1 4 δ 3 |S| 2 4 + 2 δ 3 |S| 2 4 + 2π 4 (cosh(2r 1 ) -1) |S|,
where the second term comes from [START_REF] Brooks | Random construction of Riemann surfaces[END_REF], and the third term counts the pairs (x, y) with d(x, y) < 2r 1 .

In particular, for |S| = 4π(g -1) large enough, the variance of |A λ | is smaller than δ 3 |S| 2 and the conclusion follows by the Chebychev inequality.

Perimeter estimate

Let us now pass to the perimeter estimate which is the most technical part of the proof. The proof of Lemma 3 consists of assuming by density that ν has a smooth density f with respect to Lebesgue, and expressing the integral in terms of the Fourier coefficients of f . We will use this lemma to handle the fact that a Dirichlet domain D(S, x) is not as isotropic as H.

Intersection of thin rings. The second lemma will help ruling out some pathological behaviours of Dirichlet domains. For 0 < a < b and x ∈ H, we denote by R b a (x) the set of points z ∈ H such that a d(x, z) b.

Lemma 4. Let K > 0 and let x, y be two distinct points of H. Then for all a > 0, we have

R a+ε a (x) ∩ R a+ε a (y) = o(ε)
as ε → 0. Moreover, the o(ε) is uniform in (x, y, a) provided a K and d(x, y) K -1 .

Proof. We first note that if d(x, y) > 2K + 2, then the intersection R a+ε a (x) ∩ R a+ε a (y) is empty as soon as ε < 1, so we may assume d(x, y) 2K + 2. For the same reason, since d(x, y) K -1 , we may assume a 1 2K . Moreover, by invariance under Möbius transformations, we may assume that x = 0 and that y = [d; 0] in polar coordinates, with . This implies that θ must lie in a set S(a, d, r, ε) ⊂ [0, 2π] of measure at most C(K) √ ε. Therefore, we have

K -1 d 2K + 2. Let us express R a+ε a (0) ∩ R a+ε a (y) in polar coordinates. First, if z = [r; θ] ∈ R a+ε a (0) ∩ R a+ε a ( 
R a+ε a (x) ∩ R a+ε a (y) = a+ε a |S(a, d, r, ε)| sinh(r) dr sinh(a + ε)C(K)ε 3/2 sinh(K + 1)C(K)ε 3/2 ,
which proves the lemma.

Proof of Proposition 2. In the rest of the proof we write ∂C ≡ ∂Vor λ (S) to lighten notation. For all ε > 0, we denote by ∂ ε C the set of points of S lying at hyperbolic distance at most ε from ∂C. Since ∂C is a.s. the union of finitely many geodesic segments, we have

|∂C| = lim ε→0 1 2ε |∂ ε C|.
It follows from Fatou's lemma that

E [|∂C|] lim inf ε→0 1 2ε E [|∂ ε C|] = lim inf ε→0 1 2ε S P (x ∈ ∂ ε C) µ S (dx). (7) 
Hence, let 0 < ε < 1 and x ∈ S, and let i 1 be such that that C(x) = C i 1 . We first note that if x ∈ ∂ ε C, then there are at least two Voronoi cells which intersect the ball B ε (x), and one of these cells is C i 1 . Hence, there is an i 2 = i 1 such that the bisector between X i 1 and X i 2 intersects B ε (x). Therefore we introduce, for any point y, the set A ε S (x, y) ⊂ S consisting of those points z such that d(x, z) d(x, y) and such that the bisector between y and z intersects the closed ball B ε (x). We first note that if z ∈ A ε S (x, y), then by the triangle inequality, we have

2 d(x, y) d(x, z) d(x, y) + 2ε. (8) 
The event x ∈ ∂ ε C is equivalent to saying that at least one other point of the Poisson process lands in the region A ε S (x, X i 1 ). Therefore, by conditioning on the point X i 1 closest to x, we have

P (x ∈ ∂ ε C) = λ S µ S (dy) exp -λ|B d(x,y) (x)| × (1 -exp (-λ|A ε S (x, y)|)) (9) 
λ 2 S µ S (dy) exp -λ|B d(x,y) (x)| |A ε S (x, y)|. (10) 
If the injectivity radius at x ∈ S is much larger than d(x, y), then |A ε S (x, y)| can be computed as in the hyperbolic plane (and one would recover the estimates of Isokawa [START_REF] Isokawa | Some mean characteristics of Poisson-Voronoi and Poisson-Delaunay tessellations in hyperbolic planes[END_REF]). In the general case, we will work with the Dirichlet domain D(S, x) ⊂ H defined above. We recall that D(S, x) is a fundamental domain for the projection p : H → S with p(0) = x. We claim that for y ∈ S, the subset A ε S (x, y) of S is very close to the subset A ε D(S,x) (0, p -1 (y)) of H. 2 Using this inequality to crudely bound |A ε S (x, y)|, we would obtain Proposition 2 (and therefore Theorem 1) with a constant 1 instead of 2 π . This is why we will need the more accurate description given by Lemma 6.

Lemma 5. For x, y ∈ S, we have

|A ε S (x, y)| A ε D(S,x) (0, p -1 (y)) + o(ε)
as ε → 0, uniformly in x, y ∈ S.

Proof. Let us fix x and y, and write r = d S (x, y). Since p -1 : S → D(S, x) is measure-preserving, it is sufficient to prove

p -1 (A ε S (x, y)) \A ε D(S,x) (0, p -1 (y)) = o(ε), (11) 
uniformly in (x, y) ∈ S 2 . We fix a Fuchsian group G such that S = G\H. Moreover, to avoid heavy notation involving the projection map, we will use w ∈ D(S, x) to denote the unique (up to a set of measure 0) pre-image of w ∈ S under p. In particular, x = 0. Now assume that ε < 1 2 Systole(S ) so that B ε (0) ⊂ D(S, x), and let z be in the difference of sets of [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF]. This implies that there is a point a ∈ B ε (x) such that

d S (a, z) < d S (a, y) but d H (a , z ) > d H (a , y ). Now let g • a (for some g ∈ G) be the translate of a such that d S (a, z) = d H (g • a , z ). The last display means that d H (g • a , z ) < d H (a , y). Observe that g • a ∈ B ε (g • x ). We get d H (g • x , z ) d H (g • x , g • a ) + d H (g • a , z ) ε + d S (a, z) 2ε + d S (x, z) r + 4ε,
where we have used [START_REF] Buser | Cubic graphs and the first eigenvalue of a Riemann surface[END_REF] for the last inequality. On the other hand, by the definition of the Dirichlet domain, we have

d H (g • x , z ) d H (x , z ) = d S (x, z) d S (x, y) = r.
Finally, we have

d H (x , g • x ) d H (x , z ) + d H (z , g • x ) = d S (x, z) + d H (z , g • x ) 2r + 6ε,
where we have used (8) again. Putting the last three inequalities together, we find that the set described in the left-hand side of ( 11) is contained in

w∈G•0\{0} d H (0,w) 2r+1 z ∈ H| r d(w, z ) r + 4ε and r d(0, z ) r + 2ε .
The sets in this union are intersections of two annuli of width 4ε, centered around 0 and a translate w of 0. Such an intersection has area o(ε), by Lemma 4. Note that in order to apply this lemma, we use the fact that r Diameter(S ) and that a translate w = g • 0 satisfies d(w, 0) Systole(S ).

Finally, the number of sets in the union can be bounded in terms of r, and hence in terms of Diameter(S ). Indeed, two points in G • 0 are least Systole(S) apart and as such only so many of them fit in a disk of radius 2r + 1. This concludes the proof of Lemma 5. The next step is to give a precise description of the set A ε D(S,x) (0, y). It will be particularly natural to express this description in polar coordinates. For all r > 0, we denote by I r (x) the set of angles θ ∈ [0, 2π) such that the point [r; θ] belongs to D(S, x). We note that I r (x) is a finite union of intervals, and that I r 2 (x) ⊂ I r 1 (x) when r 1 r 2 by convexity of D(S, x). Moreover, the area measure on D(S, x) can be written as sinh(r)1 θ∈I r (x) dr dθ. Then we have the following good approximation of A ε D(S,x) (0, y) (see also Figure 2). Lemma 6. Let δ > 0. Then there are r 0 (δ) > 1 and ε 0 (δ) > 0 with the following property. For all 0 < ε < ε 0 (δ) and any point y = [r; θ] ∈ H such that d(0, y) = r > r 0 (δ), we have the inclusion

A ε H (0, y) ⊂ [r ; θ ] ∈ H|r r r + 2(1 + δ) sin θ -θ 2 ε . (12) 
In particular, under those assumptions, if x ∈ S and y ∈ D(S, x), we have

A ε D(S,x) (0, y) 2(1 + δ)ε sinh(r + 3ε) I r (x) sin θ -θ 2 dθ .
Proof. This is just a calculation using hyperbolic trigonometry. We write z = [r ; θ ] ∈ A ε H (0, y). We want to prove that r r

+ 2(1 + δ) sin θ -θ 2 ε. Because z ∈ A ε H (0, y)
, there is a point a of the form [ε; ϕ] with ϕ ∈ [0, 2π) which is closer to z than to y. Using the hyperbolic cosine law, we can write down the distances d(a, y) and d(a, z) in terms of r, r , ε, θ, θ and ϕ. We find cosh(r ) cosh(ε)cos(ϕθ ) sinh(r ) sinh(ε) cosh(r) cosh(ε)cos(ϕθ) sinh(r) sinh(ε),

or equivalently cos(ϕ -θ ) sinh(r ) -cos(ϕ -θ) sinh(r) coth(ε) cosh(r ) -cosh(r) cosh(r ) -cosh(r) ε . (13) 
Moreover, by the Cauchy-Schwarz inequality, we have cos(ϕθ ) sinh(r )cos(ϕθ) sinh(r)

= cos(θ ) sinh(r )cos(θ) sinh(r) cos(ϕ) + sin(θ ) sinh(r )sin(θ) sinh(r) sin(ϕ)

(cos(θ ) sinh(r ) -cos(θ) sinh(r)) 2 + (sin(θ ) sinh(r ) -sin(θ) sinh(r)) 2 = sinh 2 (r ) + sinh 2 (r) -2 cos(θ -θ) sinh(r) sinh(r ) = (sinh(r ) -sinh(r)) 2 + 2(1 -cos(θ -θ)) sinh(r) sinh(r ).
Hence (13) squared becomes

ε 2 sinh(r ) -sinh(r) 2 + 4ε 2 sin 2 θ -θ 2 sinh(r) sinh(r ) cosh(r ) -cosh(r) 2 .
If ε is small enough and r large enough (depending only on δ), the first term in the left-hand side is small compared to the right-hand side, so we have

4ε 2 sin 2 θ -θ 2 sinh(r) sinh(r ) (1 + δ/2) -2 cosh(r ) -cosh(r) 2 ,
which becomes

2ε sin θ -θ 2 1 + δ 2 -1 cosh(r ) -cosh(r) sinh(r) sinh(r ) 1 + 2 -1 (r -r) sinh(r) sinh(r) sinh(r ) , which implies r -r 1 + δ 2 2ε sin θ -θ 2 sinh(r ) sinh(r) .
Finally, recalling r r + 2ε, if r is large enough (depending only on δ), this last expression is smaller than (1 + δ)2ε sin θ -θ 2 , which concludes the proof of ( 12). Let us move on to the second point. We know that A ε D(S,x) (0, y) ⊂ D(S, x) ∩ A ε H (0, y). Using the expression of the area measure in polar coordinates, Equation (12) translates into

A ε D(S,x) (0, y) 2π 0 r+2(1+δ)| sin θ -θ 2 |ε r 1 θ ∈I r (x) sinh(r ) dr dθ I r (x) r+2(1+δ)| sin θ -θ 2 |ε r sinh(r ) dr dθ 2(1 + δ)ε sinh(r + 3ε) I r (x) sin θ -θ 2 dθ ,
where the second inequality uses the inclusion I r (x) ⊂ I r (x). This concludes the proof of Lemma 6.

We can now finish the proof of Proposition 2. We re-express (9) as an integral over D(S, x) (since the projection p preserves the measure), and write it down in polar coordinates:

P (x ∈ ∂ ε C) λ 2 +∞ 0 exp (-λ|B r (x)|) I r (x) |A ε S (x, p([r; θ]))| sinh(r) dθ dr = o(ε) + λ 2 +∞ 0 exp (-λ|B r (x)|) I r (x) A ε D(S,x) (0, [r; θ]) sinh(r) dθ dr,
where the o(ε) is uniform in x, and the last part comes from Lemma 5 and the fact that D(S, x) is bounded. We now assume that ε is smaller than the ε 0 (δ) of Lemma 6. For r larger than the r 0 (δ) of Lemma 6, we bound A ε D(S,x) (0, [r; θ]) using Lemma 6. For r r 0 (δ), we use the crude bound A ε D(S,x) (0, [r; θ]) 4πε sinh(r + 2ε) coming from [START_REF] Buser | Cubic graphs and the first eigenvalue of a Riemann surface[END_REF]. We obtain

P (x ∈ ∂ ε C) o(ε) + λ 2 r 0 (δ) 0 2π 0 4πε sinh(r + 2ε) sinh(r) dθ dr + 2λ 2 (1 + δ)ε +∞ r 0 exp (-λ|B r (x)|) I r (x) 2 sin θ -θ 2 sinh(r) sinh(r + 3ε) dθ dθ dr.
The first integral is bounded by C(δ)λ 2 ε, so if λ is chosen smaller than some λ 0 (δ) it is smaller than δε. Moreover, up to increasing the value r 0 (δ), we may assume sinh(r + 3ε) (1 + δ) sinh(r). By these remarks and Lemma 3 to handle the integral over I r (x) 2 , we find

P (x ∈ ∂ ε C) o(ε) + δε + 4 π λ 2 (1 + δ) 2 ε +∞ r 0 exp (-λ|B r (x)|) |I r (x)| 2 sinh 2 (r) dr. ( 14 
)
Our goal is now to write this in a form which can be directly integrated. For this, we notice that where the o(ε) is still uniform in x. Plugging this into (7), we obtain

E [|∂C|] 2 π (1 + δ) 4 |S|
for λ < λ 0 (δ), which finally proves Proposition 2.

Remark. Let us briefly compare our approach for Proposition 2 to the computations of Isokawa [START_REF] Isokawa | Some mean characteristics of Poisson-Voronoi and Poisson-Delaunay tessellations in hyperbolic planes[END_REF] in the hyperbolic plane. The main difference is that Isokawa takes a point of the Poisson process as the center of polar coordinates, whereas we center them around a typical point of S. In particular, Isokawa does not need to consider an ε-thickening of the boundary. However, if we tried to adapt the arguments of [START_REF] Isokawa | Some mean characteristics of Poisson-Voronoi and Poisson-Delaunay tessellations in hyperbolic planes[END_REF] to our Dirichlet domains, we would need to carefully study the interplay between the sets I r (x) and I s (x) for some r = s, which seems complex. On the other hand, our argument only uses the interplay between I r (x) and itself (this is the role of Lemma 3).

Proof of Theorem 1

Let 0 < δ < 1 2 < 2 π and let S be a surface with genus g and Cheeger constant larger than δ (otherwise our result is trivial). Let λ > 0 be small enough so that we have by Proposition 2

E [|∂Vor λ (S)|] 2 π (1 + δ)|S |.
Recall that A λ is obtained by coloring each cell of Vor λ (S) with probability 1/2 independently. In particular, each side of ∂Vor λ (S) is in ∂A λ with probability 1/2 (conditionally on Vor λ (S)), so

E [|∂A λ |] 1 π (1 + δ)|S |.
Therefore, by the Markov inequality 

P |∂A λ | 1 π (1 + δ)

  y), then we must have r ∈ [a, a + ε]. Second, by the hyperbolic law of cosines, we havecosh(d(y, z)) = cosh(d) cosh(r)cos(θ) sinh(d) sinh(r).Since a d(y, z) a + ε, we deduce cosh(d) cosh(r)cosh(a + ε) sinh(d) sinh(r) cos(θ) cosh(d) cosh(r)cosh(a) sinh(d) sinh(r) .That is, cos(θ) lies in an interval I(a, d, r, ε) of length cosh(a+ε)-cosh(a) sinh(d) sinh(r)

Figure 2 -

 2 Figure 2 -On the left, in the set A ε H (x, y), see Lemma 6. On the right the set A ε D(S,x) (x , y ) which by Lemma 5 is a very good approximation of A ε S (x, y).

4 π λ 2 ( 1 + 4 π λ 2 ( 1 + δ) 3 ε - 1 λ 2 +

 42142112 |I r (x)| sinh(r) = |∂B r (x)| = d dr |B r (x)| .Therefore, for all r r 0 (δ), we have|B r (x)| = r 0 |I s (x)| sinh(s) ds |I r (x)|(cosh(r) -1).Up to increasing the value r 0 (δ), we may assume cosh(r) -1 (1 + δ) -1 sinh(r), so that |I r (x)| sinh(r)(1 + δ)|B r (x)|. Therefore, replacing one of the two factors |I r (x)| sinh(r) in (14), we obtainP (x ∈ ∂ ε C) o(ε) + δε + δ) 3 ε +∞ 0 d dr |B r (x)| |B r (x)| exp (-λ |B r (x)|) dr = o(ε) + δε + |B r (x)| λ exp (-λ |B r (x)|) +∞ 0 = o(ε) + δε + 4 π (1 + δ) 3 ε,

  Proposition 2 (Perimeter estimate). Recall that ∂Vor λ (S) is the union of the sides of the Poisson-Voronoi cells C 1 , ..., C N with intensity λ • µ S . Then we have An optimization lemma. Before proving this estimate, we state two intermediate results that will be useful for us. The first is a nice optimization lemma, for which a very short and direct proof is provided in the last page of[START_REF] Tóth | On the sum of distances determined by a pointset[END_REF].

	lim sup λ→0	sup g→∞	sup S∈M g	1 |S|	E [|∂Vor λ (S)|]	2 π	.
	Lemma 3. Let ν be a probability measure on [0, 2π]. Then we have
	0	2π	0	2π	sin	θ 1 -θ 2 2	ν(dθ 1 )ν(dθ 2 )	2 π	,
	with equality if ν is the uniform measure.			

  Now suppose that g is large enough so that Lemma 1 holds with δ replaced by δ 2 . In this case, since δ 1+δ + (1δ 2 ) > 1 there is a positive probability that both (1δ)|S| 

			2 |S|	1 -	(1 + δ)|S |/π (1 + δ) 2 |S|/π	=	δ 1 + δ	.
							2	|A λ | (1 + δ) |S| 2 and
	|∂A λ |	1 π (1 + δ) 2 |S|. This implies	h(S )	(1 + δ) 2 1 -δ	2 π	,

which proves Theorem 1. Et voilà.

By Palm calculus, such a cell can be obtained by adding the point 0 to the Poisson process and considering the associated region.