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Introduction.

Three-dimensional (3D) topological semimetals [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF][START_REF] Lv | Experimental perspective on three-dimensional topological semimetals[END_REF] are materials with energy band crossing points that act as sources or sinks of Berry curvature [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF][START_REF] Berry | Aspects of Degeneracy[END_REF][START_REF] Volovik | Zeros in the fermion spectrum in superfluid systems as diabolical points[END_REF][START_REF] Fang | The Anomalous Hall Effect and Magnetic Monopoles in Momentum Space[END_REF], so-called Berry monopoles [Fig. 1(a)]. The simplest example is a Weyl semimetal, with linear twoband crossings described by a Hamiltonian H W (q) = γ q • σ, where γ = ± is the chirality, q = (q x , q y , q z ) the momentum measured from the crossing, and σ a vector of Pauli matrices. The corresponding Berry curvature is given by

Ω α (q) = C α q 2|q| 3 , (1) 
with α = ± labeling the two bands involved in the crossing and C α = -γα the Chern number (monopole charge).

Berry monopoles always come in pairs [Fig. 1(a)], which is a manifestation of the Nielsen-Ninomiya theorem [START_REF] Nielsen | A no-go theorem for regularizing chiral fermions[END_REF].

Each pair forms a dipole d 0 in the Brillouin zone, which lies at the heart of exotic phenomena such as Fermi arcs, anomalous Hall effect, and chiral anomaly [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF][START_REF] Lv | Experimental perspective on three-dimensional topological semimetals[END_REF]. Any linear twoband (N = 2) crossing is of the Weyl form H W (q), and thus a Berry monopole. A common belief is that any linear multiband (N > 2) crossing also represents a Berry monopole. Indeed, Berry monopoles (1), with high Chern numbers C α , arise from multiband crossings governed by a generalized Weyl Hamiltonian, i.e. a pseudospin Hamiltonian H s (q) = γ q • S [START_REF] Bradlyn | Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals[END_REF][START_REF] Ezawa | Chiral anomaly enhancement and photoirradiation effects in multiband touching fermion systems[END_REF], where S is the (2s+1)-dimensional matrix representation of a pseudospin and α = -2s, ..., 2s.

The purpose of this paper is to draw attention to the existence of other linear multiband crossings, which are not of the Berry monopole type. In particular, we propose multifold Hopf semimetals (MHSs), with linear multifold crossing points [Fig. 1(c)-(e)] each of which carries a dipolar Berry curvature

Ω α (q) = κ α (d • q) q |q| 4 .
(

) 2 
In contrast to the extended dipole d 0 of a Weyl semimetal, Eq. ( 2) describes a point-like/singular Berry dipole d that resides at a single band crossing point [Fig. 1(b)], with d representing an anisotropy axis but not a distance in momentum space. Note that singular Berry dipoles can also be obtained by merging a pair of Weyl nodes (d 0 → 0) or at topological phase transitions between twoband Hopf insulators [START_REF] Alexandradinata | Teleportation of Berry curvature on the surface of a Hopf insulator[END_REF][START_REF] Nelson | Delicate topology protected by rotation symmetry: Crystalline Hopf insulators and beyond[END_REF], but this always involves quadratic band touching. In contrast, for a MHS, the band crossings are linear. Moreover, the dipole charge κ α in Eq. ( 2), an integer for each band α, is symmetric with respect to zero energy, κ α = κ -α , while Ω α = -Ω -α for any twoband system and for any Berry monopole (1).

Our work illustrates three main points. First, linear multiband crossings can carry peculiar quantum geometric structures beyond Berry monopoles. We only discuss the Berry dipole case (2), but even Berry quadrupoles or octupoles are possible [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF]. Second, due to the Berry dipoles, MHSs have physical properties very different from those of known topological semimetals, despite the same low-energy spectrum. We show that Landau levels, anomalous Hall effect, and magnetoconductivity (all of which have been extensively studied in Weyl semimetals) exhibit distinct signatures of the Berry dipole (2), and it is clear that this extends to a host of other observables. Third, MHSs are governed by a delicate topology [START_REF] Nelson | Multicellularity of Delicate Topological Insulators[END_REF]. To demonstrate this, we propose simple lattice models for multiband (or N -band) Hopf insulators (MHIs) [START_REF] Lapierre | N -band Hopf insulator[END_REF] and show that MHSs appear at their topological phase transitions. This justifies dubbing them "Hopf" semimetals, extends notions of Refs. [START_REF] Alexandradinata | Teleportation of Berry curvature on the surface of a Hopf insulator[END_REF][START_REF] Nelson | Delicate topology protected by rotation symmetry: Crystalline Hopf insulators and beyond[END_REF] to the multiband case, and provides a fertile platform to study delicate topology.

Continuum models for MHSs. We start by introducing continuum models H ξ N (q) for Hopf semimetals, with ξ = ± a valley index. They are constructed to have a linear isotropic spectrum E α (q) = c α |q| with band velocity c α [Fig. 1(c)-(e)], identical to that of a pseudospin system H s (q), but a quantum geometry governed by Eq. ( 2). For a three-, four-, and fivefold Hopf semimetal, we choose

H ξ 3 (q) = 0 Q ξ 3 (Q ξ 3 ) † 0 2 , Q ξ 3 = q ξ --iq z , (3a) 
H ξ 4 (q) = 0 2 Q ξ 4 (Q ξ 4 ) † 0 2 , Q ξ 4 = aq ξ -iaq z ibq z bq ξ + , (3b) 
H ξ 5 (q) = 0 3 Q ξ 5 (Q ξ 5 ) † 0 2 , Q ξ 5 =    0 i √ 2q z iq z q ξ + √ 2q ξ + 0    , (3c) 
respectively, where q ξ ± ≡ ξq x ± iq y , and a > b > 0. The band velocities are c α = 0, ±1 for the model (3a), c α = ±a, ±b for (3b), and c α = 0, ±1, ± √ 2 for (3c). The terms ∼ q ξ ± are familiar from graphene and Weyl semimetals, and the terms ∼ q z provide a third direction fixing the dipole axis as d = (0, 0, ξ) (however it is possible to construct models with tunable d [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF]). Computing the Berry curvature [START_REF] Graf | Berry curvature and quantum metric in N -band systems: An eigenprojector approach[END_REF], one finds κ α = -1, 2, -1 for (3a), κ α = -1, 1, 1, -1 for (3b), and κ α = -3, 1, 4, 1, -3 for (3c) from lowest to highest band [Fig. 1(c)-(e)], with large dipole charges carried by the flat bands.

The models (3) have two important symmetries, linked to the dipole charges and the dipole axis, respectively. Namely, first, a chiral symmetry S -1 H ξ N (q)S = -H ξ N (q) with a diagonal matrix S and S 2 = 1. Second, an axial rotation symmetry

[L d + Σ d , H ξ N (q)] = 0, with L d = d•L the projection of angular momentum L = -i(q × ∇ q )1,
and Σ d a diagonal matrix acting as an effective spin projection [START_REF]More precisely, we have Σ d = 1 diag[END_REF]. In contrast, a pseudospin system (Berry monopole) H s (q) has a charge-conjugation parity symmetry C -1 H s (q)C = -H * s (q) with C = exp(iπS y ), and a full rotation symmetry [L + S, H s (q)] = 0. The chiral and axial rotation symmetries determine general properties of the physical responses studied in the following.

Physical properties of MHSs -continuum perspective. We now illustrate the strong impact of the Berry dipole on Landau levels, anomalous Hall conductivity, and magnetoconductivity. We first consider these effects for a sin- gle band crossing H ξ N (q). Below, we will present tightbinding models for MHSs, with one or more Berry dipoles in the Brillouin zone, and discuss how the effects translate to the lattice setup.

(a) Landau levels (LLs). Consider Eq. ( 3) for a strong magnetic field B = B B, where B = (0, sin θ, cos θ) without loss of generality due to axial rotation symmetry. The LLs form a 1D dispersion in terms of q 0 = B • q, and are particle-hole symmetric due to chiral symmetry. The exact LLs for a threeband crossing (3a) are [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF] n,ξ

α = c α 2eB n + 1 -κ α ξ cos θ 2 + q 2 0 , (4) 
with c α = 0, ±1 and n ∈ {0, 1, ...} the LL index. The flat band is maintained and the dispersive bands carry a clear signature of the Berry dipole's charge (κ α ) and orientation (ξ cos θ ≡ B • d). As a consequence, the LL spectrum strongly depends on the magnetic field direction: it is gapped for B d, and gapless for B d, see Fig. 2(a). This is a pure quantum geometric effect, since the zero-field spectrum is fully isotropic. Similarly, we find the exact LLs of a fourband crossing (3b):

n,ξ α = α 1 η + + η -+ α 2 (η + -η -) 2 + ν 2 , η ± = c 2 ± 2 2eB n + 1 -κ ± ξ cos θ 2 + q 2 0 . (5) 
Here, we use a band index tuple α = (α 1 , α 2 ) with α i = ±; c + = a and c -= b are the band velocities of the two cones, and κ ± = ∓1 the corresponding dipole charges; moreover, ν = c + c -e(B × d) x = abeBξ sin θ. Again, the Berry dipole (2) explicitly appears and the LLs can be tuned by rotating B, see Fig. 2(b), however the spectrum is now always gapless. Finally, the LLs of the fivefold crossing (3c) are similar to the LLs (4), see [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF]. Note the big difference with the LLs of a pseudospin (Berry monopole) H s (q). Those are independent of B due to full rotation symmetry, exhibit a number of chiral LLs determined by the Chern number [START_REF] Bradlyn | Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals[END_REF][START_REF] Ezawa | Chiral anomaly enhancement and photoirradiation effects in multiband touching fermion systems[END_REF][START_REF] Delplace | Berry-Chern monopoles and spectral flows[END_REF], and any flat band is destroyed since B breaks parity symmetry [START_REF] Similarly | the LLs of Dirac fermions HD(q) are independent of B. However they are particle-hole symmetric due to chiral symmetry. Indeed, for a = b, where Eq. (3b) becomes a Dirac semimetal HD(q) = q • Γ with anticommuting matrices Γx,y,z, Eq. (5)[END_REF]. One can also compare to the LLs of an extended Berry dipole d 0 formed from two Weyl nodes. Those obviously depend on B [START_REF] Saykin | Landau levels with magnetic tunneling in a Weyl semimetal and magnetoconductance of a ballistic p-n junction[END_REF], but this dependence is quite distinct from the one of Eqs. ( 4)- [START_REF] Volovik | Zeros in the fermion spectrum in superfluid systems as diabolical points[END_REF].

It is also interesting to analyze the LLs semiclassically. Indeed, Eq. ( 4) can be easily obtained using Onsager quantization [START_REF] Onsager | Interpretation of the de Haas-van Alphen effect[END_REF] plus intraband (Berry curvature and orbital magnetic moment) corrections [START_REF] Roth | Semiclassical Theory of Magnetic Energy Levels and Magnetic Susceptibility of Bloch Electrons[END_REF][START_REF] Mikitik | Manifestation of Berry's Phase in Metal Physics[END_REF][START_REF] Fuchs | Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models[END_REF][START_REF] Gao | Zero-field magnetic response functions in Landau levels[END_REF]. More importantly, the origin of ν ∼ |B × d| in Eq. ( 5) can be explained semiclassically via interband coupling of degenerate orbits originating from the two cones [Fig. 1(d)]. This can be seen from an original approach to Landau quantization of degenerate orbits developed in [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF].

(b) Anomalous Hall effect and magnetotransport. Consider now a crossing H ξ N (q) in the presence of weak electric and magnetic fields E and B. We adopt a standard approach to describe the linear response of the system, by solving the semiclassical Boltzmann equation in the relaxation time (τ ) approximation to first order in E and B [START_REF] Ziman | Electrons and Phonons: The Theory of Transport Phenomena in Solids[END_REF]. Taking into account corrections due to Berry curvature and orbital magnetic moment [START_REF] Xiao | Berry phase effects on electronic properties[END_REF], and working at zero temperature, we find several nontrivial effects [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF]:

(i) At zeroth order in B, a single crossing point H ξ N (q) causes a non-dissipative anomalous Hall (AH) current

j AH = σ AH E × d. ( 6 
)
This current is similar in form to the AH current j W AH = σ W AH E × d 0 created by a pair of coupled Weyl nodes [START_REF] Klinkhamer | Emergent CPT violation from the splitting of Fermi points[END_REF][START_REF] Burkov | Weyl Semimetal in a Topological Insulator Multilayer[END_REF][START_REF] Yang | Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates[END_REF] (here d 0 may represent the distance between Weyl nodes or a tilt). Importantly, however, it is opposite in parity: σ AH in Eq. ( 6) is odd in the Fermi level E F , while σ W AH is even. This opposite parity is a direct consequence of the symmetry of the dipole charges (κ α = κ -α ), as proven in [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF].

(ii) At first order in B, there is a dissipative quantum geometric current j geo (B). For example, for model (3a),

j geo (B) = - e 3 τ 12π 2 [(E • B)d + (E • d)B + (B • d)E] , (7) 
and similarly for the four-and fivefold crossings (3b), (3c). Just like the AH current, the current ( 7) is similar in form to well-known effects from a pair of coupled Weyl nodes: a current j CA ∼ (E • B)d 0 induced by the chiral anomaly [START_REF] Nielsen | The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[END_REF][START_REF] Zyuzin | Magnetotransport of Weyl semimetals due to the chiral anomaly[END_REF][START_REF] Sharma | Chiral anomaly and longitudinal magnetotransport in type-II Weyl semimetals[END_REF]; a current j CME ∼ δ B due to the chiral magnetic effect [START_REF] Zyuzin | Magnetotransport of Weyl semimetals due to the chiral anomaly[END_REF][START_REF] Vilenkin | Equilibrium parity-violating current in a magnetic field[END_REF][START_REF] Fukushima | Chiral magnetic effect[END_REF][START_REF] Zyuzin | Weyl semimetal with broken time reversal and inversion symmetries[END_REF], where δ is an energy difference between the valleys; a current j MCE ∼ (B • d 0 )E caused by the magnetochiral effect [36, 37]. However, j geo (B) again has opposite parity: it is even in E F , whereas the currents j CA , j CME , j MCE are odd. While this cannot be seen from the continuum formula [START_REF] Nielsen | A no-go theorem for regularizing chiral fermions[END_REF], it can be shown to be true by general symmetry considerations [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF]. Tight-binding models for MHSs. We now move from the continuum to a lattice description, introducing two different classes of tight-binding models for MHSs (Fig. 3) both of which have a low-energy theory (3).

(a) Valley-MHSs. Those have an even number of Berry dipole crossings in the Brillouin zone, with opposite dipole orientation in each valley [Fig. 3(a)]. We consider a version with preserved [h N (k)] and broken [ hN (k)] time-reversal symmetry, respectively:

h N (k) = 0 Q N Q † N 0 , hN (k) = 0 QN Q † N 0 , Q 3 = w k -is z , Q3 = s --is z , Q 4 = aw k ias z ibs z bw * k , Q4 = as -ias z ibs z bs + , Q 5 =    0 i √ 2s z is z w * k √ 2w * k 0    , Q5 =    0 i √ 2s z is z s + √ 2s + 0    .
(8) Here, w k ≡ 2 3 j exp(ik • δ j ), where δ 1,2 = 1 2 (± √ 3, 1, 0) and δ 3 = (0, -1, 0), and we use shorthand notations s i ≡ sin k i and s ± ≡ s x ± is y . The Hamiltonians h N (k) [ hN (k)] represent nearest-neighbor tight-binding models on a hexagonal [tetragonal] lattice, consisting of 2D hon-eycomb [square] layers stacked in a particular way along ẑ. As an example, the case N = 3 is shown in Fig. 3(c) and more details can be found in [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF]. Note that the Bravais period is doubled along ẑ such that nodal points can appear only in the k z = 0 plane. Indeed, for h N (k) the Brillouin zone contains one N -fold nodal point at the K (ξ = +) and one at the K' (ξ = -) valley, where

K ξ = -ξ4π/(3 √ 3)
x. Their low-energy theory is given by H + N (q) (Berry dipole up) and H - N (q) (Berry dipole down), respectively. For hN (k) there are also two N -fold nodal points in the Brillouin zone, located at the Γ and M point and described by H + N (q) and H - N (q), respectively. (b) True MHSs. Those have an odd number of Berry dipoles in the Brillouin zone [Fig. 3(b)]. We consider

h N (k) ≡ hN (k) + g(k)D N , g(k) = ∆ 0 + cos k x + cos k y + cos k z , (9) 
where D 3 = antidiag(1, 0, 1), D 4 = antidiag(-a, b, b, -a), and

D 5 = antidiag( √ 2, 1, 0, 1, √ 2 
). Such models can be built on a simple cubic lattice with N orbitals per site, see Fig. 3(d) for the case N = 3. To have a semimetal, we allow the parameter ∆ 0 to take only discrete values ∆ 0 = ±1, ±3. Indeed, for ∆ 0 = -3 (∆ 0 = 3) there is one nodal point at the Γ (R) point of the Brillouin zone, and for ∆ 0 = -1 (∆ 0 = 1) there are three nodal points at the inequivalent X (M) points. The low-energy theory of all these points is of the form (3) [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF].

Physical properties of MHSs -lattice perspective. For a Fermi level close to the nodal points, the physical properties of the models (8) and ( 9) are simply obtained by summing the continuum results over all valleys. It is then clear from Fig. 3(a)-(b) that the currents ( 6) and ( 7) cancel for a valley-MHS, but not for a true MHS. To confirm this, we have numerically calculated the anomalous Hall conductivity of h N (k) for parameters such that a single Berry dipole crossing exists in the Brillouin zone [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF]. The N = 3 case is shown in Fig. 3(e). This calculation confirms the previous claim that j AH is odd in E F , while it is even for a pair of Berry monopoles. A similar lattice calculation (not shown) confirms the existence of weak-field magnetocurrents j geo (B) for a Hopf semimetal [START_REF] Ezawa | Chiral anomaly enhancement and photoirradiation effects in multiband touching fermion systems[END_REF], which are even in E F . In contrast to the currents, the LLs are nontrivial also for a valley-MHS. For example, consider h 3 (k) [Fig. 3(c)] under strong B. For θ close to 0 or π, it is clear from Fig. 2(a) that one of the K and K' valleys will be gapped and the other gapless, such that only one valley polarization is accessible in the ultraquantum limit (E F ∼ 1/l B ). This could be interesting, for example, for magnetooptics.

Relation to multiband Hopf insulators. In the MHS Hamiltonian [START_REF] Ezawa | Chiral anomaly enhancement and photoirradiation effects in multiband touching fermion systems[END_REF], we now replace the discrete values ∆ 0 by a continuous parameter ∆. The Hamiltonians

h Hopf N (k) ≡ h N (k, ∆ = ∆ 0 ) (10) 
are nearest-neighbor tight-binding models for multiband Hopf insulators (MHIs) [START_REF] Lapierre | N -band Hopf insulator[END_REF], a generalization of wellknown twoband Hopf insulators [START_REF] Moore | Topological Surface States in Three-Dimensional Magnetic Insulators[END_REF][START_REF] Deng | Hopf insulators and their topologically protected surface states[END_REF]. To confirm this, we compute the Hopf number

N Hopf = W 3 [U (k)] = BZ d 3 k 24π 2 χ(k) (11) 
as the third winding number W 3 of the unitary matrix U (k) that diagonalizes h Hopf N (k), which can be written as an integral of the Hopf density χ(k) ≡ ijl Tr[u i (k)u j (k)u l (k)] over the Brillouin zone, with u i (k) ≡ U † (k)∂ i U (k) and ∂ i ≡ ∂/∂k i . From Eq. ( 11), we find a quantized Hopf number for ∆ = ∆ 0 [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF], as shown in Fig. 4. At the topological phase transitions (TPTs) ∆ = ∆ 0 , all N -1 band gaps close simultaneously at one or three points of the Brillouin zone. Clearly, the MHSs ( 9) are critical points of the MHIs [START_REF] Alexandradinata | Teleportation of Berry curvature on the surface of a Hopf insulator[END_REF], in analogy to how quadratic band touchings with Berry dipole mediate TPTs between twoband Hopf insulators [START_REF] Alexandradinata | Teleportation of Berry curvature on the surface of a Hopf insulator[END_REF][START_REF] Nelson | Delicate topology protected by rotation symmetry: Crystalline Hopf insulators and beyond[END_REF].

Three remarks are in order. First, h Hopf 3 (k) is actually well known as a chiral topological insulator (TI) in the literature [START_REF] Wang | Probe of Three-Dimensional Chiral Topological Insulators in an Optical Lattice[END_REF][START_REF] Lian | Machine Learning Topological Phases with a Solid-State Quantum Simulator[END_REF]; it was introduced for constructing fractional topological phases [START_REF] Neupert | Noncommutative geometry for threedimensional topological insulators[END_REF], and we identify it as a threeband HI [START_REF]Note in particular that, when chiral symmetry is broken without a[END_REF]. Second, the jump δN Hopf at a TPT can be understood by using a continuum Hopf number and summing over all band crossing points [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF]. Third, we can define a valley-MHI as h v-Hopf N (k) = hN (k) + ∆D N , which has χ(k) = 0 but N Hopf = 0.

Experimental realization. Given the simplicity of the MHS models, their existence in crystals appears possible. Berry dipole crossings could be probed via the peculiar, strongly valley-dependent depence of the Landau levels on the magnetic field orientation [Fig. 2(a)]. AH currents and linear magnetocurrents induced by the Berry dipoles have symmetries opposite to those of a pair of Weyl nodes [Fig. 3(e)], which could be probed by varying the Fermi level close to half filling. A different route involves artificial systems such as ultracold atoms, photonic crystals, or superconducting circuits. Those have been used to realize semimetallic phases with two-and multifold crossings [START_REF] Zhang | Topological quantum matter with cold atoms[END_REF][START_REF] Zhu | Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices[END_REF][START_REF] Fulga | Geometrically protected triple-point crossings in an optical lattice[END_REF][START_REF] Hu | Topological Triply Degenerate Points Induced by Spin-Tensor-Momentum Couplings[END_REF][START_REF] Lu | Experimental observation of Weyl points[END_REF][START_REF] Chen | Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states[END_REF][START_REF] Riwar | Multi-terminal Josephson junctions as topological matter[END_REF][START_REF] Wang | Optical Interface States Protected by Synthetic Weyl Points[END_REF][START_REF] Tan | Topological Maxwell Metal Bands in a Superconducting Qutrit[END_REF], and a threeband crossing [START_REF] Palumbo | Revealing Tensor Monopoles through Quantum-Metric Measurements[END_REF] similar to Eq. (3a) was recently observed using a transmon in a cavity [START_REF] Tan | Experimental Observation of Tensor Monopoles with a Superconducting Qudit[END_REF]. Moreover, various schemes for observing Hopf numbers in insulators have been proposed [START_REF] Deng | Probe Knots and Hopf Insulators with Ultracold Atoms[END_REF][START_REF] Ünal | Hopf characterization of two-dimensional Floquet topological insulators[END_REF][START_REF] Schuster | Realizing Hopf Insulators in Dipolar Spin Systems[END_REF][START_REF] Schuster | Floquet engineering ultracold polar molecules to simulate topological insulators[END_REF] and could be extended to the MHIs [START_REF] Alexandradinata | Teleportation of Berry curvature on the surface of a Hopf insulator[END_REF] 
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(k) (viewed as a chiral TI) there already exists not only a proposal based on ultracold atoms [START_REF] Wang | Probe of Three-Dimensional Chiral Topological Insulators in an Optical Lattice[END_REF], but also an experimental realization based on machine learning analysis of a nitrogen-vacancy center in diamond [START_REF] Lian | Machine Learning Topological Phases with a Solid-State Quantum Simulator[END_REF]. The MHS ( 9) is reached at the topological phase transitions of such experiments. While it appears challenging to implement the magnetic responses discussed above in artificial systems, we expect the Berry dipoles to also affect more accessible phenomena such as interferometry of atomic wave packets or quench dynamics [START_REF] Zhang | Topological quantum matter with cold atoms[END_REF].

Conclusions. We proposed multifold Hopf semimetals (MHSs), featuring N -fold linear band crossings with Berry dipole, distinct from the Berry monopole crossings of known topological semimetals [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF][START_REF] Lv | Experimental perspective on three-dimensional topological semimetals[END_REF]. The Berry dipole strongly affects observables, e.g. Landau levels, anomalous Hall effect, and magnetoconductivities. Gapping out MHSs, we found the first simple lattice models for multiband Hopf insulators [START_REF] Lapierre | N -band Hopf insulator[END_REF], avoiding the second-neighbor hoppings of twoband Hopf insulators [START_REF] Moore | Topological Surface States in Three-Dimensional Magnetic Insulators[END_REF][START_REF] Deng | Hopf insulators and their topologically protected surface states[END_REF] and providing an ideal platform to study delicate topology [START_REF] Nelson | Multicellularity of Delicate Topological Insulators[END_REF].

To close, we mention interesting perspectives. First, the systems introduced here are, in a sense, 3D analogs of 2D Dirac semimetals and Chern insulators, see Table I and [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF]. To make such an analogy more precise, one could systematically analyze all possible ways to perturb MHSs and establish the corresponding phase diagrams, similar to recent work on the conversion between Weyl points, nodal lines, quadratic Berry dipole touchings and twoband Hopf insulators [START_REF] Nelson | Delicate topology protected by rotation symmetry: Crystalline Hopf insulators and beyond[END_REF][START_REF] Liu | Symmetry-protected topological Hopf insulator and its generalizations[END_REF][START_REF] Sun | Conversion Rules for Weyl Points and Nodal Lines in Topological Media[END_REF][START_REF] Bouhon | Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe[END_REF]. Second, the Hamiltonians (3a)-(3b) seem to be related to 4D semimetals with tensor monopoles [START_REF] Palumbo | Revealing Tensor Monopoles through Quantum-Metric Measurements[END_REF][START_REF] Zhu | Fourdimensional semimetals with tensor monopoles: From surface states to topological responses[END_REF] by dimensional reduction. Finally, the models with Berry quadrupole and octupole provided in [START_REF]See Supplemental Material for: (i) Continuum models with Berry quadrupole and octupole structure. (ii) A MHS continuum model with a tunable Berry dipole vector. (iii) A derivation of the exact LL spectrum for MHS continuum models. (iv) An original semiclassical approach to LLs in MHSs, going beyond Onsager quantization and taking into account interband coupling between degenerate orbits. (v) A review of semiclassical magnetotransport in multiband systems. This is used to compute anomalous Hall and magnetoconductivities of MHS continuum and lattice models, and to explain their symmetries with respect to EF . (vi) Details on the lattice models for MHSs defined by Eqs. (8)[END_REF] indicate the possibility to establish a full hierarchy of Berry multipole crossings.

FIG. 1 .

 1 FIG. 1. (a) Known topological semimetals are based on linear crossings each of which is a Berry monopole (left). Those appear in monopole-antimonopole pairs (right). (b) Multifold Hopf semimetals are based on linear crossings each of which is a Berry dipole. (c)-(e) Energy spectrum and dipole charges of the models (3a)-(3c).

FIG. 2 .

 2 FIG. 2. (a) LL spectrum (4) for ξ = + for three different θ, in units of the inverse magnetic length 1/lB ≡ √ eB. It can be tuned from gapped to gapless by rotating B. (b) LL spectrum (5) for ξ = +, a/2 = b = 1. It is gapless for any θ.

FIG. 3 .

 3 FIG. 3. (a)-(b) Valley-MHSs (true MHSs) have an even (odd) number of Berry dipoles. (c)-(d) Lattice models for threeband HSs, with lattice constant a0 = 1. (e) Red: AH conductivity for h3(k) with ∆0 = -3, caused by the Berry dipole at the Γ point. Black: Typical AH conductivity for a Weyl semimetal with a single pair of Weyl points [12].

FIG. 4 .

 4 FIG. 4. (a) Hopf invariant[START_REF] Nelson | Delicate topology protected by rotation symmetry: Crystalline Hopf insulators and beyond[END_REF] for the models[START_REF] Alexandradinata | Teleportation of Berry curvature on the surface of a Hopf insulator[END_REF]. Topological phase transitions occur for ∆ = ∆0, where gaps close at the Γ, X, M or R points of the Brillouin zone, see (b). Red (blue) colors denote a positive (negative) sign of δN Hopf .

  . Most notably, for the threeband

	valley-DS ↔ valley-MHS	valley-CI ↔ valley-MHI
	n even, top. dens. singular	top. dens. trivial, no topology
	graphene ↔ h N	Semenoff insulator [59] ↔ h v-Hopf N
	top. DS ↔ MHS	CI ↔ MHI
	n odd, top. dens. trivial	top. dens. nontrivial, topology
	Haldane boundary [60] ↔ h N	Haldane insulator [60] ↔ h Hopf N
	TABLE I. Analogy between 2D systems ↔ 3D systems,
	based on the number n of linear crossing points and the
	topological density (Berry curvature ↔ Hopf density). The
	third line of each box gives an example.	DS = Dirac
	semimetal, MHS = Multifold Hopf semimetal, CI = Chern in-
	sulator, MHI = Multiband Hopf insulator.
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