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Abstract—This paper aims at developing artificial intelligence
(AI)-based controllers for grid-forming inverter-based genera-
tors. The paper illustrates the relevance of the controller on a
simplified isolated microgrid. The adopted AI approach relies on
supervised learning, thus implying the need for training datasets.
Firstly, the case study and the use cases were selected, and the
scenarios were defined to create the training datasets from an
experimentally validated virtual synchronous generator (VSG)
controller. The use cases represent the black-start of the grid-
forming inverter and the variation of the load demands as well as
its characteristics. Then, the collected datasets were used to train
the AI model, which was integrated in the control of a simulated
inverter for testing and comparison with the VSG controller on
the selected use cases. The proposed Al-based controller ensures
the stability of a simplified microgrid, maintaining voltage and
frequency at their nominal values. The continuity of supply
is guaranteed and robust to changes in loads characteristics.
Furthermore, the proposed controller shows fast responses to
load variations in addition to high stability during the transitions
between loads.

Index Terms—Grid-Forming Control, inverter-based genera-
tors, artificial intelligence, neural networks, supervised learning

I. INTRODUCTION

The need for reducing greenhouse gas emissions and di-
versifying the sources of electricity production lead to high
penetration of renewable energy sources (RES) in the power
system [1], [2]. The high penetration of RES has introduced
distributed generation, which competes with the more central-
ized power plants. This evolution of power systems creates
new challenges to cope with, e.g., stability of the grid due to
the intermittent nature of RES [3]. Moreover, distributed gen-
eration units are generally relying on inverter-based generators
(IBG), increasing the weakness of distribution grids.

Without changing the way grids are operated, the loss of
inertia caused by IBG requires building new control strategies
to ensure the stability of the power system in this new
context. One of the main solutions that can be found in the
literature is to reproduce the behavior of rotating synchronous
machines with the help of a virtual synchronous generators
(VSG) controller, for which a recent good example would be
the observer-based current controller from [4]. Simplifications
exist, providing only virtual inertia and droop control [5],
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[6]. Other alternatives do not attempt to reproduce the known
behavior in traditional power systems, like the virtual oscillator
[7] or the matching control [8]. Those solutions rely on an
often complex model-based controller, necessitating precise
tuning and sufficient knowledge of the various parameters of
the close electrical environment of generating units.

It is also possible to consider data-driven methods of
control. In this context, various Al-based solutions have been
studied. An artificial neural network (ANN) was designed for
the control of a grid-connected rectifier/inverter under distur-
bance, considering dynamic and power converter switching
conditions [9]. An adaptive critic design-based reinforcement
learning approach was considered in controlling virtual inertia-
based grid-connected inverters [10]. An ANN was designed for
tuning the inertia of a VSG [11], and a data-driven optimal
control strategy for VSG was tested with deep reinforcement
learning approach [12]. Most of those approaches are either
considering the case of grid-following inverters, or they only
adapt the inputs or part of the controllers. To the best of
our knowledge, the control of grid-forming inverters via data-
driven methods has not been completely considered.

In this paper, an Al-based controller is proposed to over-
come the necessity of modeling and tuning complex model-
based controllers, maintain stability, and achieve a fast re-
sponse to changes in load characteristics. It offers the possi-
bility to be retrained for new case studies either by generating
new training datasets or by applying more advanced artificial
intelligence methods. The purpose of the proposed controller
is to achieve the voltage and frequency control of the grid-
forming unit, which is illustrated in a simplified isolated
microgrid environment.

The paper is structured as follows: The simplified isolated
microgrid; the selected VSG control policy; and the case study,
use cases, and scenarios are described in Section II. Section 111
describes the proposed Al model, its training procedure, and
its implementation for simulation. Section IV discusses the
obtained results, comparing the Al-based solution with the
VSG controller, at the level of the microgrid’s frequency,
voltage, and the inverter’s current for a selection of scenarios.
Finally, Section V concludes and states the main perspectives
of the work.
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Fig. 1. Simplified Isolated Microgrid, illustration support for the AI controller.
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Fig. 2. Diagram of the Virtual Synchronous Generator Controller Used for
Data Collection [4].

II. MODELS AND DATA COLLECTION

A. Simplified Microgrid Model

The objective is to control a grid-forming unit connected to
a simplified isolated microgrid. The IBG is the only generation
unit (for instance connected to PV panels via the dc bus). The
loads are aggregated at the point of coupling, and they are
connected to the IBG through a single line. The simplified
balanced three-phase microgrid is operating at the distribution
level, i.e., the nominal phase voltage is 230V and the nominal
frequency is 50 Hz. The electrical schematic of the case study
is proposed in Fig. 1. For simplification, the dc bus voltage is
considered to be constant in this initial study.

The simulation is conducted considering that the IBG is
solely supplying power to a single line, connected to three
loads with different characteristics presented below. Increasing
the size of the microgrid will be considered in further studies,
but it is not relevant from the perspective of illustrating the
proper behavior of the grid-forming Al-based controller.

B. Classical Control Model

To train the Al-based controller, a dataset is required.
Among the various existing grid-forming controllers, the com-
plete VSG controller was preferred [4]. It is a good candidate
for initial studies as the model is complete, well-known, and
already available from previous work. Indeed, other grid-
forming controllers, discussed in the introduction, provide
similar behaviors (droop and inertia) or a simplified version,
but they require additional implementation steps before data
collection for this research. The VSG controller will be
compared to other controllers in future work.

The controller consists of a linear quadratic regulator includ-
ing an integrator and a state observer. It has been designed to
ensure high robustness to harsh events (like short-circuits) in
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addition to load variations of any type. Fig. 2 illustrates the
control diagram of the VSG used for data collection.

The collected datasets include samples of the expected
inputs of the neural network, i.e., frequency; voltages and
currents measurements at the output of the inverter and the
load after being transformed to the dgq frame; their associated
target values; and computed errors. The corresponding outputs
are duty ratios (in dg) before being transformed back to
abc and fed to the pulse width modulation (PWM) block.
Moreover, the third output is the angular velocity of the virtual
machine’s rotor in per unit. The collected datasets are essential
for implementing the proposed control policy, shown in Fig. 3.

This control policy may vary in further studies, as a function
of case studies, modeling hypotheses, or adjustments needed
on the control errors. The Al-based controller is quite flexible
in that regard compared to model-based controllers.

C. Case Study, Use Cases, and Scenarios for Data Collection

The case study considered in this paper is the variation of
the loads’ power demands and characteristics, i.e., capacitive,
inductive, and resistive when the solar production is available
(no dc-bus voltage variation) and the grid topology is not
changing (only one IBG and line). The objective is thus to
study the capacity of the proposed Al-based controller to fulfill
its goal, which is to ensure the grid-forming operation of the
IBG in this context.

As a result, four use cases were introduced to create
data, i.e., black-start, resistive, inductive, and capacitive load
consumption. The objective is to control the voltages and
frequency in the simplified isolated microgrid.

To sufficiently represent the aforementioned use cases, the
scenarios for collecting the training datasets were defined in a
way that represents a wide range of active and reactive power
values. The range considered for active power variations, i.e.,
resistive loads, is from OkW to 15kW, yet this implies an
infinite number of scenarios. Thus, we decided to divide
this range into six scenarios, represented by steps of 20 %.
The range of reactive power, i.e., negative for capacitive and
positive for inductive, is also from O kVAR to 15kVAR, again



with steps of 20 %. The first group of datasets corresponds
to the resistive loads (no reactive power consumption). The
second group of datasets represents the inductive loads, in
which every step of the active power range was simulated with
the whole range of positive reactive powers. The third group of
datasets includes the capacitive loads, where negative values
of reactive power consumption were applied. As a result, 72
datasets were collected to represent the defined scenarios.

The use case of black-start is considered and simulated in
each of the 72 generated datasets. The simulation time per
scenario was fixed at three seconds. Finally, these 72 datasets
were combined in a single dataset for training the Al model.
To reduce the rate of necessary and representative data flow
in the Al-based controller, the dg-frame was considered, as it
conserves the required information for efficient operation at a
slower rate.

The 16 chosen features, corresponding to the input layer of
the neural network, were decided in a way that provides all
the necessary information describing the actual situation of the
simplified isolated microgrid. The features in the combined
training dataset are as follows: voltage and current at the
loads (in dg-frame), voltage and current at the output of the
inverter (in dg-frame), frequency of the simplified isolated
microgrid, the angular velocity of the virtual machine’s rotor
at the preceding time step in per unit (wf.’(’iil ), the target value
for the single-phase root mean square (rms) voltage (230V),
the target value of the frequency (50 Hz), the errors between
measured rms voltages and their target (V.70 — Vii7w,),
and the error between the measured frequency and its target
(fmeas — ftarget). On the other hand, the three chosen labels,
corresponding to the outputs of the neural network, are the
following: the duty ratios in the dg-frame (g and o) and the
angular velocity of the virtual machine’s rotor at the actual
time step in per unit (wf"i)). From the predicted wfﬁ), the
electrical angle 6.4;cuiateq Will be calculated for transforming
abc-frame to dg-frame and vice versa, as shown in Fig. 3.

III. AI MODEL TRAINING AND IMPLEMENTATION

This section describes the proposed Al model, its training
procedure, and its implementation for simulation.

Before considering more advanced machine learning tech-
niques, the initial idea is to supervise the training of the model
as well as to clearly state what is acceptable or not (in terms
of voltage and current) for a dedicated set of use cases. In
addition, this phase is considered the initialization of an Al
model that will act as a foundation for further developments.

Supervised learning is a technique that learns by using
labeled data [13]. The data contain a set of inputs and
their corresponding outputs. The term “deep” comes from the
several layers between the inputs and the outputs ones. From
its definition, the deep supervised learning approach requires
the presence of training datasets.

A. Artificial Intelligence Model

The AI model, a sequential feed-forward neural network,
interacts with the grid via its input and output layers. The

Inputs Layer
16 Neurons

Hidden Layer (1)
128 Neurons

Hidden Layer (3)
128 Neurons

Outputs Layer
3 Neurons

Hidden Layer (2)
128 Neurons

Fig. 4. Implemented Neural Network Architecture.

measurements, target values, and errors between measure-
ments and target values are reported to its inputs. The Al
model provides the necessary control signals from its output
layer by mapping the values reported on its input layer to
their corresponding output values. As noted, the expected
values on the input layer of the neural network are divided
into three categories. The first category, corresponding to the
measurements, includes the voltages and currents at the output
of the inverter and the load after being transformed to dg-
frame as well as the frequency. Moreover, the target values
category includes the required rms phase voltage and the
required frequency of the grid. Finally, the category of errors
comprehends the differences between the actual measurements
collected from the grid (voltages and frequency) and the target
values. One the other hand, the duty ratios (in dg-frame) and
the angular velocity of the virtual machine’s rotor (in per unit)
are provided by the output layer of the neural network. Thus,
the controller will continuously receive new measurements
from the grid and provide their corresponding control signals.

The architecture of the implemented neural network is
described in Fig. 4. As seen, the input layer is composed of 16
artificial neurons corresponding to the previously mentioned
three input categories. The neural network includes three dense
hidden layers, each composed of 128 artificial neurons. The
output layer is made up of three artificial neurons representing
the duty ratios (in dg-frame) and wf}(l:).

Although the input and output layers components were
decided concerning the requirements of the controlled system,
the hidden layers were defined by testing various combinations
of several hidden layers and their components during the
training phase. The combination of three hidden layers with
128 artificial neurons each, among the tested ones, has proven
the best results and the least errors.

B. Model Training

The proposed feed-forward neural network has been de-
signed and trained using Keras. Keras is a deep learning
API that runs on top of TensorFlow, a machine learning
platform. Being straightforward, flexible, yet powerful, it has
been chosen for the design and training of the AI model.
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The combined dataset was first shuffled, then divided into
two parts: 80% for training the neural network and the
remaining 20 % for the validation. Since the trained neural
network is implemented and tested on a simplified microgrid,
there is no need for testing datasets. The training phase is
graphically illustrated in Fig. 5.

During the training phase, the input signals, i.e., features,
are reported to the input layer of the neural network. Then, the
neural network provides the output signals, i.e., labels, from
its output layer. Later, the predicted values are compared to
the actual labels from the combined training dataset, resulting
in a cumulative error. The weights of the neural network are
updated during the training process concerning the calculated
errors between the predicted values and the real values from
the training dataset.

The mean absolute error (M AE), whose calculation is
used for each epoch of training, is displayed in (1), where n
corresponds to the total number of samples in the concerned
epoch, y; corresponds to the i" real label from the training
dataset, and z; corresponds to the i** predicted label.

1 n
MAE = — i — T 1
= Ly — il (1)

i=1

Fig. 6 represents the plots of the mean absolute errors during
the training phase. The two plots correspond to the M AFE of
the training part of the dataset as well as the validation part.
The training needed less than 30 epochs to reduce the M AFE
to 0.0003. once the training is completed, the trained model is
exported and saved for deployment in the grid-forming unit.

C. Model Implementation

The AI model was developed and trained in Python, while
the inverter and the simplified isolated microgrid were imple-
mented in Matlab/Simulink. The interface between the two
environments was needed. First, a Python function was coded
for importing the Al trained model. Second, a Matlab function
was coded for calling the Python function responsible for
importing the trained Al model. Then, the Matlab function
was integrated as a block in Simulink. As a result, the neural
network is implemented directly in Simulink, reproducing the
control policy shown in Fig. 3 in the form of an Al-based
controller.

Mean Absolute Error
—a— Training Mean Absolute Error
—e— Validation Mean Absolute Error
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Fig. 6. Mean Absolute Error during Training and Validation.
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Fig. 7 graphically describes the methodology of operation
and interaction of the Al-based controller with the IBG and its
simplified microgrid. The system measurements, target values,
and errors are all reported to the input layer of the controller.
It then provides the system with the required control signals
concerning the values introduced at its input layer.

The Al-based controller’s capabilities of conserving the
stability of the simplified microgrid (i.e., supply power to
the loads in this case) by maintaining the grid voltage and
frequency at their nominal values are tested on the defined set
of use cases. During testing, only one single load is connected
at a time. The changes and characteristics considered in the
testing phase are summarized in the tables I and II.

Table I lists the three designed loads’ characteristics. Load 1
is designed to be highly capacitive. Load 2 is designed to be a
relatively small resistive load, corresponding to the microgrid
at its lowest demands. Finally, Load 3 is highly inductive.

Table II lists and describes the events occurring at prede-
fined instants. These simulated events are designed to test the
stability and robustness of the proposed Al-based controller
under extreme conditions, e.g., transition from a highly capac-



TABLE I
CHARACTERISTICS OF THE CONNECTED LOADS

Load Active Power Inductive Reactive Capacitive
(kW) Power (kVAR) Reactive Power
(kVAR)
Load 1 15 0 7
Load 2 1 0 0
Load 3 15 7 0
TABLE 1T
LI1ST OF OCCURRING EVENTS
Time (s) Event
0 Black start and connection of Load I only
1 Disconnection of Load I and connection of Load 2
2 Disconnection of Load 2 and connection of Load 3
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Fig. 8. Frequency Profiles of Al Controller vs VSG, scenarios from Table II.

itive microgrid to a low demand one and later to a microgrid
with highly inductive characteristics. Note that the black-start
use case is not reproduced directly, but used indirectly for all
cases, as all simulations start from zero and are not in a steady
state at a given operating point.

IV. OBTAINED RESULTS AND OBSERVATIONS

This section discusses the obtained results based on the
scenarios discussed in Table II. Under those conditions, the
Al-based controller has been tested and compared to the
implementation of the VSG model [4].

A. Frequency and Duty Ratios Profiles

Fig. 8 illustrates the grid’s frequency profiles in the cases of
the VSG and the Al-based controllers, plotted in orange and
blue respectively. By comparing both profiles, we notice that
the deviation of the frequency from its nominal value (50 Hz)
is minimal in the case of the Al-based controller. Furthermore,
it is observed that the VSG was not capable of restoring the
frequency at S0 Hz in the considered time frame, while the
Al-based controller has almost not deviated from the nominal
frequency even after the occurrence of the predefined events.

The positive spike seen in the AI controller’s frequency
profile, between 0.02s and 0.15s, is due to the overshoot in
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Fig. 9. Duty Ratios (g and aq) of Al Controller, scenarios from Table II.
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the predicted ag, ag, and w?*. This limited overshoot occurred
following the black-start, yet it was rapidly damped. Fig. 9
illustrates the oy and «,; profiles.

B. Voltage Profiles

Fig. 10 illustrates the single-phase rms voltages (V%) of
the simplified microgrid in the cases of both the VSG and the
Al-based controllers. Since the three phases are balanced, only
one phase (a) was plotted for better visualization. Voltages’
deviations from the nominal value (230 V) are strictly limited
in the case of the Al-based controller in comparison with the
VSG one.

In the case of the Al-based controller, we can notice a spike
in the voltage profile at 1s, rapidly damped. This is due to
the small overshoot of a4 seen in Fig. 9. Undesired voltage
fluctuations are present for the VSG controller and damped
by the Al-based controller. As a result, the proposed Al-based
controller shall be more stable and robust in situations of harsh
load changes compared to the VSG controller. In addition, the
Al controller presents a faster response time, implying faster
achievement of the grid’s stability, in both black-start and load
impacts scenarios.

C. Inverter Current Profiles

Fig. 11 illustrates the single-phase rms currents of the
inverter in the cases of the VSG and Al-based controllers.
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Since the three phases are balanced, only the current in phase
a (I}, ) was plotted for better visualization.

Both controllers are capable of avoiding any current over-
shoots, specifically during the transition between different
microgrid characteristics, thus the inverter is protected and no
protection is triggered. Yet after the black-start and during
transitions, the current obtained by the Al-based controller
achieves its stability faster than the current from the VSG
controller. In addition, the current obtained in the VSG case
is undergoing undesired fluctuations, notably in the capacitive
and inductive cases. In contrast, the current profile of the
Al-based controller is subjected to limited fluctuations that
are rapidly damped. This implies that the Al-based controller
provides a better response to changes and a better power
quality.

V. CONCLUSION AND FUTURE WORK

In this paper, a supervised deep-learning Al-based con-
troller is trained based on data collected from a simulated
virtual synchronous generator (VSG) control. Then, it was
implemented in an inverter, reproducing variations in the load
demands and characteristics as a case study depicted in more
than 70 scenarios. The controller was validated on a set of
events with extreme load variations and compared to the actual
implementation of the VSG on the same inverter in the case
of a simplified microgrid.

The proposed Al-based controller showed a faster and
smoother response to changes compared to the VSG one
in terms of frequency, voltage, and current profiles, thus
providing higher robustness and stability in the cases of harsh
load impacts.

The adopted AI method is trained on specific case studies
and scenarios, obtained from simulating the VSG control on
a typical inverter. As a result, the proposed Al model dis-
plays limited adaptability characteristics. Deep reinforcement
learning, allowing the AI model to learn its optimal control
policy via interacting with its environment represents a clear
work path, allowing improved robustness to uncertainty in the
renewable production as well as in the grid topology.
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