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Superfluid stiffness of a KTaO3-based
two-dimensional electron gas

S. Mallik1,5, G. C. Ménard 2,5, G. Saïz2,5, H. Witt1,2, J. Lesueur 2, A. Gloter3,
L. Benfatto 4, M. Bibes 1 & N. Bergeal 2

After almost twenty years of intense work on the celebrated LaAlO3/SrTiO3-
system, the recent discovery of a superconducting two-dimensional electron
gas (2-DEG) in (111)-oriented KTaO3-based heterostructures injects new
momentum to the field of oxides interface. However, while both interfaces
share common properties, experiments also suggest important differences
between the two systems. Here, we report gate tunable superconductivity in
2-DEGs generated at the surface of a (111)-oriented KTaO3 crystal by the simple
sputtering of a thin Al layer. We extract the superfluid stiffness of the 2-DEGs
and show that its temperature dependence is consistent with a node-less
superconducting order parameter having a gap value larger than expected
within a simple BCS weak-coupling limit model. The superconducting transi-
tion follows the Berezinskii-Kosterlitz-Thouless scenario, which was not
reported on SrTiO3-based interfaces. Our finding offers innovative perspec-
tives for fundamental science but also for device applications in a variety of
fields such as spin-orbitronics and topological electronics.

Potassium tantalate KTaO3 is a band insulator with a 3.6 eV gap that
retains a cubic perovskite structure down to the lowest temperature1.
Like strontium titanate (SrTiO3), it is a quantum paraelectric material
on the verge of a ferroelectric instability that is characterizedby a large
permittivity at low temperature (ϵr≃ 5000)1,2. Both materials can be
turned into metal by electron doping, through oxygen vacancies, for
example. Because of their common properties, it was suggested that
superconductivity should also occur in doped KTaO3. However, while
superconductivity was discoveredmore than half a century ago in bulk
SrTiO3

3, all the attempts to induce bulk superconductivity in KTaO3-
have failed so far4. Using ionic gating, Ueno et al. could generate a
superconducting 2-DEG at the surface of (001)-KTaO3, albeit at a very
low temperature (Tc≃ 40mK)5. Later explorations of KTaO3 2-DEGs
did not evidence any superconductivity until the beginning of the year
2021, when two articles reported the discovery of superconducting
2-DEG formed at the interface between (111)-KTaO3 and insulating
overlayers of LaAlO3or EuO

6,7. An empiric increase of Tc with electron

density was proposed with a maximum value of 2.2K for doping of
≈ 1.04 × 1014e− × cm−2 6, which is almost one order of magnitude higher
than in the LaAlO3/SrTiO3 interface

8. An electric field effect control of
the Tc was also demonstrated in a Hall bar device7 and a dome-shaped
superconducting phase diagram similar to that of SrTiO3-based inter-
faces was derived9,10. Following this discovery, the (110)-oriented
KTaO3 interfacewas also found to be superconductingwithTc≃ 1 K11. It
was recently proposed that the soft transverse optical mode, involved
in the quantum paraelectricity, could be responsible for electron
pairing in KTaO3 interfaces. The coupling amplitude between this
phonon mode and electrons is expected to be maximum in the (111)
orientation and minimum in the (001) one, which would explain the
hierarchy in Tc observed in these superconducting 2-DEGs12.

In conventional superconductors, well described by the
Bardeen–Cooper–Schrieffer (BCS) theory, the superconducting
transition is controlled by the breaking of Cooper pairs as the tem-
perature exceeds the energy scale set by the superconducting gap.
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However, in two-dimensional superconductors, the superfluid stiff-
ness, i.e., the energy associated with the phase rigidity of the
superconducting condensate, can be comparable to the pairing
energy, allowing for a Tc suppression driven by the loss of phase
coherence. In this case, the transition is expected to belong to the
Berezinskii–Kosterlitz–Thouless (BKT) universality class, where the
transition is controlled by the unbinding of topological vortex-
antivortex pairs13–15. Critical magnetic field measurements in (111)-
KTaO3 2-DEGs, both in the perpendicular and in the parallel geo-
metry, set an upper bound, d ≈ 5 nm, on the extension of the 2-DEG in
the substrate6. This is lower than the superconducting coherence
length, ξ ≈ 10–15 nm6, which confirms that the superconducting
2-DEG is within the 2D limit. In addition, the presence of disorder,
which has been identified in this system6,7, is also expected to lower
the superfluid rigidity and reinforce the role of phase fluctuations.
Even though themeasurements of the current-voltage characteristics
in ref. 6 could be compatible with indirect signatures of a BKT tran-
sition, a direct measurement of the superfluid stiffness is required to
properly address this issue16.

Here, we show that a 2-DEG can be generated at the surface of a
(111)-oriented KTaO3 crystal simply by sputtering a very thin Al layer.
The deposition of Al leads to the reduction of Ta ions as evidenced by
X-ray photoelectron spectroscopy (XPS) and leads to the formation of
an interfacial gate-tunable superconducting 2-DEG. We use resonant
microwave transport to measure the complex conductivity of the
2-DEG and extract the temperature-dependent superfluid stiffness
Js(T). Our results are consistent with a node-less superconducting
order parameter in a rather strong-coupling regime (Δð0Þ=kBT

0
c = 2.3).

Taking into account the presence of disorder and finite-frequency
effect, we show that the superconducting transition follows the
Berezinskii–Kosterlitz–Thouless model, which was not observed on
SrTiO3-based interfaces.

Results
2-DEGswere generated by dc sputtering of a very thin Al layer on (111)-
oriented KTaO3`substrates at a temperature between 550 and 600 °C.
The preparation process is detailed in the Methods section. Prior to
deposition, wemeasured the in-situ X-ray photoelectron spectra (XPS)
of the Ta 4f valence state (Fig. 1a top) of the KTaO3 substrate. The
spectra show the sole presence of Ta5+ states (4f5/2 and 4f3/2), indicat-
ing the expected stoichiometry of the substrate. The Ta 4f core levels
were thenmeasured after growing 1.8–1.9 nmofAl and transferring the
sample in vacuum to the XPS setup. The bottom graph in Fig. 1a shows
the Ta 4f core level spectra with additional peaks corresponding to
reduced states of Ta i.e., Ta4+ andTa2+. Thedeeper and lighter shadesof
same-colored peaks correspond to 4f5/2 and 4f3/2 split peaks. The
reduction of Ta5+ to Ta4+ upon Al deposition indicates the formation of
oxygen vacancies at the surface of KTaO3, which in turn suggests the
formation of a 2-DEG. The Ta2+ signal may be due to the presence of a
small amount of Ta in the AlOx layer (akin to the situation in AlOx/
STO17) or reflects the presence of small clusters of oxygen vacancies
around some Ta ions, reducing their apparent valence state. We
monitored the Al oxidation state by measuring the Al 2p core levels
after exposure of the sample to the atmosphere, which evidenced full
oxidation of the Al layer into AlOx. Thus, as in the AlOx/SrTiO3 system,
the 2-DEG is formed through a redox process by which oxygens are
transferred from the KTaO3 substrate to the Al overlayer17–19.

The structure of the AlOx/KTaO3 (111) interface has been imaged
by scanning transmission electron microscopy (STEM). Figure 1b
depicts the high-angle annular dark field (HAADF) - STEM image in
cross-section. The electron energy loss spectroscopy (EELS) indicates
that a small amount of K and Ta diffuse into the AlOx layer. In contrast,
the Al signal decays very rapidly in KTaO3, indicating no Al diffusion
into KTaO3. Our fabrication method based on the sputtering of a thin
Al film has already been successfully implemented to generate 2-DEGs

on (001)-oriented KTaO3 substrates showing a fivefold enhancement
of the Rashba spin–orbit coupling as compared to SrTiO3

20. In the
present work, four samples, labeled A, B, C, and D, have been investi-
gated by transport measurement at low temperature in a dilution
refrigerator (see Methods section for fabrication parameters).

Figure 2a shows the resistance vs temperature curve of sample A
on awide temperature range revealing a superconducting transition at
Tc≃0.9K. In Fig. 2b, we plot the Tc as a function of the 2D carrier
density,n2D for the different samples studied and compare their values
with those extracted from ref. 6. Our results confirm the trend
observed in the literature (Tc increases with the carrier density) and
demonstrate that our growth method, while being much easier to
implement than the molecular beam epitaxy of a rare-earth element
such as Eu or the pulsed laser deposition of a complex oxide, is able to
produce good quality samples with similar Tc. The resistance vs tem-
perature curves of sample B measured for different values of a mag-
netic field applied perpendicularly to the sample plane are shown in
Fig. 2c. The temperature dependence of the critical magnetic field is
consistent with a Landau-Ginsburg model near Tc, μ0HcðTÞ= Φ0

2πξ2k ðTÞ
,

taking into account an in-plane superconducting coherence length
ξk = ξkð0Þð1� T

Tc
Þ�

1
2. We found ξ∥(T =0) ≈ 27 nm, which is comparable

with the value reported in ref. 6.
Although KTaO3 is a quantum paraelectricmaterial like SrTiO3, its

permittivity is reduced by a factor of five as compared to SrTiO3,
making the electric field effect less efficient in a back-gating
configuration1,2. To overcome this difficulty, we prepared an AlOx/
KTaO3 sample using a thinner substrate (150μm). After cooling the
sample, the back-gate voltage was first swept to its maximum value
VG = 200V while keeping the 2-DEG at the electrical ground. This
forming procedure is commonly applied on SrTiO3-based interfaces to
ensure the reversibility of the gate sweeps in further gating
sequences21. Figure 3 shows the sheet resistance of sample C as a

0.0

0.5

1.0

6 3 0 -3 -6
0.0

0.5

1.0

In
te

ns
ity

 (N
or

m
al

iz
ed

)
In

te
ns

ity
 (N

or
m

al
iz

ed
)

Relative B. E. (eV)

2nm

Al

Ta

K

HAADF

(a)

(b)

KTO (111)
substrate

+1.9 nm Al

Ta5+

Ta4+

Ta2+

data
fitted-
enveloppe

Fig. 1 | XPS and STEM characterization of the AlOx/KTaO3 samples. a X-ray
photoelectron spectra near the 4f core level binding energy of Ta for a KTaO3-
substrate prior to deposition (top) and after deposition of 1.8 nm of Al (bottom).
The fitted peaks for Ta5+, Ta4+, and Ta2+ are shown in cyan, green and violet colors,
respectively. The deeper and lighter shades of the same colors represent the 4f5/2
and 4f2/2 valence states of the respective peaks. The data and sum fit envelope are
shown in red circles and black lines. b (top) HAADF scanning transmission electron
microscopy image at the cross-section of KTaO3 (111) andAlOx interface. TheKTaO3

is observed along the [112] direction. (down) EELS maps (Al-L2,3, Ta-O2,3, and K-L2,3
edges) showing thepresenceofAlon topof the interfacewithout any interdiffusion
but with some limited diffusion of Ta and K inside the AlOx layer.
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function of temperature for different values of the gate voltage
between −40 and 200V. Electrostatic gating induces both a modula-
tion of the normal-state resistance and a variation of the super-
conducting critical temperature. For negative gate voltages
corresponding to a depleted quantum well, R vs T curves exhibit a
quasi-reentrant behavior: the resistance first decreases and then
upturns upon further cooling22,23. This is characteristic of disordered
superconducting thin films in which superconductivity only exists
locally, forming a network of isolated islands surrounded by an

insulating medium that precludes percolation. While the decrease of
resistance marks the emergence of superconductivity inside the
islands, the upturn of resistance at low-temperature results from the
opening of a gap in the excitation spectrum,whichprevents theflowof
quasiparticles across islands. Hence, the resistance does not reach
zero, indicating that the superconducting order does not extend at a
long range. As carriers are added upon increasing the gate voltage, the
resistance curves flatten at low temperature, and the 2-DEG eventually
reaches a true zero resistive state (VG > −25 V). Long-range
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superconducting order is established through Josephson coupling
between the islands. Further doping makes the network of islands
denser and increases the coupling between islands resulting in a
“homogeneous-like” superconducting 2-DEG at high doping. The
resulting superconducting phase diagram is shown in Fig. 3b, where
the resistance is plotted in color scale as a function of temperature and
electron density extracted by combining the Hall effect and gate
capacitance measurements10,24. In this experiment, the carrier density
was tuned from n2D≃0.95 × 1013e− × cm−2 to n2D≃ 2.2 × 1013e− × cm−2,
which is not sufficient to explain the modulation of the normal resis-
tance by more than one order of magnitude. This indicates that the
gate voltage not only controls the carrier density but also modifies
deeply the electronic properties of the 2-DEG, in particular the elec-
tronic mobility, in agreement with the previous reports7.

We further investigated the superconducting KTaO3 2-DEG by
measuring its superfluid stiffness Js, which is the energy scale asso-
ciated with the phase rigidity of the superconducting condensate. Js is
related to the imaginary part of the complex conductivity σ(ω) =
σ1(ω) − iσ2(ω) of the superconductor that accounts for the transport of
Cooper pairs at finite-frequency ω. This is a direct probe of the
superconducting order parameter that provides important informa-
tion on the nature of the superconducting state. In the low-frequency
limit, ℏω≪Δ, a superconductor displays an inductive response to anac
electrical current and σ2(ω) = 1

Lkω
, where Lk is the kinetic inductance of

the superconductor that diverges at Tc25. The superfluid stiffness is
then directly related to Lk

JsðTÞ=
_2

4e2LkðTÞ
ð1Þ

where ℏ is the reduced Planck constant and e is the electron charge.
We used resonantmicrowave transport to extract Lk below Tc and

determine the superfluid stiffness of sample D as a function of tem-
perature. The method, which was successfully applied to super-
conducting SrTiO3-based interfaces, is illustrated in Fig. 4a and
described in detail in refs. 26,27. In short, the KTaO3 sample is
embedded into a parallel RLC resonant electrical circuit made with

surface mount microwave devices (SMD). The capacitance of the cir-
cuit is dominated by theKTaO3 substrate contribution (CKTO) due to its
large intrinsic permittivity. The total inductance of the circuit,
LtotðTÞ= L1LkðTÞ

L1 + LkðTÞ, includes the contribution of an SMD inductor (L1) and
the contribution of the kinetic inductance Lk of the superconducting
2-DEGbelow Tc. Finally, an SMD resistorR1 imposes that the dissipative
part of the circuit impedance remains close to 50Ω in the entire
temperature range, ensuring a good impedance matching with the
microwave circuitry. The circuit resonates at the frequency
ω0 =

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
LtotCKTO

p , which is accessedbymeasuring the reflection coefficient
of the sample circuit ΓðωÞ= Ain

Aout =
ZðωÞ�Z0
Z ðωÞ+Z0

. The resonance manifests
itself as a peak in the real part of the circuit impedance, Z(ω), accom-
panied by a π phase shift26. The height and the width of the peak are
controlled by the dissipative part of the circuit impedance. In the
superconducting state, the 2-DEG conductance acquires a kinetic
inductance Lk that generates a shift of ω0 towards high frequencies
with respect to the normal state (Fig. 4b). The temperature-dependent
superfluid stiffness Jexp, extracted from the resonance shift and Eq. (1)
is presented in Fig. 4c (blue circles).

Discussion
The flattening of the Jexp curve below 1 K supports a fully gapped
behavior, i.e., an absenceof nodes in the order parameter. Thepurpled
dashed line (JBCS) shows an attempt to fit the experimental curve with a
standard BCS expression JBCSs ðTÞ=Jsð0Þ= ðΔðTÞ=Δð0ÞÞ tanhðΔðTÞ=kBTÞ25,
where Δ(T) is the superconducting gap obtained numerically by a self-
consistent solution of the BCS equation, so that it vanishes at the
mean-field temperatureT0

c (i.e., the temperature atwhichCooper pairs
form). Since Js(0) is fixed by the experimental value at the lowest
temperature, the only free parameter is then the ratio ΔðT =0Þ=kBT

0
c ,

that determines the curvature of the Js(T) curve. As one can see, even
using a relatively strong-coupling valueΔð0Þ=kBT

0
c = 2.3, from the fit of

the low-temperature curve, one obtains T0
c ≃ 2.2 K, that is larger than

the experimental Tc. To fit the data in the whole temperature range
with the BCS expression only, one would then need an unreasonably
large value (Δð0Þ=kBT

0
c ≃ 6), a result that we checked to hold irre-

spectively of the exact functional BCS form used to fit the stiffness.
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Here we follow a different approach and interpret the rapid drop of
Js(T) below the BCS fit as a BKT signature, as wewill discuss below. This
interpretation is supportedby a second striking observation that holds
regardless of any specific consideration about its temperature
dependence: the T =0 value of the stiffness Js(T =0)≃ 7.3 K is of the
same order as Tc≃ 2.2 K. It is worth noting that in conventional
superconductors, where the superfluid density ns(T =0) is close to the
carrier density n2D, the stiffness at zero temperature is of the order of
the Fermi energy, and then several orders ofmagnitude larger thanT0

c .
A strong reduction of Js(0) is instead observed in 2D-superconductors,
where disorder strongly reduces ns with respect to n2D already at
T = 028–38. In the dirty limit, in which the elastic scattering rate 1/τ is
much larger than the superconducting gap, only a fraction of carriers,
ns/n2D≃ 2Δ(0)/(ℏ/τ), forms the superconducting condensate. In a
single-band picture, an estimate of the superfluid stiffness is obtained
from Δ(0) and the normal resistance RN, Js ’ π_Δð0Þ

4e2RN
. Using the pre-

viously estimated value of Δ(0)≃ 5 K and RN≃ 1300Ω, we obtain Js≃
11.8 K, close to the measured value (Jexps ðT =0Þ≃ 7.3 K), which is con-
sistent with the dirty limit.

The superfluid density of the 2-DEG can be directly deduced from
the stiffness through the formula ns =

4m
_2

Js, where m is the effective
mass of superconducting electrons. In the case of (111)-KTaO3 2-DEGs,
the conduction band is derived from the bulk J = 3/2 stateswith a Fermi
Surface formedby ahexagonal contour inside a sixfold symmetric star-
shaped contour39,40. Considering an average effective massm≃0.5m0,
the corresponding superfluid density ns extracted from Jexps is ns≃ 1.8
× 1012 e− cm−2, which is about 2.5% of the total carrier density (n2D =
7.5 × 1013 e− cm−2 for sample D). This very low ratio is comparable with
previous findings in LaAlO3/SrTiO3 interfaces26,41,42. Although such
reduced superfluid density is consistent with the dirty limit, KTaO3-
(111) 2-DEG is a multiband system40, in which superconductivity may
involve only specific bands, as also suggested in SrTiO3

26.
The reduced dimensionality and the suppression of the energy

scale associated with the stiffness represent the prerequisites to
observe BKT13–15 physics, since itmakes theBKT temperature scaleTBKT
associated with the unbinding of vortex-antivortex pairs far enough
from T0

c
43. The most famous hallmark of the BKT transitions is the

discontinuous jump to zero of Js at TBKT < Tc with a universal ratio
Js(TBKT)/TBKT = 2/π44. Such a prediction, theoretically based on the
study of the 2D XY model13–15, has been successfully confirmed in
superfluid He films45. In practice, the experimental observation of the
BKT transition in real superconductors is more subtle. Indeed, in thin
films, the suppression of ns (and then Js) with disorder comes along
with an increasing inhomogeneity of the SC background, that is pre-
dicted to smear out the discontinuous superfluid-density jump35,46–48

into a rapid downturn, as observed experimentally via the direct
measurement of the inverse penetration depth31–38 or indirectly via the
measurement of the exponent of the nonlinear IV characteristics near
Tc16,28–30. In the case of SrTiO3-based interfaces, the direct measure-
ment of Js is rather challenging, and the few experimental reports
available so far do not evidence a BKT jump26,41,42.

Within the BKT approach, the effect of vortex-like topological
excitations provides additional suppression of Js with respect to the
BCS dependence discussed above, driven only by quasiparticle exci-
tations. To provide a fit of Jexps , we then solved numerically the
renormalization-group (RG) equations of the BKT theory for the
superfluid stiffness and vortex fugacity. As input parameters of the RG
equations, we used the BCS temperature dependence of the stiffness.
Asmentioned above, the low-temperature part is fully captured by the
BCS approximation, and for the estimated Δð0Þ=kBT

0
c ratio, the dirty-

limit and the clean-limit expressions of JBCSs provide the same result.
We also included the finite-frequency effects in our calculation43,49,50.
Indeed, even though the resonance frequency (about 0.5 GHz) is still
small as compared to the optical gap (2Δ ~ 10 K ~ 200GHz) it can
nonetheless lead to non-negligible effects, in particular a rounding of

the jump and suppression of the stiffness at a temperature slightly
larger than the one where the dc resistivity vanishes32,33,38, as indeed
observed in our case. The resistivity itself is consistently fitted with the
interpolating Halperin–Nelson formula50, which accounts for BKT-like
fluctuations between TBKT and T0

c , and for standard Gaussian fluctua-
tions above T0

c . Finally, to account for spatial inhomogeneities, we
introduce a gaussian distribution of local Tc and Js with variance σG
centered around T0

c and Jexps ð0Þ. As seen in Fig. 4c, the result of the
fitting procedure (dashed red line) is in very good agreement with
experimental data both for the superfluid stiffness and the resistance,
considering a very small inhomogeneity, σG =0.02. Details on the fit-
ting procedure are given in the Method Section.

Although KTaO3 and SrTiO3 have many common properties, the
superconducting phases of their interfacial 2-DEG exhibit noticeable
differences. Whereas a pure BCS weak-coupling limit with Δ(0)/
kBTc≃ 1.76 provides a very good description of superconductivity in
SrTiO3-based interfaces26,27, we found a stronger value of the coupling
for KTaO3 (Δ(0)/kBTc≃ 2.3). Such an important difference, which must
be traced back to the pairing mechanism, is a strong constraint on the
possible origin of superconductivity in these two materials. In addi-
tion, BKT physics was not observable in SrTiO3 for which a simple BCS
model without phase fluctuations was sufficient to fit the Js(T) curves
with a very good accuracy27. This may suggest more bosonic-like
superconductivity in KTaO3-based interfaces (in the highly doped
regime), as evidenced by the large separation between the pairing
scale, set byΔ, and the phase-coherence scale, set by the small value of
the superfluid stiffness. Recent measurements of the in-plane critical
field in KTaO3-based interfaces suggested that the order parameter
could be a mixture of s-wave and p-wave pairing components induced
by strong spin-orbit coupling51. While we can not rule out this possi-
bility, the saturation of the Js(T) curve below Tc/2 seen in Fig. 4b sug-
gests a dominance of the fully gapped s-wave component. In addition,
despite the complex band structure of the KTaO3-(111) interfaces, we
have not observed any signatures suggesting multi-gap super-
conductivity in our data. Further experiments, including tunneling
spectroscopy, are therefore necessary to understand the nature of
superconductivity in KTaO3-based interfaces.

Methods
Sample fabrication
Prior to deposition, KTaO3 (111) substrates fromMTI corporation were
annealed at 600 ∘C for 1 h in vacuum. Then, the thin Al layer was
deposited in a dc magnetron sputtering system (PLASSYS MP450S)
under a base pressure of the vacuum chamber lower than 5 × 10−8

mbar. During Al deposition, the Ar partial pressure and the dc power
were kept fixed at 5 × 10−4 mbar and 10W, respectively. The deposition
rate for Al was 0.66Å/s. Table 1 below summarizes the deposition
parameters for the different samples.

XPS analysis
X-ray photoelectron spectroscopy (XPS) was measured using a non-
monochromatized Mg Kα source (hν = 1253.6 eV) in an Omicron
NanoTechnology GmbH system with a base pressure of 5 × 10−10 mbar.
The operating current and voltage of the source was 20mA and 15 kV,
respectively. Spectral analysis to determine different valence states of
Ta were carried out using the CasaXPS software. Adventitious carbon
was used as a charge reference to obtain the Ta 4f5/2 peak position for
thefitting. The energydifferenceand the ratioof the areabetween4f5/2
and 4f3/2 peaks for all the Ta valence stateswere constrained according
to the previously reported values.

STEM characterization
STEM-HAADF and STEM-EELS measurements have been done at
100 keV using a Cs corrected Nikon STEM microscope and a Gatan
modified EELS spectrometer equipped with a MerlinEM detector.
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Theoretical analysis of Js(T)
In order to account for vortex excitations, we solved the BKT RG
equations15,43,44 for the vortex fugacity g =2πe�μ=ðkBTÞ, with μ the
vortex-core energy, and the rescaled stiffness K ≡πJs/kBT:

dK
d‘

= � K2g2, ð2Þ

dg
d‘

= ð2� KÞg, ð3Þ

where ‘= lnða=ξ0Þ is the RG-scaled lattice spacing with respect to the
coherence length ξ0, that controls the vortex sizes and appears as a
short-scale cut-off for the theory. The initial values at ℓ =0 are set by
the BCS fitting JBCS(T) of Jexps , and the renormalized stiffness is given by
the large-scale behavior, Js = (kBT/π)K(ℓ→∞). The ratio μ/Js = 0.87,
similar to the one found in other conventional
superconductors34,35,37,38, is used as a free (temperature-independent)
parameter, which controls the strength of stiffness renormalization
due to bound vortices below TBKT43. To account for finite-frequency
effects, we further include a dynamical screening of vortices49,50 via an
effective frequency-dependence dielectric function ε(ω) which enters
in the complex conductivity of the film as σðωÞ= � 4JBCSe2

iω_2εðωÞ. At zero
frequency ε(ω) is real and ε1(0) =K(0)/K(ℓ→∞) = JBCS/Js so one recovers
the usual static result. At finite-frequency ε(ω) develops an imaginary
part due to the vortex motion, that can be expressed in the first
approximation49 as ε2 ’ ðrω=ξÞ2, where ξ is the vortex correlation
length and rω is a finite length scale set in by the finite frequency of the
probe, i.e. rω =

ffiffiffiffiffiffiffiffi
14Dv
ω

q
, with Dv the vortex diffusion constant of the

vortices. Themain effectof ε2 is to induce a small tail aboveTBKT for the
finite-frequency stiffness, as given by Js = ℏ2ωσ2(ω)/(4e2), as we indeed
observe in the experiments. Here we follow the same procedure
outlined in ref. 38 to compute ε(ω), and in full analogy, with this
previous work, we find a very small vortex diffusion constant
Dv ~ 10

10 nm2/s. The correlation length ξ(T) also enters the temperature
dependence of the resistivity above TBKT, that follows the usual scaling
R/RN = 1/ξ2(T). To interpolate between the BKT and Gaussian regime of
fluctuations, we use the well-known Halperin–Nelson expression43,46,50

ξHNðTÞ= 2
A sinh

bffiffi
t

p
� �

where t = (T − TBKT)/TBKT, and we set A = 2.5 and
b = 0.27, consistent with the theoretical estimate of b≃0.2 that we
obtain from the value of μ35,38,43. Finally, to account for the possible
inhomogeneity of the sample, we consider the extension of the
previous method to the case where the overall complex conductivity
of the sample is computed in the self-consistent effective-medium
approximation52 as the solution of the following equation:

∑
i
Pi

σiðωÞ � σðωÞ
σiðωÞ+ σðωÞ

: ð4Þ

Here σi(ω) denotes the complex conductivity of a local super-
conducting puddle with stiffness Ji and local Ti

c, that are taken with a
Gaussian distribution Piwith variance σG centered around theBCSfit of
Jexps . For each realization Jiwe then compute the Js,i from the solution of
the BKT equations (2) -(3), we determine the corresponding complex
conductivity σi(ω) and we finally solve Eq. (4) to get the average

JBKTs = ð_2=4e2Þωσ2ðωÞ below Tc and the average σ1(ω =0) ≡ 1/RHN above
Tc, i.e., the dashed lines reported in Fig. 4c. Further details about the
implementation of the effective-medium approximation can be found
in refs. 16,38. The main effect of inhomogeneity is to contribute
slightly to the suppression of Js with respect to JBCS before TBKT. In our
case, we checked that inhomogeneity, if present, is very small, and a
σG = 0.02 is enough to account for the measured temperature
dependences.

Data availability
The authors declare that the data that support the findings of this
study are available within the article. All other relevant data are avail-
able from the corresponding authors upon request.
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