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Abstract
With the explosion of e-commerce, optimizing parcel transportation has become in-
creasingly important. We study the long-haul stage of parcel transportation which
takes place between sorting centers and delivery depots and is performed on a two-
level hierarchical network. In our case study, we describe the application framework
of this industrial problem faced by a French postal company: There are two vehi-
cle types which must be balanced over the network on a daily basis, and there are
two possible sorting points for each parcel, which allows a better consolidation of
parcels. These industrial constraints are formalized in the Long-Haul Parcel Trans-
portation Problem (LHPTP). We present a Mixed Integer Linear Program (MILP)
and a hierarchical algorithm with aggregation of demands which uses the MILP as
a subroutine. We perform numerical experiments on large-size datasets provided by
a postal company, which consist of approximately 2500 demands on a network of
225 sites. These tests enable the tuning of certain parameters resulting in a tai-
lored heuristic for the LHPTP. Our algorithm can serve as a decision aid tool for
transportation managers to build daily transportation plans, modeled on solutions
produced given daily demand forecasts, and can also be used to improve the network
design.

KEYWORDS
Optimization; Network Design; Long-Haul Transportation; Parcel Transportation;
Hierarchical Network

1. Introduction

In 2020, over two billion people purchased goods or services online (Statista, 2021).
Each year, this number increases, generating a greater need for efficient transportation
of goods, which provides motivation for parcel transportation companies to constantly
adapt and optimize their transportation service networks. The parcel transportation
process is composed of four steps: collection, long-haul transportation, distribution
and delivery (Sebastian, 2012). The optimization of the long-haul transportation on
the road network is addressed in this work, which extends a preliminary conference
paper (Gras et al., 2021) and PhD thesis (Gras, 2021).

Long-haul transportation is defined as intercity transportation (Crainic, 2003).
Other stages of parcel transportation include how parcels reach an initial sorting center
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(the first-mile collection problem addressed by Wang and Huang 2020), how parcels are
delivered from depots to post offices (the distribution problem addressed by Timperio
et al. 2020), and how parcels are sent from post offices to final clients (the last-mile
delivery problem addressed by Jiang et al. 2020). These different stages can be solved
separately, and we only address the long-haul stage of parcel transportation in this
paper. As long-haul parcel transportation addresses transportation of large volumes
of parcels over long distances, a better use of vehicles and logistics operations such as
sorting leads to improved consolidation and economies of scale.

In this work, the Long-Haul Parcel Transportation Problem (LHPTP) is formally
defined. We now give a general overview of the problem framework before outlining our
contributions. The input of the LHPTP consists of transportation demands, each rep-
resented by a triple consisting of an origin, a destination and a number of parcels, and
the road network composed of possible origin, destination and intermediate sites and
links between them. The objective of the problem is to minimize the costs (transporta-
tion costs, operation costs, personal costs and vehicle costs) for the postal company
while delivering all of the demands. Here, we consider a predesigned road network
for a French postal system of around 225 sites as the application platform for our
algorithm. The network has nodes representing two sets of sites, sorting centers and
delivery depots, within a two-level (inner and outer level) hierarchical structure which
has a hub-and-spoke configuration on each level of the network. The inner level of the
network is composed of sorting centers, which can be inner-hubs. These inner-hubs are
points at which an extra consolidation of demands with different origins and/or desti-
nations can be applied. The outer level of the network is composed of sorting centers
and delivery depots. We call the sorting centers outer-hubs as they are hubs for their
corresponding delivery depots. Over this two-level network, demands have to be routed
from sorting centers to delivery depots directly or through at most two other sorting
centers. Parcel transportation is performed with two types of vehicles: trucks with one
or two containers. The number of vehicles (and containers) in the network is unlimited.
The output of the LHPTP is a transportation plan for routing the (projected) demands
that is meant to be applied on a daily basis over the course of some time period (a
year, for instance).

Our contribution is threefold. Firstly the LHPTP, a new mathematical optimization
problem, is introduced and formulated. We present a precise definition corresponding
to the problem of long-haul transportation on a two-level network with a sorting
operation which arises in our case study on a French postal network. We then show
how to formulate it as a path-based Mixed Integer Linear Program (MILP) which
mixes paths and flows. The second contribution is a solution approach: We present an
algorithm, the Hierarchical Aggregation of Demands (HAD) Algorithm to solve the
LHPTP. This algorithm is used to find a solution to realistic problem instances from
our case study which have been provided by transportation managers and consist of
likely daily demand distributions. To solve the LHPTP, the HAD Algorithm exploits
the hierarchical structure of the postal network to design good transportation plans
by applying a divide-and-conquer approach that yields tractable subproblems small
enough to be solved optimally by MILP. This combination of divide-and-conquer and
MILP appears to be rare in the case of service network design problems. Additionally,
we were inspired by the idea of Baumung and Gündüz (2015) of sending large demands
directly and consolidating residual demands. To apply this idea to our approach, we
choose to directly send (bypassing all sorting operations) trucks whose load is more
than the truck filling rate threshold, rather than only the trucks that are fully filled.
We test various possible truck filling rate thresholds in order to measure the impact of
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this threshold on the quality of the solutions in terms of cost savings and fill rates. The
HAD Algorithm produces good globally optimized solutions for the model datasets
from our case study faster than solving the MILP with a solver.The third contribution
shows how the algorithm can be used as a decision aid tool by transportation managers
in two key ways: (i) to design daily transportation plans based on simulations based on
various scenarios and (ii) to modify/set certain parameters of the transportation net-
work to achieve better performance. Firstly, the HAD Algorithm is a tool designated
for transportation managers to determine a tactical daily strategy to use on a midterm
(e.g., yearly) basis. The datasets used for the tests are projections for the future. The
HAD Algorithm allows to simulate various scenarios (e.g., daily demand forecasts).
The objective is to avoid running the algorithm every day as the upheaval of routing
the parcels according to a different strategy from one day to the next would be too
great. Rather, the algorithm provides solutions for the model problem which serve
as a guide for the transportation managers who make the final decisions about the
on-the-ground strategy for the long-haul routing of parcels. In other words, the trans-
portation managers can use the algorithm as a black-box decision aid tool to design
transportation plans. The second way of using the HAD Algorithm is to simulate what
happens when various network parameters are modified (e.g., choice of intermediate
sorting sites) to see which one will result in the cheapest transportation solution. Using
the simulations, we test different ratios of sorting cost versus transportation cost to see
how it impacts the optimal set of inner-hubs that should be included in the network.

The remainder of this paper is organized as follows. In Section 2, we present a review
of related work in order to position the LHPTP in the literature and compare it to
other transportation problems. In Section 3, the application framework from which the
LHPTP is derived is described and the LHPTP is defined. We also present a math-
ematical formulation for the problem. Next, in Section 4, an algorithm which solves
the LHPTP via the aggregation of demands and the MILP is presented: the HAD
Algorithm. In Section 5, we present the test environment and datasets for numerical
experiments. The results obtained by running the HAD Algorithm on these large real
datasets are discussed in Section 6. In this section, we also discuss how to use the algo-
rithm to optimally set parameters such as the truck filling rate threshold. In Section 7,
we consider how transportation managers can use the HAD Algorithm as a decision aid
tool to make decisions about some important aspects of the transportation network
such as the selection of inner-hubs. Finally, we conclude with some perspectives on
further applications in Section 8.

2. Literature Review

In a hierarchical network, the set of sites of the same type (inner-hubs, sorting cen-
ters, depots) forms a layer. Each pair of layers constitutes one level of the hierarchical
network and is sometimes referred to as an echelon. Two-level networks are a spe-
cial case of multi-level networks. Surveys on two-level problems have been written by
Gonzalez-Feliu (2011) and Cuda, Guastaroba, and Speranza (2015). The most stud-
ied two-level problems are the Vehicle Routing Problem (Rahmani, Cherif-Khettaf,
and Oulamara, 2016) and the more general Inventory Routing Problem (Farias, Hadj-
Hamou, and Yugma, 2021). Hub-and-spoke network are commonly used in the design
of long-haul transportation networks. Bryan and O’Kelly (1999) provide a formal def-
inition of a hub-and-spoke network as a network whose links either begin or end at a
hub, the other extremities of the links being the spokes, and also provide a comprehen-
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sive review of such networks in transportation. O’Kelly (1998) analyzes transportation
hub-and-spoke networks and explains why it is sometimes useful to add direct links to
them. A hub-and-spoke network in which there are possibilities to bypass the inner-
hubs with direct links is called a hybrid hub-and-spoke network (Zäpfel and Wasner,
2002; Zhang, Wu, and Liu, 2007; Lee and Moon, 2014) as opposed to a pure hub-and-
spoke network. Zhang, Wu, and Liu (2007) study a hybrid hub-and-spoke network,
with demands from sorting center 2 to sorting center; there are three types of vehicles,
and they discuss the issue of choosing direct paths versus using hubs.

Zäpfel and Wasner (2002) study the planning and optimization of hybrid hub-and-
spoke transportation on the case of parcel delivery in Austria using an MILP. In this
problem, there is the same type of vehicle fleet as in the LHPTP, but there is a one-level
network, since their demands are from depot to depot. Meisen (2015) works on parcel
transportation in Germany (33 hubs and 200 depots). He introduces an MILP, which
is an arc-based formulation, in which the next day delivery is the objective of the opti-
mization process. Lee and Moon (2014) study a hybrid hub-and-spoke network in which
they select hubs via an MILP which simultaneously solves a hub location problem and
optimizes the transportation, on the case of Korea Post. They focus on optimizing
the transportation on the inner level of their network and do not address the trans-
portation on the outer level between sorting centers and depots. Zhang, Payan, and
Mavris (2021) optimize the long-haul transportation aspect of courier service network
efficiency in the USA on a hub-and-spoke network with consolidation. They present
an Integer Linear Program (ILP) to enhance consolidation for courier service network
design. Their two-level network has a limited fleet to manage and combines air and
road transportation.

The Hub-and-Spoke Network Design (HSND) problem, sometimes called the hub
network design problem (see O’Kelly and Miller 1994) and originally formulated by
O’Kelly (1987) as a quadratic integer programming model, involves four steps: (i)
optimizing the locations of the hubs; (ii) linking non-hub sites to hubs; (iii) creating
links between the hubs; and (iv) routing flows through this network. In the LHPTP,
the focus is on the last three steps.

Lin and Chen (2004) give a definition of a hierarchical hub-and-spoke network : it is a
network in which each site is assigned to exactly one hub. It is similar to our network but
does not contain any inner-hubs. They address the time-constrained hierarchical hub-
and-spoke network design problem as they consider simultaneously the time constraint
and the design of routes, fleet size and schedules. Their case study is on the ground-
exclusive network of an express common carrier in Taiwan. A review of the state of the
art of HSND has been presented by O’Kelly (1998) and other HSND problems have
been studied by Meng and Wang (2011) and Lin and Chen (2008). Hu, Askin, and
Hu (2019) study a hub relay network design problem for long-haul transportation and
optimize the driver routes. Baumung and Gündüz (2015) studied an HSND problem
for parcel distribution tested on the data of Australia Post (from 10 to 50 sorting
centers). Their heuristic consists in sending trucks fully filled with parcels for the same
destination (sorting center) until there are not enough parcels at the origin sites to
fill a truck. The remaining parcels are called residual volumes and these volumes are
consolidated into trucks. They define a problem for each set of demands (the main
volumes and the residual volumes) and each problem is solved separately. The main
volumes are sent in fully filled trucks from sorting center to sorting center and the
routing of the remaining parcels, which constitutes a so-called Residual Volumes Hub

2A sorting center refers to a site where parcels are (re)sorted and dispatched in containers.
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Location Problem, is optimized with an MILP. Note that they consider one vehicle
type, one level of network (consisting of sorting centers and hubs) and they do not
mention balancing the empty vehicles.

The closest problem to the LHPTP in the literature is the problem studied by Cohn
et al. (2007). They study parcel delivery on the US freight transportation network (for
UPS), which is modeled as a one level network. They present an arc-based model on
a time-space network which they solve via an integer linear program with a non-linear
cost structure. Indeed, as parcels with the same origin and destination must use a
single path, their model corresponds to an integer linear program.

While most of the key aspects of the LHPTP appear in the parcel transportation
literature, they have each been studied separately and not considered together. For
example, in the LHPTP there is more than one vehicle type (as in Lee and Moon
2014; Zäpfel and Wasner 2002; Zhang, Wu, and Liu 2007; Zhang, Payan, and Mavris
2021), and there is a two-level network (as in Lee and Moon 2014; Zhang, Payan, and
Mavris 2021). The costs of parcel long-haul transportation are minimized on both levels
simultaneously (unlike Lee and Moon 2014 which optimizes only the core level). A key
feature of the LHPTP is that there is no tour that visits a sorting center and all its
associated delivery depots due to bulk transportation requirements (see Section 3.1 for
more details). In previous work, this transportation stage often involves a tour (Zäpfel
and Wasner, 2002). In the sorting centers, sorting capacity is not considered (unlike
Lee and Moon 2014; Baumung and Gündüz 2015) as these sites have appropriately-
sized sorting capacity. We simultaneously optimize the long-haul transportation and
the balance of vehicles over the course of day on a two-level network with splittable
demands which is an original aspect in the scope of parcel transportation to the best
of our knowledge.

Moreover, the models presented in the literature related to the LHPTP do not
present a systematic approach to the general problem of long-haul parcel transporta-
tion. One of the main differences, for example, between previous work and our model
is that other works treat the long-haul stage of parcel delivery as a single level; there is
very little treatment of two-level networks with logistics operations on parcels permit-
ted between the levels. Furthermore, in a two-level network, some issues arise which
do not apply to a simpler model; for instance, balancing vehicles between intermediate
sites (i.e., not origin/destination sites).

The LHPTP is actually a family of problems based on various parameters (e.g.,
allowed logistic operations, limited fleet versus unlimited fleet, vehicle balancing con-
straints, vehicle types, arc capacity, etc.). In the routing literature, there is no single
model that can be used to accurately represent this family of problems.

3. The Long-Haul Parcel Transportation Problem

The LHPTP is basically a Service Network Design problem (Crainic, 2000) with Hub-
and-Spoke structure. It has additional distinct properties and strong industrial con-
straints such as the fact that demands have both fixed origin and destination and the
sorting operation has a cost per parcel. This prevents us from simply applying an ex-
isting model proposed for another Service Network Design problem in the literature.
After the presentation of the application framework of the problem, we introduce a
specific MILP for the LHPTP, which can be adapted to solve other long-haul parcel
transportation problems (e.g., with different vehicle types, without vehicle balancing,
or with sorting capacity constraints, etc.).
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3.1. Application Framework and Problem Description

The problem of long-haul parcel transportation via trucks with one or two containers
is formulated based on a case study on a French national postal network composed of
around 225 sites with around 2500 demands being routed each day between these sites.
The sites are divided into two sets: sorting centers and delivery depots. Parcels and
vehicles start at sorting centers, while delivery depots are the destination of parcels.
In the datasets provided by the postal company and used for the tests, there are on
average 17 sorting centers and 208 delivery depots. Some of the sorting centers are also
inner-hubs selected by the transportation managers.

The parcels are physical objects which must be routed from a designated origin
sorting center to a specified delivery depot. Each container has the same volume and
can transport a large number of parcels, and each parcel is assumed to be the same
size, which is a very small size compared to the volume. A demand is constituted of
all the parcels which share the same origin and destination and is represented by the
triple consisting of an origin, a destination and a number of parcels. A daily demand
forecast (the same each day) is given as input to the LHPTP. (In our case study,
several demand forecasts that model “average days” are provided by transportation
managers.) The objective is to design a transportation plan to deliver all the demands
at a minimum cost (see objective function 1a). The cost of a solution is composed of
the costs of the logistics operations (e.g., sorting) and costs of transportation (e.g.,
fuel, vehicles and drivers’ salary, etc.).

In this paper, only one logistics operation is incorporated: the sorting. It occurs
in sorting centers. After a sorting, all parcels in the same container share the same
intermediate destination on their operational path. Consolidation is when demands
destined for different final sites are put in the same container. The parcels are shipped
in bulk in containers. As a container cannot be partially unloaded, it transports parcels
to a single site, which is either the final delivery depot or an intermediate sorting center
for each of these parcels. This means when consolidation between demands occurs, there
is always a sorting operation which comes afterwards: sorting centers are breakbulk
terminals (Crainic, 2003).

The parcels are transported on a road network composed of two hierarchically nested
hub-and-spoke networks (see Figure 1). The inner level of this two-level network is
composed of sorting centers. A sorting center on an operational path between two
sorting centers is called an inner-hub. The outer level of the network is made of sorting
centers and delivery depots. Indeed, each delivery depot is affiliated with a sorting
center called an outer-hub, usually the closest (with respect to travel time). A catchment
area is the area which contains the delivery depots affiliated with a sorting center,
including this sorting center. The mapping of the catchment areas is created with the
experience of transportation managers. This mapping is used in the current operational
strategy which handles the parcels regionally. The parcels are sent to the catchment
area containing their delivery depot, sorted in their corresponding outer-hub and sent
to their delivery depot to be transported in the last-mile portion.

The inner network concerns the sorting centers. It is a hybrid hub-and-spoke network
as shown in Figure 1a. Parcels can either be sent directly from their origin sorting center
to the sorting center corresponding to their destination before they reach their delivery
depots. Or they can be consolidated at an inner-hub and then sorted at a sorting center
before they reach their delivery depots. Consolidation of demands allows to better
fill trucks and reduce the number of trucks required, thus it results in costs savings.
Figure 1b shows the outer network, composed of sorting centers and delivery depots
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(a) Inner hybrid hub-and-spoke network. (b) Outer hybrid hub-and-spoke network.

Figure 1. Caption: The two levels of a two-level hybrid hub-and-spoke network.
Figure 1. Alt Text: Two pictures of directed graphs to depict the two levels of two-level hybrid hub-and-spoke
network, one picture corresponding to each level. The first graph has three nodes representing three sorting
centers, one of which is a inner hub that can be used to route parcels between the other two sorting centers.
The second graph uses edges to show the connection between the delivery depots (represented by blue squares)
to their respective sorting centers (represented by yellow circles). The grey areas depict catchment areas.

(the final destinations). These delivery depots (D-D in Figure 1b) are the spokes of
the hybrid hub-and-spoke network in which the outer-hubs are the associated sorting
centers. Thus, the key point of Figure 1 is that parcels can be consolidated once or
twice, depending on whether or not they use an inner-hub.

Two types of vehicles transport the parcels on the network: trucks with one container
and trucks with two containers (also called twin trailers). The number of vehicles and
the number of containers are unlimited. These quantities can be determined appropri-
ately in the optimization process to suit the requirements. All vehicles are trucks, and
the travel time for a fixed path is the same for all of them. The vehicle type (i.e., one
or two containers) affects only its capacity and cost.

Links are used by vehicles to go from one site to another in the network (they
can also be viewed as arcs in a graph). An operational link is defined as a link from
one site to another site associated with a vehicle type and a specified time period.
The cost of an operational link is the cost for the vehicle to traverse the link. An
operational path is defined as a set of consecutive operational links between sites in
which each site is associated with an operation (sorting or delivery) performed on a
parcel flow at a time slot. The cost of a path is the cost of the sortings on this path
which depends on the number of parcels sorted. Each parcel can either be (i) sent on
a direct path from its origin sorting center to a delivery depot, or (ii) it undergoes a
single sorting at a sorting center (not necessarily an inner-hub), or (iii) it undergoes
two sortings, the first one at an inner-hub and the last one at the sorting center to
which its delivery depot is associated (see Figure 2). In the LHPTP, each demand
can be split over multiple operational paths in the transportation plan: this is called
disaggregate shipping (Leung, Magnanti, and Singhal, 1990).

The parcels are required to be delivered in one or two days (respectively called
D+1 and D+2 deliveries). Thus a transportation plan includes demands from the
previous day that require two days to reach their destination. This transportation
plan is sometimes called daily transportation plan. We remark that to design a daily
transportation plan, it is necessary to ensure that enough vehicles and containers are
available each day on each site to accommodate all the parcels. This is guaranteed
by enforcing the number of outgoing and incoming vehicles to be equal for each site
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Figure 2. Caption: The three possible types of operational paths for routing parcels.
Figure 2. Alt Text: A picture of a directed graph illustrating the three types of operational paths. The graph
has four vertices denoted by two yellow circles (sorting centers), one blue square (delivery depot) and one inner
hub (orange octagon). The three path types are (i) a direct link from a yellow circle to the blue square, (ii) a
path from one yellow circle to the yellow circle ending at the blue square, and (iii) a path from a yellow circle
to orange octagon to the other yellow circle ending at the blue square.

in the course of a day. To do this, we use balance constraints on vehicles and more
specifically, on vehicle types (i.e., that in and out flow are equal at each site). This
sometimes requires the transport or repositioning of empty vehicles.

The LHPTP can now be defined. The input of this optimization problem consists
of:

• A transportation network with sites, their types and the distances between them;
• Demands between these sites (from sorting centers to delivery depots in our case);
• Operation and transportation costs for each vehicle type;
• Capacities of vehicles.

The output of the LHPTP is a transportation plan for the input demands which consists
of the operational path(s) for each demand and the number of vehicles with one or
two containers on each operational link. A solution for the LHPTP is required to
deliver all the parcels in a given network while respecting the vehicle capacity and
balance constraints (discussed next). The objective is to minimize the sorting and
transportation costs.

3.2. Mathematical Formulation

The MILP formulation for the LHPTP is presented here. Since the definition of the
problem is based on possible operational paths, we propose a path-based model. This
model is designed in a way which allows to easily monitor the possible paths proposed
to the solver, especially when it comes to removing and/or adding some path types.

Let us define some notations:

• D is the set of demands. A demand is a triple (sd, td, vd), where sd is the origin,
td is the destination and vd is the volume (i.e., number of parcels to be routed
from sd to td).

• S is the set of all the sites (i.e., sorting centers and delivery depots),
• Lveh is the set of operational links between sites whose element li,j is the link

from site i to site j. Lveh = L1c ∪ L2c where L1c is the set of operational links
for vehicles with one container and L2c is the set of operational links for vehicles
with two containers,

• Pd is the set of possible operational paths for the demand d ∈ D,
• P l

d is the set of possible operational paths using the operational link l ∈ Lveh for
demand d ∈ D,

• V is the set of vehicle types.
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There are two types of variables, for parcel flows and vehicle flows:

• xdp ∈ [0, 1], with d ∈ D and p ∈ Pd, represent parcel flows. It is the percentage of
a demand d using an operational path p.

• yl ∈ N, with l ∈ Lveh, represent vehicle flows. They are integers which represent
the number of vehicles of the type veh on each operational link l.

Let us also denote:

• cp the cost of using the operational path p, (associated with the demand sharing
origin and destination with p),

• cl the cost of using the operational link l for a vehicle type,
• C1c the capacity of vehicles with one container, C2c the capacity of vehicles with

two containers (i.e., C2c = 2× C1c).

With this notation, our model, denoted LHPTP-MILP, can be described as follows.

min
∑
d∈D

∑
p∈Pd

cpx
d
p +

∑
veh∈V

∑
l∈Lveh

clyl (1a)

s.t.:

∀ d ∈ D,
∑
p∈Pd

xdp = 1 (1b)

∀ l ∈ L1c,
∑
d∈D

∑
p∈P l

d

vdx
d
p ⩽ yl · C1c

∀ l ∈ L2c,
∑
d∈D

∑
p∈P l

d

vdx
d
p ⩽ yl · C2c

(1c)

∀ s ∈ S,
∑
i∈S

∑
li,s∈L1c

yli,s =
∑
j∈S

∑
ls,j∈L1c

yls,j

∀ s ∈ S,
∑
i∈S

∑
li,s∈L2c

yli,s =
∑
j∈S

∑
ls,j∈L2c

yls,j
(1d)

with:

xdp ∈ [0, 1] (1e)

yl ∈ N (1f)

The LHPTP-MILP is composed of the objective (1a) and three major types of
constraints: the delivery constraints, the capacity constraints and the design-balance
constraints. The delivery constraints (1b) declare that all the parcels must be delivered.
The link capacity constraints (1c) associate the number of vehicles and the number
of parcels on each operational link. Finally, the design-balance constraints (see 1d)
balance trucks between sites on a daily basis. Since it takes the vehicle type into
account, this results in a balancing of containers. Note that we do not require that a
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vehicle be returned to its origin. (We use MILP* to denote the LHPTP-MILP without
the design-balance constraints (1d), since we will not need them for some subproblems.)

A container can carry parcels with different origins and destinations; thus an opti-
mal solution might not route each demand on its shortest path. Therefore the LHPTP
is not a shortest path problem due to the usage of consolidation. Indeed, the usage of
consolidation, which is a crucial tool used to reduce costs, makes the problem compu-
tationally difficult. Different sorting centers and different time slots can be used for the
sortings. Furthermore, the possibility of disaggregate shipping adds to the complexity
of the problem and this results in a combinatorial explosion on the number of possible
operational paths, even though the path length is bounded. This makes it impossible
to find an optimal solution with the MILP on realistic sized datasets (with around 225
sites and 2500 demands) in a reasonable time frame.

4. Hierarchical Aggregation of Demands Algorithm

As seen in the previous section, the LHPTP can be formulated as an MILP, and an
optimal solution for this MILP is an optimal solution for the LHPTP. However, this
MILP cannot be solved in reasonable time when considering realistic sized datasets.
Thus, we propose the HAD Algorithm, which divides the problem into smaller sub-
problems, each of which can usually be solved optimally via the MILP or by other
means. Then, it combines the solutions to these subproblems to make a final solution
of good quality.

The idea of the proposed algorithm is first to find an optimal transportation plan for
the inner level of the network (solid arcs and the sites they connect in Figure 3a), which
involves choosing which inner-hubs to use. Then this transportation plan is extended
to the outer level of the network (dotted arcs and the sites they connect in Figure 3a),
and in the last steps of the algorithm, these solutions are combined and refined to
obtain a transportation plan for the whole network. Figure 3b gives an overview of the
steps of the HAD algorithm.

In the LHPTP, the goal is to transport the demands from sorting centers to delivery
depots. Hence, for the inner subproblem, we create aggregate demands from sorting
centers to sorting centers in order to dissociate the two levels. An aggregate demand is
the sum of demands from a sorting center to all the corresponding delivery depots of
another (destination) sorting center. It is possible to aggregate the demands as the last
sorting has to be done in the sorting center of the catchment area of the delivery depot
of destination. However, not all demands are included in these aggregate demands.
We consider also some direct paths which might be selected in an optimal solution.
The LHPTP has two levels which can both be bypassed by these direct paths, and a
heuristic based on a filling rate threshold σ is used to optimize this decision. A different
method (namely, the MILP) determines how many sorting are used for parcels routed
on the inner level (not via direct paths). Indeed, as the optimization on the inner
level with the MILP reaches a 1% gap, there is no need for a heuristic to decide if
an aggregate demand (from sorting to sorting center) needs to be consolidated in an
inner-hub or not.

The input of the HAD Algorithm is the input of the optimization problem plus the
truck filling rate threshold σ, where σ ∈ [0, 1]. We emphasize that determining the value
of σ is key to having a low cost global solution. Here, this value is found empirically
by testing different thresholds (see Section 6). The output of the HAD Algorithm is
the transportation plan defined in Section 3. We define the capacity of the smallest

10



(a) Example of network with 3 catchment areas. (b) Flow chart for the HAD Algorithm.

Figure 3. Caption: A juxtaposition of the topological and chronological evolution of the HAD Algorithm.
Figure 3. Alt Text: The first figure shows three colored circles, each corresponding to a catchment area. The
fuschia and green circles each contain two (darker) squares and one circle corresponding to its two delivery
depots and sorting center, which are connected by dotted lines. The orange circle contains three squares and
one circle. The second figure is a flow chart with the six steps of the HAD algorithm, where each square
corresponds to solving an MILP. Step d of the flow chart is depicted with fuschia, green and orange squares,
and each color corresponds to a subproblem in the first figure.

vehicle and denote it C. (Note that in our case C = C1c, i.e., C is the capacity of a
container.) The pseudocode for the HAD Algorithm is presented in Algorithm 1. The
stages of the HAD Algorithm (1) are now detailed.

a) Splitting Demand Volumes into Two Sets

The first step consists of splitting the demand volumes into two sets. The first set
of demands is the large demands, which are those whose volume is above a given
threshold σ ·C. The remaining set of demands is called the residual demands (Baumung
and Gündüz, 2015). Define k := ⌈vd/C⌉ with vd being the volume of demand d. For
each demand d, if vd ≤ σ · C, then demand d is a residual demand. Otherwise, if
vd ∈ [k · σ · C, k · C], then d is a large demand as it is possible to use k containers. In
the last case, vd ∈ [(k− 1) ·C, k · σ ·C], the demand d is divided into twin demands: A
large demand of volume (k − 1) ·C and a residual demand of volume vd − (k − 1) ·C.
Note that sometimes k · σ · C < (k − 1) · C and in this case, vd is a large demand.

For instance, suppose the given threshold is 60% of the volume of a container, which
is 1000. And suppose there is a demand whose volume of 1100 is a bit larger than the ca-
pacity of a container. Then this demand is split into one large demand with volume 1000
and one residual demand with volume 100. In the set of residual demands, there are de-
mands from sorting centers to delivery depots which are smaller than the given thresh-
old. Large demands are unique in their set but they can have a twin residual demand.

The two sets of demands are handled differently in the algorithm. The large demands
are set aside and possibly routed directly at the end of the algorithm (see Steps e and f
of the HAD Algorithm). The residual demands are routed according to the solution of
MILP (see Equation 1 and Steps b to d). Note that the routing of the large demands
is determined only after determining the routing of the residual demands: Either they
are routed directly, or they are combined and sent with the residual demands if there
is leftover capacity.
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Algorithm 1: Hierarchical Aggregation of Demands Algorithm
Input: Transportation network with sites (and their types) and distances
between them; demands between these sites; operations and transportation
costs; a truck filling rate threshold σ and vehicle capacity C.
Output: Transportation plan for the demands.
a) Split demands

1 for each demand d do
2 if vd < σ · C then Add d to the set of residual demands
3 else k = ⌈vd/C⌉
4 if k · σ · C ≤ vd ≤ k · C then Add d to the set of large demands
5 else Split d into a large demand of volume (k − 1)C and a residual

demand (twin demands)
b) Aggregate residual demands

6 for each residual demand d do
7 Aggregate it with the demands with the same associated sorting center as

destination
c) Solve the aggregate subproblem (inner level)

8 Solve the MILP which is made only of operational links between sorting
centers

d) Extend for each catchment area (outer level)
9 for each one of the n catchment areas do

10 Solve MILP*(MILP without constraints 1d) to route the demands
towards their catchment area

e) Add the solutions of all residual demands, large demands (on direct paths)
and integrate the repositioning of empty vehicles (global level)

11 Solve the MILP with all the residual demands and with only the chosen
operational paths to optimize the vehicle flow. The large demands are
enforced to use a direct paths. (for up to one hour)

f) Optimize the large demands
12 Solve the MILP with all the demands, the solution of the previous MILP

fixed and the option for the large demands to follow a direct path or an
already chosen operational path. (for up to one hour)

b) Aggregating the Residual Demands

In order to optimize the routing on the two levels of the network separately, we need to
have demands on the inner level of the network and demands for both levels. To achieve
this, we force the last sorting for a parcel to be done in the sorting center associated
with the delivery depot of its destination. This requirement allows to aggregate residual
demands which are sent to a common outer-hub.

The aggregate demands represent the addition of the residual demands from a single
origin to all the corresponding delivery depots of each sorting center. An aggregate
demand is denoted dagg. The set of delivery depots in the catchment area of the sorting
center j is denoted Sj . The volume of the aggregate demand from the initial sorting
center i to the sorting center j is vi,jdagg

=
∑

d:sd=i,td∈Sj

vd. When the origin and destination

are clear from context, this volume can be denoted vdagg
.

For instance, one can consider two sorting centers A and B (see Figure 4). All residual
demands originated from A and destined for a delivery depot in the catchment area
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of B are aggregated. This results in an aggregate demand from A to B whose volume
is the sum of the volumes of these residual demands. Note that all aggregate demands
are truncated demands which end up in a sorting center (whereas original demands
end in a delivery depot).

Figure 4. Caption: Aggregation of demands by catchment area.
Figure 4. Alt Text: A picture showing two sorting centers (A and B), two delivery depots and one catchment
area containing B and the two delivery depots. The left-hand and right-hand figures show the demands before
and after aggregation, respectively.

c) Finding the Routing for Aggregate (Residual) Demands Between
Sorting Centers

Considering only aggregate (residual) demands from sorting center to sorting center,
the problem size is reduced as there are fewer possible destinations. Now the same
problem of routing parcels is solved on a much smaller network of around 20 sites.
Thus, it is possible to use the MILP (1). Note that this formulation includes the
design-balance constraint (1d). The MILP applied on the network composed of the
sorting centers and the aggregate demands provides a transportation plan for these
truncated demands.

d) Extending the Routing for Each Catchment Area

At this point, at least one operational path(s) has been chosen for each aggregate de-
mand. In this step, the aggregate demands are disaggregated and turned back into
residual demands ending in delivery depots. One or more operational path has been
chosen for each group of residual demands from its origin to the sorting center associ-
ated with their destination and these paths have to be completed so that each parcel
reaches its final destination. Two reasons makes this non-trivial: (i) paths between
sorting centers can be shared by several aggregate demands, and (ii) paths between
sorting centers reserved for each aggregate demand can be shared by several residual
demands.

(i) If in Step c, two aggregate demands were sharing a vehicle on an operational link,
and one of these aggregate demands is split over more than one operational paths (for
example, if 20% of an aggregate demand A is sent on an operational path which shares
an operational link with the operational path selected for an aggregate demand B),
then the parcels for one of these two demands (demand A in this example) should not
completely use the vehicle capacity allowed on this operational link. It could happen
as the catchment areas are solved separately and that would be a problem in the next
steps. Thus parcels need to be enforced to use the operational links chosen for each
aggregate demand by the MILP of Step c with respect of the capacities fixed in this
MILP (to avoid mixing the catchment areas).

(ii) The global capacity of the paths chosen for the aggregate demands has to be
reassigned and it has to be shared between residual demands as it was in Step c.

13



Indeed, the capacity reserved on each path may be used by several residual demands.
For example, let us consider an aggregate demand A which is disaggregated in residual
demands A1 and A2. If in Step c the paths pa and pb have been chosen for A, the
residual demand A1 might use both paths pa and pb while A2 only uses the path pb.
In this case, the capacity reserved for the path pb must be shared.

To take into account these two points, the following new constraint is added to the
MILP in which P ext

pagg
denotes the set of operational paths extending the aggregate

path pagg, which is a path associated to the aggregate demand dagg. We recall that
any operational path p is associated to one specific demand d, which can be denoted
as d(p). The term x

dagg
pagg is defined analogously as xdp in Section 3.2. It represents the

rate of the parcel flow of the demand dagg on the path pagg.

∀xdagg
pagg

,
∑

p∈P ext
pagg

∑
d=d(p)

vdx
d
p ≤ vdagg

xdagg
pagg

. (2)

This problem is solved separately for each catchment area. For each set of residual
demands, whose final destination belongs to the same catchment area, MILP* (i. e.,
the MILP without constraint 1d) is used to extend the operational path (from Step
c) from final sorting center to final destination. For each subproblem, the network
of all sorting centers (network considered in the previous step) and delivery depots
of the relevant catchment area is considered. The variables are restricted so that the
operational paths output by the MILP* solution follow the operational paths already
selected in the previous step. MILP* does not include the design-balance constraint, in
order to optimize globally the repositioning of empty vehicles (and not by catchment
area). Recall that the design-balance constraint means that the number of outgoing
and incoming trucks must be equal for each site in the course of a day (e.g., it ensures
that each vehicle is returned to some sorting center).

At the end of this step, operational paths for all the residual demands have been
computed. But the algorithm is not finished yet, since these operational paths are
in several transportation plans, one for each catchment area, and the objective is to
design a single global transportation plan.

e) Merging the Residual Demands Solutions with the Large Demands on
Direct Paths and Integrating the Repositioning of Empty Vehicles

In this step, an MILP is run to select direct paths for the large demands and simultane-
ously merge these paths with the paths for the residual demands from each catchment
area (chosen in Step d) while respecting the repositioning of empty vehicles. We fix in
the MILP the operational paths variables for parcels (the xdp variables in the MILP)
and the variables representing the number of vehicles on each operational link (the yl
variables in the MILP) accumulated in the previous steps. Indeed, the previous steps
have optimized the inner level and these operational links are not recomputed. The
operational links which specify how parcels end up in their respective delivery depot
are also not recomputed. Indeed, one catchment area (or the inner level) is optimized
in each subproblem, thus these operational links cannot be used in two separate sub-
problems and there is no need to recompute these operational links to properly merge
the solutions of the subproblems.

We now have a global solution which routes all the demands. In this step, the
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repositioning of empty vehicles from delivery depots to sorting centers is optimized
as the design-balance constraint of the MILP is activated. Two reasons motivate this
choice: It allows first to optimize simultaneously the repositioning of empty vehicles
and the direct paths and secondly to have a transportation plan which answers the
original problem which can be compared with the one obtained at the end of the next
step. Note that, there is more than one direct path option for each demand (because
of the two types of vehicles). Thus there is an optimization done by the MILP solver
for the large demands even if they are allowed to use only direct paths. At the end of
this step, there is a global solution built from the solutions to the subproblems solved
in the previous steps, with the large demands sent on direct paths.

f) Optimizing Operational Paths for the Large Demands

In this step, the variables corresponding to the solution obtained at the previous step
for the residual demands are fixed, and the large demands are allowed to follow either
a direct path or the operational path used by their residual twin demand when there
is enough “leftover” space.

5. Test Environment and Datasets

The HAD Algorithm is implemented on a Linux server with 32 CPU and 150 Gbytes
of RAM along with CPLEX 12.8 solver. Six realistic datasets provided by a postal
company are used. These datasets represent six different configurations of the network
with logistics sites spread across mainland France. A dataset consists of:

• a set of sites with their location, type and the travel times between each pair of
sites;

• a set of demands between these sites;
• costs: kilometric cost and the sorting costs.

In these datasets, the number of sites ranges from 154 to 292 and the number of
demands ranges from 2312 to 3627. The kilometric cost for a vehicle is three times the
cost to sort one parcel in a sorting center. More information about the datasets can be
found in Gras (2021).

The MILP solver is allowed to run for up to one hour to solve each subproblem
(inner level subproblem, subproblems to extend to each catchment area and merging
subproblems). The solver can stop before the one hour of computation if it reaches a gap
of 0.01%. This is nearly always the case for the subproblem addressing the extension
to the catchment areas (Step d), which usually takes less than one minute to reach this
gap. As it is possible to fix nearly all the variables before entering the merging stage of
the algorithm, it requires only a few seconds to reach this 0.01% gap. Thus, the total
computing time is much less than the maximum time allowed. The only subproblem
which systematically takes one hour of computation is the inner level problem. The
time to build the models for each subproblem and to save the results are not taken
into account as they are negligible compared to the execution time of the algorithm.

It is effective to divide instances from the case study into smaller problems which
can be solved optimally with exact methods. It allows for solving larger instances of
the problem as the HAD Algorithm yields solutions more quickly and with lower cost
than those generated by directly solving the global MILP using only a solver. Next,
we discuss how the results from the experiments can be used to guide the choice of
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parameter settings for the HAD Algorithm.

6. Results on Algorithm Performance and Fill Rate

The goal of this section is to test the performance of the HAD Algorithm. An input for
the algorithm is the truck filling rate threshold σ. Thus, in these experiments, whose
results are presented in Table 1, we test different values for σ, which is the threshold
for splitting demand volumes into large demands and residual ones. Note that the
truck filling rate threshold is used to designate demands as large or residual (where
the former are sent on direct paths), while actual fill rate is used to denote the average
capacity of trucks used over the whole network. All values of σ from 10% to 100% are
tested (with a step of 10, i.e., 20%, 30%, etc.) on each of the six datasets. Therefore
Table 1 is based on 60 runs of the HAD Algorithm, 10 runs for each dataset. Each
row gives the minimum, average and maximum values of the respective results over
the six datasets for a fixed truck filling rate threshold. In addition, the first two rows
of Table 1 correspond to simulations solving the global MILP without any heuristic
(rows “none" in Table 1). Now we explain what each of the seven columns in Table 1
shows.

The first column states the truck filling rate threshold σ. The second column shows
the computing time (min, avg, max) of the complete algorithm over the six datasets.
The third column, called Sol fixed dir. (solution with fixed direct paths), shows the cost
of the solution found at the end of Step e of the HAD Algorithm. The fourth column,
called Built solution, presents the cost of the final solution which is the output of
the MILP for the first two rows, and the output at the end of Step f for the last 10
rows. The next column presents the gap which represents the distance to the best
lower bound computed by the solver for an exact resolution after a six-hour run (first
rows of Table 1). The sixth and seventh columns give the fill rate not including and
including (respectively) the empty vehicles. Note that in these experiments, each MILP
run within the HAD Algorithm have a one hour time limit and all sorting centers are
considered as inner-hubs.
Table 1. Comparison of the truck filling rate thresholds

Thres. Time (h) Sol fixed dir. e) Built sol f) Gap (%) Act. fill rate (no

empty trucks) (%)

Global fill
rate (%)

(%) min | avg | max min | avg | max min | avg | max min | avg | max min | avg | max min | avg | max

none 1 | 1 | 1 — 377| 477 | 807 11.6 | 21.5 | 58.7 47.5 | 66.5 | 72.2 31.6 | 41.0 | 43.7
none 6 | 6 | 6 — 377| 406 | 426 10.2 | 13.7 | 17.4 70.0 | 71.3 | 73.2 42.7 | 43.4 | 44.4
100 1.0 | 1.1 | 1.3 376| 415 | 444 376| 414 | 442 13.4 | 15.5 | 16.7 82.6 | 84.0 | 86.0 52.4 | 54.1 | 55.7
90 1.0 | 1.1 | 1.2 375| 411 | 437 375| 411 | 436 13.2 | 14.7 | 15.9 82.1 | 84.2 | 86.4 52.0 | 54.0 | 55.5
80 1.0 | 1.2 | 1.2 374| 406 | 429 374| 406 | 429 12.2 | 13.8 | 14.9 81.6 | 83.9 | 85.9 51.4 | 53.4 | 54.8
70 1.0 | 1.1 | 1.2 369| 405 | 437 369| 405 | 435 11.8 | 13.5 | 15.1 80.2 | 82.4 | 84.9 50.8 | 52.1 | 53.6
60 1.0 | 1.1 | 1.2 367| 399 | 419 367| 399 | 419 10.1 | 12.2 | 13.9 79.5 | 81.8 | 83.6 49.3 | 50.9 | 52.0
50 1.1 | 1.2 | 1.3 374| 401 | 419 374| 401 | 419 10.0 | 12.7 | 14.3 76.7 | 78.7 | 80.3 47.4 | 48.3 | 48.7
40 1.1 | 1.2 | 1.5 374| 406 | 426 374| 406 | 426 11.5 | 13.8 | 15.7 75.4 | 76.0 | 77.1 45.5 | 45.7 | 46.4
30 1.0 | 1.2 | 1.5 393| 421 | 435 393| 421 | 435 13.3 | 16.9 | 19.1 70.1 | 70.9 | 72.7 41.1 | 41.6 | 42.1
20 1.0 | 1.3 | 1.5 436| 463 | 480 436| 463 | 480 19.9 | 24.5 | 27.7 60.1 | 61.5 | 63.3 34.1 | 34.7 | 35.4
10 1.1 | 1.3 | 1.5 559| 583 | 627 559| 583 | 627 33.0 | 39.9 | 44.6 42.7 | 45.6 | 49.4 23.0 | 24.6 | 26.6

From Table 1, we observe that the HAD Algorithm can provide better solutions in
five to six times less computation time compared to the LHPTP-MILP when run for six
hours without any heuristic (second row with threshold none in Table 1). This holds
when the truck filling rate threshold of 60% is used, for which the HAD Algorithm
exhibits the best performance in terms of cost. Note that this algorithm provides a
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solution for the complete instance in reasonable time but might be globally suboptimal
because the choice between performing at least one sorting or sending the parcel on a
direct path is handled in a heuristic way. Thus, for instance, for a parcel sent directly,
some possible operational paths which could be chosen in a globally optimal solution
are not considered in the HAD Algorithm. Moreover, the solutions obtained in Step
e and Step f are nearly the same. (As a reminder, in Step e, the large demands are
forced to use direct paths, while in Step f they can use the path(s) of their twin residual
demand.) This shows the natural “greedy” choices made when using direct paths are
locally almost optimal, since they are not changed much by Step f.

To apply the HAD Algorithm, we need to determine the setting of the parameter σ
which yields the best results. (This can also depend on the settings of other parameters
such as, for example, sorting costs.) Table 1 shows the truck filling rate threshold which
provides the best results is 60% ± 10%. When the truck filling rate threshold is 60%,
the actual fill rates with and without considering empty vehicles are respectively 50.9%
and 81.8%. We refer to the former as global fill rate and to the latter as the actual fill
rate. Slightly higher actual fill rates (like 84.2%) can be obtained with higher filling
rate thresholds but at the expense of sorting for more consolidation. One might think
that maximizing the actual fill rate of trucks would lead to cost minimization, because
when trucks are more filled, fewer trucks are needed, but this is not the case. The
results displayed in Table 1 show that the higher actual fill rate does not correspond to
the lowest cost solution. In fact, it is profitable to send a truck filled at 60% (seemingly
suboptimal) on a direct path as it allows to save on both repositioning of empty
vehicles and sorting costs. Note that the optimal truck filling rate threshold computed
empirically depends on the datasets, and would have to be recomputed if the HAD
Algorithm were to be used on another dataset.

7. Utilizing the HAD Algorithm as a Decision Aid Tool for Inner-Hub
Selection

The HAD algorithm is a decision aid tool for making managerial decisions. The trans-
portation managers can use the solution obtained via the algorithm as a guide to
create a routing of parcels for an actual input demand profile. If the daily demand
profile changes, implementing a completely new solution each day is too expensive in
terms of running the algorithm and also in terms of implementing its output (e.g.,
the cost of upheaval/changing a solution from day to day). Thus, the algorithm is not
meant to be run every day (i.e. for all data sets). To employ the solution as a guide,
the transportation managers can analyze the key performance indicators of the best
solution proposed for the most “similar” data set and use it to make the decision to
open new paths (or not) in the strategy applied on the ground.

The HAD Algorithm can also be a useful management tool to make decisions about
the design of the postal network. For instance, the choice of inner-hubs is part of the
network design, which in turns affects the quality and cost of the transportation plans
(through consolidation of demands) that can be produced on the respective network.
Here we show how the HAD Algorithm can help transportation managers with the
choice of inner-hubs. The sorting centers that are used as inner-hubs by the HAD
Algorithm are specified as part of the transportation network given as input for the
LHPTP. In the real-life application of the French postal company, the two to four
inner-hubs that are used have been chosen at some point by transportation managers
for operational and/or technical reasons. In the experiments, we ignore this constraint
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and assume that all the sorting centers can be inner-hubs. This gives more possibilities
for consolidation, which occurs at the inner-hubs. Moreover, we want to confirm if the
choice of the inner-hubs made by the transportation managers is the one which results
in a lowest cost solution.

In the transportation plans whose costs are presented in Table 1, nearly all the
sorting centers are used as inner-hubs. This is because the sorting costs are not very
high compared to the kilometric cost and because the demands are small compared to
the vehicle capacity. Therefore consolidation of demands is useful as it allows to reduce
the number of vehicles used, even if this leads to more sorting operations. This might
not be the case with much higher sorting costs and this is tested and discussed next.

Table 2 presents the outcomes when the sorting cost is increased, that is when the
cost is 10 or 20 times the cost used in the realistic case study. Each row represents
a value for the sorting cost for the six datasets. Hence we present, as in Table 1, the
minimum, average and maximum values over the six datasets. The first column of
Table 2 gives the sorting cost. The second column shows the computing time of the
HAD Algorithm. The third and fourth column present respectively the costs of the
solutions of Step e and Step f. The fifth column shows the gap to the best lower bound
computed in six hours. The last column presents the number of inner-hubs used by the
solution of the HAD Algorithm.

Table 2. Comparison of the sorting costs with σ = 60%
Sorting cost Time (h) Sol fixed dir. e) Built sol f) Gap 3 (%) Used inner-hubs

min | avg | max min | avg | max min | avg | max min | avg | max min | avg | max

normal 1.0 | 1.1 | 1.2 367| 399 | 419 367| 399 | 419 10.1 | 12.2 | 13.9 13 | 14.7 | 17
10 × normal 0.0 | 0.1 | 0.2 1635 | 1733 | 1806 1634 | 1731 | 1803 78.6 | 79.8 | 80.7 8 | 8.5 | 10
20 × normal 0.0 | 0.1 | 0.2 3030 | 3188 | 3330 3026 | 3182 | 3324 88.3 | 89.0 | 89.6 4 | 5.2 | 7

From Table 2, several observations can be made regarding hub selection and
sorting cost. Firstly, Table 2 shows the number of inner-hubs used decreases when the
sorting cost increases. Secondly, when the sorting costs increase from normal to 10
× normal, the algorithm runs much faster as operational paths with sorting become
too expensive and are ignored. Therefore, many constraints become irrelevant and it
simplifies the MILP. Thirdly, we observe that with a sorting cost 20 × normal (last row
of Table 2), five hubs are used on average and by very small demands. And notably,
these inner-hubs do not include all the inner-hubs chosen by transportation managers
in real life. The fourth observation is that with the “normal” costs, all sorting centers
are selected as inner-hubs by the HAD Algorithm. This choice of inner-hubs differs
from what is currently in use by the French postal company, where not all inner-hubs
are used. Thus the HAD Algorithm can be a useful decision support tool for the
transportation managers in choosing which inner-hubs to put in use.

8. Conclusion and Future Research Perspectives

This study introduces the LHPTP. We describe the application framework of this
industrial transportation problem faced by a French postal company, and then we
formally define the optimization problem. The LHPTP concerns the optimization of
the long-haul transportation of parcels on a two-level hybrid hub-and-spoke network.
There are two types of vehicles to manage according to the number of containers
and the daily repositioning of empty vehicles from delivery depot to sorting centers.

3Gap to the lower bound of the MILP without heuristic with the same variables.
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The problem contains strong industrial constraints and has not been addressed in
the literature to the best of our knowledge. We have presented an MILP to solve the
LHPTP, but the datasets provided by a postal company are too large for an MILP
solver to directly find a good solution in reasonable time.

Accordingly, we present a new algorithm that exploits the two-level structure of
the network: the HAD Algorithm, which divides the problem into subproblems solved
through MILPs. As the hybrid hub-and-spoke network offers the possibility to use
direct paths, this option is allowed for large demands (above a truck filling rate thresh-
old). The residual demands (lower than the truck filling rate threshold) are gathered
into aggregate demands which stay on the inner-level of the network. We have tested
various truck filling rate thresholds to partition the demands to find which one suits our
datasets the best. This constitutes a tailored, adaptive heuristic which provides better
quality solutions for the LHPTP. In addition to being a heuristic which solves the LH-
PTP, the HAD Algorithm is a decision aid tool designed for transportation managers
to address anticipated demand forecasts, which allows them to design their networks
and transportation plans accordingly. For instance, they can use it to evaluate the
network performance resulting from a particular network design decision (concerning
the choice of inner-hubs for instance).

One perspective for future work is to study the impact of using different truck filling
rate thresholds on different parts of the network or for different types of demands. This
threshold could also be based on additional criteria such as distance and transporta-
tion costs. Another research direction is further applications of the HAD Algorithm
as a decision aid tool. Indeed, the HAD Algorithm can be used to assist in making
managerial decisions other than the inner-hub selection, such as which direct paths to
open, or how to improve the repositioning of empty vehicles, for example not requiring
that they remain in the same catchment area. This would require specifically designed
simulations and modifications of the HAD algorithm that could be done as future work.
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