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Abstract:
Theories of mental fatigue disagree on whether performance decrement is caused by 
motivational or functional alterations. We tested the assumption that keeping neural networks
active for an extensive period of time entrains consequences at the subjective and objective  
level – the defining characteristics of fatigue – when confounds such as motivation, boredom 
and level of skill are controlled. We reveal that passive visual stimulation affects the 
performance of a subsequent task that is carried out in the same portion of visual space. This 
outcome, consisting either in an enhancement or deterioration of performance, was 
determined by the participants’ level of cognitive load and arousal, which were manipulated 
through variations in the difficulty of concurrent auditory tasks. Thus, repeated stimulation of
neural networks leads to their altered functional performance, a mechanism which may play a
role in the development of global mental fatigue.
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Introduction
Prolonged mental activity leads to a sensation of discomfort with well-known adverse consequences
on overall quality of life (Åkerstedt et al., 2007; Raslear et al., 2011), productivity (Ricci et al., 
2007), impulsivity (Blain et al., 2016), emotional regulation (Grillon et al., 2015) and workplace 
accidents (Goode, 2003; Swaen et al., 2003), all regrouped under the umbrella term of Mental 
Fatigue (MF). MF manifests itself in two empirically measurable components: the subjective feeling
of tiredness and the objective decrease in performance (DeLuca, 2007). To this day, the neural 
origin of MF remains elusive, and this lack of understanding stems in part from MF’s dependence 
on the duration and difficulty of the task (Hockey, 2013), as well as on the motivation (Boksem et 
al., 2006), fatiguability and skills of the agent performing it (Borragán et al., 2017). 

Theories of mental fatigue generally concur on its role in disengaging individuals from cognitive 
tasks to seek rest. Yet, the underlying cause of this need to withdraw from effortful tasks continues 
to be debated by two schools of thought. Functional theories assume that fatigue arises as a 
consequence of alterations in the neural circuitry (e.g. depletion of finite resources or accumulation 
of metabolites), or as an outcome of mechanisms that prevent such alterations  (Blain et al., 2016; 
Dongen et al., 2011; Schellekens et al., 2000; Zénon et al., 2019). Despite their intuitive appeal, 
these accounts have suffered from a lack of evidence (Hockey, 2013; Kurzban et al., 2013). In 
response, motivational theories view fatigue as a cognitive strategy, responsible for the reallocation 
of effort when the cost-benefit ratio of ongoing behaviour is disadvantageous  (Boksem & Tops, 
2008; Hopstaken, Linden, et al., 2015; Kurzban et al., 2013). However, this motivational view of 
fatigue has also been challenged (Benoit et al., 2019; Gergelyfi et al., 2015).
From a neuroscientific perspective, the fact that fatigue may arise from any type of task complicates
the process of pinpointing it to specific brain areas (Harrington, 2012), due to the risk of conflating 
fatigue-specific effects with unrelated activity across brain regions. Rigorous exploration of fatigue 
should first contemplate its functioning at the lowest degrees of complexity, to rule out as many 
confounds as possible. A prediction of the functional paradigm is that repeated stimulation of 
specific neural networks should lead to their altered performance over time.

We coin as neural fatigue this putative specific functional deterioration, which we tested by drawing
inspiration from a line of research on sleep that found a decrease in visual perception performance
due to repetitions of a visual task, the texture discrimination task (TDT), where participants are
required to identify the orientation of briefly presented peripheral targets  (Mednick et al., 2002).
Remarkably, in this study, participants’ performance was restored when perceptual characteristics of
the targets  (orientation  and location)  were changed,  but  not  when they were offered money to
manipulate  motivation.  Additionally,  a  follow-up  neuroimaging  study  found  this  perceptual
deterioration to correlate with decreased BOLD signal in V1 (Mednick et al.,  2008).   Here, we
sought to determine if this perceptual deterioration in the TDT task could be passively induced by
prolonged stimulation of specific portions of the visual field.

Given gain theories of arousal (Aston-Jones & Cohen, 2005; Mather et al., 2016), we predicted that 
being engaged in concomitant auditory tasks of varying cognitive load during saturation would 
modulate its impact on behaviour. Our hypothesis was to expect a stronger effect in agents 
performing tasks with harder demands, given the stimulating effects of arousal on cortical response 
to stimulation (Jones, 2003; Mather et al., 2016; McGinley et al., 2015). 
Furthermore, cerebral activity was recorded by electroencephalography (EEG) to assess alterations 
in the steady-state response at stimulation frequency (~7.5 hertz), as we were expecting to disrupt 
low-level bottom-up visual processing. Lastly, the relationship between behavioural consequences 
of saturation and subjective feeling of fatigue was investigated.
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Methods
Forty-eight participants took part voluntarily in the experiment (24m and f, age = 22.1 ± 2.24). All
of them were naive to the experimental procedure, with no history of mental or visual conditions.
Participants had normal or corrected-to-normal vision and provided written informed consent to
participate.  They received 10€ per  hour  in  compensation for their  participation.  The study was
approved by the Ethical Review Board. Due to the lack of literature on the effect we sought to test,
the sample size was arbitrarily preplanned to have a balanced and sufficient number of participants
for the various experimental conditions and randomisations.
In total, 56 participants were recruited, given that 7 participants were excluded; 4 due to failure to
respond to an adequate number of trials in the behavioural task (less than half the trials in two or
more blocks of the first session), 2 spontaneously dropped out during the experiment and 1 for
being an outlier (performance > 4 std). 

Experimental design
All aspects of the experiment, except the questionnaires, were implemented through Matlab 2019a 
(The MathWorks, Inc., Natick, Massachusetts, United States), using Psychtoolbox (Brainard, 1997; 
Pelli, 1997) and displayed on a computer screen with 1280 by 1024 resolution. Participants sat in 
front of the screen at a distance of 60 cm and accommodated their heads on a chin-rest. A keyboard 
was used to respond across the various tasks. Below the screen there was an Eyetracker 1000 (SR 
Research Ltd., Mississauga, Canada), which was employed to ensure central fixation of the 
participants’ gaze while tracking variations in the size of their pupils. A 32-channel Active Two 
Biosemi system (Biosemi, Amsterdam, Netherlands) EEG headset was mounted on their heads. 
Lastly, a pair of in-ear headphones was provided (Cellularline spa., Reggio Emilia, Italy).

The experimental design was divided into different phases, which will be detailed in the following 
sections. First of all, a brief training with reduced number of trials of the various tasks was carried 
out in order to have the participants familiarise with their procedures (see Figure 1 panel 1a). 
Behavioural and physiological measures were taken at different timepoints of the experiment, 
namely: BASELINE, MIDDLE and CONCLUSION (see Figure 1 panel 1b,d,f). In-between these 
measurements, subjects underwent continuous stimulation (‘saturation’) of a specific portion of 
their visual field (‘quadrant’) (see Figure 1 panel 1c,e). During saturation, volunteers were engaged 
in auditory tasks, the difficulty of which differed based on the experimental group to which they 
were randomly assigned, being either in an “EASY” (n=24, 12m and f, age: 22.37 ± 2.7) or “HARD” 
(n=24, 12 m and f, age: 21.92 ± 1.69) condition. The assignment of SATURATED quadrant and group 
was counter-balanced across participants. Overall, an experimental run lasted approximately 2h and 
30 minutes, depending on the time spent to install the EEG headset.

Auditory tasks
As outlined, during each saturation session participants were engaged in auditory tasks, the 
demands of which varied according to the experimental group to which they were assigned for the 
duration of the whole experiment, being either EASY or HARD. This experimental condition was 
introduced to evaluate potential effects of differing cognitive loads, and resulting arousal levels, on 
the time course of fatigue. Therefore 3 different tasks were adopted, based on the fact that their 
complexity could be manipulated and that they provided variety in demands (working memory, 
executive functions, attention). These tasks were randomly cycled across a saturation session, until 
its pre-scripted duration of 41 minutes had passed. Specifically, the following tasks were used: the 
n-back task, a pitch-sequence reproduction task, and a switch task which we named the side task 
(Table 1). All tasks of the experiment employed the same response keys (F and J), except for the 
pitch-sequence task where 2 additional keys were added (D and K).
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N-back: a trial would consist of a list of 12 letters where
participants had to report the occurrence of the target letter.
In the EASY group, the target letter was ‘X’ (0-back), while
in the HARD group the target letter was any letter repeated 2
steps before (2-back). A block of N-back was composed of
35 trials for both conditions, each trial lasted 15 seconds for
both groups.

Pitch-sequence: In this task, participants were required to
replicate a sequence of beeps that was presented to them.
Four different beeps (from low-pitch (336hz) to high-pitch
(475hz) and in between (377hz, 424hz) were put together in
randomly generated sequences. To each beep corresponded
a key on the keyboard. For the EASY group these sequences
comprised 2 beeps, while for the HARD group they
comprised 5 to 8 beeps. A block of pitch-sequence task
consisted in 80 trials for both conditions, with longer
intervals between beeps for the EASY group and shorter
intervals for the HARD group. On average, the duration of
stimuli presentation for the EASY group lasted 2.7 seconds,
while the mean duration for the HARD group was of 8.9
seconds.

Side: In this task sounds were presented randomly either to
the left or to the right earphone of the participant. These sounds came from different categories, 
namely: animal sounds or vehicle sounds. For the EASY group, participants only had to indicate if 
the current sound was played on the left or the right. The HARD group had instead a cue voice 
indicating, at random points during the block, which category they had to answer coherently to (i.e. 
if a sound of that category was presented to the left, they had to press the left key and vice-versa), 
this implicitly signalled they had to answer incoherently to the unmentioned category (i.e. if the 
sound was on the left, they had to press right and vice-versa). Furthermore, for this group a third 
category of sounds was added, the computer/electronics category, to which they were instructed not 
to respond. A block would be made up of 135 sounds with shorter silences in-between for the HARD 
group, and 80 sounds with longer distances in-between for the EASY group, subdivided into trials of 
5 sounds for both groups. A trial would last on average 30 seconds in the EASY condition, and 18 for
the HARD group.

Behavioural index of fatigue
As a behavioural measure of fatigue, we adopted the participants’ performance in the Texture 
Discrimination Task (TDT), based on the task developed by Karni and Sagi (Karni & Sagi, 1991). 
The task’s goal is to discriminate the orientation of a peripheral target, which consists of three 
diagonal lines aligned either vertically or horizontally, against a background of horizontally oriented
bars (see Figure 1 panel 2b). Participants were instructed to maintain their gaze on a central fixation
cross and report the perceived orientation of a peripheral target at the end of each trial. 
These targets would relocate from trial to trial, within a defined quadrant of the screen. Quadrants 
would vary depending on the block, either on the upper right or upper left portion of the screen.
Each experimental trial comprised a pre-stimulus window of 700 ms (see Figure 1 panel 2a), 
followed by the target screen for 32 ms (see Figure 1 panel 2b), a blank screen, known as ISI (inter 
stimulus interval), with variable length between 6 and 600 ms, determined by a Bayesian staircase 
procedure (see below) (see Figure 1 panel 2c), followed by a mask of 100 ms (see Figure 1 panel 
2d). The mask is designed to disrupt the subjects’ processing of the peripheral target lines, therefore 
shorter ISIs translated into harder trials.

TASK EASY GROUP HARD GROUP

N-back Press key when 
hearing the letter X

Press key when 
current letter 

corresponds to a 
letter presented 2 
steps before in the 

sequence

Pitch-sequence
Reproduce a 

sequence of two 
beeps

Reproduce a 
sequence of 5 to 8 

faster beeps

Side

Indicate if a sound 
was played through 
the left or the right 

headphone

Same as easy, but 
the response keys 
could be inverted 

throughout the block 
depending on sound 

category. Inhibit 
response to an 

additional category

Table 1: Summary of the demands in the auditory
tasks (rows) by difficulty condition (columns)
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Finally, there was a 1000 ms time window where the participant indicated, by pressing on the 
keyboard, if the target was perceived as horizontal or vertical (see Figure 1 panel 2e).  
A single TDT trial lasted on average 2.26 seconds (±0.28 sec) and 80 trials composed a block.
A complete TDT session consisted of 4 blocks, 2 per quadrant, and lasted 12.4 minutes on average 
(± 37 sec). The order of blocks was random for every session and participant. A block would begin 
when the participant pressed spacebar, after which he or she was informed on the quadrant within 
which the target would appear, by means of a message at the centre of the screen.

Figure 1: : Panel 1: Flowchart of the experimental design. Panel 2: Visual representation of the Texture Discrimination
Task (TDT). Please note that across the whole trial a fixation cross stayed in the centre in order to help participants 
maintain their gaze fixated. Panel 3: Visual representation of saturation and EEG sessions. While fixating the centre a 
participant would be presented with stimuli identical to the targets of the TDT (here they appear larger due to 
representation), appearing in all possible target locations within a quadrant at 7.5 Hz. During EEG sessions the 
quadrants alternated (see EEG methods for details), while during saturation sessions the stimuli flashed in a single 
quadrant (the saturated quadrant), and participants were engaged in concurrent auditory tasks, the difficulty of which 
depended upon their experimental group

Adaptive ISI selection procedure
In order to optimize inference of participants’ psychometric curve from limited data, we opted for 
an adaptive procedure to select ISI values (inspired from (Kontsevich & Tyler, 1999)). This 
procedure was applied following the five first trials (in which ISI was selected randomly). In each 
trial, a variational Bayesian logistic regression was performed on currently acquired data 
(Drugowitsch, 2019), resulting in parameter estimates and variance. Then, the expected update in 
these parameters was computed under the hypotheses of correct or incorrect response in the next 
trial, and for all possible ISI values:

θn+1(xn+1 , yn+1)=f ([ x1:n , xn+1 ] ,[ y1 :n , yn+1 ])
,

for θ the mean (θμ)  and variance (θΣ) estimates of the parameters, f the variational logistic 
regression, y1:n the acquired response data and yn+1 the expected response, x1:n the past ISI values 
and xn+1 the ISI value for the next trial.
The Kullback-Leibler (KL) divergence between current and future estimates, representing how 
much information one would expect to gain about the parameter estimates, was computed for each 
ISI and possible response according to the following formula:
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These KL values for correct and incorrect expected response were then averaged and weighted as a 
function of the probability of obtaining either correct or incorrect response given current parameter 
values:
 V (xn+1 )=p( yn+1=1 |θn )K L(θn ,θn+1(xn+1 ,1))+ p ( yn+1=0 |θn)K L(θn , θn+1( xn+1 ,0)) .

These KL values were then softmax-transformed to lead to a probability distribution over all ISI 
values, which was then sampled randomly to select the value of the ISI for the next trial.

Saturation
A saturation session lasted for 41 minutes and consisted of a prolonged visual stimulation, during 
which participants had to maintain their gaze on a central fixation point while stimuli were 
continuously flashed at 7.5Hz (see Figure 1 panel 3). Stimuli were composed of all the possible 
targets within a quadrant in the TDT. The SATURATED quadrant was kept constant for each 
participant across all saturation sessions. This ensured the entraining of specific neuronal 
populations across the whole experiment, providing a way to test whether the neural (EEG) and 
behavioural (TDT) response would differ between SATURATED and NON-SATURATED quadrants.

EEG
EEG recordings of whole brain activity in response to the presentation of the saturation stimulus 
(See Figure 1 panel 3) were performed. A complete EEG session comprised four repetitions of 1-
minute long stimulations (two per quadrant), with a 5-second pause in between. Visual stimulation 
during EEG blocks was identical to the one used during saturation blocks, except that the quadrants 
with stimuli alternated, their order being counterbalanced across participants.

FieldTrip toolbox (Oostenveld et al., 2011) was employed for the analysis of EEG data. 
Specifically, we focused our analysis on the stimulation frequency (7.5 Hz), reasoning that 
alterations in bottom-up visual processing should lead to modulation of the steady-state response.

The preprocessing consisted in a low-pass filter at 100 hertz, a high-pass filter at 0.4 hertz and a 
line-noise filter at 50 and 100 hertz applied to the raw data, which was then re-referenced on the 
average of all 32 channels. Before segmentation into trials, artefacts were rejected upon visual 
inspection of the data and then by independent component analysis.
Subsequently, one Fourier transform with a single Hanning taper was applied to extract the power 
spectrum around stimulation frequency, (7.3 to 7.7 hertz, in steps of 0.1). Signal from neighbouring 
frequencies (7.3 to 7.4 and 7.6 to 7.7 hz) was subtracted from the 7.5 Hz signal, to highlight the 
specific response to stimulation (Norcia et al., 2015), and this noise-subtracted 7.5hz was then used 
in subsequent analyses. 

Pupil
We also recorded the pupil size of participants as a physiological index of arousal, as it is a well-
established physiological marker of this construct (McGinley et al., 2015; Wang et al., 2018). 
Variations in pupil size were tracked during saturation sessions, while participants were engaged in 
the concurrent auditory tasks, the difficulty of which varied according to the experimental group 
they were assigned to. Specifically, after linear interpolation of blinks, filtering (high-pass with 
0.01Hz cutoff frequency) and baseline correction, the pupil responses between the onset of the first 
stimulus of trial n and the onset of the first stimulus in trial n+1 were averaged. These estimates of 
trial-wise average pupil responses were then averaged by auditory task and session, thus resulting in
one data point for each subject and task in both saturation sessions.  
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Questionnaires
In order to measure the participants’ subjective feeling of fatigue and sleepiness, two pen-and-paper
questionnaires were administered at the beginning and end of the experiment; the Multidimensional 
Fatigue Inventory (Gentile et al., 2003) and the Karolinska Sleepiness Scale (Shahid et al., 2011).

Statistical Analysis
First, behavioural effects were assessed by means of a Generalised Linear Mixed Model (GLMM) 
on response accuracy in the TDT task. Correct response in the task was modelled as a logistic 
dependent variable, with ISI as a covariate and participants as a random variable. Difficulty group 
(EASY, HARD), experimental session (BASELINE, MIDDLE, CONCLUSION) and saturated quadrant (YES, 
NO) were set as explanatory variables, testing their main effects and interactions. This was done on 
Jamovi (The jamovi project, 2019)  through its module GAMLj (Gallucci, 2019). Random effects 
were included step-by-step as long as the Bayesian Information Criterion and deviance values kept 
decreasing and no convergence issues were encountered. Specifically, intercept, ISI and Session 
were included in the random part of the model and were therefore allowed to vary across 
participants.

Second, effects on brain activity were evaluated by examining changes in the EEG signal.
To evaluate the interaction of session and condition,  the difference of EEG activity between 
SATURATED and NON-SATURATED condition was computed, for each of the three sessions and for each 
participant.

( Δ EEGsession)=( s at s es s io n−n on s at s e s si o n)

These values were then analysed in dependent sample two-tailed t-tests to assess changes across 
sessions. Correction for multiple comparisons across electrodes was enforced by means of a non-
parametric Monte Carlo cluster-based permutation approach with 1000 randomisations (Maris & 
Oostenveld, 2007).

Third, the participants’ performance in each of the auditory tasks was evaluated by means of a 
mixed model on the ratio of correct responses, by saturation session and difficulty condition, for 
each of the tasks. This approach was preferred to a repeated measures ANOVA due to missing data 
points at a subject-wise level (3 on average across tasks). 

Fourth, we assessed the efficacy of the auditory tasks in inducing different cognitive load and 
arousal levels based on their difficulty. Again, given the missing data points, a mixed model was 
performed with the pupil data of each task as dependent variable. As above, group and session were 
set as explanatory variables. 

Fifth, participants’ subjective evaluation of fatigue was assessed by comparing the values reported
before and after the experiment in the Karolinska Sleepiness Scale and Multidimensional Fatigue
Inventory.  Separate  repeated  measures  ANOVAs were carried  out  for  the  responses  in  the  two
questionnaires, with session as within-subjects factor and difficulty as between-subjects factor. 

Lastly,  estimates of behavioural performance change between  BASELINE and  CONCLUSION session
obtained  by  the  psychometric  function,  and  the  change  in  the  both  questionnaire  scores  were
correlated. This test was carried out in Matlab.

Open code and data policy
Source code is available at [https://github.com/ste-ioan/TDT2019], data is available upon request to
the corresponding author.
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Results
Behaviour
The GLMM revealed the quadruple effect of ISI, Saturation, Difficulty and Session to be strongly 
significant (see Figure 2; X²(2, 46080) = 21.96, p < 0.0001; together with Session: X²(2, 46080) = 28.18, p
< 0.0001; ISI: X²(1, 46080) = 95.56, p < 0.0001; ISI and Session interaction: X²(2, 46080) = 29.43, p < 
0.0001; Saturation, Difficulty and Session interaction: X²(2, 46080) = 12.68, p = 0.002; ISI, Difficulty 
and Session interaction: X²(2, 46080) = 51.89, p < 0.0001; and ISI, Saturation and Session interaction: 
X²(2,46080) = 6.88, p  = 0.032). 

In order to investigate this four-way interaction, we performed separate GLMMs for the two 
difficulty groups and for the first and second half of the experiment, applying Holm-Bonferroni 
correction for multiple comparisons. For the EASY group, in the SATURATED quadrant, performance 
largely improved between BASELINE and MIDDLE sessions (Z = 3.67, pcorrected = 0.001, exp(β) = 18.5) 
and fairly decreased between MIDDLE and CONCLUSION sessions (Z = -2.47, pcorrected = 0.039, exp(β) = 
6.9). However, there wasn’t a significant change between BASELINE and CONCLUSION (Z = 1.06, 
pcorrected = 0.287).

On the other hand, the HARD group displayed a major loss of performance in the SATURATED 
quadrant, between BASELINE and MIDDLE sessions (Z = -4.168, pcorrected = 0.0002, exp(β) = 24.4) and 
BASELINE and CONCLUSION (Z = -3.93, pcorrected = 0.0004, exp(β) = 15.3), but not between MIDDLE and 
CONCLUSION (Z = 1.13, pcorrected = 0.518), as between these sessions their performance decreased also 
in the NON-SATURATED quadrant.

To further confirm this finding, we explored its session-wise evolution, by performing the same 
statistical procedure, per group, session-by-session. The absence of a significant interaction between
ISI and Saturation in the BASELINE session was confirmed, for the EASY group (X²(1, 7680) = 0.99, p = 
0.32), and the HARD group (X²(1, 7680) = 3.3, p = 0.07). In the MIDDLE session, this interaction became 
significant for both EASY (X²(1, 7680) = 4.95, p = 0.026) and HARD groups (X²(1, 7680) = 4.63, p = 0.031)
and similarly so in the CONCLUSION session, for EASY (X²(1, 7680) = 4.87, p = 0.027), and HARD (X²(1, 

7680) = 6.19, p = 0.013).

Thus, repeated visual stimulation led to changes in performance within the SATURATED quadrant, 
depending on the difficulty condition. Specifically, participants assigned to the HARD condition saw 
their performance drop, particularly in the first half of the experiment. In contrast, participants in 
the EASY group initially exhibited an improvement in their TDT performance, which disappeared 
following the second saturation session.

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 16, 2021. ; https://doi.org/10.1101/2020.11.19.390096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.19.390096


Electrophysiology
We analysed electrophysiological activity by means of cluster-based permutation methods (Maris &
Oostenveld, 2007). We first compared EEG steady-state responses between blocks with stimulation 
of left and right portion of the visual field in the BASELINE session across groups (EASY, HARD). As no
clusters were found, we concluded that the side of stimulation did not induce significant differences 
and grouped left and right stimulation blocks for further analyses. Comparisons of the amplitude of 
the steady-state response to 7.5Hz stimulation were performed separately for both groups, between 
BASELINE and MIDDLE, MIDDLE and CONCLUSION and between BASELINE and CONCLUSION. No 
significant clusters were found.

Audio task performance
Concerning the performance of the auditory tasks carried out during saturation, the EASY group 
outperformed the HARD group in each task. Specifically, in the n-back task the overall mean 
accuracy of the EASY group was 93.3% versus 62.1% of the HARD group (t(45) = 10, p < 0.0001). In 
the side task, the EASY group had on average 99.2 % of correct responses, whilst the HARD group had
an accuracy of 89.1% (t(46) = 3.99, p = 0.0002), Finally, in the pitch-sequence task, the EASY group 
displayed 73.5% average accuracy, while the HARD group only reached 49.1% (t(46) = 6.31, p < 
0.0001).

Figure 2: Percent correct responses (y axis), predicted by the GLMM for ISI values ranging from 0.06 to 0.6 (x axis) as 
a function of saturation condition (left and right columns) and experimental group (top and bottom rows). Error bars 
depict 95% confidence intervals. Insets: detailed representation of behavioural data for ISI = 400ms.
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Pupillometry
The analysis of the average pupil size recorded while participants were engaged in the auditory 
tasks revealed a significant effect of the group condition, in each task (see Figure 3). On top of this, 
also the effect of session was found to meaningfully impact the pupil size of participants in each 
task. In the case of the side task, participants in the HARD condition had a larger pupil than those in 
the EASY condition (t(46) = 3.94, p = 0.0003) and the whole sample’s pupil size decreased between 
the first and second saturation sessions (t(45) = -3.58, p = 0.0008). The same result was found also in 
the n-back task, both in the group-wise effect (t(46) = 2.02, p = 0.049) and in the session-wise effect 
(t(45) = -2.16, p = 0.036). On the other hand, in the case of the pitch-sequence task, the pupil 
averages in the EASY condition were found to be larger than those in the HARD condition (t(43) = -
4.18, p = 0.0001), while the pupil responses decreased in the second session, similarly to the other 
tasks (t(40) = -2.62, p = 0.012).

Figure 3: Average pupil size in each auditory task per saturation session, by 
experimental group
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Self-reported measures of fatigue and sleepiness 
The rANOVA on the Multidimensional Fatigue Inventory scores revealed an important increase 
over the course of the experiment, as highlighted by the significance of the session factor (F(1, 46) = 
255.9, p < 0.0001, η2

p = 0.85), while neither the main effect of group, nor their interaction reached 
significance. Similarly, the Karolinska Sleepiness Scale scores highlighted a strongly significant 
increase in perceived sleepiness across sessions (F(1, 46) = 176, p < 0.0001, η2

p = = 0.77), while no 
effect was found for the group condition nor its interaction with session. 

Additionally, the increase in subjective fatigue displayed a moderate negative correlation with the 
change in the behavioural performance (performed across groups given lack of difference shown 
above; R(46) = -0.29, p = 0.043; see Figure 4). This indicates that larger perceived fatigue related to 
greater loss in performance, as indexed by behavioural difference between SATURATED and NON-

SATURATED scores across the beginning and conclusion of the experiment. On the other hand, no 
significant correlation was observed between changes in behaviour and perceived sleepiness (RS(46) 
= -0.1, p = 0.5).
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Figure 4: Scatterplot depicting the change in reported fatigue (y axis) in relation to the change in  
behavioural performance, consisting in the delta between conclusion and baseline in the individual 
slopes of the participant’s psychometric curves (x axis)
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Discussion
In the present study, we found that prolonged stimulation of a portion of the visual field led to 
specific deterioration of participants’ performance in that portion of visual space, proving that 
neural fatigue can be locally and passively induced. Because of its spatial specificity, this neural 
fatigue phenomenon cannot be explained solely by motivational theories of fatigue. On the contrary,
such progressive functional alteration generated by repeated recruitment could constitute one of the 
mechanisms involved in general fatigue, as suggested by the correlation we observed between the 
feeling of fatigue and the specific behavioural consequences, which is rarely found in the pertaining
literature (DeLuca, 2007).

As predicted, perceptual deterioration was accelerated by concurrent performance of difficult 
auditory tasks. We argue that increased arousal provoked by the challenging version of the tasks and
physiologically indexed by pupil size, led to stronger activations of the simultaneously stimulated 
visual neurons (Mather et al., 2016; McGinley et al., 2015; Zhang et al., 2020) which in turn caused 
faster and greater degradation of performance. 
Alternatively, it could be argued that the difference in the impact of passive stimulation on 
performance across groups could be due to cognitive load per se, rather than to the related changes 
in arousal. Indeed, it cannot be excluded that the effect observed here would require taxing of the 
cognitive control network (Asplund & Chee, 2013; Blain et al., 2016; Braver, 2012; Mandrick et al.,
2013; Niendam et al., 2012) on top of the saturation of the local visual processes. However, it is 
unclear which interaction mechanism would require the concurrent disruption of spatially specific 
visual neurons and central cognitive control networks in order to result in local performance 
decrement. Distinguishing conclusively between our initial hypothesis of arousal modulation 
amplifying the impact of saturation on the one hand and the possible interaction of global and local 
saturation effects on the other hand will require more experiments. 

Interestingly, on top of perceptual deterioration, we also observed improvement of perceptual 
performance induced by passive stimulation. This result was restricted to the participants whom 
underwent the easy versions of the auditory tasks, and faded following the second session of passive
stimulation. This observation evokes the passive learning literature, where repeated, passive 
presentation of visual stimuli leads to ameliorations in subsequent discrimination performance 
(Watanabe et al., 2001). However, classical passive learning is usually measured on the days 
following training while, since our experiment was not designed to investigate learning, we did not 
measure behavioural performance on different days. Therefore, this observation relates better to the 
older and more general concept of perceptual priming, than to perceptual learning literature (Wiggs 
& Martin, 1998). 
On the other hand, volunteers who were engaged in hard auditory tasks while being visually 
stimulated failed to show this stimulation-induced enhancement in performance, suggesting that 
increased neural fatigue induced by their arousal state counteracted perceptual priming. 
Alternatively, this result may indicate that arousal inhibits perceptual priming processes (though in 
contradiction of previous accounts; (Thomas & LaBar, 2005)) or that difficult auditory tasks 
induced diversion of attention away from the visual stimulus (also not in accordance with previous 
findings (Mulligan, 2003)).

Our results also stand out from previous publications in the field of visual fatigue, which generally 
rely on self-reported measures of eye discomfort, or other physiological markers such as dry eyes 
and binocular vision stress (Sheppard & Wolffsohn, 2018). Albeit we did not record these variables, 
there is no reason to suppose there would be a difference between the experimental groups in any of
these measures, as they were exposed exactly to the same visual stimuli under identical conditions 
and recruited from a homogeneous sample. Furthermore, in the few attempts where this body of 
literature has sought to assess behavioural effects, it has failed to detect any (Chi & Lin, 1998).
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Part of our findings are perhaps complementary with the literature on visual adaptation. However, 
in that case repeated stimulation affects subsequent behaviour on the timescale of seconds 
(Carandini, 2000), whereas our findings extend over dozens of minutes. Determining with precision
how these mechanisms interact would require studying the time course of the effect with better 
resolution than the one provided in the present study.

From the neurophysiological perspective, we failed to observe significant differences in the 
amplitude of the electrophysiological brain response to the 7.5 Hz flashing of the stimuli. This lack 
of effect may rule out the usage of this method as a way to investigate the saturation phenomenon or
it may be that our study was not sufficiently powered to detect significant differences in this signal, 
due to its effect size. It may also indicate that perceptual deterioration originates from decreased 
signal-to-noise ratio rather than simple decrease in activation magnitude. The use of more spatially 
sensitive instruments (e.i. fMRI) is warranted to shed light on the brain localisation of the observed 
behavioural phenomenon, which might be explained by a different factor than electrophysiological 
magnitude of cortical brain response. For instance, the behavioural changes may be reflected in the 
neural encoding of the saturating stimuli, and thereby be more aptly investigated by multi-variate 
pattern analyses (Haxby et al., 2014).
Despite the lack of statistical effects in the recorded brain signal, the fact that the behavioural 
consequences were influenced by the difficulty of concurrent, cross-sensory auditory tasks still 
argues in favour of a cortical, as opposed to retinal, origin of the effect. Such cortical origin would 
be in line with previous perceptual deterioration results, caused by prolonged TDT performance, 
where decreased primary visual cortex activations were observed (Mednick et al., 2008). 

All participants reported an increase in fatigue and sleepiness scores at the end of the experiment,  
providing evidence for the success of the experimental procedure in impacting the objective and 
subjective manifestations of fatigue. In fact, the Multidimensional Fatigue Index results were 
significantly correlated to the change in saturation-specific behavioural performance. Such 
correlation cannot be attributable to the behavioural difference between easy and hard groups, since 
the self-reported measures of fatigue did not significantly differ between them. However, the 
current design does not allow us to make inferences on the causal direction of this relation.

Analysis of the arousal-related pupil response showed increased dilation in the hard version of the 
n-back and side tasks, confirming the increased demand associated with these task conditions (van 
der Wel & van Steenbergen, 2018; Zénon, 2019). However, surprisingly, we found the opposite 
effect in the pitch-sequence task, the easier group displaying larger average pupil size. This may be 
due to the excessive demands of this task for those assigned to the hard condition, potentially 
leading to their disengagement from the task, phenomenon known to reduce pupil size (Hopstaken, 
van der Linden, et al., 2015). Indeed, the pitch-sequence task had the lowest performance across 
tasks and conditions (49% of correct responses overall) and several participants spontaneously 
reported that this task was the most challenging of the three.  

In conclusion, we bring new evidence that passive, repeated neuronal activation induces progressive
functional alteration under the modulatory influence of cross-sensory cognitive load and arousal: 
under low cognitive load, we observed an initial perceptual priming effect followed by a decrease to
baseline performance, while no changes were detected in the unstimulated portion of visual field. 
On the other hand, participants under higher cognitive load displayed an early, specific, loss of 
performance which then generalised to the non-saturated quadrant. 
These findings are immune to confounds such as boredom, motivation and level of skill in the 
fatiguing task (Gergelyfi et al., 2015). Certainly, since all participants carried out the task in the 
saturated and non-saturated portion of their visual field, any difference in performance between the 
two, can be solely explained as the by-product of saturation – which was an artifice to keep specific 
neuronal assemblies active all along. 
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This neural fatigue phenomenon could justify renewed interest in metabolic accounts of fatigue. 
Indeed, while the neural mechanism underlying this recruitment-related performance deterioration 
remains to be investigated, one may speculate the involvement of depletion or accumulation of 
metabolites (Dalsgaard & Secher, 2007; Dienel & Hertz, 2001; Fairclough & Houston, 2004). The 
detailed characterisation of such process is matter for subsequent studies, which may disentangle 
how exactly the phenomena brought forward by the present results, to our best knowledge 
previously unreported, act and interact with each other.
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