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Regularity for rough hypoelliptic equations

We present a general approach to obtain a weak Harnack inequality for rough hypoellipitic equations, e.g. kinetic equations. The proof is constructive and does not study the commutator structure but rather compares the rough solution with a smooth problem for which the estimates are assumed.

Introduction 1.Motivation

One motivation is kinetic theory describing a density = ( , , ) at a time over the phase space consisting of a spatial position and a velocity . For a collisional evolution, like the Boltzmann or Landau equation, the evolution is then given by

+ • ∇ = ( ), (1) 
where is a collision operator. In the most basic form, is a diffusion operator in the velocity variable so that we arrive at

+ • ∇ = ∇ • ∇ . (2) 
The evolution [START_REF] Anceschi | Moser's estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients[END_REF] is not parabolic because there is no diffusion in the spatial position . The fundamental solution, computed explicitly by Kolmogoroff [START_REF] Kolmogoroff | Zufällige Bewegungen[END_REF] in 1934, shows that, nevertheless, a solution is smooth in all directions.

In a general setting, Hörmander [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF] understood in 1967 this smoothing property. For smooth vector fields 0 , 1 , . . . ,

, he looked at solutions to the equation

0 + =1 (-) * = (3) 
and called the equation hypoelliptic if the smoothness of implies that is smooth. He then shows that (3) is hypoelliptic if 0 , 1 , . . . , and their commutators span the full space at every point. A different development was the question of regularity for elliptic equations with rough coefficients. Such a regularity was proved by De Giorgi [START_REF] De | Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF] in 1957 and Nash [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] in 1958, also covering the parabolic case.

The combination of these ideas saw a lot of recent interest [START_REF] Anceschi | Moser's estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients[END_REF][START_REF] Anceschi | A note on the weak regularity theory for degenerate Kolmogorov equations[END_REF][START_REF] Garain | On regularity and existence of weak solutions to nonlinear Kolmogorov-Fokker-Planck type equations with rough coefficients[END_REF][START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF][START_REF] Guerand | Log-transform and the weak Harnack inequality for kinetic Fokker-Planck equations[END_REF][START_REF] Guerand | Quantitative de Giorgi Methods in Kinetic Theory[END_REF][START_REF] Wang | The regularity of a class of non-homogeneous ultraparabolic equations[END_REF][START_REF] Wang | The regularity of weak solutions of ultraparabolic equations[END_REF][START_REF] Zhu | Velocity averaging and Hölder regularity for kinetic Fokker-Planck equations with general transport operators and rough coefficients[END_REF] as it is a path for regularity results for nonlinear kinetic equations, where the solution satisfies schematically

+ • ∇ = ∇ • ( ∇ ) (4) 
and depends again on . On this level, we do not know any regularity on so that we just assume that is bounded from below and above, i.e. is a rough coefficient. If we can still obtain a regularity result, we can use it to bootstrap regularity as explained in [START_REF] Anceschi | On a spatially inhomogeneous nonlinear Fokker-Planck equation: Cauchy problem and diffusion asymptotics[END_REF][START_REF] Imbert | The Schauder estimate in kinetic theory with application to a toy nonlinear model[END_REF][START_REF] Imbert | The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF].

A related direction is the study of sub-Riemannian geometry which asks similar questions without a drift 0 . The lack of the drift seems to simplify several problems and quite general results are available. Along this direction we refer to [START_REF] Capogna | A subelliptic analogue of Aronson-Serrin's Harnack inequality[END_REF] as a starting point.

General setting and main results

Our observation is that the smoothing property of an hypoelliptic operator implies in an robust way the key steps of regularity for a rough version: the supremum bound and the weak Harnack inequality.

In this general setting, we study functions = ( , ) where ∈ R is a special time-variable and ∈ R is a general space. Then suppose smooth vector-fields ˜ 0 , 1 , . . . , acting only along the spatial directions , i.e. = =1 ( , ) with smooth coefficients ( ) , . Using the standard L 2 (R ) define the adjoints * of and let

= - * for = 1, . . . , .
We consider the smooth operator 0 -0 where 0 = + ˜ 0 and 0 :=

=1 . (5) 
The natural functional spaces for solutions has already been identified in Hörmander [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF], see also [START_REF] Albritton | Variational methods for the kinetic Fokker-Planck equation[END_REF][START_REF] Anceschi | A note on the weak regularity theory for degenerate Kolmogorov equations[END_REF]. We introduce the space H 1 hyp defined by the norm

H 1 hyp = L 2 + ì L 2 (6) 
where ì = ( 1 , . . . , ) and we denote by H -1 hyp the dual space of H 1 hyp . Throughout we will consider classical weak solutions with ∈ H 1 hyp and 0 ∈ H -1 hyp . For a point 0 ∈ R , let ( 0 ) ⊂ R be the standard open Euclidean ball of radius . For a parabolic cylinder, we include the drift 0 .

Definition 1 (Parabolic cylinder 0 ). For a point ( 0 , 0 ) ∈ R 1+ solve the transport equation

0 = 0 in R 1+ , ( 0 , •) = ( 0 ) on { 0 } × R . ( 7 
)
The parabolic cylinder 0 , ( 0 , 0 ) ⊂ R 1+ with time size and space size is

0 , ( 0 , 0 ) = supp ∩ ( 0 -, 0 ]. (8) 
˜ 0 ∈ R ( 0 , 0 ) 0 0 - Figure 1: Illustration of Definition 1 of a parabolic cylinder 0 , ( 0 , 0 ).
Remark 1. If ˜ 0 is independent of time, the transport equation is solved by the semigroup e ˜ 0 and we find 0 , ( 0 , 0 ) = {( , ) ∈ ( 0 -, 0 ] : ∈ e ( 0 -) ˜ 0 ( 0 )}. We then capture the hypoelliptic behaviour of 0 -0 by supposing estimates gaining local integrability.

Hypothesis 1. Suppose a parabolic domain Ω = ( 1 , 2 ] × ⊂ R 1+ for times -∞ < 1 < 2 < ∞ and a bounded ball ⊂ R and suppose an extended domain Ω ext = ( 1 , 2 ] × ext for a ball ⊂ ext (with the possibility ext = R ) and an extended (possible degenerate) elliptic operator ext 0 in divergence form with vanishing lower order terms such that ext 0 = 0 on Ω . Then suppose integrabilities 1 > 2 and 0 ≤ 1 ≤ 2 and a constant 0 > 0 such that for any time in ∈ ( 1 , 2 ) and functions

∈ L 0 (Ω ext ), = ( 1 , . . . , ) ∈ L 0 (Ω ext , R ) with supp ∪ supp ⊂ Ω ∩ { ≥ in } there exists a function : Ω ext ∩ { ≥ in } → R satisfying          ( 0 -ext 0 ) ≥ + =1 in Ω ext ∩ { > in }, ≥ 0 on { in } × ext ∪ ( in , 2 ) × ext (9) 
and

L 1 (Ω ∩{ > in }) ≤ 0 L 0 (Ω ∩{ > in }) + L 1 (Ω ∩{ > in }) . ( 10 
)
Remark 2. In the case of kinetic or Kolmogorov equations there exists a fundamental solution of 0 -0 over the whole space and we can obtain the sought and the estimates by the fundamental solution with ext 0 = 0 and ext = R . If we only have local estimates for solutions of 0 -0 , then it is difficult to construct a solution with boundary condition ≥ 0 as it is not clear due to the degeneracy of 0 what boundary conditions can be imposed. Therefore, we allow a different extension ext 0 which we can take as

ext 0 = 0 + ∇ • ((1 -) 2 ∇•)
with a cutoff and the normal gradient ∇ on R . This then allows the same local estimates and the imposition of boundary condition = 0 on

{ in } × ext ∪ ( in , 2 ) × ext .
In this setting we study the differential operator with rough coefficients defined by

:= 0 - =1 ( , , , ì ) -( , , , ì ) (11) 
where

( , , , ) = ( , ) + ( , ) -( , ), (12) 
( , , , ) = ( , ) + ( , ) -( , ).

For the diffusion coefficient assume the uniform lower bound on the symmetric part id ≤ + 2 in the sense of matrices [START_REF] Guerand | Quantitative de Giorgi Methods in Kinetic Theory[END_REF] and assume that the coefficients are bounded by a function Λ = Λ( , ) as

| ( , )| ≤ Λ( , ) for all , = 1, . . . , . (15) 
Our first result is a supremum bound for subsolutions.

Theorem 2 (Supremum bound). Assume a parabolic cylinder 0 , ( 0 , 0 ) around a point ( 0 , 0 ) ∈ R 1+ with 0 < and 0 < containing the cylinder 0 , ( 0 , 0 ) with 0 < < and 0 < < and assume (H1) is satisfied for the smooth problem on a domain Ω containing the closure of 0 , ( 0 , 0 ). Take 2 < 0 < 1 and integrabilities Λ , , , satisfying

1 Λ ≤ min 1 2 - 1 0 , 1 1 - 1 2 , 1 ≤ min 1 2 1 0 - 1 0 , 1 2 - 1 0 , 1 ≤ min 1 0 - 1 2 , 1 2 - 1 0 , 1 ≤ min 1 0 - 1 0 , 1 - 2 0 .
Then there exist constants , > 0 such that a function satisfying ≤ 0 on 0 , ( 0 , 0 ) for a differential operator of (11) is bounded as

sup 0 , ( 0 , 0 ) ≤ (1 + ) L 1 ( 0 , ( 0 , 0 )) + L ( 0 , ( 0 , 0 )) + L ( 0 , ( 0 , 0 ))
where

= Λ L Λ ( 0 , ( 0 , 0 )) + L ( 0 , ( 0 , 0 )) + L ( 0 , ( 0 , 0 )) + L ( 0 , ( 0 , 0 )) .
The next step for the regularity of solutions to the rough operator is a weak Harnack inequality. For a nonnegative solution and a cylinder 0 1,1 (0, 0 ) we want to conclude that is strictly positive in

0 1,1 (0, 0 ) ∩ {-1/3 ≤ ≤ 0} if { ≥ 1} is a set of positive measure in 0 1,1 (0, 0 ) ∩ {-1/3 ≤ ≤ 0} beforehand.
The idea is to again use a similar property for the smooth dual problem. For the conclusion, we need a larger domain with an arbitrary smooth cutoff. This is captured in the following hypothesis, cf. Fig. 2.

Hypothesis 2. From the point (0, 0 ) ∈ R 1+ , there exists for every Remark 3. In simple hypoelliptic cases like in kinetic theory, the sets Σ and Σ can be taken as parabolic cylinders 0 ¯ ,1 (0, 0 ) for large enough ¯ and ˜ , can be taken as solutions of 0 ˜ = 0 = 0 with a prescribed standard cutoff at { = 0}. For general operators, it can be assumed locally by using the underlying scaling of the vector fields 0 , 1 , . . . , .

> 1 bounded domains 0 1,2 (0, 0 ) ⊂ Σ ⊂ Σ ⊂ [-1, 0] × R and smooth cutoffs ˜ , : [-1, 0] × R → [0, 1] with supp ˜ ⊂ Σ and supp ⊂ Σ and ˜ ≡ 1 on 0 1,1 (0, 0 ) and ≡ 1 on Σ such that 0 ˜ = 0 = 0 and ì ˜ L ∞ ≤ 1, ì ì ˜ L ∞ ≤ 1 , ì L ∞ ≤ 1. 0 1,1 (0, 0 ) Σ Σ cutoff ˜ ì ì ˜ L ∞ ≤ 1 cutoff
We now state the assumption of the smooth dual problem assuming (H2), cf. Fig. 3.

Hypothesis 3. For the point 0 ∈ R , assume constants , 0 > 0 such that the problem

( 0 -0 ) = in (-1, 0] × R , (-1, •) = 0 on { = -1} × R (16) for a set ⊂ 0 1,1 (0, 0 ) ∩ { ≤ -2/3} with | | ≥ | 0 1,1 (0, 0 ) ∩ { ≤ -2/3}| has a solution ≥ 0 satisfying ( , ) ≥ 0 for ( , ) ∈ 0 1/2,2 (0, 0 ) (17) 
and

L 1 ( (-1,0)×R ) 1.
Assume further an integrability 2 ≥ 2. Then for any > 0, there exists a constant ( ) such that

L 2 (Σ ) + ì L 2 (Σ ) ≤ ( ). = 0 = -1 0 1/2,2 (0, 0 ) 0 1,1 (0, 0 ) ∩ { < -2/3} ( 0 -0 ) = = 0 ≥ 0 Figure 3: Illustration of (H3).
We then satisfy a weak Harnack inequality for the rough problem, cf. Fig. 4.

Theorem 3 (Weak Harnack inequality). Assume that Theorem 2 applies to 0 1/2,2 (0, 0 ) and additionally (H2) and (H3). Then there exists such that for , Δ > 0 there exists , > 0 such that with =

(1 + ) a nonnegative supersolution ≥ 0 of

≥ 0 over Σ with | | ≥ | 0 1,1 (0, 0 ) ∩ { ≤ -2/3}| for = { ≥ 1} ∩ 0 1,1 (0, 0 ) ∩ { ≤ -2/3} (18) 
satisfies ( , ) ≥ in 0 1/3,1 (0, 0 ) if is an operator of the form (11) with Λ L Λ ( 0 1 2 ,2 ( 0 , 0 )) + L ( 0 1 2 ,2 ( 0 , 0 )) ≤ and Λ L ¯ 2 (Σ ) + ˜ L ¯ 2 (Σ ) ≤ Δ with 1 ¯ 2 + 1 2 = 1 2 and - L (Σ ) + - L ( 
Σ ) ≤ . After some preliminary remarks in Section 2, we will prove Theorem 2 in Section 3 and Theorem 3 in Section 4. Both proofs are quantitative. The proofs are presented as a priori estimates and we briefly discuss the required function space in Appendix A. 

= 0 = -1 0 1/3,1 (0, 0 ) 0 1,1 (0, 0 ) ∩ { < -2/3} Σ ≥ ≥ 0 { ≥ 1} big enough

Application to hypoelliptic operator

In the first work of hypoellipticity by Hörmander [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF], the key estimate is that a solution to ( 0 -

0 ) = + satisfies H 2 + 2 +
2 for some > 0 under the commutator condition. This then shows the estimate (H1) by Sobolev embedding with 0 = 1 = 2, see Appendix B.

In this general setting, Bony [START_REF] Bony | Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérées[END_REF] proved a strong maximum principle which yields the claimed spreading of positivity in (H3) by a compactness argument.

In the kinetic or general Kolmogorov setting, there is an explicit fundamental solution from which all estimates on the smooth problem can be easily verified. Using the best possible integrabilities, the assumed integrabilities on the lower order terms are as expected from the classical parabolic case arbitrary close to the integrabilities expected from scaling. For the upper bound Λ on the diffusion coefficients , our result matches Trudinger [START_REF] Trudinger | On the regularity of generalized solutions of linear, non-uniformly elliptic equations[END_REF] in the classical case. The kinetic or Kolmogorov equation have an underlying scaling and group structure (corresponding to Galilean transformation in the kinetic theory) which allows to conclude from the weak Harnack result (Theorem 3) a Hölder regularity by a standard argument, see e.g. [START_REF] Guerand | Log-transform and the weak Harnack inequality for kinetic Fokker-Planck equations[END_REF]Appendix B].

In the general setting, Rothschild and Stein [START_REF] Preiss Rothschild | Hypoelliptic differential operators and nilpotent groups[END_REF] show that every hypoelliptic operator can be approximated locally by an operator with a suitable scaling and group structure, see also [START_REF] Bramanti | Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities[END_REF][START_REF] Sánchez-Calle | Fundamental solutions and geometry of the sum of squares of vector fields[END_REF] for use of this idea in order to obtain estimates on the smooth problem. The application to this general setting will be explained in a forthcoming paper.

Comparison with literature

As far as we are aware, there are no results in this general setting for rough coefficients. Even in the more studied special case of kinetic (or Kolmogorov) equations our proofs appear to be new and for the supremum bound (Theorem 2) it appears that we require less integrability on the coefficients as e.g. in [START_REF] Anceschi | A note on the weak regularity theory for degenerate Kolmogorov equations[END_REF] (other works for the supremum bound are [START_REF] Anceschi | Moser's estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients[END_REF][START_REF] Cinti | Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators[END_REF][START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF][START_REF] Guerand | Quantitative de Giorgi Methods in Kinetic Theory[END_REF][START_REF] Pascucci | A Gaussian upper bound for the fundamental solutions of a class of ultraparabolic equations[END_REF][START_REF] Pascucci | The Moser's iterative method for a class of ultraparabolic equations[END_REF][START_REF] Wang | The regularity of a class of non-homogeneous ultraparabolic equations[END_REF][START_REF] Wang | The regularity of weak solutions of ultraparabolic equations[END_REF]).

For the proof of the weak Harnack inequality we use a log transform as it already appears in the early work by Nash [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] on rough coefficients. This has been used heavily for the study of equations with rough coefficients [START_REF] Kruzhkov | A priori estimates for generalized solutions of second-order elliptic and parabolic equations[END_REF][START_REF] Kruzhkov | Apriori estimates and certain properties of the solutions of elliptic and parabolic equations[END_REF][START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF][START_REF] Moser | On Harnack's theorem for elliptic differential equations[END_REF] and has also been used in the kinetic and Kolmogorv setting [START_REF] Anceschi | A note on the weak regularity theory for degenerate Kolmogorov equations[END_REF][START_REF] Guerand | Log-transform and the weak Harnack inequality for kinetic Fokker-Planck equations[END_REF]. Here we differ by using the dual problem to conclude the result (instead of a Poincaré inequality inspired by the framework of [START_REF] Albritton | Variational methods for the kinetic Fokker-Planck equation[END_REF][START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]).

Preliminaries

For the rough operator , we define the principal part of as = .

When deriving estimates, note that satisfies the chain rule

( ) = ( ) + ( ).
As a first step, we note how a subsolution behaves under a composition.

Lemma 4. Let Φ : R → R be a smooth function with Φ ′ ≥ 0 and Φ ′′ ≥ 0. Suppose the operator of the form (11) and a subsolution ≤ 0. Then = Φ • satisfies

˜ := 0 - ˜ ( , , + ℎ, ì ) -˜ ( , , + ℎ, ì ) ≤ -Φ ′′ ( ) 2 | ì | 2 ≤ 0
where ˜ and ˜ are of the same form (12) and (13), respectively, with new coefficients

˜ = , ˜ = 0, ˜ = , ˜ = 0, ˜ = Φ ′ ( ) - , ˜ = Φ ′ ( ) ( -) - Φ ′′ ( ) 2 | -| 2 .
The same result holds if ≥ 0 and Φ ′ ≤ 0 and Φ ′′ ≥ 0.

Proof. Using that ≤ 0 and Φ ′ ≥ 0, we find

( + 0 -) ( ) = Φ ′ ( ) ( 0 -) ( ) -Φ ′′ ( ) ≤ Φ ′ ( ) ( -) + ( + -) -Φ ′′ ( ) = -( ˜ ) -( -)Φ ′′ ( ) + + Φ ′ ( ) ( -) -Φ ′′ ( ) .
Using the square control Φ ′′ ( ) , we estimate

-Φ ′′ ( ) - - ≤ Φ ′′ ( ) | -| 2 2 -2 | ì | 2 ,
which then yields the result. The case ≥ 0 and Φ ′ ≤ 0 and Φ ′′ ≥ 0 follows in the same way.

In the proof of the supremum bound (Theorem 2), we need several spatial cutoffs and temporal cutoffs within the overall set 0 , ( 0 , 0 ). For the temporal cutoff between times 1 < 2 , i.e. : R → [0, 1] with ( ) = 0 for ≤ 1 and ( ) = 1 for ≥ 2 , we can rescale a standard cutoff and therefore have uniformly

∞ 1 2 -1 .
For the spatial cutoff : R 1+ → [0, 1] between radii 1 < 2 around ( , ) over a time length , we impose that 0 = 0 and = 0 outside 0 , 2 ( , ) and = 1 inside 0 , 1 ( , ). These can be constructed by taking a cutoff ¯ between the balls 1 ( ) and 2 ( ) and taking as solution to

0 = 0, ( , •) = ¯ .
By the definition of the parabolic cylinder, this yields a required cutoff. Moreover, as it is always constructed within a fixed bounded set, the smoothness of the vector fields implies

ì ∞ 1 2 -1 .

Local supremum bound

In this section we prove Theorem 2 by the de Giorgi method using the bound (H1) on the smooth problem. In the special setting of kinetic or Kolmogorov equations, the knowledge of the fundamental solution for the smooth problem has been used in [START_REF] Anceschi | A note on the weak regularity theory for degenerate Kolmogorov equations[END_REF][START_REF] Guerand | Quantitative de Giorgi Methods in Kinetic Theory[END_REF][START_REF] Pascucci | The Moser's iterative method for a class of ultraparabolic equations[END_REF]. In this setting the main difference is that these works use a Moser iteration and do not obtain the integrability assumptions on the coefficients.

The classical idea is to consider (ℎ ) + for a sequence of cutoffs (ℎ ) on nested cylinders 1 ⊃ 2 ⊃ . . . and deduce that (ℎ ) + → 0 for a suitable norm while ℎ ↑ < ∞. In the non-degenerate setting, this convergence is obtained by a direct energy estimate which yields by Sobolev embedding a gain of integrability.

In our setting, we not only perform a direct energy estimate but also compare the subsolution of the rough problem to a solution of the smooth problem. Hence a simple truncation is not sufficient and we need a smoothed cutoff.

Let ∈ ∞ (R) be a non-negative mollification kernel with supp ⊂ [-1, 1] and set for > 0

( ) = 1 .
As replacement for the truncation, we then define for ℎ ∈ R and > 0 the function ,ℎ ∈ ∞ (R) by

,ℎ ( ) = * ( -ℎ) + .
By considering ,ℎ ( ) instead of the truncation (ℎ) + , we find the gain of integrability in the following lemma.

Lemma 5. Assume (H1) on Ω and let 0 , 1 be the integrabilities given by

1 2 + 1 0 = 1 0 and 1 2 + 1 1 = 1 1 .
Then there exists a constant 2 with the following gain of integrability: for nested parabolic cylinder 0 , ( 0 , 0 ) ⊂ 0 , ( 0 , 0 ) ⊂⊂ Ω and with ≤ 0 over 0 , ( 0 , 0 ), the composition = ,ℎ ( ) satisfies for any > 0 and ℎ ∈ R that

L 1 ( 0 , ) ≤ 2 1 + 1 - + 1 - 2 1 + Λ L 1 ( ) + L 0 ( ) (1 + Λ) L 2 ( ) + ¯ L 2 ( ) + L 2 ( ) + ¯ L 1 ( ) + 2 1 + 1 - + 1 - ¯ L 0 ( ) + 1 ¯ ≤2 2 L 2 0 ( )
where ¯ =and ¯ =and

= 0 , ( 0 , 0 ) ∩ { > 0}. Proof. First note that ′ ,ℎ ( ) = * [ℎ,∞) ≥ 0, and 
′′ ,ℎ ( ) = * ℎ = 1 -ℎ ≥ 0.
Hence we can apply Lemma 4 to find that satisfies with new coefficients ˜ , ˜ , ˜ , ˜ , ˜ , ˜

˜ ≤ 0. ( 19 
)
The results is then obtained in two steps as illustrated in Fig. 5 with intermediate scale

< 1 < and < 1 < and corresponding cylinders 0 , ⊂ 0 1 , 1 ⊂ 0 ,
(always with the base point ( 0 , 0 ) which we therefore omit within this proof). Performing a L 2 energy estimate with a cutoff from 0 1 , 1 to 0 , we obtain the control Step 1: L 2 estimate As discussed in Section 2 take a spatial cutoff 1 between 1 and and a temporal cutoff 1 between 0 -1 and 0 -.

ì 2 L 2 ( 0 1 , 1 ) 1 + 1 -1 + 1 -1 2 (1 + Λ) 2 L 2 ( 0 1 , 1 ) + ˜ 2 L 2 ( 0 1 , 1 ) + ˜ 2 L 2 ( 0 1 , 1 ) + ˜ L 1 ( 0 1 , 1 ) . ( 20 
We now test (19) against 1 2 1 . For the drift note that (using

0 1 = 0) ∫ 0 , 0 ( ) 1 2 1 = ∫ { 0 }× ( 0 ) 2 1 2 2 - ∫ 0 , ′ 1 2 1 2 2 - ∫ 0 , 1 2 1 2 2 div 0 .
For the operator ˜ note that (recalling ˜ ≡ 0)

˜ ( , , , ) ≥ | | 2 -| | | ˜ | ≥ 3 4 | | 2 --1 | ˜ | 2 and | ˜ ( , , , )| ≤ | | Λ( , ) | | + | ˜ | . Hence ∫ 0 , -˜ ( , , + ℎ, ì ) 1 2 1 = ∫ 0 , ( ) ˜ ( , , + ℎ, ì ) 1 2 1 + 2 ∫ 0 , ( 1 ) ˜ ( , , + ℎ, ì ) 1 1 ≥ 2 ∫ 0 , | ì | 2 1 2 1 - ∫ 0 , | ˜ | 2 1 2 1 - ∫ 0 , 1 + 4 Λ( , ) 2 | ì | 2 1 2 .
Finally for ˜ , we find that (recalling ˜ ≡ 0)

∫ 0 , -( , , + ℎ, ì ) 1 2 1 ≥ - ∫ 0 , 4 | ì | 2 + | ˜ | 2 + | ˜ | 1 2 1 .
Hence combining the different parts yields the claimed control (20) on 0 1 , 1 .

Step 2: comparison with smooth problem For the next step, take a spatial cutoff 1 between and 1 and a temporal cutoff 1 between 0and 0 -1 .

The idea is to rewrite [START_REF] Kruzhkov | A priori estimates for generalized solutions of second-order elliptic and parabolic equations[END_REF] for as

( 0 -) ( 2 2 ) ≤ ˜ + ˜ . (21) 
By (H1), we then find a function solving

( 0 -ext 0 ) ( ) ≥ ˜ + ˜ + ( -ext 0 ) ( 2 2 ) in Ω ext ∩ { > 0 -1 }, ≥ 0 on { 0 -1 } × ext ∪ ( 0 -1 , 2 ) × ext (22)
By the weak maximum principle for 0 -ext 0 , we find

2 2 ≤ in Ω ext ∩ { > 0 -1 } so that L 1 ( 0 , ) ≤ L 1 ( 0 , )
. Then the result follows by the bound ( 10) in (H1). Hence we first compute (recalling ˜ ≡ 0 and ˜ ≡ 0)

( 0 -) ( 2 2 ) = 2 2 ( 0 -) ( ) + 0 ( 2 2 ) -2 2 -( 2 ) 2 ≤ 2 2 -˜ + ˜ -˜ + 2 ′ 2 -2 2 -( 2 ) 2
so that we verify [START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF] with

˜ = 2 2 ˜ + 2 2 ( ˜ -˜ ) + 2 ′ 2 -2 2 and ˜ = -2 2 ˜ -2 2 .
For the additional term in [START_REF] Moser | On Harnack's theorem for elliptic differential equations[END_REF] note that ext 0 = 0 in Ω and supp 2 2 ⊂ Ω to get

( -ext 0 ) ( 2 2 ) = ( -) ( 2 2 )
so that we find ( 0 -ext 0 ) ( ) ≥ + where

= ˜ and = ˜ + ( -) ( 2 2 ) = -2 2 ˜ + 2 2 ( -) -2 2 .
We now estimate

L 0 (Ω ext ) 1 1 - ˜ L 0 ( 0 1 , 1 ) + Λ ì L 0 ( 0 1 , 1 ) + 1 1 - L 0 ( 0 1 , 1 ) + ˜ ì L 0 ( 0 1 , 1 ) + ˜ L 0 ( 0 1 , 1 )
and

L 1 (Ω ext ) ˜ L 1 ( 0 1 , 1 ) + (1 + Λ) ì L 1 ( 0 1 , 1 ) + 1 1 - L 1 ( 0 1 , 1 ) .
Recalling 0 ≤ 1 ≤ 2 we therefore find

L 1 ( 0 1 , 1 ) 1 + 1 1 - + 1 1 - ˜ L 2 ( 0 1 , 1 ) + ˜ L 0 ( 0 1 , 1 ) + L 2 ( 0 1 , 1 ) + 1 + Λ L 1 ( ) + ˜ L 0 ( ) ì L 2 ( 0 1 , 1 )
. This shows the claimed result (setting 1 = ( + )/2 and 1 = ( + )/2) by using the expressions for ˜ and ˜ and noting that if ′′ ,ℎ ( ) is zero unless | -ℎ| ≤ so that

′′ ,ℎ ( -) 2 L 1 ( ) ¯ ≤2 2 L 2 ( ) and ′′ ,ℎ ( -) 2 L 0 ( ) 1 ¯ ≤2 2 L 2 0 ( ) .
The restriction of ¯ and ¯ to = { > 0} follows from the fact that the factor ′ ,ℎ ( ) and ′′ ,ℎ ( ) in ˜ and ˜ vanish otherwise.

By interpolation we can start from the L 1 norm. Lemma 6. Assume the setup of Lemma 5 with ℎ > 0 and take as in the statement of Theorem 2 exponents 0 and and let ¯ 0 be the exponent given by

1 ¯ 0 + 1 0 = 1 2 .
Then there exists a constant 3 and exponent such that for 0 < < and 0 < < it holds that

L 1 ( 0 , ) ≤ 3 L 1 ( 0 , ) + 3 where (with * 0 as the dual exponent of 0 ) = 1 + 1 - + 1 - 2 1 + Λ L 1 ( ) + L 0 ( ) 1 + Λ L ¯ 0 ( ) + L ¯ 0 ( ) + L ¯ 0 ( ) + L ( ) + L * 0 ( ) and = 1 + 1 - + 1 - 2 1 + Λ L 1 ( ) + L 0 ( ) L 2 ( ) + 1 2 L 2 0 ( ) + ( + ℎ) L 2 ( ) + + ℎ 2 L 2 0 ( ) + L 0 ( ) + L 0 ( ) .
Proof. For ∈ [0, 1] define the cylinder 0 = 0 , with = + ( -) and = + ( -)

and let ( ) = L 1 ( 0 ) . For 0 ≤ 1 < 2 ≤ 1 apply Lemma 5 to find with a constant ˜ 2 ( 1 ) ≤ ˜ 2 1 + 1 2 -1 2 L 0 ( 0 2 ) + .
As 1 < 0 < 1 there exist interpolation parameter ∈ (0, 1) such that for all > 0

L 0 ≤ 1- L 1 L 1 ≤ L 1 + (1 -) - 1- L 1 .
By the interpolation we find with a constant ˜ 3

( 1 ) ≤ ( 2 ) + ˜ 3 1 + 1 2 -1 2 1- 1 1- L 1 ( ) +
.

The result now follows by a standard argument for geometric series, see e.g. [START_REF] Giusti | Direct methods in the calculus of variations[END_REF]Lemma 6.1]. Consider for some < 1 the sequence = 1 -.

Then the previous argument shows

( -1 ) ≤ ( ) + ˜ 3 1 1- L 1 ( ) + 1 + 1 (1 -) -1 2 1-
and iterating the argument shows that for any ∈ N

(0) = ( 0 ) ≤ ( ) + ˜ 3 1 1- L 1 ( ) + =1 -1 1 + 1 (1 -) -1 2 1- .
For sufficiently close to 1, the series converges and the result follows.

We can now collect the different parts.

Proof of Theorem 2. By considering / instead of where =

L 1 ( 0 , ( 0 , 0 )) + L ( 0 , ( 0 , 0 )) + L ( 0 , ( 0 , 0 )) it suffices to prove sup 0 , ( 0 , 0 ) ≤ (1 + )
under the assumption that

L 1 ( 0 , ( 0 , 0 )) + L ( 0 , ( 0 , 0 )) + L ( 0 , ( 0 , 0 )) ≤ 1.
For the proof, consider a sequence of cylinders 0 = 0 , ( 0 , 0 ) for ∈ N where

= + 2 -( -) and = + 2 -( -).
On the cylinders consider the regularised cutoffs = ,ℎ ( ) where

ℎ = (1 -2 -) and = 4 2 -
for a parameter ≥ 1. We then study

= L 0 ( 0 +1 ) and = ∩ { > 0}.
As a first step we will then show for an exponent 1 > 0 the initial bound

1 (1 + ) 1 1-1 0 . ( 23 
)
The second step is to show for a constant and exponents 2 , > 0 that

(1 + ) 2 1+ -1 . (24) 
Hence for (1 + ) for some exponent > 0 we have that → 0 as → ∞ which implies the result.

Initial bound [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] This follows from applying Lemma 6 twice. As a first step apply it between the cylinders 0 1 and 0 0 with 0,1 ( ) to find 0,1 ( )

L 1 ( 0 1 ) (1 + ) 2 .
By Hölder this implies for large enough that

| 1 | -1 1 (1 + ) 2 .
Using again Hölder, this shows by the choice of the integrabilities that for large enough

( 1 + ℎ 1 ) L 2 ( 1 ) + + ℎ 2 L 2 0 ( 1 ) + L 0 ( 1 ) (1 + ) 2 .
Hence we can apply Lemma 6 again to find with some exponent

1 1 L 1 ( 0 1 ) (1 + ) 1 .
This yields ( 23) by another application of Hölder.

Iteration step [START_REF] Pascucci | A Gaussian upper bound for the fundamental solutions of a class of ultraparabolic equations[END_REF] Note that the regularisations are chosen such that + +1 ≤ (ℎ +1ℎ )/2 so that

{ +1 > 0} ⊂ { > (ℎ +1 -ℎ )/2} and +1 ≥ . (25) 
Hence we find by Hölder that

| | 1/ 0 ≤ 2 ℎ -ℎ -1 -1 . (26) 
and

≤ | | 1 0 -1 1 L 1 ( 0 +1 ) . (27) 
By Lemma 5 we estimate

L 1 ( 0 +1
) by going to 0 as

L 1 ( 0 +1 ) 8 (1 + ) 2 (1 + )| | 1 0 + L 0 ( 0 ) (28) 
by noting the bounds

(1 + Λ) L 2 ( ) ≤ (1 + Λ L ¯ 0 ) L 0 ( 0 ) ¯ L 2 ( ) ≤ L ¯ 0 | | 1 2 -1 ¯ 0 + L ¯ 0 (1 + )| | 1 2 -1 ¯ 0 + L 0 ( ) L 2 ( ) ≤ L ¯ 0 | | 1 2 -1 ¯ 0 ¯ 1/2 L 1 ( ) ¯ L * 0 ( ) + L 0 ( ) ( L + (1 + ) L ) | | 1 * 0 -1 + (1 + L ) L 0 ( ) ¯ L 0 ( ) ≤ L | | 1 0 -1 + L (1 + )| | 1 0 -1 + L 0 ( ) 1 ¯ ≤2 2 L 2 0 ( ) 2 (1 + ) 2 L + 2 L | | 2 1 2 0 -1 .
Chaining ( 26), ( 27) and ( 28) then yields the required bound [START_REF] Pascucci | A Gaussian upper bound for the fundamental solutions of a class of ultraparabolic equations[END_REF].

Weak Harnack inequality

In this section we prove Theorem 3. We first introduce a regularised version of (log( )) + as ∈ 2 ((0, ∞)) by

( ) = (-log + -1) ≤1 so that ′ ( ) = - 1 + 1 ≤1 ≤ 0 and ′′ ( ) = 1 2 ≤1 ≥ 0. This implies ′′ ( ) ≥ [ ′ ( )] 2 . ( 29 
)
As already used in Nash [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF], then consider = ( ) where

( ) = + 1 +
for a small enough > 0. As ≥ 0 we have the trivial bound

| | ≤ (0). ( 30 
)
The strategy is to use ( 29) and ( 30) in order to gain a control of the rough form ì 2 L 2 (0). In the parabolic case, we can reinterpret the argument by Nash [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] as using the information that ≥ 1 in to conclude by a variation of Poincaré and the supremum bound that

L ∞ ì L 2
(0). As we have gained a square root, we can then make sufficiently small to conclude a non-trivial bound on L ∞ which yields the statement. In the classical non-degenerate setting, this ideas has been used in [START_REF] Kruzhkov | A priori estimates for generalized solutions of second-order elliptic and parabolic equations[END_REF][START_REF] Kruzhkov | Apriori estimates and certain properties of the solutions of elliptic and parabolic equations[END_REF][START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF][START_REF] Moser | On Harnack's theorem for elliptic differential equations[END_REF] and in the kinetic and Kolmogorv setting [START_REF] Anceschi | A note on the weak regularity theory for degenerate Kolmogorov equations[END_REF][START_REF] Guerand | Log-transform and the weak Harnack inequality for kinetic Fokker-Planck equations[END_REF][START_REF] Wang | The regularity of a class of non-homogeneous ultraparabolic equations[END_REF][START_REF] Wang | The regularity of weak solutions of ultraparabolic equations[END_REF]. Here we differ by using the dual problem to conclude the result (instead of a Poincaré inequality inspired by the framework of [START_REF] Albritton | Variational methods for the kinetic Fokker-Planck equation[END_REF][START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]).

As is a supersolution, we apply Lemma 4 to conclude together with (29) that

˜ + 2 | ì | 2 ≤ 0 ( 31 
)
where ˜ is the operator in [START_REF] Giusti | Direct methods in the calculus of variations[END_REF] with the new coefficients ˜ , ˜ , ˜ , ˜ , ˜ , ˜ .

Σ Σ 0 1 2 ,2 0 1 3 ,1 ( 0 , 0 ) ì 2 (0) 
Comparison with smooth dual problem For a parameter which is chosen large enough later, we take by (H2) the sets Σ and Σ . Then we obtain the result in the following steps, cf. Fig. 6. By integrating the trivial L 1 bound we find that

L 1 control L ∞ control
ì 2 L 2 ( Σ ) ≤ ˜ 1 ( ) (0) + Λ 2 L 2 (Σ ) + ˜ L 1 (Σ ) + ˜ 2 L 2 (Σ ) + ˜ L 1 (Σ ) (32) 
for a constant ˜ 1 and a constant ( ) depending on . Then integrating with the solution of the dual problem solving ( 16) from (H1), we find for ¯ 2 from the statement of Theorem 3 and a constant ˜ 2 and a new constant ( ) depending on that

2 L 1 ( 0 1/2,2 ) ≤ ˜ 2 (0) 2 + ( ) (1 + Λ L ¯ 2 ( Σ ) + ˜ L ¯ 2 ( Σ ) ) 2 ì 2 L 2 ( Σ ) + ˜ 2 L 2 ( Σ ) + ˜ 2 L 2 ( Σ )
(33) and by the supremum bound we finally conclude that by choosing = (1 + ) for sufficiently large that

2 L ∞ ( 0 1/3,1 ) - (0) 2 2 (1 + ) 2 (1 + Δ) 2 (0) + 1 + Δ 2 + - 2 L (Σ ) 2 + - 2 L (Σ ) 2 + - 4 L 2 (Σ ) 4 . (34) 
By taking small enough, we will then conclude the result.

Integrating L 1 bound Take the cutoff from (H2) and consider the localised L 1 norm

( ) = ∫ Σ ∩( { }×R ) ( , ) 2 1 ( , ) d .
By [START_REF] Wang | The regularity of weak solutions of ultraparabolic equations[END_REF] we find as Σ is bounded the trivial bound

( ) ( ) (0) 
.

By [START_REF] Zhu | Velocity averaging and Hölder regularity for kinetic Fokker-Planck equations with general transport operators and rough coefficients[END_REF] we find that

d d ≤ -4 ∫ | ì | 2 2 + div 0 ∞ + 2 ∫ Λ 2 | ì | 2 + ∫ | ˜ | | ì 2 | + 2 ∫ | ˜ | 2 2 + ∫ | ˜ |.
Integrating over time hence yields the claimed control (32).

Comparison with dual problem

Let be the solution of the smooth dual problem [START_REF] Imbert | The Schauder estimate in kinetic theory with application to a toy nonlinear model[END_REF] where is given in [START_REF] Kolmogoroff | Zufällige Bewegungen[END_REF]. Then consider with the cutoff ˜ from (H2)

( ) = ∫ Σ ∩( { }×R ) ˜ d .
We then find

d d ≤ - ∫ ( ˜ ) - ∫ [ ˜ - ˜ ] + ∫ ˜ + ∫ ˜ ( ˜ ) + ∫ ˜ ˜ + ∫ ˜ ˜ + ∫ .
By construction ( ) = 0 if ∈ so that the last term vanishes and ≡ 0 for = -1. Hence integrating ∈ [0, 1] yields (using (H2) for bounding ˜ )

( ) ì L 2 ( Σ ) (1 + Λ) ì L 2 ( Σ ) + (1 + Λ) L 2 ( Σ ) + ˜ L 2 ( Σ ) + (0) L 1 ( [-1,0]×R ) -1 + ˜ L 2 (Σ ) L 2 (Σ ) + L 2 (Σ ) + ˜ L 2 (Σ ) L 2 (Σ )
By (H3) we find that L 1 ( 0 1/2,2 ) ≤ -1 0 sup ∈[-1/2,0] ( ) so that the claimed estimate (33) follows by the bounds of (H3). But this clearly implies = 0 a.e. Since > 0 was chosen arbitrary the conclusion follows.

B. Construction of comparision function

In this section, we will discuss how the Hörmander estimates can be used to verify (H1). Here we take bounded balls and ext and the corresponding parabolic domains Ω and Ω ext . Between the balls and ext , find a smooth cutoff and consider ext 0 = 0 + ∇ • ((1 -) 2 ∇•). For any > 0, we can then find by standard parabolic theory or the method of continuity a solution of .

         ( 0 -ext 0 -Δ) = + =1 in Ω ext ∩ { > in }, = 0 on { in } × ext ∪
By compactness, we can therefore find a weak limit ∈ L 2 (Ω ext ∩ { > in }) with the same bound solving

         ( 0 -ext 0 ) = + =1 in Ω ext ∩ { > in }, = 0 on { in } × ext ∪ ( in , 2 ) × ext
Here the bound on (1 -)∇ L 2 (Ω ext ∩{ > in }) imply by the trace theorem that = 0 on ( in , 2 ) × ext has a well-defined meaning and still holds for the limit . Going back to the equation, this shows on Ω that

H 1 hyp (Ω ∩{ > in } + 0 H -1 hyp (Ω ∩{ > in } L 2 (Ω ext ∩{ > in }) + L 2 (Ω ext ∩{ > in }) .
Under the commutator condition, Hörmander [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF] shows for some > 0 that

H (Ω ∩{ > in } H 1
hyp (Ω ∩{ > in } + 0 H -1 hyp (Ω ∩{ > in } , which implies the thought bound [START_REF] Garain | On regularity and existence of weak solutions to nonlinear Kolmogorov-Fokker-Planck type equations with rough coefficients[END_REF] by Sobolev embedding for some 1 > 2 and 0 = 1 = 2. 
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 2 Figure 2: Illustration of the enlarged domain with the control of cutoff in (H2).
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 4 Figure 4: Illustration of weak Harnack inequality (Theorem 3).
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 12 ) By this gained control, we can compare with the solution of the smooth problem and gain the claimed control in Assumed bound onL 2
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 5 Figure 5: Illustration of the strategy of proof for Lemma 5.
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 6 Figure 6: Illustration of the overview of proof for Theorem 3.

Lemma 8 .

 8 Let ∈ H 1 hyp (Ω ext ∩ { > in }) be a weak subsolution of( 0 -ext 0 ) ≤ 0 in Ω ext ∩ { > in }, = 0 on { in } × ext ∪ ( in , 2 ) × ext (35) then ≤ 0 a.e. in L 2 (Ω ext ∩ { > in }).Proof. Let > 0 and consider the non-decreasing convex function ( ) = ,2 ( ) = * ( -2 ) + . Since by assumptions ∈ L 2 (Ω ext ∩ { > in }) for = 1, . . . , , it is not hard to check that = ( ) is still a weak subsolution of (35) with ∈ L 2 (Ω ext ∩ { > in }) for = 1, . . . , . Testing the equation with and using a classical Gronwall argument one obtains sup> in L 2 (Ω ext ∩{ = in }) ≤ 0 .

Remark 4 .

 4 The discussion of local hypoelliptic operator to the whole space with uniform bounds is discussed in Bramanti, Brandolini, Lanconelli, and Uguzzoni [6, Part 1].

  ( in , 2 ) × ext with the uniform L 2 estimate L 2 (Ω ext ∩{ > in }) + ì L 2 (Ω ext ∩{ > in }) + (1 -)∇ L 2 (Ω ext ∩{ > in }) L 2 (Ω ext ∩{ > in }) + L 2 (Ω ext ∩{ > in })
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Using the supremum bound and conclusion By using the supremum bound (Theorem 2) between 0 1 3 ,1 and 0 1 2 ,2 , we find with a constant ˜ 3 and a new constant ( ) depending on that

By choosing sufficiently large and setting = (1 + ) , we find

Plugging in (32) then gives the claimed estimate (34). As (0) → ∞ as → 0, we can then find a sufficiently small such that (34) becomes

) -

By letting small enough this shows that ≤ (5/4) (0) in 0 1 3 ,1 . As the relation

(5/4) (0) implies ≥ for a constant , this shows the result.

A. Notes on function spaces

We first note that ∈ H 1 hyp and 0 ∈ H -1 hyp implies with (H1) more regularity.

Lemma 7. For a domain Ω suppose (H1) and suppose ∈ H 1 hyp (Ω ) with 0 ∈ H -1 hyp (Ω ). Then ∈ 1 (Ω ).

Proof. Take a compactly supported subset Ω ′ of Ω and let be a smooth cutoff. Then ∈ H 1 hyp and 0 ( ) ∈ H -1 hyp as we can note

Due to embedding ∈ H 1 hyp ↦ → ( , ì ) ∈ (L 2 ) +1 every element ∈ H -1 hyp can be represented as = -+ 0 . Hence (H1) yields the result.

After the above described control of ∈ L 1 all the a priori estimates can be defined by standard methods.

Furthermore we shortly want to recall a simple argument for a weak maximum principle in the setting of hypoelliptic operators: