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A stochastic model of hippocampal synaptic plasticity with geometrical readout of enzyme dynamics

Discovering the rules of synaptic plasticity is an important step for understanding brain learning. Existing plasticity models are either 1) top-down and interpretable, but not flexible enough to account for experimental data, or 2) bottom-up and biologically realistic, but too intricate to interpret and hard to fit to data. To avoid the shortcomings of these approaches, we present a new plasticity rule based on a geometrical readout mechanism that flexibly maps synaptic enzyme dynamics to predict plasticity outcomes. We apply this readout to a multi-timescale model of hippocampal synaptic plasticity induction that includes electrical dynamics, calcium, CaMKII and calcineurin, and accurate representation of intrinsic noise sources.

Using a single set of model parameters, we demonstrate the robustness of this plasticity rule by reproducing nine published ex vivo experiments covering various spike-timing and frequency-dependent plasticity induction protocols, animal ages, and experimental conditions.

Our model also predicts that in vivo-like spike timing irregularity strongly shapes plasticity outcome. This geometrical readout modelling approach can be readily applied to other excitatory or inhibitory synapses to discover their synaptic plasticity rules.

Introduction

To understand how brains learn, we need to identify the rules governing how synapses change their strength in neural circuits. What determines whether each synapse strengthens, weakens, or stays the same? The dominant principle at the basis of current models of synaptic plasticity is the Hebb postulate [START_REF] Hebb | The organization of behavior: a neuropsychological theory[END_REF] which states that neurons with correlated electrical activity strengthen their synaptic connections, while neurons active at different times weaken their connections. In particular, spike-timing-dependent plasticity (STDP) models [START_REF] Blum | A model of spatial map formation in the hippocampus of the rat[END_REF][START_REF] Gerstner | A neuronal learning rule for sub-millisecond temporal coding[END_REF][START_REF] Eurich | Dynamics of self-organized delay adaptation[END_REF] were formulated based on experimental observations that precise timing of pre-and post-synaptic spiking determines whether synapses are strengthened or weakened [START_REF] Debanne | Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release[END_REF][START_REF] Tsodyks | The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability[END_REF][START_REF] Gq | Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[END_REF][START_REF] Markram | A history of spike-timing-dependent plasticity[END_REF]. However, experiments also found that plasticity induction depends on the rate and number of stimuli delivered to the synapse [START_REF] Dudek | Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade[END_REF][START_REF] Sjöström | Rate, timing, and cooperativity jointly determine cortical synaptic plasticity[END_REF], and the level of dendritic 1 of 64 spine depolarisation [START_REF] Artola | Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex[END_REF][START_REF] Magee | A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons[END_REF][START_REF] Sjöström | A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons[END_REF][START_REF] Golding | Dendritic spikes as a mechanism for cooperative long-term potentiation[END_REF][START_REF] Hardie | Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons[END_REF]. The lack of satisfactory plasticity models based solely on neural spiking prompted researchers to consider simple models based on synapse biochemistry [START_REF] Castellani | A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors[END_REF][START_REF] Castellani | A model of bidirectional synaptic plasticity: from signaling network to channel conductance[END_REF]. Following a proposed role for postsynaptic calcium (Ca 2+ ) signalling in synaptic plasticity [START_REF] Lisman | A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory[END_REF], previous models assumed that the amplitude of postsynaptic calcium controls long-term alterations in synaptic strength, with moderate levels of calcium causing long-term depression (LTD) and high calcium causing long-term potentiation (LTP) [START_REF] Shouval | A unified model of NMDA receptor-dependent bidirectional synaptic plasticity[END_REF][START_REF] Karmarkar | A model of spike-timing dependent plasticity: one or two coincidence detectors?[END_REF]. However experimental data suggests that calcium dynamics are also important [START_REF] Yang | Selective induction of LTP and LTD by postsynaptic [Ca2+] i elevation[END_REF][START_REF] Mizuno | Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor[END_REF][START_REF] Wang | Coactivation and timing-dependent integration of synaptic potentiation and depression[END_REF][START_REF] Nevian | Spine Ca2+ signaling in spike-timing-dependent plasticity[END_REF][START_REF] Tigaret | Coordinated activation of distinct Ca 2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity[END_REF]. As a result, subsequent phenomenological models of plasticity incorporated slow variables that integrate the fast synaptic input signals, loosely modelling calcium and its downstream effectors [START_REF] Abarbanel | Biophysical model of synaptic plasticity dynamics[END_REF][START_REF] Rubin | Calcium time course as a signal for spike-timing dependent plasticity[END_REF][START_REF] Rackham | A Ca2+-based computational model for NMDA receptordependent synaptic plasticity at individual post-synaptic spines in the hippocampus[END_REF]Clopath and Gerstner, 2010;[START_REF] Kumar | Frequency-dependent changes in NMDAR-dependent synaptic plasticity[END_REF][START_REF] Graupner | Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location[END_REF][START_REF] Honda | A common framework of signal processing in the induction of cerebellar LTD and cortical STDP[END_REF][START_REF] Standage | Calcium-dependent calcium decay explains STDP in a dynamic model of hippocampal synapses[END_REF][START_REF] De Pittà | Modulation of synaptic plasticity by glutamatergic gliotransmission: A modeling study[END_REF]. Concurrently, more detailed models tried to explicitly describe the molecular pathways integrating the calcium dynamics and its stochastic nature [START_REF] Cai | Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus[END_REF][START_REF] Shouval | Stochastic properties of synaptic transmission affect the shape of spike timedependent plasticity curves[END_REF][START_REF] Miller | The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover[END_REF][START_REF] Zeng | The effect of noise on CaMKII activation in a dendritic spine during LTP induction[END_REF][START_REF] Yeung | Synaptic homeostasis and input selectivity follow from a calciumdependent plasticity model[END_REF]. However, even these models do not account for data showing that plasticity is highly sensitive to physiological conditions such as the developmental age of the animal [START_REF] Dudek | Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus[END_REF][START_REF] Meredith | Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition[END_REF][START_REF] Cao | Developmental regulation of the late phase of long-term potentiation (L-LTP) and metaplasticity in hippocampal area CA1 of the rat[END_REF][START_REF] Cizeron | A brain-wide atlas of synapses across the mouse lifespan[END_REF], extracellular calcium and magnesium concentrations [START_REF] Mulkey | Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus[END_REF][START_REF] Inglebert | Synaptic plasticity rules with physiological calcium levels[END_REF] and tissue temperature [START_REF] Volgushev | Probability of transmitter release at neocortical synapses at different temperatures[END_REF][START_REF] Wittenberg | Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse[END_REF][START_REF] Klyachko | Temperature-dependent shift of balance among the components of short-term plasticity in hippocampal synapses[END_REF]. The fundamental issue is that the components of these phenomenological models do not directly map to biological components of synapses, so they cannot automatically model alterations due to physiological and experimental conditions. This absence limits the predictive power of this class of plasticity models.

An alternative approach taken by several groups [START_REF] Bhalla | Emergent Properties of Networks of Biological Signaling Pathways[END_REF][START_REF] Jędrzejewska-Szmek | Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons[END_REF][START_REF] Blackwell | Molecular mechanisms underlying striatal synaptic plasticity: relevance to chronic alcohol consumption and seeking[END_REF][START_REF] Chindemi | A calcium-based plasticity model predicts long-term potentiation and depression in the neocortex[END_REF][START_REF] Zhang | Quantitative description of the interactions among kinase cascades underlying long-term plasticity of Aplysia sensory neurons[END_REF] was to model the complex molecular cascade leading to synaptic weight changes. The main benefit of this approach is the direct correspondence between the model's components and biological elements, but this comes at the price of a large number of poorly constrained parameters. Additionally, the increased number of nonlinear equations and stochasticity makes fitting to plasticity experiment data difficult [START_REF] Mäki-Marttunen | A unified computational model for cortical post-synaptic plasticity[END_REF]. Subtle differences between experimental STDP protocols can produce completely different synaptic plasticity outcomes, indicative of finely tuned synaptic behaviour. This raises major challenges for both simple and complex models.

To tackle this problem, we devised a new plasticity rule based on a bottom-up, data-driven approach by building a biologically-grounded model of plasticity induction at a single rat hippocampal CA3-CA1 synapse. We focused on this synapse type because of the abundant published experimental data that can be used to quantitatively constrain the model parameters. Compared to previous models in the literature, we aimed for an intermediate level of detail: enough biophysical components to capture the key dynamical processes underlying plasticity induction, but not the detailed molecular cascade underlying plasticity expression; much of which is poorly quantified for the various experimental conditions we cover in this study.

Our model is centred on dendritic spine electrical dynamics, calcium signalling and immediate downstream molecules, which we then map to synaptic strength change via a conceptually new dynamical, geometric readout mechanism. Crucially, the model also captured intrinsic noise based on the stochastic switching of synaptic receptors and ion channels [START_REF] Yuste | Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis[END_REF][START_REF] Ribrault | From the stochasticity of molecular processes to the variability of synaptic transmission[END_REF]. We found that, with a single set of parameters, the model can account for published data from spike-timing and frequency-dependent plasticity experiments, and variations in physiological parameters influencing plasticity outcomes. We also tested how the model responded to in vivolike spike timing jitter and spike failures, and found that the plasticity rules were highly sensitive to these subtle input alterations. AMPAr, NMDAr: AMPA-and NMDA-type glutamate receptors respectively; GABA(A)r: Type A GABA receptors; VGCC: R-, T-and L-type voltage-gated Ca2+ channels; SK: SK potassium channels. The insets show a zoomed time axis highlighting the difference in timescale of the activity among the channels. c, Dendritic spine membrane potential (left) and calcium concentration (right) as function of time for a single causal (1Pre1Post10) stimulus (EPSP: single excitatory postsynaptic potential, "1Pre"; BaP: single back-propagated action potential, "1Post"). d, Left: depletion of vesicle pools (reserve and docked) induced by 30 pairing repetitions delivered at 5 Hz [START_REF] Sterratt | Principles of computational modelling in neuroscience[END_REF], see Methods and Materials. The same depletion rule is applied to both glutamate-and GABA-containing vesicles. Right: BaP efficiency as function of time. BaP efficiency phenomenologically captures the distance-dependent attenuation of BaP [START_REF] Buchanan | The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones[END_REF][START_REF] Golding | Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites[END_REF], see Methods and Materials. e, Concentration of active enzyme for CaM, CaN and CaMKII, as function of time triggered by 30 repetitions of 1Pre1Post10 pairing stimulations delivered at 5 Hz. The vertical grey bar is the duration of the stimuli, 6 s. The multiple traces in the graphs in panels c (right) and e reflect the run-to-run variabiltity due to the inherent stochasticity in the model.
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A multi-timescale model of synaptic plasticity induction.
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We built a computational model of plasticity induction at a single CA3-CA1 rat glutamatergic synapse 94 (Figure 1). Our goal was to reproduce results on synaptic plasticity that explored the effects of 95 several experimental parameters: fine timing differences between pre and postsynaptic spiking For glutamate release, we used a two-pool vesicle depletion and recycling system, which accounts 104 for short-term presynaptic depression and facilitation. When glutamate is released from vesicles, it 105 3 of 64 can bind to the postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors (AMPArs and NMDArs, respectively), depolarizing the spine head by ∼30 mV [START_REF] Kwon | Attenuation of synaptic potentials in dendritic spines[END_REF][START_REF] Jayant | Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes[END_REF][START_REF] Beaulieu-Laroche | Dendritic spines prevent synaptic voltage clamp[END_REF]. The dendritic spine membrane depolarization causes the activation of voltage-gated calcium channels (VGCCs) and removes magnesium ([Mg 2+ ] o ) block from NMDArs. Backpropagating action potentials (BaP) can also depolarize the spine membrane by up to ∼60 mV [START_REF] Kwon | Attenuation of synaptic potentials in dendritic spines[END_REF][START_REF] Jayant | Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes[END_REF]. As an inhibitory component, we modelled a gamma-aminobutyric acid receptor (GABAr) synapse on the dendrite shaft [START_REF] Destexhe | Kinetic models of synaptic transmission[END_REF]. Calcium ions influx through VGCCs and NMDArs can activate SK potassium channels [START_REF] Adelman | Small-conductance Ca2+-activated K+ channels: form and function[END_REF][START_REF] Griffith | Control of Ca2+ influx and calmodulin activation by SK-channels in dendritic spines[END_REF], which provide a tightly-coupled local negative feedback limiting spine depolarisation. Upon entering the spine, calcium ions also bind to calmodulin (CaM). Calcium-bound CaM in turn activates two major signalling molecules [START_REF] Fujii | Nonlinear decoding and asymmetric representation of neuronal input information by CaMKII𝛼 and calcineurin[END_REF]: Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) and calcineurin (CaN) phosphatase, also known as PP2B [START_REF] Saraf | A friend or foe: calcineurin across the gamut of neurological disorders[END_REF]. We included these two enzymes because of the overwhelming evidence that CaMKII activation is necessary for Schaffer-collateral LTP [START_REF] Giese | Autophosphorylation at Thr286 of the 𝛼 calcium-calmodulin kinase II in LTP and learning[END_REF][START_REF] Chang | CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance[END_REF], while CaN activation is necessary for LTD [START_REF] O'connor | Dissection of bidirectional synaptic plasticity into saturable unidirectional processes[END_REF][START_REF] Otmakhov | Fast decay of CaMKII FRET sensor signal in spines after LTP induction is not due to its dephosphorylation[END_REF]. Later, we show how we map the joint activity of CaMKII and CaN to LTP and LTD. Ligand-gated ion channels (ionotropic receptors) and voltage-gated ion channels have an inherent random behavior, stochastically switching between open and closed states [START_REF] Ribrault | From the stochasticity of molecular processes to the variability of synaptic transmission[END_REF]. If the number of ion channels is large, then the variability of the total population activity becomes negligible relative to the mean [START_REF] O'donnell | Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise[END_REF]. However individual hippocampal synapses contain only small numbers of receptors and ion channels, for example they contain ∼10 NMDArs and <15 VGCCs [START_REF] Takumi | Different modes of expression of AMPA and NMDA receptors in hippocampal synapses[END_REF][START_REF] Sabatini | Analysis of calcium channels in single spines using optical fluctuation analysis[END_REF][START_REF] Nimchinsky | The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines[END_REF], making their total activation highly stochastic. Therefore, we modelled AMPAr, NMDAr, VGCCs and GABAr as stochastic processes. Presynaptic vesicle release events were also stochastic: glutamate release was an all-or-none event, and the amplitude of each glutamate pulse was drawn randomly, modelling heterogeneity in vesicle size [START_REF] Liu | Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices[END_REF]. The inclusion of stochastic processes to account for an intrinsic noise in synaptic activation [START_REF] Deperrois | Short-term depression and long-term plasticity together tune sensitive range of synaptic plasticity[END_REF] contrasts with most previous models in the literature, which either represent all variables as continuous and deterministic or add an external generic noise source [START_REF] Bhalla | Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties[END_REF] Antunes and De Schutter, 2012; [START_REF] Bartol | Computational reconstitution of spine calcium transients from individual proteins[END_REF].

The synapse model showed nonlinear dynamics across multiple timescales. For illustration, we stimulated the synapse with single simultaneous glutamate and GABA vesicle releases (Figure 1b). AMPArs and VGCCs open rapidly but close again within a few milliseconds. The dendritic GABAr closes more slowly, on a timescale of ∼10 ms. NMDArs, the major calcium source, closes on timescales of ∼50 ms and ∼250 ms for the GluN2A and GluN2B subtypes, respectively.

To show the typical responses of the spine head voltage and Ca 2+ , we stimulated the synapse with a single presynaptic pulse (EPSP) paired 10 ms later with a single BaP (1Pre1Post10) (Figure 1c left). For this pairing, the arrival of a BaP at the spine immediately after an EPSP, leads to a large Ca 2+ transient aligned with the BaP due to the NMDArs first being bound by glutamate then unblocked by the BaP depolarisation (Figure 1c 

right).

Single pre or postsynaptic stimulation pulses did not cause depletion of vesicle reserves or substantial activation of the enzymes. To illustrate these slower-timescale processes, we stimulated the synapse with a prolonged protocol: one presynaptic pulse followed by one postsynaptic pulse 10 ms later, repeated 30 times at 5 Hz (Figure 1d-e). The number of vesicles in both the docked and reserve pools decreased substantially over the course of the stimulation train (Figure 1d left), which in turn causes decreased vesicle release probability. Similarly, by the 30th pulse, the dendritic BaP amplitude had attenuated to ∼85% (∼70% BaP efficiency; Figure 1d right) of its initial amplitude, modelling the effects of slow dendritic sodium channel inactivation [START_REF] Colbert | Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons[END_REF][START_REF] Golding | Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites[END_REF]. Free CaM concentration rose rapidly in response to calcium transients but also decayed back to baseline on a timescale of ∼500 ms (Figure 1e top). In contrast, the concentration of active CaMKII and CaN accumulated over a timescale of seconds, reaching a sustained peak during 4 of 64 the stimulation train, then decayed back to baseline on a timescale of ∼10 and ∼120 s respectively, in line with experimental data [START_REF] Quintana | Kinetics of calmodulin binding to calcineurin[END_REF][START_REF] Fujii | Nonlinear decoding and asymmetric representation of neuronal input information by CaMKII𝛼 and calcineurin[END_REF][START_REF] Chang | CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance[END_REF] (Figure 1e).

The effects of the stochastic variables can be seen in Figure 1b-d. The synaptic receptors and ion channels open and close randomly (Figure 1b). Even though spine voltage, calcium, and downstream molecules were modelled as continuous and deterministic, they inherited some randomness from the upstream stochastic variables. As a result, there was substantial trial-to-trial variability in the voltage and calcium responses to identical pre and postsynaptic spike trains (grey traces in Figure 1c). This variability was also passed on to the downstream enzymes CaM, CaMKII and CaN, but was filtered and therefore attenuated by the slow dynamics of CaMKII and CaN. In summary, the model contained stochastic nonlinear variables acting over five different orders of magnitude of timescale, from ∼1 ms to ∼1 min, making it sensitive to both fast and slow components of input signals.

Distinguishing between stimulation protocols using the CaMKII and CaN joint response.

It has proven difficult for simple models of synaptic plasticity to capture the underlying rules and explain why some stimulation protocols induce plasticity while others do not. We tested the model's sensitivity by simulating its response to a set of protocols used by Tigaret et al. (2016) in a recent ex vivo experimental study on adult (P50-55) rat hippocampus with blocked GABAr. We focused on three pairs of protocols (three rows in Figure 2). For each of these pairs, one of the protocols experimentaly induced LTP or LTD, while the other subtly different protocol caused no change (NC) in synapse strength. Notably, three leading spike-timing and calcium-dependent plasticity models [START_REF] Song | Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[END_REF][START_REF] Pfister | Triplets of spikes in a model of spike timing-dependent plasticity[END_REF][START_REF] Graupner | Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location[END_REF] could not fit these data (Figure 3-Figure Supplement 1 a,b andc). We thus asked if, by contrast, our new model could distinguish between each pair of protocols by assigning the correct plasticity outcome.

The first pair of protocols differed in intensity. A protocol which caused no plasticity consisted of 1 presynaptic spike followed 10 ms later by one postsynaptic spike repeated at 5 Hz for one minute (1Pre1Post10, 300 at 5Hz). The other protocol induced LTP, but differed only in that it included a postsynaptic doublet instead of a single spike (1Pre2Post10, 300 at 5Hz), implying a slightly stronger initial BaP amplitude. We first attempted to achieve separability by plotting CaMKII or CaN activities independently. As observed in the plots in Figure 2a, it was not possible to set a single concentration threshold on either CaMKII or CaN that would discriminate between the protocols. This result was expected, at least for CaMKII, as recent experimental data demonstrates a fast saturation of CaMKII concentration in dendritic spines regardless of stimulation frequency [START_REF] Chang | CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance[END_REF].

To achieve better separability we set out to test a different approach, which was to combine the activity of the two enzymes, by plotting the joint CaMKII and CaN responses against each other on a 2D plane (Figure 2b). This innovative geometric plot is based on a mathematical concept of orbits from dynamical systems theory [START_REF] Meiss | Differential dynamical systems[END_REF]. In this plot, the trajectories of two protocols can be seen to overlap for the initial part of the transient and then diverge. To quantify trial to trial variability, we also calculated contour maps showing the mean fraction of time the trajectories spent in each part of the plane during the stimulation (Figure 2c). Importantly, both the trajectories and contour maps were substantially non-overlapping between the two protocols, implying that they can be separated based on the joint CaN-CaMKII activity. We found that the 1Pre2Post10 protocol leads to a weaker response in both CaMKII and CaN, corresponding to the lower blue traces in Figure 2b. The decreased response to the doublet protocol was due to the stronger attenuation of dendritic BaP amplitude over the course of the simulation [START_REF] Golding | Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites[END_REF], leading to reduced calcium influx through NMDArs and VGCCs (data not shown).

Using the second pair of protocols, we explored if this combined enzyme activity analysis could distinguish between subtle differences in protocol sequencing. We stimulated our model with Mean-time (colorbar) spent by the orbits in the CaN-CaMKII plane region expanded from panel b for each protocol (average of 100 samples). For panels c, f and i the heat maps were based on enzyme activity throughout the protocol plus a further 10 s after the stimulation ended. d-f, CaN-CaMKII activities for the protocols 1Pre2Post50 (LTP-inducing) and 2Post1Pre50 (NC) depicted in the same manner as in panels a-c. g-i, CaN-CaMKII activities for the LTD-inducing protocol 2Pre50 (900 repetitions at 3 Hz) and the NC protocol 2Pre10 (300 repetitions at 5 Hz) depicted in the same manner as in panels a-c. one causal paring protocol (EPSP-BaP) involving a single presynaptic spike followed 50 ms stimu-207 lated our model with one causal paring protocol (EPSP-BaP) involving a single presynaptic spike 208 followed 50 ms later by a doublet of postsynaptic spikes (1Pre2Post50, 300 at 5Hz), repeated at 209 5 Hz for one minute, which caused LTP in Tigaret et al. (2016). The other anticausal protocol in-210 volved the same total number of pre and postsynaptic spikes, but with the pre-post order reversed 211 (2Post1Pre50, 300 at 5Hz). Experimentally the anticausal (BaP-EPSP) protocol did not induce plas-212 ticity [START_REF] Tigaret | Coordinated activation of distinct Ca 2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity[END_REF]. Notably, the only difference was the sequencing of whether the pre or The third pair of protocols differed in both duration and intensity. We thus tested the combined enzyme activity analysis in this configuration. In line with a previous study [START_REF] Isaac | Hippocampal place cell firing patterns can induce long-term synaptic plasticity in vitro[END_REF], [START_REF] Tigaret | Coordinated activation of distinct Ca 2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity[END_REF] found that a train of doublets of presynaptic spikes separated by 50 ms repeated at a low frequency of 3 Hz for 5 minutes (2Pre50, 900 at 3Hz) induced LTD, while a slightly more intense but shorter duration protocol of presynaptic spike doublets separated by 10 ms repeated at 5 Hz for one minute (2Pre10, 300 at 5Hz) did not cause plasticity. When we simulated both protocols in the model (Figure 2g-i), both caused similar initial responses in CaMKII and CaN. In the shorter protocol, this activation decayed to baseline within 100 s of the end of the stimulation. However the slower and longer-duration 2Pre50 3Hz 900p protocol caused an additional sustained, stochastically fluctuating, plateau of activation of both enzymes (Figure 2g). This resulted in the LTD-inducing protocol having a downward and leftward-shifted CaN-CaMKII trajectory and contour plot, relative to the other protocol (Figure 2h-i). These results again showed that the joint CaN-CaMKII activity can predict plasticity changes.

A geometrical readout mapping joint enzymatic activity to plasticity outcomes.

The three above examples demonstrated that ploting the combined CaN-CaMKII activities in a 2D plane allowed us to distinguish between subtly different protocols with correct assignment of plasticity outcome. We found that the simulated CaN-CaMKII trajectories from the two LTP-inducing protocols (Figure 2a In contrast, when we compared the response histograms for the LTD and NC protocols, we found a greater overlap (Figure 2i). This suggested that, in this case, the histogram alone was not sufficient to separate the protocols, and that protocol duration is also important. LTD induction (2Pre50) required a more prolonged activation than NC (2Pre10). We thus took advantage of these joint CaMKII-CaN activity maps to design a minimal readout mechanism connecting combined enzyme activity to LTP, LTD or no change (NC). We reasoned that this readout would need three key properties. First, since the CaMKII-CaN trajectories corresponding to LTP and LTD were not linearly separable, the readout requires nonlinear boundaries to activate the plasticity inducing components.

Second, since LTD requires more prolonged activity than LTP, the readout should be sensitive to the timescale of the input. Third, a mechanism is required to convert the 2D LTP-LTD inducing signals into a synaptic weight change. After iterating through several designs, we satisfied the first property by designing "plasticity regions": polygons in the CaN-CaMKII plane that would detect when trajectories pass through. We satisfied the second property by using two plasticity inducing components with different time constants which low-pass-filter the plasticity region signals. We satisfied the third property by feeding both the opposing LTP and LTD signals into a stochastic Markov chain which accumulated the total synaptic strength change. Overall this readout mechanism acts as a parsimonious model of the complex signalling cascade linking CaMKII and CaN activation to expression of synaptic plasticity [START_REF] He | Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: The possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation[END_REF]. It can be considered as a two-dimensional extension of previous computational studies that applied analogous 1D threshold functions to dendritic spine calcium concentration [START_REF] Shouval | A unified model of NMDA receptor-dependent bidirectional synaptic plasticity[END_REF][START_REF] Karmarkar | A model of spike-timing dependent plasticity: one or two coincidence detectors?[END_REF][START_REF] Graupner | Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location[END_REF][START_REF] Standage | Calcium-dependent calcium decay explains STDP in a dynamic model of hippocampal synapses[END_REF].

We now elaborate on the readout design process. We first drew non-overlapping polygons of LTP and LTD "plasticity regions" in the CaN-CaMKII plane (Figure 3a). We positioned these regions over the parts of the phase space where the enzyme activities corresponding to the LTP-and 7 of 64 LTD-inducing protocols were most different (Methods and Materials), as shown by trajectories in Figure 2. When a trajectory enters in one of these plasticity regions, it activates LTD or LTP indicator variables (Methods and Materials) which encode the joint enzyme activities (trajectories in the phase plots) transitions across the LTP and LTD regions over time (Figure 3b). These indicator variables drove transition rates of a plasticity Markov chain used to predict LTP or LTD (Figure 3c), see Methods and Materials. Intuitively, this plasticity Markov chain models the competing processes of insertion/deletion of AMPArs to the synapse, although this is not represented in the model. The LTD transition rates were slower than the LTP transition rates, to reflect studies showing that LTD requires sustained synaptic stimulation [START_REF] Yang | Selective induction of LTP and LTD by postsynaptic [Ca2+] i elevation[END_REF][START_REF] Mizuno | Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor[END_REF][START_REF] Wang | Coactivation and timing-dependent integration of synaptic potentiation and depression[END_REF].

The parameters for this plasticity Markov chain (Methods and Materials) were fit to the plasticity induction outcomes from different protocols (Table 1). At the beginning of the simulation, the plasticity Markov chain starts with 100 processes [START_REF] Destexhe | Kinetic models of synaptic transmission[END_REF] in the state No Change (NC), with each variable representing 1% weight change, an abstract measure of synaptic strength that can be either EPSP, EPSC, or field EPSP slope depending on the experiment. Each process can transit stochastically between NC, LTP and LTD states. At the end of the protocol, the plasticity outcome is given by the difference between the number of processes in the LTP and the LTD states (Methods and Materials).

In Figure 3d In Figure 3g, we plot the distribution of the predicted plasticity from all the protocols (colours) of Tigaret alongside the experimental data [START_REF] Tigaret | Coordinated activation of distinct Ca 2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity[END_REF]. We find a very good correspondence between the model and experiments. Of note, data fitting of the experiments in Tigaret et al. (2016) (Figure 3g) was more accurate with our model than the fitting obtained with existing leading spikeor calcium-based STDP models [START_REF] Song | Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[END_REF][START_REF] Pfister | Triplets of spikes in a model of spike timing-dependent plasticity[END_REF][START_REF] Graupner | Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location[END_REF], see Experimentally, LTP can be induced by few pulses while LTD usually requires stimulation protocols of longer duration [START_REF] Yang | Selective induction of LTP and LTD by postsynaptic [Ca2+] i elevation[END_REF][START_REF] Mizuno | Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor[END_REF][START_REF] Wang | Coactivation and timing-dependent integration of synaptic potentiation and depression[END_REF]. We incorporated this effect into the geometrical readout model by letting LTP have faster transition rates than LTD (Figure 3c). [START_REF] Tigaret | Coordinated activation of distinct Ca 2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity[END_REF] found that 300 repetitions of anticausal post-before-pre pairings did not cause LTD, in contrast to the canonical spike-timing-dependent plasticity curve [START_REF] Gq | Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[END_REF]. We hypothesized that LTD might indeed appear with the anticausal protocol ( 

Frequency-dependent plasticity

The stimulation protocols used by Importantly, the geometrical readout mechanism mapping joint CaMKII-CaN activity to plasticity remained identical for all experiments in this work.

Figure 4a shows the joint CaMKII-CaN activity when we stimulated the model with 900 presynaptic spikes at 1, 3, 5, 10 and 50 Hz [START_REF] Dudek | Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade[END_REF]. Higher stimulation frequencies drove stronger responses in both CaN and CaMKII activities (Figure 4a). Figure 4b,c show the corresponding plasticity region indicator for the LTP/LTD region threshold crossings and the synaptic strength change. From this set of five protocols, only the 50 Hz stimulation drove a response strong enough to reach the LTP region of the plane (Figure 4a andd). Although the remaining four protocols drove responses primarily in the LTD region, only the 3 and 5 Hz stimulations resulted in substantial LTD.

The 1 Hz and 10 Hz stimulations resulted in negligible LTD, but for two distinct reasons. Although the 10 Hz protocol's joint CaMKII-CaN activity passed through the LTD region of the plane (Figure 4a andd), it was too brief to activate the slow LTD mechanism built into the readout (Methods and Materials). The 1 Hz stimulation, on the other hand, was prolonged, but its response was too weak to reach the LTD region, crossing the threshold only intermittently (Figure 4b, bottom trace).

Overall the model matched well the mean plasticity response found by Dudek and Bear (1992), see

Figure 4e

, following a classic BCM-like curve as function of stimulation frequency [START_REF] Abraham | Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP[END_REF][START_REF] Bienenstock | Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex[END_REF].

We then used the model to explore the stimulation space in more detail by varying the stimulation frequency from 0.5 Hz to 50 Hz, and varying the number of presynaptic pulses from 50 to 1200. Figure 4f shows a contour map of the mean synaptic strength change (%) in this 2D frequency-pulse number space. Under Dudek and Bear (1992) experimental conditions, we found that LTD induction required at least ∼300 pulses, at frequencies between 1Hz and 3Hz. In contrast, LTP could be induced using ∼50 pulses at ∼20Hz or greater. The contour map also showed that increasing the number of pulses (vertical axis in and LTD. This was paralleled by a widening of the LTD frequency range, whereas the LTP frequency 370 threshold remained around ∼20Hz, independent of pulse number.

371

The pulse-dependent amplification of synaptic weight predicted in Figure 4 is also valid for switches from depolarising to hyperpolarizing [START_REF] Rivera | The K+/Cl-cotransporter KCC2 renders GABA hyperpolarizing during neuronal maturation[END_REF][START_REF] Meredith | Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition[END_REF][START_REF] Rinetti-Vargas | Periadolescent maturation of GABAergic hyperpolarization at the axon initial segment[END_REF], and the action potential backpropagates more efficiently with age [START_REF] Buchanan | The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones[END_REF]). These mechanisms have been proposed to underlie the developmental changes in synaptic plasticity rules because they are key regulators of synaptic calcium signalling [START_REF] Meredith | Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition[END_REF][START_REF] Buchanan | The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones[END_REF]. However, their sufficiency and individual contributions to the age-related plasticity changes are unclear and this has not been taken into account in any previous model. We incorporated these mechanisms in the model (Methods and Materials) by parameterizing each of the three components to vary with the animal's postnatal age, to test if they could account for the age-dependent plasticity data.

We found that elaborating the model with age-dependent changes in NMDAr composition, GABAr reversal potential, and BaP efficiency, while keeping the same plasticity readout parameters, was sufficient to account for the developmental changes in LTD and LTP observed by Dudek and Bear (1993) (Figure 5a,b). We then explored the model's response to protocols of various stimulation frequencies, from 0.5 to 50 Hz, across ages from P5 to P80 (Figure 5c,e). Figure 5c shows the synaptic strength change as function of stimulation frequency for ages P15, P25, P35 and P45.

The magnitude of LTD decreases with age, while the magnitude of LTP increases with age. Figure 12 of 64 5e shows a contour plot of the same result, covering the age-frequency space.

The 1Hz presynaptic stimulation protocol in Dudek and Bear (1993) did not induce LTD in adult animals [START_REF] Dudek | Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade[END_REF]. We found that the joint CaN-CaMKII activity trajectories for this stimulation protocol underwent an age-dependent leftward shift beyond the LTD region (Figure 5f ). This implies that LTD is not induced in mature animals by this conventional LFS protocol due to insufficient activation of enzymes. In contrast, Tigaret et al. (2016) and Isaac et al. (2009) were able to induce LTD in adult rat tissue by combining LFS with presynaptic spike pairs repeated 900 times at 3 Hz. Given these empirical findings and our modelling results, we hypothesized that LTD induction in adult animals requires that the stimulation protocol: 1) causes CaMKII and CaN activity to stay more in the LTD region than the LTP region, and 2) is sufficiently long to activate the LTD readout mechanism. With experimental parameters used by Dudek and Bear (1993), this may be as short as 300 pulses when multi-spike presynaptic protocols are used since the joint CaMKII-CaN activity can reach the LTD region more quickly than for single spike protocols. We simulated two such potential protocols as predictions: doublet and quadruplet spike groups delivered 300 times at 1 Hz, with 50 ms between each pair of spikes in the group (Figure 5d). The model predicted that both these protocols induce LTD in adults , whereas as shown above, the single pulse protocol did not cause LTD. These findings suggest that the temporal requirements for inducing LTD may not be as prolonged as previously assumed, since they can be reduced by varying stimulation intensity.

See Dudek and Bear (1993) also performed theta-burst stimulation (TBS, Table 1) at different developmental ages, and found that LTP is not easily induced in young rats [START_REF] Cao | Developmental regulation of the late phase of long-term potentiation (L-LTP) and metaplasticity in hippocampal area CA1 of the rat[END_REF], experiments done in different conditions. We fitted well the data from Wittenberg and [START_REF] Wittenberg | Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse[END_REF] by adapting the model with appropriate age and temperature.
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Effects of extracellular calcium and magnesium concentrations on plasticity outcome.

The We used 21x18x100 data points, respectively calcium x frequency x samples. Table 1). Figure 6 

In vivo-like spike variability affects plasticity

In the above sections, we used highly regular and stereotypical stimulation protocols to replicate typical ex vivo plasticity experiments. In contrast, neural spiking in hippocampus in vivo is irregular and variable [START_REF] Fenton | Place cell discharge is extremely variable during individual passes of the rat through the firing field[END_REF][START_REF] Isaac | Hippocampal place cell firing patterns can induce long-term synaptic plasticity in vitro[END_REF]. Previous studies that asked how natural firing variability affects the rules of plasticity induction used simpler synapse models [START_REF] Rackham | A Ca2+-based computational model for NMDA receptordependent synaptic plasticity at individual post-synaptic spines in the hippocampus[END_REF][START_REF] Graupner | Natural firing patterns imply low sensitivity of synaptic plasticity to spike timing compared with firing rate[END_REF][START_REF] Cui | Robustness of STDP to spike timing jitter[END_REF]. We explored this question in our synapse model using simulations with three distinct types of additional variability: 1) spike time jitter, 2) failures induced by dropping spikes, 3) independent pre and postsynaptic Poisson spike trains [START_REF] Graupner | Natural firing patterns imply low sensitivity of synaptic plasticity to spike timing compared with firing rate[END_REF].

We introduced spike timing jitter by adding zero-mean Gaussian noise (s.d. 𝜎) to pre and postsynaptic spikes, changing spike pairs inter-stimulus interval (ISI). In Figure 7a, we plot the LTP magnitude as function of jitter magnitude (controlled by 𝜎) for protocols taken from Tigaret et al. (2016). protocols. So any protocol with the same number spikes will produce a similar outcome if the jitter is large enough. Note that despite noise the mean frequency was conserved at 5 ± 13.5 Hz (see

Figure 7e).

Next, we studied the effect of spike removal. In the previous sections, synaptic release probability was ∼60% (for [Ca 2+ ] o = 2.5 mM) or lower, depending on the availability of docked vesicles (Methods and Materials). However, baseline presynaptic vesicle release probability is heterogeneous across CA3-CA1 synapses, ranging from ∼ 10 -90% [START_REF] Dobrunz | Very short-term plasticity in hippocampal synapses[END_REF][START_REF] Enoki | Expression of long-term plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal analysis[END_REF] and likely lower on average in vivo [START_REF] Froemke | Spike-timing-dependent synaptic modification induced by natural spike trains[END_REF][START_REF] Borst | The low synaptic release probability in vivo[END_REF]. BaPs are also heterogeneous with random attenuation profiles [START_REF] Golding | Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites[END_REF] and spike failures [START_REF] Short | The stochastic nature of action potential backpropagation in apical tuft dendrites[END_REF].

To test the effects of pre and postsynaptic failures on plasticity induction, we performed simulations where we randomly removed spikes, altering the regular attenuation observed in Tigaret et al. (2016) protocols.

In Figure 7b we plot the plasticity magnitude as function of sparsity (percentage of removed spikes). The sparsity had different specific effects for each protocol. 1Pre2Post10 and 1Pre2Post50 which originally produced substantial LTP were robust to spike removal until ∼ 60% sparsity. In contrast, the plasticity magnitude from both 1Pre1Post10 and 2Post1Pre50 showed a non-monotonic dependence on sparsity, first increasing then decreasing, with maximal LTP at ∼40% sparsity.

To understand how sparsity causes this non-monotonic effect on plasticity magnitude, we plotted the histograms of time spent in the CaN-CaMKII plane for 2Post1Pre50 for three levels of sparsity: 0%, 30% and 80% (Figure 7d). For 0% sparsity, the activation spent most time at the border between the LTP and LTD regions, resulting in no change. Increasing sparsity to 30% caused the activation to shift rightward into the LTP region because there was less attenuation of pre and postsynaptic resources. In contrast, at 80% sparsity, the activation moved into the LTD region because there were not enough events to substantially activate CaMKII and CaN. Since LTD is a slow process and the protocol duration is short (60s), there was no net plasticity. Therefore for this protocol, high and low sparsity caused no plasticity for distinct reasons, whereas intermediate sparsity enabled LTP by balancing resource depletion with enzyme activation.

Next we tested the interaction of jitter and spike removal. Figure 7f shows a contour map of weight change as a function of jitter and sparsity for the 2Post1Pre50 protocol, which originally induced no plasticity (Figure 2). Increasing spike jitter enlarged the range of sparsity inducing LTP.

In summary, these simulations (Figure 7a,b,f andh) show that different STDP protocols have different degrees of sensitivity to noise in the firing structure, suggesting that simple plasticity rules derived from regular ex vivo experiments may not predict plasticity in vivo.

How does random spike timing affect rate-dependent plasticity? We stimulated the model with pre and postsynaptic Poisson spike trains for 10s, under Dudek and Bear (1992) experimental conditions. We systematically varied both the pre and postsynaptic rates (Figure 7h). The 10s stimulation protocols induced only LTP, since LTD requires a prolonged stimulation [START_REF] Mizuno | Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor[END_REF]. LTP magnitude monotonically increased with the presynaptic rate (Figure 7g andh). In contrast, LTP magnitude varied non-monotonically as a function of postsynaptic rate, initially increasing until a peak at 10 Hz, then decreasing with higher stimulation frequencies. This non-monotonic dependence on post-synaptic rate is inconsistent with classic rate-based models of Hebbian plasticity.

We also investigated how this plasticity dependence on pre-and postsynaptic Poisson firing rates varies with developmental age (Figure 4-Figure Supplement 1g-i). We found that at P5 no plasticity is induced, at P15 a LTP region appears at around 1 Hz postsynaptic rate, and at P20 plasticity becomes similar to the mature age, with a peak in LTP magnitude at 10 Hz postsynaptic rate.

Discussion

We built a model of a rat CA3-CA1 hippocampal synapse, including key electrical and biochemical components underlying synaptic plasticity induction (Figure 1). We developed a novel geometric readout of combined CaN-CaMKII dynamics (Figure 2-Figure 4) to predict the outcomes from a range plasticity experiments with heterogeneous conditions: animal developmental age (Figure 5), aCSF composition (Figure 6), temperature (Supplemental files), and in vivo-like firing variability (Figure 7). This readout provides a simple and intuitive window into the dynamics of the synapse during plasticity. Our model is thus based on the joint activity of these two key postsynaptic enzymes at both fast and slow time scales and considers the stochastic and adaptable dynamics of their activities dictated by the upstream calcium-dependent components at both the pre-and postsynapse. On this basis alone, our model is akin to biological processes where the outcome is jointly determined by several stochastic signaling components and a combination of multiple enzyme activities in time and space, i.e., are multi-dimensional. Our model is scalable, as it gives the possibility for the readout to be extended to dynamics of 𝑛 different molecules, using 𝑛-dimensional closed regions. It is abstract in the sense that we do not identify the readout components with specific synaptic molecules. Nevertheless, we anticipate that simple biochemical networks could implement the readout's functional mapping [START_REF] Alon | An introduction to systems biology: design principles of biological circuits[END_REF].

In addition to providing a new model of CA3-CA1 synapse biophysics, the main contribution of this work is the novel readout mechanism mapping synaptic enzymes to plasticity outcomes.

This readout was built based on the concept that the full temporal activity of CaN-CaMKII over the minutes-timescale stimulus duration, and not their instantaneous levels, is responsible for changes in synaptic efficacy [START_REF] Fujii | Nonlinear decoding and asymmetric representation of neuronal input information by CaMKII𝛼 and calcineurin[END_REF]. The readaout follows the measurements of CaMKII and CaN molecular dynamics made using FRET imaging [START_REF] Fujii | Nonlinear decoding and asymmetric representation of neuronal input information by CaMKII𝛼 and calcineurin[END_REF]. CaMKII and CaN were chosen because they act upstream of several biochemical pathways implicated in the expression of plasticity and their inhibition blocks LTP and LTD, respectively [START_REF] O'connor | Dissection of bidirectional synaptic plasticity into saturable unidirectional processes[END_REF]. We expect that future studies using high temporal resolution measurements such as those provided by recent FRET tools available for CaMKII [START_REF] Chang | CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance[END_REF][START_REF] Chang | Mechanisms of Ca 2+/calmodulin-dependent kinase II activation in single dendritic spines[END_REF] will bring refinements to our model with the possibility to further test our readout predictions. In contrast, previous models assume that plasticity is explainable in terms of synaptic calcium or enzyme response to single BAP-EPSP pairings [START_REF] Shouval | A unified model of NMDA receptor-dependent bidirectional synaptic plasticity[END_REF][START_REF] Karmarkar | A model of spike-timing dependent plasticity: one or two coincidence detectors?[END_REF]. We instantiated this concept by analyzing the joint CaN-CaMKII activity in the two-dimensional plane and designing polygonal plasticity readout regions (Figure 3a). In doing so, we generalised previous work with plasticity induction based on single threshold and a slow variable [START_REF] Badoual | Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity[END_REF][START_REF] Rubin | Calcium time course as a signal for spike-timing dependent plasticity[END_REF]Clopath and Gerstner, 2010;[START_REF] Graupner | Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location[END_REF] Given the high number of parameters in the model, we do not expect that the specific readout parameters we fit are unique. The addition of new datasets could better constrain the model fit. Here, we used only a two-dimensional readout, but anticipate a straightforward generalisation to higher-dimensions. The central discovery is that these trajectories, despite being stochastic, can be separated in the plane as a function of the stimulus (Figure 3). This is the basis of our new synaptic plasticity rule.

Let us describe the intuition behind our model more concisely. First, we abstracted away the sophisticated cascade of plasticity expression. Second, the plasticity regions, crossed by the trajectories, are described with a minimal set of parameters. Importantly, their tuning is quite straight- For some protocols, the CaMKII-CaN trajectories overshot the plasticity regions (e.g. Figure 3d).

Although abnormally high and prolonged calcium influx to cells can trigger cell death (Zhivotovsky We identified some limitations of the model. First, we modelled only a single postsynaptic spine attached to a two-compartment neuron (soma and dendrite), see Model Compartments in Online Methods. Second, the model abstracted the complicated process of synaptic plasticity expression.

Indeed, even if this replicated the early phase of LTP/LTD expression in the first 30-60 minutes after induction, we did not take into account slower protein-synthesis-dependent processes, maintenance processes, and synaptic pruning proceed at later timescales [START_REF] Bailey | Structural components of synaptic plasticity and memory consolidation[END_REF]. Third, like most biophysical models, ours contained many parameters (Methods and Materials). Although we set these to physiologically plausible values and then tuned to match the plasticity data, other combinations of parameters may fit the data equally well [START_REF] Marder | Multiple models to capture the variability in biological neurons and networks[END_REF][START_REF] Mäki-Marttunen | A unified computational model for cortical post-synaptic plasticity[END_REF] due to the ubiquitous phenomenon of redundancy in biochemical and neural systems [START_REF] Gutenkunst | Universally sloppy parameter sensitivities in systems biology models[END_REF][START_REF] Marder | Variability, compensation, and modulation in neurons and circuits[END_REF]. Indeed synapses are quite heterogeneous in receptor and ion channel counts [START_REF] Takumi | Different modes of expression of AMPA and NMDA receptors in hippocampal synapses[END_REF][START_REF] Sabatini | Analysis of calcium channels in single spines using optical fluctuation analysis[END_REF][START_REF] Racca | NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area[END_REF][START_REF] Nimchinsky | The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines[END_REF], protein abundances [START_REF] Shepherd | Three-dimensional structure and composition of CA3 -> CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization[END_REF][START_REF] Sugiyama | Determination of absolute protein numbers in single synapses by a GFP-based calibration technique[END_REF], and spine morphologies [START_REF] Bartol | Computational reconstitution of spine calcium transients from individual proteins[END_REF][START_REF] Harris | Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics[END_REF], even within the subpopulation of CA1 pyramidal neuron synapses that we modelled here. It remains to be discovered how neurons tune their synaptic properties in this vast parameter space to achieve functional plasticity rules, or implement meta-plasticity [START_REF] Huang | The influence of prior synaptic activity on the induction of long-term potentiation[END_REF][START_REF] Deisseroth | Synaptic plasticity: a molecular mechanism for metaplasticity[END_REF][START_REF] Abraham | Metaplasticity: tuning synapses and networks for plasticity[END_REF].

Fourth, the activation of clustered synapses could influence the plasticity outcome, and the number of synapses activated during plasticity induction can be difficult to control experimentally. Our model concerns plasticity at a single synapse, which is also important during synaptic cluster activation (Ujfalussy and Makara, 2020). We drew from data in Tigaret et al. (2016) where there is little indication of simultaneous clustered synaptic activation. Furthermore, our simulations are in good agreement with plasticity experiments using local field potential recordings [START_REF] Dudek | Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus[END_REF] where the number of activated synapses is uncertain. This indicates that the model proposed here can account for this aspect of synaptic plasticity heterogeneity. Finally, our readout model does not correspond to a specific molecular cascade beyond CaN and CaMKII activations. However, we anticipate that the same mapping could be implemented by simple biochemical reaction networks, with for example, transition rates based on Hill functions for the plasticity boundaries. not find LTD when using classic post-before-pre stimulation protocols, but the model predicted that LTD could be induced if the number of pairing repetitions was extended (Figure 3h,i). The model also predicts that the lack of LTD induced by FDP in adults can be recovered using doublets or quadruplet spike protocols (Figure 5d). We tested the model's sensitivity to spike time jitter and spike failure in the stimulation protocols (Figure 7). Our simulations predicted that this firing variability can alter the rules of plasticity, in the sense that it is possible to add noise to cause LTP for protocols that did not otherwise induce plasticity.

What do these results imply about the rules of plasticity in vivo? First, we noticed that successful LTP or LTD induction required a balance between two types of slow variables: those that attenuate, such as presynaptic vesicle pools and dendritic BaP, versus those that accumulate, such as slow enzymatic integration [START_REF] Cai | Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus[END_REF][START_REF] Mizusaki | Pre-and postsynaptically expressed spiking-timing-dependent plasticity contribute differentially to neuronal learning[END_REF][START_REF] Deperrois | Short-term depression and long-term plasticity together tune sensitive range of synaptic plasticity[END_REF]). This balance is reflected in the inverted-U shaped magnitude of LTP seen as a function of post-synaptic firing rate (Figure 7h). Second, although spike timing on millisecond timescales can in certain circumstances affect the direction and magnitude of plasticity (Figure 3), in order to drive sufficient activity of synaptic enzymes, these patterns would need to be repeated for several seconds. However, if these repetitions are subject to jitter or failures, as observed in hippocampal spike trains in vivo [START_REF] Fenton | Place cell discharge is extremely variable during individual passes of the rat through the firing field[END_REF][START_REF] Wierzynski | State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep[END_REF], then the millisecond-timescale information will be destroyed as it gets averaged out across repetitions by the slow integration processes of CaMKII and CaN (Figure 7a-d). The net implication is that millisecond-timescale structure of individual spike pairs is unlikely to play an important role in determining hippocampal synaptic plasticity 20 of 64 in vivo [START_REF] Froemke | Spike-timing-dependent synaptic modification induced by natural spike trains[END_REF][START_REF] Sadowski | Sharp-wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus[END_REF][START_REF] Graupner | Natural firing patterns imply low sensitivity of synaptic plasticity to spike timing compared with firing rate[END_REF].

In summary, we presented a new type of biophysical model for plasticity induction at the rat CA3-CA1 glutamatergic synapse. Although the model itself is specific to this synapse type, the study's insights may generalise to other synapse types, enabling a deeper understanding of the rules of synaptic plasticity and brain learning.

Methods and Materials

Data and code availability

All simulations were performed in the Julia programming language (version 1.4.2). This choice was dictated by simplicity and speed [START_REF] Perkel | Julia: come for the syntax, stay for the speed[END_REF]. The code for the Markov chains is mostly automatically generated from reactions, and could be exported to an SBML representation for porting to other languages.

Simulating the synapse model is equivalent to sampling a piecewise deterministic Markov process, and this relies on the thoroughly tested Julia package PiecewiseDeterministicMarkovProcesses.jl.

These simulations are event-based, and no approximation is made beyond the ones required to integrate the ordinary differential equations by the LSODA method (Livermore Solver for Ordinary Differential Equations). We ran the parallel simulations in the Nef cluster operated by Inria. 

Notation

We write 𝟏 𝐴 for the indicator of a set 𝐴, meaning that 𝟏 𝐴 (𝑥) = 1 if 𝑥 belongs to 𝐴 and zero otherwise.

Vesicle release and recycling

Vesicle-filled neurotransmitters from the presynaptic terminals stimulate the postsynaptic side when successfully released. We derived a vesicle release Markov chain model based on a deterministic approach described in Sterratt et al. (2011). We denote by (𝑡 1 , ⋯ , 𝑡 𝑛 ) the arrival times of the presynaptic spikes.

Vesicles can be in two states, either belonging to the docked pool (with cardinal 𝐷) with fast emptying, or to the reserve pool (with cardinal 𝑅) which replenishes 𝐷 [START_REF] Rizzoli | Synaptic vesicle pools[END_REF].

Initially the docked and reserve pools have 𝐷 0 and 𝑅 0 vesicles, respectively. The docked pool loses one vesicle each time a release occurs [START_REF] Rudolph | The ubiquitous nature of multivesicular release[END_REF], with transition 𝐷 ⟶ 𝐷 -1 (Figure 

Transition Rate Initial Condition (𝑅, 𝐷) → (𝑅 -1, 𝐷 + 1) (𝐷 0 -𝐷) ⋅ 𝑅∕𝜏 𝐷 𝐷(0) = 𝐷 0 (𝑅, 𝐷) → (𝑅 + 1, 𝐷 -1) (𝑅 0 -𝑅) ⋅ 𝐷∕𝜏 𝑅 𝑅(0) = 𝑅 0 (𝑅, 𝐷) ⟶ (𝑅 + 1, 𝐷) (𝑅 0 -𝑅)∕𝜏 𝑟𝑒𝑓 𝑅 8
). The reserve pool replenishes the docked pool with transition (𝑅, 𝐷) → (𝑅 -1, 𝐷 + 1). Finally, the reserve pool is replenished with rate (𝑅 0 -𝑅)∕𝜏 𝑟𝑒𝑓 𝐷 with the transition (𝑅, 𝐷) ⟶ (𝑅 + 1, 𝐷).

In addition to the stochastic dynamics in 

𝑝 𝑟𝑒𝑙 (𝐶𝑎 𝑝𝑟𝑒 , [𝐶𝑎 2+ ] 𝑜 , 𝐷) = ( 𝐶𝑎 𝑝𝑟𝑒 ) 𝑠 ( 𝐶𝑎 𝑝𝑟𝑒 ) 𝑠 + ℎ([𝐶𝑎 2+ ] 𝑜 ) 𝑠 𝟏 𝐷>0 , ℎ([𝐶𝑎 2+ ] 𝑜 ) = 0.654 + 1.349 1 + 𝑒 4⋅([𝐶𝑎 2+ ] 𝑜 -1.708 𝑚𝑀) (1)
which is a function of presynaptic calcium 𝐶𝑎 𝑝𝑟𝑒 and extracellular calcium concentration [Ca 2+ ] o through the threshold ℎ([𝐶𝑎 2+ ] 𝑜 ). To decide whether a vesicle is released for a presynaptic spike 𝑡 𝑖 , we use a phenomenological model of 𝐶𝑎 𝑝𝑟𝑒 (see Figure 8a) based on a resource-use function [START_REF] Tsodyks | The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability[END_REF]:

⎧ ⎪ ⎨ ⎪ ⎩ Ċ𝑎 𝑝𝑟𝑒 = - 𝐶𝑎 𝑝𝑟𝑒 𝜏 𝑝𝑟𝑒 𝐶𝑎 𝑝𝑟𝑒 (0) = 0 Ċ𝑎 𝑗𝑢𝑚𝑝 = 1-𝐶𝑎 𝑗𝑢𝑚𝑝 𝜏 𝑟𝑒𝑐 -𝛿 𝐶𝑎 ⋅ 𝐶𝑎 𝑗𝑢𝑚𝑝 ⋅ 𝐶𝑎 𝑝𝑟𝑒 𝐶𝑎 𝑗𝑢𝑚𝑝 (0) = 1. (2) 
Upon arrival of the presynaptic spikes, 𝑡 ∈ (𝑡 1 , ⋯ , 𝑡 𝑛 ), we update 𝐶𝑎 𝑝𝑟𝑒 according to the deterministic jump:

𝐶𝑎 𝑝𝑟𝑒 ⟶ 𝐶𝑎 𝑝𝑟𝑒 + 𝐶𝑎 𝑗𝑢𝑚𝑝 .
Finally, after 𝐶𝑎 𝑝𝑟𝑒 has been updated, a vesicle is released with probability 𝑝 𝑟𝑒𝑙 (Figure 8b). . We interpret their fluorescence measurements as an effect of short-term depression (see Figure 8b).

Parameters for the vesicle release model are given in

Despite our model agreeing with previous works, it is a simplified presynaptic model that does not encompass the highly heterogeneous nature of vesicle release. Vesicle release dynamics are known to be sensitivity to various experimental conditions such as temperature (Fernández-Alfonso and Ryan, 2004), the age for some brain regions [START_REF] Rudolph | The ubiquitous nature of multivesicular release[END_REF] or magnesium concentration [START_REF] Hardingham | Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors[END_REF] [START_REF] Alabi | Synaptic vesicle pools and dynamics[END_REF]. Terminology note: In other works, the larger pool with ∼180 vesicles can be found with different nomenclatures such as "reserve pool" [START_REF] Südhof | The synaptic vesiclecycle revisited[END_REF] or "resting pool" [START_REF] Alabi | Synaptic vesicle pools and dynamics[END_REF]. Furthemore, the nomenclature used in our model for the reserve pool is use in other studies as the "recycling pool", e.g. 

Model compartments

Our model is built over three compartments, a spherical dendritic spine linked by the neck to a cylindrical dendrite connected to a spherical soma. The membrane potential of these compartments satisfy the equations below (parameters in Table 4). Since the dendrite is a single compartment, the precise spine location is undefined. 

Membrane potential and currents

The membrane potential of these compartments satisfy the equations below (parameters in Table 4). The different currents are described in the following sections.

𝐶 𝑠𝑝 ⋅ V𝑠𝑝 = 𝑔 𝑛𝑒𝑐𝑘 ⋅ (𝑉 𝑑𝑒𝑛𝑑 -𝑉 𝑠𝑝 ) + 𝑔 𝑠𝑝 𝐿 ⋅ (𝐸 𝑟𝑒𝑣 -𝑉 𝑠𝑝 ) + 𝐼 𝑇 + 𝐼 𝐿 + 𝐼 𝑅 + 𝐼 𝑁𝑀𝐷𝐴 + 𝐼 𝐴𝑀𝑃 𝐴 + 𝐼 𝑆𝐾 (3) 𝐶 𝑑𝑒𝑛𝑑 ⋅ V𝑑𝑒𝑛𝑑 = 𝑔 𝑎𝑑𝑎𝑝𝑡 𝐵𝑎𝑃 ⋅ (𝑉 𝑠𝑜𝑚𝑎 -𝑉 𝑑𝑒𝑛𝑑 ) + 𝑔 𝑛𝑒𝑐𝑘 ⋅ (𝑉 𝑠𝑝 -𝑉 𝑑𝑒𝑛𝑑 ) + 𝑔 𝑑𝑒𝑛𝑑 𝐿 ⋅ (𝐸 𝑟𝑒𝑣 -𝑉 𝑑𝑒𝑛𝑑 ) + 𝐼 𝐺𝐴𝐵𝐴 (4) 𝐶 𝑠𝑜𝑚𝑎 ⋅ V𝑠𝑜𝑚𝑎 = 𝑔 𝑎𝑑𝑎𝑝𝑡 𝐵𝑎𝑃 ⋅ (𝑉 𝑑𝑒𝑛𝑑 -𝑉 𝑠𝑜𝑚𝑎 ) + 𝑔 𝑠𝑜𝑚𝑎 𝐿 ⋅ (𝐸 𝑟𝑒𝑣 -𝑉 𝑠𝑜𝑚𝑎 ) + 𝜆 𝑎𝑔𝑒 ⋅ (𝐼 𝐵𝑎𝑃 + 𝐼 𝑁𝑎 ) + 𝐼 𝐾 (5)

Action-potential backpropagation (BaP)

Postsynaptic currents

The postsynaptic currents are generated in the soma, backpropagated to the dendritic spine and filtered by a passive dendrite. The soma generates BaPs using a version of the Na + and K + channel models developed by Migliore et al. (1999). The related parameters are described in Table 5 (the voltage unit is mV). 𝛽 𝑚 (𝑉 𝑠𝑜𝑚𝑎 ) = 0.124 ⋅ 𝑉 𝑠𝑜𝑚𝑎 + 30
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𝑒 𝑉 𝑠𝑜𝑚𝑎 +30 7.2 -1 𝛽 𝑛 (𝑉 𝑠𝑜𝑚𝑎 ) = 𝑒 -0.08⋅(𝑉 𝑠𝑜𝑚𝑎 -13) 𝑚 inf (𝑉 𝑠𝑜𝑚𝑎 ) = 𝛼 𝑚 (𝑉 𝑠𝑜𝑚𝑎 ) 𝛼 𝑚 (𝑉 𝑠𝑜𝑚𝑎 ) + 𝛽 𝑚 (𝑉 𝑠𝑜𝑚𝑎 ) 𝑛 inf (𝑉 𝑠𝑜𝑚𝑎 ) = 1 1 + 𝛼 𝑛 (𝑉 𝑠𝑜𝑚𝑎 ) 𝑚 𝜏 (𝑉 𝑠𝑜𝑚𝑎 ) = 1 𝛼 𝑚 (𝑉 𝑠𝑜𝑚𝑎 ) + 𝛽 𝑚 (𝑉 𝑠𝑜𝑚𝑎 ) 𝑛 𝜏 (𝑉 𝑠𝑜𝑚𝑎 ) = 𝑚𝑎𝑥 ( 50 ⋅ 𝛽 𝑛 (𝑉 𝑠𝑜𝑚𝑎 ) 1 + 𝛼 𝑛 (𝑉 𝑠𝑜𝑚𝑎 ) ; 2 ) 𝛼 ℎ (𝑉 𝑠𝑜𝑚𝑎 ) = 0.01 ⋅ 𝑉 𝑠𝑜𝑚𝑎 + 45 𝑒 𝑉 𝑠𝑜𝑚𝑎 +45 1.5 -1 ṅ(𝑉 𝑠𝑜𝑚𝑎 ) = 𝑛 inf -𝑛 𝑛 𝜏 𝛽 ℎ (𝑉 𝑠𝑜𝑚𝑎 ) = 0.03 ⋅ 𝑉 𝑠𝑜𝑚𝑎 + 45 1 -𝑒 -𝑉 𝑠𝑜𝑚𝑎 +45 1.5 𝐼 𝐾 = 𝛾 𝐾 ⋅ 𝑛 ⋅ (𝐸𝑟𝑒𝑣 𝐾 -𝑉 𝑠𝑜𝑚𝑎 ) ̇ℎ(𝑉 𝑠𝑜𝑚𝑎 ) = 𝛼 ℎ (𝑉 𝑠𝑜𝑚𝑎 ) ⋅ (1 -ℎ) -𝛽 ℎ (𝑉 𝑠𝑜𝑚𝑎 ) ⋅ ℎ ṁ(𝑉 𝑠𝑜𝑚𝑎 ) = 𝑚 inf -𝑚 𝑚 𝜏 𝐼 𝑁𝑎 = 𝛾 𝑁𝑎 ⋅ 𝑚 3 ⋅ ℎ ⋅ (𝐸𝑟𝑒𝑣 𝑁𝑎 -𝑉 𝑠𝑜𝑚𝑎 ).
To trigger a BaP, an external current 𝐼 𝐵𝑎𝑃 is injected in the soma at times 𝑡 ∈ {𝑡 1 , ..., 𝑡 𝑛 } (postsynaptic input times) for a chosen duration 𝛿 𝑖𝑛𝑗 with amplitude 𝐼 𝑎𝑚𝑝 (𝑛𝐴), considering 𝐻 as the Heaviside function this is expressed as:

𝐼 𝐵𝑎𝑃 = 𝑛 ∑ 𝑖=1 𝐻(𝑡 𝑖 ) ⋅ (1 -𝐻(𝑡 𝑖 + 𝛿 𝑖𝑛𝑗 )) ⋅ 𝐼 𝑎𝑚𝑝 .
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Table 4. Parameters for the neuron electrical properties. * The membrane leak conductance in the spine is small since the spine resistance is so high that is considered infinite (> 10 6 𝑀Ω) [START_REF] Koch | The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization[END_REF]. The current thus mostly leaks axially through the neck cytoplasm. The dendrite leak conductance is also small in order to control the distance-dependent attenuation by the axial resistance term 𝑔 𝑎𝑑𝑎𝑝𝑡 𝐵𝑎𝑃 in Equation 4 and Equation 5. The current injected in the soma is filtered in a distance-dependent manner by the dendrite before it reaches the dendritic spine. Biologically, BaP adaptation is caused by the inactivation of sodium channels and the difference of sodium and potassium channel expression along the dendrite [START_REF] Jung | Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons[END_REF][START_REF] Golding | Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites[END_REF]. We used a phenomenological model, implementing distant-dependent BaP amplitude attenuation by modifying the axial resistance 𝑔 𝑎𝑑𝑎𝑝𝑡 𝐵𝑎𝑃 (see Equation 4 and Equation 5) between the dendrite and the soma as follows (Figure 9c top):

Name

𝑔 𝑎𝑑𝑎𝑝𝑡 𝐵𝑎𝑃 = 𝜆 ⋅ 𝑔 𝑑𝑖𝑓 𝑓 ⋅ 𝜙 𝑑𝑖𝑠𝑡 (𝑑 𝑠𝑜𝑚𝑎 ), 𝜙 𝑑𝑖𝑠𝑡 (𝑑 𝑠𝑜𝑚𝑎 ) = 0.1 + 1.4 1 + 𝑒 0.02⋅(𝑑 𝑠𝑜𝑚𝑎 -230.3𝜇𝑚) (6)
where 𝑑 𝑠𝑜𝑚𝑎 is the distance of the spine to the soma and where the factor 𝜆 is dynamically regulated based on a resource-use equation from Tsodyks and Markram (1997) with a dampening factor 𝜆 𝑎𝑢𝑥 changing the size of the attenuation step 𝛿 𝑑𝑒𝑐𝑎𝑦 :

λ = 1 -𝜆 𝜏 𝑟𝑒𝑐 -𝛿 𝑑𝑒𝑐𝑎𝑦 ⋅ 𝜆 -1 𝑎𝑢𝑥 ⋅ 𝜆 ⋅ 𝐼 𝐵𝑎𝑃 (𝑡) λ𝑎𝑢𝑥 = 1 -𝜆 𝑎𝑢𝑥 𝜏 𝑟𝑒𝑐 -𝛿 𝑎𝑢𝑥 ⋅ 𝜆 𝑎𝑢𝑥 ⋅ 𝐼 𝐵𝑎𝑃 (𝑡).
The BaP attenuation model is based on Golding et al. (2001) data for strongly attenuating neurons. Therefore, the second type of attenuation (weakly attenuating) in neurons is not considered (dichotomy in Figure 9a). Figure 9a Golding described two classes of neurons: those that are strongly attenuated and those that are weakly attenuated (dichotomy mark represented by the dashed line). However, in this work we consider only strongly attenuated neurons. b, Attenuation of somatic action potential from Buchanan and Mellor (2007) and model in response to five postsynaptic spikes delivered at 100 Hz. The value showed for the model is the spine voltage with distance from the soma set to zero (scale 25 ms, 20 mV). c, Top panel shows the 𝜆 𝑠𝑜𝑚𝑎 used in Equation 6 to modify the axial conductance between the soma and dendrite. Bottom panel shows the age-dependent changes in the step of the resource-use equation (Equation 7) that accelerates the BaP attenuation and decreases the sodium currents in Equation Equation 5. d, Probability of evoking an AP multiplied by the successfully evoked AP (𝑝 𝐴𝑃 (𝑉 𝑒𝑣𝑜𝑘𝑒𝑑 ) ⋅ 𝟏(𝑒𝑣𝑜𝑘𝑒𝑑) for the protocol 1Pre, 300 at 5 Hz (2.5 mM Ca). e, Two-pool dynamics with the same stimulation from panel D showing the vesicle release, the reserve and docked pools, and the evoked AP. f, Probability of evoking an AP for the protocol 1Pre 300 pulses at different frequencies (3 and 5 Hz have the same probability).

Age-dependent BaP adaptation 827

Age-dependent BaP attenuation modifies the neuronal bursting properties through the maturation 1.391 ⋅ 10 -4 1 + 𝑒 0.135 (𝑎𝑔𝑒-16.482 𝑑𝑎𝑦𝑠) .

(7)

In Equation Equation 5, the age effects are introduced by multiplying the sodium 𝐼 𝑁𝑎 and the ex- 

AP evoked by EPSP

A presynaptic stimulation triggers a BaP if sufficient depolarization is caused by the EPSPs reaching the soma [START_REF] Stuart | Dendrites[END_REF]. We included an option to choose whether an EPSP can evoke an AP using an event generator resembling the previous release probability model 𝑝 𝑟𝑒𝑙 as in the Equation 1. Like 𝑝 𝑟𝑒𝑙 , the BaPs evoked by EPSPs are estimated before the postsynaptic simulation.

We use a variable 𝑉 𝑒𝑣𝑜𝑘𝑒 which is incremented by 1 at each presynaptic time 𝑡 ∈ (𝑡 1 , ..., 𝑡 𝑛 ) and has exponential decay:

{ V𝑒𝑣𝑜𝑘𝑒 = - 𝑉 𝑒𝑣𝑜𝑘𝑒 𝜏 𝑣 𝑉 𝑒𝑣𝑜𝑘𝑒 (0) = 0 𝑉 𝑒𝑣𝑜𝑘𝑒 ⟶ 𝑉 𝑒𝑣𝑜𝑘𝑒 + 1. (8) 
Since the BaPs evoked by EPSPs are triggered by the afferent synapses and are limited by their respective docked pools (𝐷), we use the previous 𝑝 𝑟𝑒𝑙 to define the probability of an AP to occur.

We test the ratio of successful releases from 25 synapses to decide if a BaP is evoked by an EPSP, setting a test threshold of 80%. Therefore, we express the probability of evoking an AP, 𝑝 𝐴𝑃 (𝑉 𝑒𝑣𝑜𝑘𝑒 ),

with the following test:

∑ 25 𝟏(𝑟𝑎𝑛𝑑 < 𝑝 𝑟𝑒𝑙 (𝑉 𝑒𝑣𝑜𝑘𝑒𝑑 , [𝐶𝑎 2+ ] 𝑜 , 𝐷))
25 > 80 %.

Table 5. The Na+ and K+ conductances intentionally do not match the reference because models with passive dendrite need higher current input to initiate action potentials [START_REF] Levine | Effects of active versus passive dendritic membranes on the transfer properties of a simulated neuron[END_REF]. Therefore we set it to achieve the desired amplitude on the dendrite and the dendritic spine according to the predictions of The EPSP summation dynamics on the soma and dendrites depend on the complex neuron morphology [START_REF] Etherington | Synaptic integration[END_REF][START_REF] Ebner | Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons[END_REF] which was not implemented by our model.

Therefore, our "AP evoked by EPSP test" intends to give a simplified way to produce BaPs similar to an integrate-and-fire model [START_REF] Sterratt | Principles of computational modelling in neuroscience[END_REF].

Previous work suggests that BaPs can be evoked with a ∼5 % probability for low-frequencies in the Dudek and Bear experiment ([Ca 2+ ] o = 2.5 mM) [START_REF] Mayr | Rate and pulse based plasticity governed by local synaptic state variables[END_REF]. Our model covers this estimation, but the chance to elicit an AP increases with the frequency [START_REF] Etherington | Synaptic integration[END_REF]. This is captured by the 𝑉 𝑒𝑣𝑜𝑘𝑒 (in an integrate-and-fire fashion [START_REF] Stuart | Dendrites[END_REF] kinetics [START_REF] Postlethwaite | Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of Held[END_REF]. The corresponding parameters are given in Table 6. The AMPAr current is the sum of the subcurrents associated to the occupancy of the three 865 subconductance states O2, O3 and O4 of the Markov chain in Figure 10 and described as follows: The effects of temperature change on AMPAr dynamics are presented in Figure 11, which also shows that the desensitisation is not altered by temperature changes (Figure 11b,c). The recovery time from desensitisation is the same as at room temperature [START_REF] Robert | How AMPA receptor desensitization depends on receptor occupancy[END_REF]. Desensitisation measurements are required to account for a temperature-dependent change in the rates of the "vertical" transitions in Figure 10, see Postlethwaite et al. (2007). This can be relevant for presynaptic bursts. 

864 𝐶0 𝐶1 𝐶2 𝐶3 𝐶4 𝐷0 𝐷1 𝐷2 𝐷3 𝐷4 𝑂2 𝑂3 𝑂4 𝐷 2 2 𝐷 2 3 𝐷 2 4 4𝑘 1 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑓 𝑘 -1 ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑏 3𝑘 1 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑓 2𝑘 -1 ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑏 2𝑘 1 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑓 3𝑘 -1 ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑏 𝑘 1 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑓 4𝑘 -1 ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑏 3𝑘 1 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑓 𝑘 -2 ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑏 3𝑘 1 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑓 𝑘 -1 ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑏 2𝑘 1 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑓 2 ⋅ 𝑘 -1 ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑏 𝑘 1 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑓 3𝑘 -1 ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑏 2𝑘 1 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑓 𝑘 -1 ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑏 𝑘 1 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑓 2𝑘 -1 ⋅ 𝜌 𝐴𝑀𝑃 𝐴 𝑏 4𝛿 0 𝛾 0 𝛿 1 𝛾 1 2𝛿 1 𝛾 1 3𝛿 1 𝛾 1 4𝛿 1 𝛾 1 𝛿 2 𝛾 2 2𝛿 2 𝛾 2 3𝛿 2 𝛾 2 𝛼 2𝛽 𝛼 3𝛽 𝛼 4𝛽
866 𝐼 𝐴𝑀𝑃 𝐴 = (𝐸𝑟𝑒𝑣 𝐴𝑀𝑃 𝐴 -𝑉 𝑠𝑝 ) ⋅ (𝛾 𝐴2 ⋅ 𝑂2 + 𝛾 𝐴3 ⋅ 𝑂3 + 𝛾 𝐴4 ⋅ 𝑂4).

Postsynaptic Ca 2+ influx

The effects of experimental conditions on the calcium dynamics are due to receptors, ion channels and enzymes. A leaky term models the calcium resting concentration in the Equation 9. The calcium fluxes from NMDAr and VGCCs (T, R, L types) are given in Equation 10. The diffusion term through the spine neck is expressed in Equation 11. Finally, the buffer, the optional dye and the enzymatic reactions are given in Equation 12(parameter values given at the Table 7): [START_REF] Segal | Endoplasmic reticulum calcium stores in dendritic spines[END_REF]. Equation 11implements the diffusion of calcium from the spine to the dendrite through the neck. The time constant for the diffusion coefficient 𝜏 𝐶𝑎𝐷𝑖𝑓 𝑓 , is estimated as described in Holcman et al. (2005). The calcium buffer and the optional dye are described as a two-state reaction system [START_REF] Sabatini | The life cycle of Ca2+ ions in dendritic spines[END_REF]: Unlike other calcium-based plasticity models [START_REF] Graupner | Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location[END_REF] using the dye fluorescence decay as an approximation to calcium decay, our model is based on receptor and ion channel kinetics. Additionally, our model can simulate the dye kinetics as a buffer using Equation 13) when appropriate. See Figure 12 that highlights differences between calcium and dye dynamics which is affected by the laser-induced temperature increase [START_REF] Wells | Biophysical mechanisms of transient optical stimulation of peripheral nerve[END_REF][START_REF] Deng | Optogenetics, the intersection between physics and neuroscience: light stimulation of neurons in physiological conditions[END_REF]. We estimated the calcium reversal potential for the calcium fluxes using the Goldman-Hodgkin-Katz (GHK) flux equation described in Hille (1978). The calcium ion permeability, 𝑃 𝐶𝑎 , was used as a free parameter adjusting a single EPSP to produce a calcium amplitude of ∼ 3 µM [START_REF] Chang | CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance[END_REF]. 14) is used to determine the calcium influx through NMDAr and VGCC in the Equation 15, Equation 16, Equation 17and Equation 18 using the spine membrane voltage and calcium internal concentration ([Ca 2+ ] 𝑖 ). Note that for simplicity the calcium external concentration ([Ca 2+ ] 𝑜 ) was kept fixed during the simulation and only altered by experimental conditions given by the aCSF composition. (2014). Such a dye curve fitting was obtained by increasing temperature by 10 • 𝐶 to mimic laser-induced heating [START_REF] Wells | Biophysical mechanisms of transient optical stimulation of peripheral nerve[END_REF][START_REF] Deng | Optogenetics, the intersection between physics and neuroscience: light stimulation of neurons in physiological conditions[END_REF]. We achieved a better fit by decreasing the amplitude of the BaP that reaches the dendrite. Additionally, for fitting purposes, we assumed that a temperature increase lead to a decrease in BaP amplitude. Scale 0.6 µM dye, 100 ms. d, Calcium simulation without dye. Scale 0.85 µM Ca 2+ , 100 ms.

Ċ𝑎 = 𝐶𝑎 ∞ -𝐶𝑎 𝜏 𝐶𝑎 + (9) 𝐶𝑎 𝑁𝑀𝐷𝐴 + 𝐼 𝑇 + 𝐼 𝑅 + 𝐼 𝐿 2 ⋅ 𝐹 ⋅ 𝐴 𝑠𝑝 + (10) 𝑚𝑎𝑥(𝐶𝑎 ∞ , 𝐶𝑎∕3) -𝐶𝑎 𝜏 𝐶𝑎𝐷𝑖𝑓 𝑓 - (11) Ḃ𝑢𝑓 𝑓 𝐶𝑎 -Ḋ 𝑦𝑒 + 𝑒𝑛𝑧𝑦𝑚𝑒𝑠. ( 12 
Ḃ𝑢𝑓 𝑓 𝐶𝑎 = 𝑘 𝐵𝑢𝑓 𝑓 𝑜𝑛 ⋅ (𝐵𝑢𝑓 𝑓 𝑐𝑜𝑛 -𝐵𝑢𝑓 𝑓 𝐶𝑎 ) ⋅ 𝐶𝑎 -𝑘 𝐵𝑢𝑓 𝑓 𝑜𝑓 𝑓 ⋅ 𝐵𝑢𝑓 𝑓 𝐶𝑎 Ḋ 𝑦𝑒 = 𝑘 𝐹 𝑙𝑢𝑜5 𝑜𝑛 ⋅ (𝐹 𝑙𝑢𝑜5𝑓 𝑐𝑜𝑛 -𝐷𝑦𝑒) ⋅ 𝐶𝑎 -𝑘 𝐹 𝑙𝑢𝑜5 𝑜𝑓 𝑓 ⋅ 𝐷𝑦𝑒. ( 13 
)
𝜙(𝑉 𝑠𝑝 , 𝑇 ) = 𝑧 𝐶𝑎 ⋅ 𝑉 𝑠𝑝 ⋅ 𝐹 ∕𝑅 ⋅ (𝑇 + 273.15𝐾) Φ 𝐶𝑎 (𝑉 𝑠𝑝 , [Ca 2+ ] 𝑖 ) = -𝑃 𝐶𝑎 ⋅ 𝑧 𝐶𝑎 ⋅ 𝐹 ⋅ 𝜙(𝑉 𝑠𝑝 , 𝑇 ) ⋅ [Ca 2+ ] 𝑖 -[Ca 2+ ] 𝑜 ⋅ 𝑒 -𝜙 1 -𝑒 -𝜙 (14) Φ 𝐶𝑎 (𝑉 𝑠𝑝 , [Ca 2+ ] 𝑖 ) (Equation

NMDAr -GluN2A and GluN2B

905

Markov chain

906

In hippocampus, NMDArs are principally heteromers composed of the obligatory subunit GluN1 907 and either the GluN2A or GluN2B subunits. These N2 subunits guide the activation kinetics of 908 these receptors with the GluN1/GLUN2B heteromers displaying slow kinetics (∼ 250ms) and the 909 GluN1/GluN2A heteromers displaying faster kinetics (∼ 50ms). We modeled both NMDA subtypes.

910

The NMDAr containing GluN2A is modeled with the following Markov chain [START_REF] Popescu | Reaction mechanism determines NMDA receptor response to repetitive stimulation[END_REF] 911 where we introduce the additional parameters 𝜌 𝑁𝑀𝐷𝐴 𝑓 , 𝜌 𝑁𝑀𝐷𝐴 𝑏 :

912 𝐴 0 𝐴 1 𝐴 2 𝐴 3 𝐴 4 𝐴 𝑂1 𝐴 𝑂2 𝑘 𝑎 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑘 -𝑎 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 𝑘 𝑏 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑘 -𝑏 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 𝑘 𝑐 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑘 -𝑐 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 𝑘 𝑑 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑘 -𝑑 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 𝑘 𝑒 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑘 -𝑒 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 𝑘 𝑓 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑘 -𝑓 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 913
The NMDAr containing GluN2B is modeled with a Markov chain based on the above GluN2A 914 scheme. We decreased the rates by ∼75% in order to match the GluN2B decay at 25 • 𝐶 as published 915 in Iacobucci and [START_REF] Iacobucci | Kinetic Models for Activation and Modulation of NMDA Receptor Subtypes[END_REF].

916 𝐵 0 𝐵 1 𝐵 2 𝐵 3 𝐵 4 𝐵 𝑂1 𝐵 𝑂2 𝑠 𝑎 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑠 -𝑎 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 𝑠 𝑏 ⋅ [𝐺𝑙𝑢] ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑠 -𝑏 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 𝑠 𝑐 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑠 -𝑐 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 𝑠 𝑑 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑠 -𝑑 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 𝑠 𝑒 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑠 -𝑒 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 𝑠 𝑓 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑓 𝑠 -𝑓 ⋅ 𝜌 𝑁𝑀𝐷𝐴 𝑏 917
The different rates are given in Table 8.

918

NMDAr and age switch 919

The age-dependent expression ratio of the subtypes GluN2A and GluN2B (𝑟 𝑎𝑔𝑒 ) was obtained from experimental data of mouse hippocampus [START_REF] Sinclair | Effects of sex and DTNBP1 (dysbindin) null gene mutation on the developmental GluN2B-GluN2A switch in the mouse cortex and hippocampus[END_REF]. We added noise to this ratio causing ∼1 NMDAr subunit to flip towards GluN2A or GluN2B (see Figure 13e). The population of 15 NMDAr is divided in the two subtypes according to the ratio plotted in Figure 13b as a function of age. The ratio to define the number NMDAr subtypes as function of age reads: 𝑟 𝑎𝑔𝑒 = 0.507 + 0.964 1 + 𝑒 0.099⋅(𝑎𝑔𝑒-25.102 𝑑𝑎𝑦𝑠) +  (0, 0.05)

𝑁 𝐺𝑙𝑢𝑁2𝐵 = 𝑟𝑜𝑢𝑛𝑑 ( 𝑁 𝑁𝑀𝐷𝐴 ⋅ 𝑟 𝑎𝑔𝑒 𝑟 𝑎𝑔𝑒 + 1
)

𝑁 𝐺𝑙𝑢𝑁2𝐴 = 𝑟𝑜𝑢𝑛𝑑 ( 𝑁 𝑁𝑀𝐷𝐴 𝑟 𝑎𝑔𝑒 + 1
) .

The round term in the two previous equations ensures that we have an integer value for the 

NMDAr current and Ca 2+ -dependent conductance

NMDAr conductance is modulated by external calcium and is modelled according to the next equations using NMDAr subconductances 𝐴 𝑂1 and 𝐴 𝑂2 (GluN2A), and 𝐵 𝑂1 and 𝐵 𝑂2 (GluN2B). We modified the conductance 𝛾 𝑁𝑀𝐷𝐴 as a funtion of extracellular calcium from that reported by Maki and [START_REF] Maki | Extracellular Ca2+ ions reduce NMDA receptor conductance and gating[END_REF]. The reported NMDAr conductance at [Ca 2+ ] o = 1.8 mM is 53 ± 5𝑝𝑆.

𝛾 𝑁𝑀𝐷𝐴 = 33.949 + 58.388 1 + 𝑒 4⋅([𝐶𝑎 2+ ] 𝑜 -2.701 𝑚𝑀) 𝑝𝑆 𝐵(𝑉 𝑠𝑝 , [𝑀𝑔] 𝑜 ) = 1 1 + [𝑀𝑔] 𝑜 3.57 ⋅ 𝑒 -0.062⋅𝑉 𝑠𝑝 𝑁𝑀𝐷𝐴 = (𝐵 𝑂1 + 𝐵 𝑂2 + 𝐴 𝑂1 + 𝐴 𝑂2 ) ⋅ 𝐵(𝑉 𝑠𝑝 , [𝑀𝑔] 𝑜 ) ⋅ 𝛾 𝑁𝑀𝐷𝐴 𝐼 𝑁𝑀𝐷𝐴 = (𝐸𝑟𝑒𝑣 𝑁𝑀𝐷𝐴 -𝑉 𝑠𝑝 ) ⋅ 𝑁𝑀𝐷𝐴
Here, we used the higher conductance 91.3 𝑝𝑆 for NMDAr (for both subtypes) at [Ca 2+ ] o = 1.8 mM to compensate for the small number of NMDArs reported by Nimchinsky et al. (2004). Hence, we adjusted Maki and [START_REF] Maki | Extracellular Ca2+ ions reduce NMDA receptor conductance and gating[END_REF] data to take into account this constraint: this caused a right-shift in the NMDA-conductance curve (Figure 13c). The calcium influx 𝐶𝑎 𝑁𝑀𝐷𝐴 is modulated by the GHK factor, Equation 14, as a function of the internal and external calcium concentrations and the spine voltage:

𝐶𝑎 𝑁𝑀𝐷𝐴 = 𝑓 𝐶𝑎 ⋅ Φ 𝐶𝑎 ⋅ 𝑁𝑀𝐷𝐴. ( 15 
)
The combined effect of extracellular Magnesium [START_REF] Jahr | A quantitative description of NMDA receptor-channel kinetic behavior[END_REF] and Calcium concentration are displayed in Figure 13f .

GABA(A) receptor 941

Since the precise delay of GABA release relative to glutamate is not known, we assumed GABA 942 and glutamate release are synchronized for simplicity (see Table 6). We used the GABA(A) receptor 943 Markov chain (Figure 14) presented in Busch and Sakmann (1990); Destexhe et al. (1998) and we es-944 timated temperature adaptations using the measurements reported by Otis and Mody (1992). -1.279 1 + 𝑒 0.191⋅(𝑇 -32.167) . 

945 𝐶 0 𝐶 1 𝐶 2 𝑂 1 𝑂 2 𝑟 𝑏1 ⋅ [𝐺𝑎𝑏𝑎] 𝑟 𝑢1 𝑟 𝑏2 ⋅ [𝐺𝑎𝑏𝑎] 𝑟 𝑢2 𝑟 𝑜1 𝑟 𝑐1 ⋅ 𝜌 𝐺𝐴𝐵𝐴 𝑏 𝑟 𝑜1 𝑟 𝑐2 ⋅ 𝜌 𝐺𝐴𝐵𝐴

GABA(A)r current and age switch 951

The GABA(A)r-driven current changes during development [START_REF] Meredith | Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition[END_REF] passing from de- 966 L-type (Figure 17c), as described in the equations below.

𝐼 𝐺𝐴𝐵𝐴 = (𝑂 1 + 𝑂 2 ) ⋅ (𝐸 𝐶𝑙 𝑟𝑒𝑣 -𝑉 𝑑𝑒𝑛𝑑 ) ⋅ 𝛾 𝐺𝐴𝐵𝐴 .

VGCC -T, R and L type

𝐶 0 𝐶 1 𝐶 2 𝑂 𝑅 𝛼 𝑅 𝑚 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑓 𝛽 𝑅 𝑚 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑏 𝛼 𝑅 𝑚 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑓 𝛽 𝑅 𝑚 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑏 𝛼 𝑅 ℎ (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑓 𝛽 𝑅 ℎ (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑏 𝛼 𝑅 ℎ (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑓 𝛽 𝑅 ℎ (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑏 𝑂 𝐿1 𝐶 0 𝑂 𝐿2 𝛽 𝐿 1 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑏 𝛼 𝐿 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑓 𝛼 𝐿 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑓 𝛽 𝐿 2 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑏 𝐶 0 𝐶 1 𝐶 2 𝑂 𝑇 𝛼 𝑇 𝑚 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑓 𝛽 𝑇 𝑚 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑏 𝛼 𝑇 𝑚 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑓 𝛽 𝑇 𝑚 (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑏 𝛼 𝑇 ℎ (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑓 𝛽 𝑇 ℎ (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑏 𝛼 𝑇 ℎ (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑓 𝛽 𝑇 ℎ (𝑉 𝑠𝑝 ) ⋅ 𝜌 𝑉 𝐺𝐶𝐶 𝑏
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R-type h-gate rates T-type h-gate rates

𝜏 𝑅⋆ ℎ = 100 ℎ 𝑅⋆ 𝑖𝑛𝑓 (𝑉 𝑠𝑝 ) = 1 1 + 𝑒 𝑉 𝑠𝑝 +39 9.2 𝛼 𝑅 ℎ (𝑉 𝑠𝑝 ) = ℎ 𝑅 𝑖𝑛𝑓 𝜏 𝑅 ℎ 𝛽 𝑅 ℎ (𝑉 𝑠𝑝 ) = 1 -ℎ 𝑅 𝑖𝑛𝑓 𝜏 𝑅 ℎ R-type m-gate rates 𝛽 𝑅⋆ 𝑚 = 40 𝑚 𝑅⋆ 𝑖𝑛𝑓 = 1 1 + 𝑒 3-10 8 𝛼 𝑅⋆ 𝑚 𝑟 = 𝛽 𝑅⋆ 𝑚 ⋅ 𝑚 𝑅⋆ 𝑖𝑛𝑓 1 -𝑚 𝑅⋆ 𝑖𝑛𝑓 𝜏 𝑅 𝑚 = 1 𝛼 𝑅⋆ 𝑚 + 𝛽 𝑅⋆ 𝑚 𝑚 𝑅 𝑖𝑛𝑓 = 1 1 + 𝑒 3-𝑉 𝑠𝑝 8 𝛼 𝑅 𝑚 (𝑉 𝑠𝑝 ) = 𝑚 𝑅 𝑖𝑛𝑓 𝜏 𝑅 𝑚 𝛽 𝑅 𝑚 (𝑉 𝑠𝑝 ) = 1 -𝑚 𝑅 𝑖𝑛𝑓 𝜏
𝜏 𝑇 ⋆ ℎ = 50 ℎ 𝑇 ⋆ 𝑖𝑛𝑓 (𝑉 𝑠𝑝 ) = 1 1 + 𝑒 𝑉 𝑠𝑝 +70 6.5 𝛼 𝑇 ℎ (𝑉 𝑠𝑝 ) = ℎ 𝑇 𝑖𝑛𝑓 𝜏 𝑇 ℎ 𝛽 𝑇 ℎ (𝑉 𝑠𝑝 ) = 1 -ℎ 𝑇 𝑖𝑛𝑓 𝜏 𝑇 ℎ
T-type m-gate rates

𝛽 𝑇 ⋆ 𝑚 = 1 𝑚 𝑇 ⋆ 𝑖𝑛𝑓 = 1 1 + 𝑒 -32+20 7 𝛼 𝑇 ⋆ 𝑚 𝑟 = 𝛽 𝑇 ⋆ 𝑚 ⋅ 𝑚 𝑇 * 𝑖𝑛𝑓 1 -𝑚 𝑇 ⋆ 𝑖𝑛𝑓 𝜏 𝑇 𝑚 = 1 𝛼 𝑇 ⋆ 𝑚 + 𝛽 𝑇 ⋆ 𝑚 𝑚 𝑇 𝑖𝑛𝑓 = 1 1 + 𝑒 -32-𝑉 𝑠𝑝 7 𝛼 𝑇 𝑚 (𝑉 𝑠𝑝 ) = 𝑚 𝑇 𝑖𝑛𝑓 𝜏 𝑇 𝑚 𝛽 𝑇 𝑚 (𝑉 𝑠𝑝 ) = 1 -𝑚 𝑇 𝑖𝑛𝑓 𝜏 𝑇 𝑚

VGCC and temperature

We used the same temperature factor for every VGCC subtype, respectively 𝜌 𝑉 𝐺𝐶𝐶 𝑓 and 𝜌 𝑉 𝐺𝐶𝐶 𝑏 (see

Figure 17f

), as follows: -30.668) , 𝜌 𝑉 𝐺𝐶𝐶 𝑏 = 0.729 + 3.225 1 + 𝑒 -0.330⋅ (𝑇 -36.279) . [START_REF] Iftinca | Temperature dependence of T-type calcium channel gating[END_REF] and the isoform Ca 𝑣 3.1 becomes 977 ∼15 % slower. To simplify, the same temperature factor was adopted to all VGCC subtypes.

𝜌 𝑉 𝐺𝐶𝐶 𝑓 = 2.503 - 0.304 1 + 𝑒 1.048⋅(𝑇
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VGCC currents

979

The VGCC currents are integrated to the dendritic spine and estimated using the GHK Equation 14, as follows:

𝐼 𝑇 = 𝛾 𝑇 ⋅ Φ 𝐶𝑎 ⋅ 𝑂 𝑇 ( 16 
)
𝐼 𝑅 = 𝛾 𝑅 ⋅ Φ 𝐶𝑎 ⋅ 𝑂 𝑅 ( 17 
)
𝐼 𝐿 = 𝛾 𝐿 ⋅ Φ 𝐶𝑎 ⋅ (𝑂 𝐿1 + 𝑂 𝐿2 ) (18)
Table 10 presents the parameters to model the VGCC channels. VGCC rates and temperature fac- 

SK channel

982

The small potassium (SK) channel produces hyperpolarizing currents which are enhanced in the presence of intracellular calcium elevations. We included SK channels to incorporate a key negative feedback loop between spine calcium and voltage due to the tight coupling that exists between SK channels to NMDAr function [START_REF] Adelman | Small-conductance Ca2+-activated K+ channels: form and function[END_REF][START_REF] Griffith | Control of Ca2+ influx and calmodulin activation by SK-channels in dendritic spines[END_REF]. Although SK channels can additionally be regulated by metabotropic glutamate receptors and muscarinic receptors [START_REF] Tigaret | Coordinated activation of distinct Ca 2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity[END_REF], we did not include these regulatory steps in the model. The SK channel current was based on the description from Griffith et al. (2016) as follows:

𝑑𝑚 𝑠𝑘 𝑑𝑡 = 𝑟(𝐶𝑎) ⋅ 𝜌 𝑆𝐾 𝑓 -𝑚 𝑠𝑘 𝜏 𝑆𝐾 ⋅ 𝜌 𝑆𝐾 𝑏 𝑟(𝐶𝑎) = 𝐶𝑎 𝜎 𝐶𝑎 𝜎 + ℎ 𝜎 𝑆𝐾 𝐼 𝑆𝐾 = 𝛾 𝑆𝐾 ⋅ (𝐸 𝑆𝐾 𝑟𝑒𝑣 -𝑉 𝑠𝑝 ) ⋅ 𝑚 𝑠𝑘 ⋅ 𝑁 𝑆𝐾 .
There is little information on how temperature effects SK channel function, but Van Herck et al.

(2018) suggests a left-ward shift in the SK half-activation when changing from 37 • 𝐶 (ℎ 𝑆𝐾 = 0.38 ± 0.02 𝜇𝑀) to 25 • 𝐶 (ℎ 𝑆𝐾 = 0.23 ± 0.01 𝜇𝑀) ; that is a 65% decrease. Thus, to mimic temperature dependence of SK, we decided to decrease the decay time of the SK hyperpolarizing current by a factor of two when passing from physiological to room temperature.

𝜌 𝑆𝐾 𝑏 = 149.37 -147.61 1 + 𝑒 0.093⋅(𝑇 -98.85𝐶) , 𝜌 𝑆𝐾 𝑓 = 0.005 + 2.205 1 + 𝑒 -0.334⋅(𝑇 +25.59𝐶) Table 11 presents the parameters to model the SK channel. 

Enzymes -CaM, CaN and CaMKII

To We assumed a lack of dephosphorylation reaction between CaMKII and CaN since Otmakhov et al.

(2015) experimentally suggested that no known phosphatase affects CaMKII decay time which is probably caused only by CaM untrapping [START_REF] Otmakhov | Fast decay of CaMKII FRET sensor signal in spines after LTP induction is not due to its dephosphorylation[END_REF]. This was previously theorized in the Michalski's model Michalski (2013), and it is reflected in Chang data [START_REF] Chang | Mechanisms of Ca 2+/calmodulin-dependent kinase II activation in single dendritic spines[END_REF][START_REF] Chang | CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance[END_REF].

The structure of the corresponding Markov chain is shown in Figure 18. [START_REF] Pepke | A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II[END_REF][START_REF] Chang | CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance[END_REF][START_REF] Chang | Mechanisms of Ca 2+/calmodulin-dependent kinase II activation in single dendritic spines[END_REF].

PCaM can become self-phosphorylated (Autonomous layer with P and P 2 ) and release CaM. Once the KCaM deactivates from autonomous states, it returns to free monomeric CaMKII (mKCaM). The CaMKII activity in this work represent the states (KCaM + PCaM + P + P 2 ). See Chang et al. (2019) for further explanation on this system. CaNCaM4 represents the CaN activity.

volume increase in the spine as measured by Chang et al. (2017). Table 12 shows the concentra-1012 tion of the enzymes and Table 13 shows the parameters to model enzymes reactions in shown in [START_REF] Goto | The distribution of calcineurin in rat brain by light and electron microscopic immunohistochemistry and enzyme-immunoassay[END_REF][START_REF] Baumgärtel | Neural functions of calcineurin in synaptic plasticity and memory[END_REF] and taking into account the discrepancy between 1017 different CaN concentration studies [START_REF] Kuno | Distinct cellular expression of calcineurin A𝛼 and A𝛽 in rat brain[END_REF][START_REF] Goto | The distribution of calcineurin in rat brain by light and electron microscopic immunohistochemistry and enzyme-immunoassay[END_REF]: [START_REF] Kuno | Distinct cellular expression of calcineurin A𝛼 and A𝛽 in rat brain[END_REF] pro-1018 poses 9.6 µg/mg (7.0 + 2.6 µg/mg for Aα and Aβ isoforms) for the catalytic subunit A of CaN (CaNA) 1019 in the hippocampus, while Goto et al. (1986) proposes 1.45 µg/mg (presumably for both isoforms).

1020

There is therefore a lack of consensus on CaN concentration in neurons, which seems to range 1021 between 1 and 10 µg/mg. However, models of CaN in spines [START_REF] Stefan | An allosteric model of calmodulin explains differential activation of PP2B and CaMKII[END_REF] (1992) note that the concentration of CaN is 50% to 84% higher in synaptosomes than in neuronal nuclei. With this information in mind, we set CaN spine concentration 20 µM in our model. CaN was entirely activated through CaM for the following reason: CaNA is activated by calcium-CaM in a highly cooperative manner (Hill coefficient 2.8-3), whereas the activation of CaN by calcium (via CaNB) is at most 10% of that achieved with CaM [START_REF] Stemmer | Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B[END_REF]. In other words, CaNA affinity for CaM is 16 nM to 26 pM (Creamer, 2020), while CaNB affinity for calcium ranges from 15 µM to 24 nM [START_REF] Kakalis | Characterization of the calcium-binding sites of calcineurin B[END_REF]. CaN decay time was modeled using experimental spine CaN activity dynamics measured in Fujii et al. (2013). 

The lack of reactions between CaN and CaMKII

The protein phosphatases responsible for CaMKII dephosphorylation have not been established

unequivocally [START_REF] Lisman | A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory[END_REF]. Our model of CaMKII is based directly on a quantitative model fit to FRET imaging data [START_REF] Chang | CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance[END_REF][START_REF] Chang | Mechanisms of Ca 2+/calmodulin-dependent kinase II activation in single dendritic spines[END_REF], which implicitly account for the effects of any Yet, our decision to include CaN in the model was determined by the evidence supporting CaN as the strongest candidate for calcium-sensitive protein phosphatase in the brain [START_REF] Baumgärtel | Neural functions of calcineurin in synaptic plasticity and memory[END_REF]. Furthermore, the central role of CaN in synaptic plasticity has been demonstrated both pharmacologically and with genetic manipulation [START_REF] Onuma | A calcineurin inhibitor, FK506, blocks voltage-gated calcium channel-dependent LTP in the hippocampus[END_REF][START_REF] Malleret | Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin[END_REF].

Temperature effects on enzymatic activity

We included temperature factors in the coarse-grained model using Chang's data [START_REF] Chang | Mechanisms of Ca 2+/calmodulin-dependent kinase II activation in single dendritic spines[END_REF], as shown in Figure 19. For CaMKII, we fit the modified dissociation rates of the phosphorylation states 𝑘 2 , 𝑘 3 and 𝑘 5 to match the data on relative amplitude and decay time using the following logistic function:

𝜌 𝐶𝑎𝑀𝐾𝐼𝐼 𝑏 = 162.171 -161.426 1 + 𝑒 0.511(𝑇 -45.475 • 𝐶) .

For CaN, we fit the Fujii et al. (2013) data at 25 • 𝐶 as seen in Figure 20a. However, since CaN-CaM dissociation rates at physiological temperatures were not reported, we set the temperature factor to CaN that fits the outcomes of the protocols we proposed to reproduce. A reference value from the CaN-AKAP79 complex [START_REF] Li | Balanced interactions of calcineurin with AKAP79 regulate Ca 2+-calcineurin-NFAT signaling[END_REF] showed a 𝑄 10 = 4.46 = (2.19 𝑠 -1 ∕9.78 𝑠 -1 ) which is nearly the temperature factor used in our model for CaN. Therefore, both the association and dissociation rates are modified using the following logistic functions: 

𝜌 𝐶𝑎𝑁 𝑓 = 2.

Geometrical Readout

We describe here the geometrical readout mechanism which allows for plasticity outcome assignment. First, we define the following variables which are representative of "active CaMKII" and "active CaN":

Active CaN

𝐶𝑎𝑁 = 𝐶𝑎𝑁4

Active CaMKII

𝐾𝐶𝑎𝑀 = 𝐾𝐶𝑎𝑀0 + 𝐾𝐶𝑎𝑀2𝐶 + 𝐾𝐶𝑎𝑀2𝑁 + 𝐾𝐶𝑎𝑀4 𝑃 𝐶𝑎𝑀 = 𝑃 𝐶𝑎𝑀0 + 𝑃 𝐶𝑎𝑀2𝐶 + 𝑃 𝐶𝑎𝑀2𝑁 + 𝑃 𝐶𝑎𝑀4 𝐶𝑎𝑀𝐾𝐼𝐼 = 𝐾𝐶𝑎𝑀 + 𝑃 𝐶𝑎𝑀 + 𝑃 + 𝑃 2. ( 19 
)
Calcium entry in the spine initiates a cascade of events that ultimately leads to long term plasticity changes. Specific concentrations of CaMKII and CaN trigger activation functions 𝑎𝑐𝑡 𝐷 and 𝑎𝑐𝑡 𝑃 when they belong to one of the two polygonal regions (P and D), termed plasticity regions in the main text:

ȧ𝑐𝑡 𝐷 = 𝑎 𝐷 ⋅ 1 𝐷 -𝑏 𝐷 ⋅ (1 -1 𝐷 ) ⋅ 𝑎𝑐𝑡 𝐷 ȧ𝑐𝑡 𝑃 = 𝑎 𝑃 ⋅ 1 𝑃 -𝑏 𝑃 ⋅ (1 -1 𝑃 ) ⋅ 𝑎𝑐𝑡 𝑃 .
The variables 𝑎𝑐𝑡 𝐷 and 𝑎𝑐𝑡 𝑃 act as low pass filters of CaMKII and CaN activities with some memory of previous passages in the respective plasticity regions. To specify the LTP/LTD rates, termed 𝐷 𝑟𝑎𝑡𝑒 and 𝑃 𝑟𝑎𝑡𝑒 , we use the activation functions, 𝑎𝑐𝑡 𝐷 and 𝑎𝑐𝑡 𝑃 , as follows:

𝑃 𝑟𝑎𝑡𝑒 (𝑎𝑐𝑡 𝑃 ) = 𝑡 -1 𝑃 𝑎𝑐𝑡 2 𝑃 𝑎𝑐𝑡 2 𝑃 + 𝐾 2 𝑃 𝐷 𝑟𝑎𝑡𝑒 (𝑎𝑐𝑡 𝐷 ) = 𝑡 -1 𝐷 𝑎𝑐𝑡 2 𝐷 𝑎𝑐𝑡 2 𝐷 + 𝐾 2 𝐷 .
The Markov plasticity chain (see Figure 21) starts with initial conditions 𝑁𝐶 = 100, 𝐿𝑇 𝐷 = 0 and 𝐿𝑇 𝑃 = 0. Figure 22 shows how the readout works to predict plasticity for a single orbit. Figure 22a shows the enzyme's activity alone which is combined to form an orbit as shown in and f . The rates in the plasticity Markov chain will not reset to 0 if the orbit leaves the readout.

The plasticity Markov chain is shown in Figure 22g with the prediction outcome represented as a weight change (%). Figure 22h shows the rate, 𝑃 𝑟𝑎𝑡𝑒 and 𝐷 𝑟𝑎𝑡𝑒 , activation profile. The LTP activation rate is steep, meaning that orbits do not need to spend a long time inside the readout to promote LTP induction, while the LTD region requires five-fold longer activation times. Table 14 shows the parameters that define the polygons of the plasticity regions (see Figure 22b). 

LTD NC LTP

Positioning of the boundaries of the plasticity regions

The tuning of the plasticity region boundaries was based on four different experiments. The LTP region was defined using Tigaret (Figure 3). The refinement of the LTD region was made using weight change (%) (1993). Fixing NMDAr at P5 (more GluN2B than GluN2A) causes an increase of LTD and a slight increase of LTP for adult rats compared to baseline (grey solid line). e, Same experiment as panel d but fixing BaP maturation at P5 (higher BaP attenuation). LTP is abolished, but LTD is not affected. This is because AP induced by the EPSP attenuate too fast for 30 Hz and are thus not able to produce enough depolarization to activate NMDArs. f, Same experiment as in panel d but fixing GABAr maturation at P5 (excitatory GABAr) which only slighlty enhances LTD (3 Hz) for adult rats. g, Same experiment as panel d but fixing NMDAr at P50 (more GluN2A than GluN2B). LTD appears with decreased magnitude for young rats compared to baseline (grey solid line). h, Same experiment as panel d but fixing BaP maturation at P50 (less BaP attenuation). LTP is enhanced for young rats because the BaP pairing with the slow closing GluN2B produces more calcium influx. i, Same experiment as panel d but fixing GABAr maturation at P50 (inhibitory GABAr) which does not affect the FDP experiment. 
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Figure 1 .

 1 Figure 1. | The synapse model, its timescales and mechanisms. a, Model diagram with the synaptic components including pre and postsynaptic compartments and inhibitory transmission (bottom left). b, Stochastic dynamics of the different ligand-gated and voltage-gated ion channels in the model. Plots show the total number of open channels as a function of time. AMPAr, NMDAr: AMPA-and NMDA-type glutamate receptors respectively; GABA(A)r: Type A GABA receptors; VGCC: R-, T-and L-type voltage-gated Ca2+ channels; SK: SK potassium channels. The insets show a zoomed time axis highlighting the difference in timescale of the activity among the channels. c, Dendritic spine membrane potential (left) and calcium concentration (right) as function of time for a single causal (1Pre1Post10) stimulus (EPSP: single excitatory postsynaptic potential, "1Pre"; BaP: single back-propagated action potential, "1Post"). d, Left: depletion of vesicle pools (reserve and docked) induced by 30 pairing repetitions delivered at 5 Hz[START_REF] Sterratt | Principles of computational modelling in neuroscience[END_REF], see Methods and Materials. The same depletion rule is applied to both glutamate-and GABA-containing vesicles. Right: BaP efficiency as function of time. BaP efficiency phenomenologically captures the distance-dependent attenuation of BaP[START_REF] Buchanan | The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones[END_REF][START_REF] Golding | Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites[END_REF], see Methods and Materials. e, Concentration of active enzyme for CaM, CaN and CaMKII, as function of time triggered by 30 repetitions of 1Pre1Post10 pairing stimulations delivered at 5 Hz. The vertical grey bar is the duration of the stimuli, 6 s. The multiple traces in the graphs in panels c (right) and e reflect the run-to-run variabiltity due to the inherent stochasticity in the model.
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 2 and Figure 3); stimulation frequency (Figure 4); animal age (Figure 5); external calcium 97 and magnesium (Figure 6); stochasticity in the firing structure (Figure 7), temperature and exper-98 imental conditions variations (Supplemental files). Where possible, we set parameters to values 99 previously estimated from synaptic physiology and biochemistry experiments, and tuned the re-100 mainder within physiologically plausible ranges to reproduce our target plasticity experiments (see 101 Methods and Materials). 102 The model components are schematized in Figure 1a (full details in Methods and Materials).

  103

  Figure 2. | The duration and amplitude of the joint CaN-CaMKII activity differentiates plasticity protocols. a, Time-course of active enzyme concentration for CaMKII (solid line) and CaN (dashed line) triggered by two protocols consisting of 300 repetitions at 5 Hz of 1Pre2Post10 or 1Pre1Post10 stimulus pairings. Protocols start at time 0 s. Experimental data indicates that 1Pre2Post10 and 1Pre1Post10 produce LTP and no change (NC), respectively. b, Trajectories of joint enzymatic activity (CaN-CaMKII) as function of time for the protocols in panel a, starting at the initial resting state (filled black circle). The arrows show the direction of the trajectory and filled grey circles indicate the time points at 2, 10 and 60 s after the beginning of the protocol represented as 2, 10 and 60 s. The region of the CaN-CaMKII plane enclosed in the black square is expanded in panel c. c,Mean-time (colorbar) spent by the orbits in the CaN-CaMKII plane region expanded from panel b for each protocol (average of 100 samples). For panels c, f and i the heat maps were based on enzyme activity throughout the protocol plus a further 10 s after the stimulation ended. d-f, CaN-CaMKII activities for the protocols 1Pre2Post50 (LTP-inducing) and 2Post1Pre50 (NC) depicted in the same manner as in panels a-c. g-i, CaN-CaMKII activities for the LTD-inducing protocol 2Pre50 (900 repetitions at 3 Hz) and the NC protocol 2Pre10 (300 repetitions at 5 Hz) depicted in the same manner as in panels a-c.
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  postsynaptic neuron fired first, over a short time gap of 50 ms. Despite the activations being ap-214 parently difficult to distinguish (Figure 2d), we found that the LTP-inducing protocol caused greater 215 CaN activation than the protocol that did not trigger plasticity. Indeed, this translated to a horizon-216 tal offset in both the trajectory and contour map (Figure 2e-f ), demonstrating that another pair of 217 protocols can be separated in the joint CaN-CaMKII plane. 218 6 of 64

  and Figure 2d) spent a large fraction of time near ∼ 20 µM CaMKII and 7-10 µM CaN. In contrast, protocols that failed to trigger LTP had either lower (Figure 2d and g), or higher CaMKII and CaN activation (1Pre1Post10, Figure 2a). The LTD-inducing protocol, by comparison, spent a longer period in a region of sustained but lower ∼ 12𝜇M CaMKII and ∼ 2𝜇M CaN and activation. The plots in Figure 2c, f and g, show contour maps of histograms of the joint CaMKII-CaN activity, indicating where in the plane the trajectories spent most time. Figure 2c and f indicate that this measure can be used to predict plasticity, because the NC and LTP protocol histograms are largely non-overlapping. In Figure 2c, the NC protocol response "overshoots" the LTP protocol response, whereas in Figure 2f the NC protocol response "undershoots" the LTP protocol response.

  , we plot the model's responses to seven different plasticity protocols used by Tigaret et al. (2016) by overlaying example CaMKII-CaN trajectories for each protocol with the LTP and LTD regions. The corresponding region indicators are plotted as function of time in Figure 3e, and long-term alterations in the synaptic strength are plotted as function of time in Figure 3f . The three protocols that induced LTP in the Tigaret et al. (2016) experiments spent substantial time in the LTP region, and so triggered potentiation. In contrast, the 1Pre1Post10 overshoots both regions, crossing them only briefly on its return to baseline, and so resulted in little weight change. The protocol that induced LTD (2Pre50, purple trace) is five times longer than other protocols, spending sufficient time inside the LTD region (Figure 3f ). In contrast, two other protocols that spent time in the same LTD region of the CaN-CaMKII plane (2Post1Pre50 and 2Pre10) were too brief to induce LTD. These protocols were also not strong enough to reach the LTP region, so resulted in no net plasticity, again consistent with Tigaret et al. (2016) experiments. We observed run-to-run variability in the amplitude of the predicted plasticity, due to the inherent stochasticity in the model. To ensure that stochastic components are necessary for adequate model behaviour, we compared stochastic and deterministic versions of the model with and without discrete presynaptic release and found that adding stochastic components indeed modified the model's behaviour (Figure 3-Figure Supplement 2). Also, we confirmed that VGCCs are necessary for accurate modelling of Tigaret et al. (2016) data as blocking these channels reproduced the data obtained in VGCC blockers by Tigaret i.e. no potentiation could be elicited (Figure 3-Figure Supplement 3). Finally, we stress in Figure 3-Figure Supplement 4 that the horizontal boundaries (related to CaMKII activity) are indeed necessary.

Figure 3 -

 3 Figure Supplement 1.

Figure 3 .

 3 Figure 3. | Read-out strategy to accurately model Tigaret et al. (2016) experiment. a, Illustration of the joint CaMKII and CaN activities crossing the plasticity regions. Arrows indicate the flow of time, starting at the filled black circle. Time is hidden so that changes in active enzyme concentrations are seen more clearly. b, Region indicator showing when the joint CaN and CaMKII activity crosses the LTD or LTP regions in panel a. For example, the LTP indicator is such that 1 𝐿𝑇 𝑃 (𝑥) = 1 if 𝑥 ∈ 𝐿𝑇 𝑃 and 0 otherwise. Leaving the region activates a leaking mechanism that keeps track of the accumulated time inside the region. Such leaking mechanism drives the transition rates used to predict plasticity (Methods and Materials). c, Plasticity Markov chain with three states: LTD, LTP and NC. There are only two transition rates which are functions of the plasticity region indicator (Methods and Materials). The LTP transition is fast whereas the LTD transition is slow, meaning that LTD change requires longer time inside the LTD region (panel a). The NC state starts with 100 processes. d, Joint CaMKII and CaN activity for all protocols in Tigaret et al. (2016) (shown in panel f). The stimulus ends when the trajectory becomes smooth. Trajectories correspond to those in Figure 2b,e and h, at 60 s. e, Region indicator for the protocols in panel f. The upper square bumps are caused by the protocol crossing the LTP region, the lower square bumps when the protocol crosses the LTD region (as in panel d). f, Synaptic weight (%) as function of time for each protocol. The weight change is defined as the number (out of 100) of states in the LTP state minus the number of states in the LTD state (panel c). The trajectories correspond to the median of the simulations in panel g. g, Synaptic weight change (%) predicted by the model compared to data (EPSC amplitudes) from Tigaret et al. (2016) (100 samples for each protocol, also for panel h and i). The data (filled grey circles) was provided by Tigaret et al. (2016) (note an 230% outlier as the red asterisk). h, Predicted mean synaptic weight change (%) as a function of delay (ms) and number of pairing repetitions (pulses) for the protocol 1Pre2Post(delay), where delays are between -100 and 100 ms. LTD is induced by 2Post1Pre50 after at least 500 pulses. The mean weight change along each dashed line is reported in the STDP curves in panel i. i, Synaptic weight change (%) as a function of pre-post delay. Each plot corresponds to a different pairing repetition number (color legend). The solid line shows the mean, and the ribbons are the 2nd and 4th quantiles. The filled grey circles are the data means estimated in Tigaret et al. (2016), also shown in panel g. Figure 3-Figure supplement 1. Standard models comparison for predicting plasticity fail to account for the data from Tigaret et al. (2016).Figure 3-Figure supplement 2. Comparison showing different roles of stochasticity in the model.Figure 3-Figure supplement 3. Effects of blocking VGCCs.Figure 3-Figure supplement 4. Exclusively setting vertical boundaries (no CaMKII selectivity) fails to capture the correct outcome.Figure 3-Figure supplement 5. Varying Tigaret et al. (2016) experimental parameters.
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 3 Figure supplement 2. Comparison showing different roles of stochasticity in the model.
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 3 Figure supplement 3. Effects of blocking VGCCs.
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 3 Figure supplement 4. Exclusively setting vertical boundaries (no CaMKII selectivity) fails to capture the correct outcome.

Figure 3 -

 3 Figure supplement 5. Varying Tigaret et al. (2016) experimental parameters. 9 of 64varied the number of paired repetitions from 100 to 1200, and also co-varied the pre-post delay from -100 to 100 ms. Figure3hshows a contour plot of the predicted mean synaptic strength change across for the 1Pre2Post(delay) stimulation protocol for different numbers of pairing repetitions. In Figure3h, a LTD window appears after ∼500 pairing repetitions for some anticausal pairings, in line with our hypothesis. The magnitude of LTP also increases with pulse number, for causal positive pairings. For either 100 or 300 pairing repetitions, only LTP or NC is induced (Figure3i). The model also made other plasticity predictions by varying Tigaret et al.(2016) experimental conditions (Figure3-FigureSupplement 5). In summary, our geometrical readout reveals that the direction and magnitude of the change in synaptic strength can be predicted from the joint CaMKII-CaN activity in the LTP and LTD regions.

  Figure 4e) increases the magnitude of both LTP

Figure 4 .

 4 Figure 4. | Frequency dependent plasticity, Dudek and Bear (1992) dataset. a, Example traces of joint CaMKII-CaN activity for each of Dudek and Bear (1992) protocol. b, Region indicator showing when the joint CaMKII-CaN activity crosses the LTD or LTP regions for each protocol in panel a. c, Synaptic weight change (%) as a function of time for each protocol, analogous to Figure 3c. Trace colours correspond to panel a. The trajectories displayed were chosen to match the medians in panel e. d, Mean (100 samples) time spent (s) for protocols 1Pre for 900 pairing repetitions at 3, 10 and 50 Hz. e, Comparison between data from Dudek and Bear(1992) and our model (1Pre 900p, 300 samples per frequency, see Table1). Data are represented as normal distributions with the mean and variance of the change in field EPSP slope taken from Dudek and Bear(1992). f, Prediction for the mean weight change (%) when varying the stimulation frequency and pulse number (24x38x100 data points, respectively pulse x frequency x samples). The filled grey circles show the Dudek and Bear(1992) protocol parameters and the corresponding results are shown in panel e. Figure 4-Figure supplement 1. Varying experimental parameters in Dudek and Bear (1992) and Poisson spike train during development.
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 5 Figure Supplement 1 for frequency versus age maps for presynaptic bursts.

  depicted in Figure5b. The model qualitatively matches this trend, and also predicts that TBS induces maximal LTP around P21, before declining further during development (Figure5b, green curve). Similarly, we found that high-frequency stimulation induces LTP only for ages >P15, peaks at P35, then gradually declines at older ages (Figure5e). Note that in Figure5b, we used 6 epochs instead of 4 used by[START_REF] Dudek | Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus[END_REF] to increase LTP outcome which is known to washout after one hour for young rats[START_REF] Cao | Developmental regulation of the late phase of long-term potentiation (L-LTP) and metaplasticity in hippocampal area CA1 of the rat[END_REF].In contrast to Dudek and Bear(1993) findings, other studies have found that LTP can be induced in hippocampus in young animals (<P15) with STDP. For example, Meredith et al.(2003) found that, at room temperature, 1Pre1Post10 induces LTP in young rats, whereas 1Pre2Post10 induces NC. This relationship was inverted for adults, with 1Pre1Post inducing no plasticity and 1Pre2Post10 inducing LTP (Figure5-FigureSupplement 7).Together, these results suggest that not only do the requirements for LTP/LTD change with age, but also that these age-dependencies are different for different stimulation patterns. Finally, we explore which mechanisms are responsible for plasticity induction changes across development in the FDP protocol (Figure5-Figure Supplement 1) by fixing each parameter to young or adult values for the FDP paradigm. Our model analysis suggests that the NMDAr switch (Iacobucci and Popescu, 2017) is a dominant factor affecting LTD induction, but the maturation of BaP (Buchanan and Mellor, 2007) is the dominant factor affecting LTP induction, with GABAr shift having only a weak influence on LTD induction for Dudek and Bear (1993) FDP. Plasticity requirements during development do not necessarily follow the profile in Dudek and Bear (1993) as shown by Meredith et al. (2003) STDP experiment. Our model shows that multiple developmental profiles are possible when experimental conditions vary within the same stimulation paradigm. This is illustrated in Figure 6-Figure Supplement 2 a-c by varying the age of STDP
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 6 Figure 6. Effects of extracellular calcium and magnesium concentrations on plasticity. a, Synaptic weight (%) for a STDP rule with [Ca 2+ ] o =1.3 mM (fixed ratio, Ca/Mg=1.5). According to the data extracted from Inglebert et al. (2020), the number of pairing repetitions for causal/positive (anti-causal/negative) delays is 100 (150), both delivered at 0.3 Hz. The solid line is the mean, and the ribbons are the 2nd and 4th quantiles predicted by our model (all panels use 100 samples). b, Same as a, but for [Ca 2+ ] o = 1.8 mM (Ca/Mg ratio = 1.5). c, Same as a, but for [Ca 2+ ] o = 3 mM (Ca/Mg ratio = 1.5). d, Mean time spent for causal pairing, 1Pre1Post10, at different Ca/Mg concentration ratios. The contour plots are associated with the panels a, b and c. e, Predicted effects of extracellular Ca/Mg on STDP outcome. Synaptic weight change (%) for causal (1Pre1Post10, 100 at 0.3 Hz) and anticausal (1Post1Pre10, 150 at 0.3 Hz) pairings varying extracellular Ca from 1.0 to 3 mM (Ca/Mg ratio = 1.5). The dashed lines represent the experiments in the panel a, b and c. We used 21x22x100 data points, respectively calcium x delay x samples. f, Predicted effects of varying frequency and extracellular Ca/Mg for an STDP protocol. Contour plot showing the mean synaptic weight (%) for a single causal pairing protocol (1Pre1Post10, 100 samples) varying frequency from 0.1 to 10 Hz and [Ca 2+ ] o from 1.0 to 3 mM (Ca/Mg ratio = 1.5).We used 21x18x100 data points, respectively calcium x frequency x samples. Figure 6-Figure supplement 1. Effects of extracellular calcium and magnesium concentration on plasticity.Figure 6-Figure supplement 2. Temperature and age effects.
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 6 Figure supplement 1. Effects of extracellular calcium and magnesium concentration on plasticity.
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 6 Figure supplement 2. Temperature and age effects.
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 6a Figure 6a-c compares our model to Inglebert et al. (2020) STDP data at different [Ca 2+ ] o and
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Figure

  Figure 6d illustrates the time spent by the joint CaN-CaMKII activity for 1Pre1Post10 using Inglebert et al. (2020) experimental conditions. Each density plot corresponds to a specific specific Ca/Mg ratio as in Figure 6a-c. The response under low [Ca 2+ ] o spent most time inside the LTD region, but high [Ca 2+ ] o shifts the trajectory to the LTP region. Figure 6-Figure Supplement 1a presents density plots for the anti-causal protocols. Inglebert et al. (2020) fixed the Ca/Mg ratio at 1.5, although aCSF formulations in the literature differ (seeTable 1). Figure 6-Figure Supplement 1d shows that varying the Ca/Mg ratio and [Ca 2+ ] o

  Figure 6f, we varied both the pairing frequencies and[Ca 2+ ] o and we observe similar transitions to Inglebert et al.(2020). However, the model's transition for[Ca 2+ ] o = 1.8 mM was centred around 0.5 Hz, which was untested by Inglebert et al.(2020). The model predicted no plasticity at higher frequencies, unlike the data, that shows scattered LTP and LTD (see Figure 6-Figure Supplement 1c). Another frequency dependent comparison, Figure 3-Figure Supplement 5c and Figure 6-Figure Supplement 1h, show that Tigaret et al. (2016) burst-STDP and Inglebert et al. (2020) STDP share a similar transition structure, different from Dudek and Bear (1992) FDP. In contrast to Inglebert et al. (2020) results, we found that setting low [Ca 2+ ] o for Tigaret et al. (2016) burst-STDP abolishes LTP, and does not induce strong LTD (Figure 3-Figure Supplement 5d). For Dudek and Bear (1992) experiment, Figure 4-Figure Supplement 1d [Mg 2+ ] o controls a sliding threshold between LTD and LTP but not [Ca 2+ ] o (Figure 4-Figure Supplement 1b). For another direct stimulation experiment, Figure 6-Figure Supplement 1c shows that in an Mg-free medium, LTP expression requires fewer pulses (Mizuno et al., 2001). Despite exploring physiological [Ca 2+ ] o and [Mg 2+ ] o Inglebert (Inglebert et al., 2020) use a nonphysiological temperature (30 • 𝐶) which extends T-type VGCC closing times and modifies the CaN-CaMKII baseline (Figure 6-Figure Supplement 2i). Figure 6-Figure Supplement 2g,h show comparable simulations for physiological temperatures. In summary, our model predicts that temperature can change STDP rules in a similar fashion to [Ca 2+ ] o (Figure 6-Figure Supplement 1a,b). Overall, we confirm that plasticity is highly sensitive to variations in extracellular calcium, magnesium, and temperature (Figure 3-Figure Supplement 5a, Figure 6-Figure Supplement 2d-f ).

  Figure 7. | Jitter and spike dropping effects on STDP and Poisson spike trains. a, Mean weight (%) for the jittered STDP protocols (protocol color legend shown in b). The solid line is the mean, and the ribbons are the 2nd and 4th quantiles predicted by our model using 100 samples (same panels a, b and g). b, Mean weight (%) for the same[START_REF] Tigaret | Coordinated activation of distinct Ca 2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity[END_REF] protocols used in panel a subjected to random spike removal (sparsity %). c, Mean time spent (s) varying jittering. Contour plot shows 2Post1Pre50 and 1Pre1Post10 (300 at 5 Hz) without (grey contour plot) and with jittering (coloured contour plot). The circles and squares correspond to the marks in panel a. d, Mean time spent (s) varying sparsity. Contour plot in grey showing 0% sparsity for 2Post1Pre50 300 at 5Hz (see Figure2f). The contour plots show the protocol with spike removal sparsities at 0% (NC), 30% (LTP), and 80% (NC). The triangles correspond to the same marks in panel a. e, Distribution of the 50 ms jittering applied to the causal protocol 1Pre1Post10, 300 at 5 Hz in which nearly half of the pairs turned into anticausal. The mean frequency is 5 ± 13.5 Hz making it to have a similar firing structure and position in the LTP region. The similar occurs for 2Post1Pre50 (panel c). f, Mean weight change (%) combining both jittering (panel a) and sparsity (panel b) for 2Post1Pre50, 300 at 5 Hz. g, Mean weight change (%) of pre and postsynaptic Poisson spike train delivered simultaneously for 10 s. The plot shows the plasticity outcome for different presynaptic firing rate (1000/frequency) for a fixed postsynaptic baseline at 10Hz. The upper raster plot depicts the released vesicles at 40 Hz and the postsynaptic baseline at 10Hz (including the AP evoked by EPSP). h), Mean weight change (%) varying the rate of pre and postsynaptic Poisson spike train delivered simultaneously for 10 s. The heat map data along the vertical white dashed line is depicted in panel g.

  forward and done only once, even when the joint activity is stochastic. The tuning of the model is possible thanks to the decoupling of the plasticity process from the spine biophysics which acts as a feedforward input to the plasticity Markov chain and from the distributions of the different trajectories, which are well separated. It is expected that one could find other versions of this model (parameters or conceptual) instantiating our multidimensional readout concept that also match the data well. The separability afforded by the geometrical readout, along with the model flexibility via fitting the plasticity regions, enabled us to reproduce data from nine different experiments using a single fixed set of model parameters. In contrast, we found that classic spike-timing[START_REF] Song | Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[END_REF][START_REF] Pfister | Triplets of spikes in a model of spike timing-dependent plasticity[END_REF] or calcium-threshold[START_REF] Graupner | Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location[END_REF] models could not reproduce the range of protocols from Tigaret et al. (2016) (Figure 3-Figure Supplement 1). More complicated molecular-cascade models have been shown to account for individual plasticity experiments (Antunes et al., 2016; Jędrzejewska-Szmek et al., 2017; Mäki-Marttunen et al., 2020; Bhalla, 2017), but have not been demonstrated to reproduce the wide range of protocols presented here while considering experimental heterogeneity.

  Future work could try to match this readout to known synaptic molecules.Several predictions follow from our results. Since the model respected the stochasticity of vesicle release[START_REF] Rizzoli | Synaptic vesicle pools[END_REF][START_REF] Alabi | Synaptic vesicle pools and dynamics[END_REF], NMDAr[START_REF] Nimchinsky | The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines[END_REF][START_REF] Popescu | Reaction mechanism determines NMDA receptor response to repetitive stimulation[END_REF][START_REF] Iacobucci | NMDA receptors: linking physiological output to biophysical operation[END_REF][START_REF] Sinclair | Effects of sex and DTNBP1 (dysbindin) null gene mutation on the developmental GluN2B-GluN2A switch in the mouse cortex and hippocampus[END_REF], and VGCC opening[START_REF] Magee | Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons[END_REF][START_REF] Sabatini | Analysis of calcium channels in single spines using optical fluctuation analysis[END_REF][START_REF] Iftinca | Temperature dependence of T-type calcium channel gating[END_REF], the magnitude of plasticity varied from simulation trial to trial (Methods and Materials, Figure3gand Figure4e). This suggests that the rules of plasticity are inherently stochastic[START_REF] Bhalla | Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties[END_REF][START_REF] Antunes | Stochastic induction of long-term potentiation and long-term depression[END_REF] and that the variability observed in these experiments[START_REF] Inglebert | Synaptic plasticity rules with physiological calcium levels[END_REF][START_REF] Tigaret | Coordinated activation of distinct Ca 2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity[END_REF] Dudek and Bear, 1992, 1993;[START_REF] Mizuno | Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor[END_REF][START_REF] Meredith | Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition[END_REF][START_REF] Wittenberg | Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse[END_REF] is partly due to stochastic signalling, in addition to the previously-documented heterogeneity in synapse properties[START_REF] Nusser | Creating diverse synapses from the same molecules[END_REF] that we did not study here. By running extensive simulations over the space of protocols beyond those tested experimentally (Figure3h,i; Figure 4f ; Figure 5c,e and f ; Figure 6e,f ), we made testable predictions for plasticity outcomes. For example, Tigaret et al. (2016) did

Figure

  Figure 8b,d). Additionally, Hardingham et al. (2006) reports a 38% reduction in the initial release probability when changing [Ca 2+ ] o from 2.5 mM to 1 mM. Taking these into account, the decreasing sigmoid function in the Figure 8e depicts our [Ca 2+ ] o -dependent release probability model (𝑝 𝑟𝑒𝑙 ).

Figure

  Figure 8eshows that our 𝑝 𝑟𝑒𝑙 function is in good agreement with a previous analytical modelsuggesting that 𝑝 𝑟𝑒𝑙 ([𝐶𝑎 2+ ] 𝑜 ) ∝ ([𝐶𝑎 2+ ] 𝑜 ) 2 𝑚𝑀 -2[START_REF] King | Extracellular calcium depletion as a mechanism of short-term synaptic depression[END_REF]. Our model also qualitatively reproduces the vanishing of calcium dye fluorescence levels after 20 s of theta trains from Tigaret et al.(2016) (in their Supplementary Materials). We interpret their fluorescence measurements as

  For more detailed morphological simulations to predict plasticity see Ebner et al. (2019), Chindemi et al. (2020) and Jędrzejewska-Szmek et al. (2017). The distance from the soma to the spine functionally mimics the BaP attenuation as shown in Golding et al. (2001), and it is set to 200 µm for all simulations, except in Figure 3-Figure Supplement 6c and Figure 3-Figure Supplement 5e. In these panels, we modified this distance as described in the graph y-axis to model Ebner et al. (2019) data. The different currents in the soma, dendrite and spine are described as follows.

Figure 8 .

 8 Figure 8. | Presynaptic release. a, Presynaptic calcium in response to the protocol 1Pre, 300 at 5 Hz displaying adaptation. b, Release probability for the same protocol as panel A but subjected to the docked vesicles availability. c, Number of vesicles in the docked and reserve pools under depletion caused by the stimulation from panel a. d, Plot of the mean (300 samples) release probability (%) for different frequencies for the protocol 1Pre 300 pulses at [Ca 2+ ] o = 2.5 mM. e, Release probability (%) for a single presynaptic spike as a function of [Ca 2+ ] o . Note that King et al. (2001) model was multiplied by the experimentally measured release probability at [Ca 2+ ] o = 2 mM since their model has this calcium concentration as the baseline. Our model also does not cover the abolishing of release probability at [Ca 2+] o = 0.5 mM which can also be difficult to measure experimentally given the rarity of events[START_REF] Hardingham | Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors[END_REF].

825 3Figure 9 .

 8259 Figure 9. | AP Evoked by EPSP. a, Model and data comparison for the distance-dependent BaP amplitude attenuation measured in the dendrite and varying the distance from the soma. The stimulation in panel a is set to reproduce the same stimulation as Golding et al. (2001).Golding described two classes of neurons: those that are strongly attenuated and those that are weakly attenuated (dichotomy mark represented by the dashed line). However, in this work we consider only strongly attenuated neurons. b, Attenuation of somatic action potential from Buchanan and Mellor(2007) and model in response to five postsynaptic spikes delivered at 100 Hz. The value showed for the model is the spine voltage with distance from the soma set to zero (scale 25 ms, 20 mV). c, Top panel shows the 𝜆 𝑠𝑜𝑚𝑎 used in Equation 6 to modify the axial conductance between the soma and dendrite. Bottom panel shows the age-dependent changes in the step of the resource-use equation (Equation7) that accelerates the BaP attenuation and decreases the sodium currents in Equation Equation5. d, Probability of evoking an AP multiplied by the successfully evoked AP (𝑝 𝐴𝑃 (𝑉 𝑒𝑣𝑜𝑘𝑒𝑑 ) ⋅ 𝟏(𝑒𝑣𝑜𝑘𝑒𝑑) for the protocol 1Pre, 300 at 5 Hz (2.5 mM Ca). e, Two-pool dynamics with the same stimulation from panel D showing the vesicle release, the reserve and docked pools, and the evoked AP. f, Probability of evoking an AP for the protocol 1Pre 300 pulses at different frequencies (3 and 5 Hz have the same probability).

828-

  and expression of potassium and sodium channels[START_REF] Gymnopoulos | Developmental mapping of small-conductance calciumactivated potassium channel expression in the rat nervous system[END_REF], therefore changing 829 the interaction of hyperpolarizing and depolarizing currents (see Figure 9b) (Grewe et al., 2010; 830 Jung et al., 1997). We reproduce Buchanan and Mellor (2007) somatic attenuation profiles (Figure 831 9b) with our model by including an age-dependent BaP amplitude attenuation factor. We define 832 the attenuation factor 𝜆 𝑎𝑔𝑒 (Figure 9c bottom), as follows. 𝛿 𝑎𝑔𝑒 ⋅ 𝜆 𝑎𝑔𝑒 ⋅ 𝐼 𝐵𝑎𝑃 (𝑡), 𝛿 𝑎𝑔𝑒 𝑟𝑒𝑐 =

  834ternal 𝐼 𝐵𝑎𝑃 currents by the attenuation factor 𝜆 𝑎𝑔𝑒 . 835 26 of 64

  Figure 9b,c bottom Buchanan and Mellor (2007); Golding et al. (2001) attenuation step factor 𝛿 𝑑𝑒𝑐𝑎𝑦 = 1.727 ⋅ 10 -5 adjusted to fit Buchanan and Mellor (2007); Golding et al. (2001) auxiliary attenuation step factor 𝛿 𝑎𝑢𝑥 = 2.304 ⋅ 10 -5 adjusted to fit Buchanan and Mellor (2007); Golding et al. (2001) recovery time for the attenuation factor 𝜏 𝑟𝑒𝑐 = 2 𝑠 adjusted to fit Buchanan and Mellor (2007); Golding et al. (2001) recovery time for the age attenuation factor 𝜏 𝑎𝑔𝑒 𝑟𝑒𝑐 = 0.5 𝑠 adjusted to fit Buchanan and Mellor (2007); Golding et al. (2001) AP evoked by EPSP decay time for 𝑉 𝑒𝑣𝑜𝑘𝑒 𝜏 𝑉 = 40 𝑚𝑠 Hines and Carnevale (1997) delay AP evoked by EPSP 𝛿 𝑑𝑒𝑙𝑎𝑦-𝐴𝑃 = 15 𝑚𝑠[START_REF] Fricker | EPSP amplification and the precision of spike timing in hippocampal neurons[END_REF] 

  ) as shown in Figure 9f . The Figure 9d,e show how a 5 Hz stimulation evokes APs. The delay between the EPSP and the evoked AP is set to 𝛿 𝑑𝑒𝑙𝑎𝑦-𝐴𝑃 = 15𝑚𝑠, similar to the EPSP-spike latency reported for 857 CA1 pyramidal neurons (Fricker and Miles, 2000). modeled with the Markov chain (Figure 10) described by Robert and Howe (2003) and 861 Coombs et al. (2017) and adapted to temperature changes according to Postlethwaite et al. (2007). 862 Here, we introduce the additional parameters 𝜌 𝐴𝑀𝑃 𝐴 𝑓 , 𝜌 𝐴𝑀𝑃 𝐴 𝑏 to cover AMPAr temperature-sensitive 863

Figure 10 .

 10 Figure 10. AMPAr Markov chain with three sub-conductance states and two desensitisation levels. It includes parameters 𝜌 𝐴𝑀𝑃 𝐴 𝑓

867Figure 11 .

 11 Figure 11. | Effect of temperature in the AMPAr. a, Probability of AMPAr opening ( 𝑂2+𝑂3+𝑂4 𝑁 𝐴𝑀𝑃 𝐴 ) and the decay time at different temperatures in response to 1 mM glutamate during 1 ms (standard pulse). Postlethwaite et al. (2007) data (our model) suggests that AMPAr decay time at 35 • 𝐶 is ∼ 0.5 𝑚𝑠 (∼ 0.6 𝑚𝑠) and at 25 • 𝐶 is ∼ 0.65 𝑚𝑠 (∼ 0.95 𝑚𝑠). This shows a closer match towards more physiological temperatures. b, Desensitisation profile of AMPAr at 35 • 𝐶 showing how many AMPAr are open in response to a glutamate saturating pulse (5 mM Glu during 20 ms) separated by an interval (x-axis). c, Same as in panel b but for 25 • 𝐶.

  force to the resting concentration, 𝐶𝑎 ∞ = 50 𝑛𝑀, the tonic opening of T-type channels causes calcium to fluctuate making its mean value dependent on temperature, extracellular calcium and voltage. The effects of this tonic opening in various experimental conditions are shown in Figure 6-Figure Supplement 2c. To avoid modelling dendritic calcium sources, we use a dampening term as one-third of the calcium level since calcium imaging comparing dendrite and spine fluorescence have shown this trend

Figure 12 .

 12 Figure 12. Differences between dye measurements and simulated calcium. a, Pre and postsynaptic stimuli as used in Tigaret et al. (2016). b, Calcium imaging curves (fluorescence ΔF/A) elicited using the respective stimulation protocols above with Fluo5 200 µM (extracted from Tigaret et al. (2016)). Scale 100 ms, 0.05 ΔF/A. c, Dye simulation using the model. The dye is implemented by increasing temperature to mimic laser effect on channel kinetics and decreases the interaction between NMDAr and voltage elicited by BaP. Temperature effects over NMDAr are shown in Korinek et al. (2010). Also, the effects of temperature on calcium-sensitive probes shown in Oliveira et al. (2012) (baseline only, likely related to T-type channels). Other examples of laser heating of neuronal tissue are given in Deng et al.(2014). Such a dye curve fitting was obtained by increasing temperature by 10 • 𝐶 to mimic laser-induced heating[START_REF] Wells | Biophysical mechanisms of transient optical stimulation of peripheral nerve[END_REF][START_REF] Deng | Optogenetics, the intersection between physics and neuroscience: light stimulation of neurons in physiological conditions[END_REF]. We achieved a better fit by decreasing the amplitude of the BaP that reaches the dendrite. Additionally, for fitting purposes, we assumed that a temperature increase lead to a decrease in BaP amplitude. Scale 0.6 µM dye, 100 ms. d, Calcium simulation without dye. Scale 0.85 µM Ca 2+ , 100 ms.

920

  Figure 13. | NMDAr changes caused by age, temperature and extracellular and magnesium concentrations in the aCSF. a Decay time of the NMDAr-mediated EPSP recorded from neocortical layer II/III pyramidal neurons (grey) (Korinek et al., 2010) compared to the decay time from the GluN2B channel estimated by our model (yellow) and data from Iacobussi's single receptor recording (purple) (Iacobucci and Popescu, 2018). b, Comparison of our implementation of GluN2B:GluN2A ratio and the GluN2B:GluN2A ratio from the mouse CA1 excitatory neurons. c, Comparison of our implementation of NMDAr conductance change in response to the extracellular against data (Maki and Popescu, 2014). d, Forward and backwards temperature factors implemented to approximate NMDAr subtypes decay times at room temperature (Iacobucci and Popescu, 2018) and temperature changes observed in Korinek et al. (2010). e, NMDAr subtype fluctuations in our model with age. We added noise to have a smoother transition between different ages. f, Calcium concentration changes for causal and anticausal protocols in response to different aCSF calcium and magnesium compositions with fixed Ca/Mg ratio (1.5). Scale 50 ms and 5 𝜇𝑀.

𝑏Figure 14 .

 14 Figure 14. | GABAr Markov chain model. Closed states (𝐶 0 , 𝐶 1 and 𝐶 2 ) open in response to GABAr and can go either close again or open (𝑂 1 and 𝑂 2 )

Figure 15 .

 15 Figure 15. | GABA(A)r current, kinetics and chloride reversal potential. a, States of GABA(A)r Markov chain at 25 • 𝐶 in response to a presynaptic stimulation. Opened = 𝑂 1 + 𝑂 2 , closed = 𝐶 0 + 𝐶 1 + 𝐶 2 . b, Model and data comparison (Otis and Mody, 1992) for GABA(A)r current at 25 • 𝐶. Even though data were recorded from P70 at 25 • 𝐶 and P15 at 35 • 𝐶, we normalize the amplitude to invert the polarity and compare the decay time. This is done since the noise around P15 can either make GABAr excitatory or inhibitory as shown by 𝐸 𝑐𝑙 data in panel c. c, Chloride reversal potential (𝐸 𝐶𝑙 𝑟𝑒𝑣 ) fitted to Rinetti-Vargas et al. (2017) data. Note that we used both profiles from axon and dendrite age-depended 𝐸 𝐶𝑙 𝑟𝑒𝑣 changes since exclusive dendrite data is scarce. d, States of simulated GABA(A)r Markov chain at 35 • 𝐶 in response to a presynaptic stimulation. e, Model and data comparison (Otis and Mody, 1992) for GABA(A)r current at 25 • 𝐶 (same normalization as in panel b). f, Change in the polarization of GABA(A)r currents given the age driven by the 𝐸 𝐶𝑙 𝑟𝑒𝑣 .

  952polarizing (excitatory) to hyperpolarizing (inhibitory)[START_REF] Chamma | Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission[END_REF]. The reversal potential 953 of chloride ions permeating GABA(A)r shifts from above the membrane resting potential (inward 954 34 of 64 driving force -excitatory) to below the membrane resting potential (outward driving force -in-955 hibitory) (Rinetti-Vargas et al., 2017). Such effect mediated by chloride ions is associated with the 956 KCC2 pump (K Cl co-transporter) which becomes efficient in extruding chloride ions during matu-957 ration (Rinetti-Vargas et al., 2017). To cover the GABA(A)r age-dependent shift, we fit the chloride 958 reversal potential (𝐸 𝐶𝑙 𝑟𝑒𝑣 ) using the data published by Rinetti-Vargas et al. (2017) (Figure 15c): 0.091⋅(𝑎𝑔𝑒-0.691 𝑑𝑎𝑦𝑠) 

  model was devised using the channel gating measurements from rat CA1 (2-963 8 weeks) pyramidal neurons by Magee and Johnston (1995) at room temperature . Our model 964 has three different VGCC subtypes described by the Markov chains in Figure 16: the T-type (low-965 voltage), the R-type (medium-to-high-voltage) and the L-type (high-voltage).

Figure 16 .

 16 Figure 16. From left to right, R-, L-, and T-type VGCCs Markov chain adapted from Magee and Johnston(Magee and Johnston, 1995). The R-(left scheme) and T-type (right scheme) have a single open state (red colour), respectively, 𝑂 𝑟 and 𝑂 𝑇 . The L-type VGCC (middle) has two open states, 𝑂 𝐿1 and 𝑂 𝐿2 .

  968

Figure 17

 17 Figure 17. | VGCC rates and temperature factors. a, Activation (𝛼 𝑚 (𝑉 𝑠𝑝 )) and deactivation rates (𝛽 𝑚 (𝑉 𝑠𝑝 )) for the T-type m-gate. b, Activation (𝛼 𝑚 (𝑉 𝑠𝑝 )) and deactivation rates (𝛽 𝑚 ) for the R-type m-gate. c, Activation (𝛼 𝑚 (𝑉 𝑠𝑝 )) and both deactivation rates (𝛽 𝐿 2 (𝑉 𝑠𝑝 ) and 𝛽 1 2 (𝑉 𝑠𝑝 )) for the L-type VGCC. d, Activation (𝛼 ℎ (𝑉 𝑠𝑝 )) and deactivation rates (𝛽 ℎ (𝑉 𝑠𝑝 )) for the T-type h-gate. e, Activation (𝛼 ℎ (𝑉 𝑠𝑝 )) and deactivation rates (𝛽 ℎ (𝑉 𝑠𝑝 )) for the R-type h-gate. f, Temperature factor applied to all the rates, forward change (𝜌 𝑉 𝐺𝐶𝐶 𝑓

  model the enzymes dynamics, we adapted a monomeric CaM-CaMKII Markov chain from Chang et al. (2019) which was built on the model by Pepke et al. (2010). Our adaptation incorporates a simplified CaN reaction which only binds to fully saturated CaM. That is, CaM bound to four calcium ions on N and C terminals (see Markov chain in the Figure 18). A consequence of the Pepke coarsegrained model is that calcium binds and unbinds simultaneously from the CaM terminals (N,C).
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  Figure 18. 1014

  use low values of 1022 CaN concentration (eg. 1.6 µM) not specific to dendritic spines without considering that these val-1023 ues are taken from the whole neuropil. There is little information on CaN concentration in spines, 1024 39 of 64 but Kuno et al.

'

  hidden' phosphatases, absorbing their contribution into the decay rates of the CaMKII activity. As pointed out by Otmakhov et al. (2015), FRET sensor imaging of CaMKII activity unfortunately does not capture the identity of the phosphatases involved in the dephosphorylation of CaMKII. More specifically, Otmakhov et al. (2015) observed no significant changes in the decay constant of their CaMKII FRET sensor when selectively inhibiting PP1 and PP2A. Given that these two phosphatases are widely used in models to determine plasticity, we believe that our model is more aligned with data of CaMKII activity in vivo.

Figure 19 .-Figure 20 .

 1920 Figure 19. | CaMKII temperature changes in the model caused by 1Pre, 30 at 0.49 Hz with glutamate uncaging (no failures allowed), 1mM Ca, 2mM Mg, P4-7 organotypic slices from mouse hippocampus. a, CaMKII fluorescent probe lifetime change measured by Chang et al. (2017) for 25 • 𝐶 (blue) and 35 • 𝐶 (red). The decay time (𝜏) was estimated by fitting the decay after the stimulation (30 pulses at 0.49Hz) using a single exponential decay, 𝑦 = 𝑎 ⋅ 𝑒 -𝑡⋅𝑏 ; 𝜏 = 1∕𝑏. b, Simulation of the CaMKII concentration change (with respect to the baseline) at 25 • 𝐶 in response to same protocol applied in the panel a. The simulations on the panels b, c, e, f show the mean of 20 samples. c, Same as in panel b but for 35 • 𝐶. d, Estimated temperature change factor for the dissociation rates 𝑘 2 , 𝑘 3 and 𝑘 5 in the Markov chain in Figure 18. e, Change in the concentration of the CaMKII states (25 • 𝐶) which are summed to compose CaMKII change in the panel b. f, Same as in panel e for 35 • 𝐶 with reference to the panel c.

  Figure 22b. The region indicator of the respective orbit is shown in Figure 22c. Simultaneously, Figure 22d depicts the leaky activation 𝑎𝑐𝑡 𝑃 and 𝑎𝑐𝑡 𝐷 , which will define the rate of plasticity induction in Figure 22e

  the simulated dynamics from Inglebert et al. (2020) (Figure 6d, top part of the LTD boundary) and Dudek and Dudek and Bear (1992, 1993) (Figure 4d and Figure 5f , bottom-left part of the LTD boundary). 43 of 64

Figure 22 .

 22 Figure 22. | Plasticity readout for the protocol 1Pre2Post10, 300 at 5Hz, from Tigaret et al. (2016). a, CaMKII and CaN activity in response to protocol 1Pre2Post10. b, Enzymatic joint activity in the 2D plane showing LTP and LTD's plasticity regions. The black point marks the beginning of the stimulation, and the white point shows the end of the stimulation after 60 s. c, Region indicator illustrating how the joint activity crosses the LTP and the LTD regions. d, The leaky activation functions are used as input to the LTP and LTD, ratesrespectively. The activation function has a constant rise when the joint-activity is inside the region, and exponential decay when it is out. e, The LTD rate in response to the leaky activation function, 𝑎𝑐𝑡 𝐷 , in panel d. Note that this rate profile occurs after the stimulation is finished (60 s). The joint-activity is returning to the resting concentration in panel A. f, The LTP rate in response to the leaky activation function, 𝑎𝑐𝑡 𝑃 , in panel D. g, Outcome of the plasticity Markov chain in response to the LTD and LTP rates. The EPSP change (%) is estimated by the difference between the number of processes in the states LTP and LTD, 𝐿𝑇 𝑃 -𝐿𝑇 𝐷. h, Normalized LTP and LTD rates (multiplied to their respective time constant, 𝑡 𝐷 , 𝑡 𝑃 ) sigmoids. The dashed line represents the half-activation curve for the LTP and LTD rates. Note in panel d that the leaky activation function reaches the half-activation 𝐾 𝑝 = 1.3𝑒4.

Figure 3 -

 3 Figure 3-Figure Supplement 1 shows best fit to the Tigaret et al.(2016) data from seven spiketiming dependent plasticity protocols, for three leading STDP models in the field: classic pairwise STDP[START_REF] Song | Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[END_REF], triplet STDP[START_REF] Pfister | Triplets of spikes in a model of spike timing-dependent plasticity[END_REF], and calcium-based Graupner-Brunel STDP[START_REF] Graupner | Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location[END_REF] models. Parameters for each model that mimized the mean-squared error with the data were discovered using Bayesian optimization using the Bayesian Optimization package in the Julia programming language. Figure 4-Figure Supplement 1 shows variations of Dudek and Bear (1992) parameters for [Ca 2+ ] o , [Mg 2+ ] o , temperature and dendritic spine distance from the soma. Also, it shows the Poisson spike train protocol (as in Figure 7g,h.) for temperature and age parameters obtained from an estimation of the body temperature regulation during development (or thermoregulation maturation, also called maturation of temperature homeostasis, estimated in Figure 3-Figure Supplement 1g). Figure 5-Figure Supplement 1 expands the presynaptic burst strategy hypothesized to recover the LTD in adult slices (Figure 5c) for 900 pairing repetitions. Also, Figure 5-Figure Supplement 1 tries to isolate the contribution of each age-dependent mechanism (NMDAr, GABAr, BaP efficiency switches) for 3 and 5 Hz predictions in Dudek and Bear (1993) experiment. We fixed each of the three mechanisms coding for age in our model at P5 and P50, to observe how they shape the plasticity. Note the experiment in Figure 6-Figure Supplement 1d-i is only to theoretically show how each age mechanism contributes to plasticity in Figure 5. Also we compare predictions between different STDP experiments across age.

Figure 3 -

 3 Figure 3-Figure Supplement 4 presents modifications of Inglebert et al. (2020) STDP experiment and the reproduction of Mizuno et al. (2001) data. Figure 6-Figure Supplement 2 shows multiple aspects related to temperature in STDP experiments and the temperature and age choices for the publications described in Table1compared to physiological conditions. We estimate how the rat's

Figure 3 -Figure 3 -Figure 3 -Figure 3 -

 3333 Figure 3 -Supplement 1. | Standard models for predicting plasticity fail to account for the data from Tigaret et al. (2016). a-c, Mean weight change for the Tigaret's data (blue), error bars denote ±1 s.d. Plasticity protocols indicated by labels on x-axis. Green bars show mean plasticity predicted for the same protocols by classic STDP (Song et al., 2000) (panel a), triplet STDP (Pfister and Gerstner, 2006) (panel b), or Graupner-Brunel calcium-based STDP (Graupner and Brunel, 2012) model (panel c).

Figure 3 -Figure 4 -

 34 Figure 3 -Supplement 5. | Varying Tigaret et al. (2016) experimental parameters. a, Mean synaptic weight change for 1Pre2Post(delay) varying the temperature. b, Mean synaptic weight change for 1Pre2Post(delay) varying the age. c, Mean synaptic weight change for 1Pre2Post(delay) varying the frequency. d, Mean synaptic weight change for 1Pre2Post(delay) varying the [Ca 2+ ] o . e, Mean synaptic weight change for 1Pre2Post(delay) varying the distance from the soma. A similar trend in distal spines was previously found in Ebner et al. (2019). f, Mean synaptic weight change of 1Pre2Post50 and 2Post1Pre50 when number of pulses increases or decreases. Note the similarity with Mizuno et al. (2001) in Figure 161c.

Figure 5 -

 5 Figure 5 -Supplement 1. | Duplets, triplets and quadruplets for FDP, perturbing developmental-mechanisms for LFS and HFS in Dudek and Bear (1993), and age-related changes in STDP experiments[START_REF] Inglebert | Synaptic plasticity rules with physiological calcium levels[END_REF][START_REF] Tigaret | Coordinated activation of distinct Ca 2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity[END_REF][START_REF] Meredith | Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition[END_REF]. a, Mean synaptic weight change (%) for the duplet-FDP (2Pre50) experiment varying age. The panel shows showing that not only LTD is enhanced but also LTP. b, Mean synaptic weight change (%) for the triplet-FDP (3Pre50) experiment varying age. The panel shows that LTD magnitude is enhanced for adult rats and the LTD-LTP transition is shifted leftward. c, Mean synaptic weight change (%) for the quadruplet-FDP (4Pre50) experiment varying age. The panel shows a further leftward shift on the LTD-LTP transition (compared to 3Pre50). d, Mean synaptic weight change (%) for the 1 Pre 900 at 30 and 3 Hz with Dudek and Bear(1993). Fixing NMDAr at P5 (more GluN2B than GluN2A) causes an increase of LTD and a slight increase of LTP for adult rats compared to baseline (grey solid line). e, Same experiment as panel d but fixing BaP maturation at P5 (higher BaP attenuation). LTP is abolished, but LTD is not affected. This is because AP induced by the EPSP attenuate too fast for 30 Hz and are thus not able to produce enough depolarization to activate NMDArs. f, Same experiment as in panel d but fixing GABAr maturation at P5 (excitatory GABAr) which only slighlty enhances LTD (3 Hz) for adult rats. g, Same experiment as panel d but fixing NMDAr at P50 (more GluN2A than GluN2B). LTD appears with decreased magnitude for young rats compared to baseline (grey solid line). h, Same experiment as panel d but fixing BaP maturation at P50 (less BaP attenuation). LTP is enhanced for young rats because the BaP pairing with the slow closing GluN2B produces more calcium influx. i, Same experiment as panel d but fixing GABAr maturation at P50 (inhibitory GABAr) which does not affect the FDP experiment. j, Mean synaptic weight change (%) for Meredith et al. (2003) single versus burst-STDP experiment for different ages. The data from Meredith (boxplots) were pooled by the age as shown in the x-axis. The solid line represents the mean, and the shaded ribbon the 2nd and 4th quantiles simulated by the model (same for panels a-f). k, Mean synaptic weight change (%) for Inglebert et al. (2020) STDP experiment in which the number of postsynaptic spikes increases. The x-axis marker from 14-21 indicates that only this interval was published without further specification. We use our model to estimate age related changes to Inglebert et al. (2020) protocols. Note that the model does not cover the 1Pre2Post10 properly (model predicts only outcomes near the first data quantile). Notice that single and burst STDP leads to LTD, meanwhile Meredith et al. (2003) lead to LTP or NC. l, Mean synaptic weight change (%) for Tigaret et al. (2016) STDP experiment which compares single

Figure 6 -Figure 6 -

 66 Figure 6 -Supplement 1. | [Ca 2+ ] o and [Mg 2+ ] o related modifications for Inglebert et al. (2020) experiment. a, Mean time spent for anticausal pairing, 1Post1Pre10, at different Ca/Mg concentrations. The contour plots are associated with the Figure 6a-c. b, STDP and extracellular Ca/Mg. Synaptic weight change (%) for causal (1Pre1Post10, 100 at 0.3 Hz) and anticausal (1Post1Pre10, 150 at 0.3 Hz) pairings varying [Ca 2+ ] o from 1.0 to 3 mM (Ca/Mg ratio = 1.5). c, Varying frequency and extracellular Ca/Mg for the causal pairing 1Pre1Post10, 100 at 0.3 Hz. Synaptic weight change (%) for a single causal pairing protocol varying frequency from 0.1 to 10 Hz. [Ca 2+ ] o was fixed at 1.8 mM (Ca/Mg ratio = 1.5). d, Mean synaptic weight change (%) for Inglebert et al. (2020) STDP experiment showing how temperature qualitatively modifies plasticity. The dashed lines are ploted in panel b. e, Mean synaptic weight change (%) showing effects 0.5 • 𝐶 from panel a. Black and grey solid lines represent the same color dashed lines in panel a (30 and 30.5 • 𝐶). The bidirectional curves, black and grey lines in panel a (dashed) and panel b (solid), becoming full-LTD when temperature increases to 34.5 and 35 • 𝐶, respectively yellow and purple lines in panel a (dashed) and panel b (solid). Further increase abolishes plasticity. f, Mean synaptic weight change (%) for Mizuno et al. (2001) experiment in Mg-Free ([Mg 2+ ] o = 10 -3 mM for best fit) showing the different time requirements to induce LTP and LTD. For LTD, to simulate the NMDAr antagonist D-AP5 which causes a NMDAr partial blocking we reduced the NMDAr conductance by 97%. Note the similarity with Figure 3-Figure Supplement 5f . g, Mean synaptic weight change (%) of Inglebert et al. (2020) STDP experiment changing [Ca 2+ ] o and Ca/Mg ratio. h, Mean synaptic weight change (%) of Inglebert et al. (2020) STDP experiment changing pre-post delay time and frequency. Note the similarity with Figure 3-Figure Supplement 5c. i, Mean synaptic weight change (%) of Inglebert et al. (2020) STDP experiment changing pre-post delay time and age. Age has a weak effect on this experiment done at [Ca 2+ ] o = 2.5 mM.

Table 1 )

 1 if stimulation duration was increased. To explore this possibility in our model, we systematically
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Tigaret et al.

  

	(2016) explored how subtle variations in pre and
	postsynaptic spike timing influenced the direction and magnitude of plasticity (see Table 1) for ex-
	perimental differences). In contrast, traditional synaptic plasticity protocols exploring the role of
	presynaptic stimulation frequency did not measure the timing of co-occurring postsynaptic spikes
	(Dudek

and Bear, 1992; Wang and Wagner, 1999; Kealy and Commins, 2010). These

  

	studies found
	that long-duration low-frequency stimulation induces LTD, whereas short-duration high-frequency
	stimulation induces LTP, with a cross-over point of zero change at intermediate stimulation fre-
	quencies. In addition to allowing us to explore frequency-dependent plasticity (FDP), this stimu-
	lation paradigm also gave us further constraints to define the LTD polygon region in the model
	since in Tigaret et al. (2016), only one LTD case was available. For FDP, we focused on modelling
	the experiments from Dudek and Bear (1992), who stimulated Schaffer collateral projections to
	pyramidal CA1 neurons with 900 pulses in frequencies ranging from 1 Hz to 50 Hz. In addition to
	presynaptic stimulation patterns, the experimental conditions differed from Tigaret et al. (2016) in
	two other aspects: animal age and control of postsynaptic spiking activity (see Table 1 legend). We
	incorporated both age-dependence and EPSP-evoked-BaPs in our model (

Methods and Materials).

  

372 Tigaret et al. (2016) experiment shown in Figure 3h. 373 Ex vivo experiments in Dudek and Bear (1992) were done at 35 • 𝐶. However, lower tempera- 374 tures are more widely used for ex vivo experiments because they extend brain slice viability. We

  

	375	
	376	performed further simulations testing temperature modifications for Dudek and Bear (1992) ex-
		periment, predicting a strong effect on plasticity outcomes (Figure 4

-Figure Supplement 1d-f ). 377 Variations in plasticity induction with developmental age 378

  The rules for induction of LTP and LTD change during development(Dudek 

and Bear, 1993; Cao 379 and Harris, 2012), so

  

	380	a given plasticity protocol can produce different outcomes when delivered to
	381	synapses from young animals versus mature animals. For example, when Dudek and Bear (1993)
	382	tested the effects of low-frequency stimulation (1 Hz) on CA3-CA1 synapses from rats of different
	383	ages, they found that the magnitude of LTD decreases steeply with age from P7 until becoming
	384	minimal in mature animals >P35 (Figure 5a, circles). Across the same age range, they found that a
	385	theta-burst stimulation protocol induced progressively greater LTP magnitude with developmental
	386	age (Figure 5b, circles). Paralleling this, multiple properties of neurons change during development:
		the NMDAr switches its dominant subunit expression from GluN2B to GluN2A (

Sheng et al., 1994; 387 Popescu et al., 2004; Iacobucci and Popescu, 2017), the

  reversal potential of the receptor (GABAr)

			presynaptic bursting rescues
			age-dependent LTD fading
	e	mapping age and frequency dependent plasticity	dampened enzyme activity in mature synapses (LTD case)
		a	
		c c c c	
		388	
			11 of 64

Figure 5. | Age-dependent plasticity, Dudek and Bear (1993) dataset. a, Synaptic weight

  

	change for 1Pre, 900 at 1 Hz as in Dudek and
	Bear (1993). The solid line is the mean and the
	ribbons are the 2nd and 4th quantiles predicted
	by our model (same for panel b, c and f). b,
	Synaptic weight change for Theta Burst
	Stimulation (TBS -4Pre at 100 Hz repeated 10
	times at 5Hz given in 6 epochs at 0.1Hz, see Table
	1). c, Synaptic weight change as a function of
	frequency for different ages. BCM-like curves
	showing that, during adulthood, the same LTD
	protocol becomes less efficient. It also shows that
	high-frequencies are inefficient at inducing LTP
	before P15. d, Synaptic weight change as a
	function of age. Proposed protocol using
	presynaptic bursts to recover LTD at ≥ P35 with
	less pulses, 300 instead of the original 900 from
	Dudek and Bear (1993). This effect is more
	pronounced for young rats. Figure 5-Figure
	Supplement 1 shows a 900 pulses comparison. e,
	Mean synaptic strength change (%) as a function
	of frequency and age for 1Pre 900 pulses
	(32x38x100, respectively, for frequency, age and
	samples). The protocols in Dudek and Bear (1993)
	(panel a) are marked with the yellow vertical line.
	The horizontal lines represent the experimental
	conditions of panel c. Note the P35 was used for
	Dudek and Bear (1992) experiment in Figure 4f . f,
	Mean time spent for the 1Pre 1Hz 900 pulses
	protocol showing how the trajectories are
	left-shifted as rat age increases.
	Figure 5-Figure supplement 1. Duplets, triplets
	and quadruplets for FDP, perturbing
	developmental-mechanisms for LFS and HFS in
	Dudek and Bear (1993), and age-related changes
	in STDP experiments (

Inglebert et al., 2020; Tigaret et al., 2016; Meredith et al., 2003).

  

  Instead, by varying the [Ca 2+ ] o and [Mg 2+ ] o , Ca 2+ ] o conditions ([Ca 2+ ] o < 1.8 mM) and a bidirectional rule for high [Ca 2+ ] o ([Ca 2+ ] o > 2.5 (2020) findings by varying [Ca 2+ ] o and [Mg 2+ ] o with Ca 2+ ] o modulates vesicle release probability. On the postsynaptic side, high [Ca 2+ ] o

canonical STDP rule

[START_REF] Gq | Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[END_REF]

, measured in cultured neurons with high extracellular calcium ([Ca 2+ ] o ) and at room temperature, was recently found not to be reproducible at physio-logical

[Ca 2+ 

] o in CA1 brain slices

[START_REF] Inglebert | Synaptic plasticity rules with physiological calcium levels[END_REF]

. 455 Inglebert et al. (2020) found a spectrum of STDP rules with either no plasticity or full-LTD for phys-456 iological [457 mM), shown in Figure 6a-c. 458 We attempted to reproduce Inglebert et al. 459 the following consequences for the model mechanisms (Methods and Materials). On the presy-460 naptic side, [461 reduces NMDAr conductance (Maki and Popescu, 2014), whereas [Mg 2+ ] o affects the NMDAr Mg 2+

and Orrenius, 2011), the

  effects of high calcium concentrations at single synapses are poorly understood. Notably, a few studies have reported evidence consistent with an overshoot, where strong synaptic calcium influx does not induce LTP(Yang et 

al., 1999; Tigaret et al., 2016; Pousinha et al., 2017).

  This property allowed us to incorporate the model components' dependence on developmental age, external Ca/Mg levels, and temperature to replicate datasets across a range of experimental conditions. The model is relatively fast to simulate, taking ∼1 minute of CPU time to run 1 minute of biological time. These practical benefits should enable future studies to make experimental predictions on dendritic integration of multiple synaptic inputs(Blackwell et 

	Our model included critical components for plasticity induction at CA3-CA1 synapses: those af-
	fecting dendritic spine voltage, calcium signalling, and enzymatic activation. We were able to use
	our model to make quantitative predictions, because its variables and parameters corresponded
	to biological components.

al., 2019; Oliveira et al., 2012; Ebner et al., 2019

  

) and on the effects of synaptic molecular alterations in pathological conditions. In contrast, abstract models based on spike timing

(Song et al.

, 2000; Pfister and Gerstner, 2006; Clopath and Gerstner, 2010

  

) or simplified calcium dynamics

[START_REF] Shouval | A unified model of NMDA receptor-dependent bidirectional synaptic plasticity[END_REF][START_REF] Graupner | Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location[END_REF] 

must rely on ad hoc adjustment of parameters with less biological interpretability.

Intrinsic noise is an essential component of the model. How can the synapse reliably express plasticity but be noisy at the same time

[START_REF] Yuste | Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis[END_REF][START_REF] Ribrault | From the stochasticity of molecular processes to the variability of synaptic transmission[END_REF]

? Noise can be reduced either by redundancy or by averaging across time, also called ergodicity

[START_REF] Sterling | Principles of neural design[END_REF]

. However redundancy requires manufacturing and maintaining more components, and therefore costs energy. We propose that, instead, plasticity induction is robust due to temporal averaging by slow-timescale signalling and adaptation processes. These slow variables display reduced noise levels by averaging the faster timescale stochastic variables. This may be a reason why CaMKII uses auto-phosphorylation to sustain its activity and slow its decay time

[START_REF] Chang | CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance[END_REF][START_REF] Chang | Mechanisms of Ca 2+/calmodulin-dependent kinase II activation in single dendritic spines[END_REF]

. In summary, this suggests that the temporal averaging by slow variables, combined with the separability afforded by the multidimensional readout, allows synapses to tolerate noise while remaining energy-efficient.

A uniqueness of our model is that it simultaneously incorporates biological variables such as electrical components at pre and postsynaptic sites some with adaptive functions such as attenuation, age and temperature, stochastic noise and fast and slow timescales. Some of these variables have been modelled by other groups, e.g. stochasticity, BaP attenuation or pre-synaptic plasticity

(Cai 

et al., 2007; Shouval and Kalantzis, 2005; Zeng and Holmes, 2010; Miller et al., 2005; Yeung et al., 2004; Shah et al., 2006; Deperrois and Graupner, 2020; Costa et al., 2015), but

  generally independently from each other. To position the uniqueness of our model in this broader context, we also provide a direct comparison of our model with some of the most recent leading models of excitatory synapse plasticity and the experimental work they reproduce (Table1

-Table Supplement 1 and Table 1-Table Supplement 2).

  

Table 1 .

 1 Tablewiththe parameters extracted from the respective publications. To fit the data associated to publications displaying a parameter interval (e.g. 70 to 100) we used a value within the provided limits. Otherwise, we depict in parentheses the value used to fit to the data. For complete data structure on these publications and the ones used for method validation see github code. We allowed the AP to be evoked by

	Experiment Paper	Repetitions	Freq (Hz)	Age (days)	Temp. ( • 𝐶)	[Ca 2+ ] o (mM) [Mg 2+ ] o (mM)
	STDP	Tigaret et al. (2016)	300	5	56	35	2.5	1.3
	STDP	Inglebert et al. (2020)	100, positive delays 150, negative delays	0.3	14-20 (21 for LTP)	30 (30.45 for LTP)	1.3-3	Ca/1.5
	STDP	Meredith et al. (2003)	20	0.2	9-45	24-28	2	2
	STDP	Wittenberg and Wang (2006) 70-100	5	14-21	24-30 (22.5-23)	2	1
	pre-burst	Tigaret et al. (2016)	300 and 900	3 and 5	56	35	2.5	1.3
	FDP	Dudek and Bear (1992)	900	1-50	35	35	2.5	1.5
	FDP	Dudek and Bear (1993)	900	1	7-35	35	2.5	1.5
	TBS	Dudek and Bear (1993)	3-4 (5) epochs	4Pre at 100 Hz (10x at 5Hz)	6, 14 and 17 35	2.5	1.5
	LFS	Mizuno et al. (2001)	1-600	1	12-28	30 (26.5-31)	2.4	0

EPSPs for these protocols: Mizuno et al. (2001), Dudek and Bear (1992) Dudek and Bear (1993). Note that Tigaret et al. (2016) used GABA(A)r blockers, which we modelled by setting the GABAr conductance to zero. Also, Mizuno et al. (2001) LTD protocol used partial NMDA blocker modelled by reducing NMDA conductance by 97 %.

Table 1 -Table Supplement 1. Comparison of recent computational models for plasticity. Table 2 -Table Supplement 2. Comparison of the experimental conditions for the different reproduced datasets in recent computational models for plasticity.

Table 2 .

 2 Stochastic transitions used in the pool dynamics. Note that the rates depend on the pool's cardinal

[START_REF] Pyle | Rapid reuse of readily releasable pool vesicles at hippocampal synapses[END_REF]

.

Table 2 ,

 2 each spike 𝑡 𝑖 triggers a vesicle release 𝐷 ⟶ 𝐷 -1 with probability 𝑝 𝑟𝑒𝑙 :

Table 3 .

 3 The

experimental constraints to devise a release probability model are given by Hardingham et al. (2006) and Tigaret et al. (2016). Because [Ca 2+ ] o modifies the release probability dynamics (King et al., 2001), we fixed an initial release probability to 68 % for [Ca 2+ ] o = 2.5 mM as reported by Tigaret et al. (2016) (initial value in

.

  Furthermore, since our model of vesicle dynamics is simple, 𝜏 𝑟𝑒𝑐 in Equation 2 has two roles: to delay the 𝑝 𝑟𝑒𝑙 recovery caused by 𝐶𝑎 𝑝𝑟𝑒 inactivation (enforced by

𝛿 𝐶𝑎 in Equation

2

) and to prevent vesicle release after HFS-induced depression

[START_REF] King | Extracellular calcium depletion as a mechanism of short-term synaptic depression[END_REF][START_REF] Rizzoli | Synaptic vesicle pools[END_REF]

. Later, we incorporate a higher number of experimental parameters (age, temperature, [Ca 2+ ] o , [Mg 2+ ] o ) with our NMDAr model, the main postsynaptic calcium source.

Table 3 . | Parameter values used in the presynaptic model

 3 

. Our model does not implement a larger pool called "resting pool" containing ∼ 180 vesicles (CA3-CA1 hippocampus)

  [START_REF] Rizzoli | Synaptic vesicle pools[END_REF] and Alabi and Tsien(2012).

	Name	Value	Reference
	Vesicle release model (stochastic part)		
	initial number of vesicles at D	𝐷 0 = 25	5 to 20 (Rizzoli and Betz, 2005; Alabi and Tsien, 2012)
	initial number of vesicles at R	𝑅 0 = 30	17 to 20 vesicles (Alabi and Tsien, 2012)
	time constant R → D (D recycling)	𝜏 𝐷 = 5 𝑠	1 𝑠 (Rizzoli and Betz, 2005)
	time constant D → R (R mixing)	𝜏 𝑅 = 45 𝑠	20 𝑠 (when depleted) to 5 𝑚𝑖𝑛 (hypertonic shock) (Rizzoli and Betz, 2005; Pyle et al., 2000)
	time constant 1 → R (R recycling)	𝜏 𝑟𝑒𝑓 𝑅 = 40 𝑠	20 to 30 𝑠 (Rizzoli and Betz, 2005)
	release probability half-activation curve	ℎ	see Equation 1
	release probability sigmoid slope	𝑠 = 2	fixed for all [Ca 2+ ] o
	Vesicle release model (deterministic part)	
	𝐶𝑎 𝑝𝑟𝑒 attenuation recovery	𝜏 𝑝𝑟𝑒 = 20 ms	50 -500 𝑚𝑠 with dye (Maravall et al., 2000) therefore < 50 to 500 𝑚𝑠 without dye
	deterministic jump attenuation recovery 𝜏 𝑟𝑒𝑐 = 20 𝑠	∼ 20 𝑠 (Rizzoli and Betz, 2005)
	deterministic jump attenuation fraction	𝛿 𝑐𝑎 = 0.0004	(Forsythe et al., 1998)

Popovic et al., 2015)

  

		Value		Reference
	Passive cable			
	leak reversal potential	𝐸 𝑙𝑒𝑎𝑘 = -70 𝑚𝑉	69𝑚𝑉 (Spigelman et al., 1996)
	membrane leak conductance (for spine and passive dendrite)	𝑔 𝑙𝑒𝑎𝑘 = 4 ⋅ 10 -6 𝑛𝑆∕𝜇𝑚 2	* see table legend (Koch and Zador, 1993)
	membrane leak conductance (only soma)	𝑔 𝑠𝑜𝑚𝑎 = 5.31 ⋅ 10 -3 𝑛𝑆∕𝜇𝑚 2	3 ⋅ 10 -4 to 1.3 ⋅ 10 -3 𝑛𝑆∕𝜇𝑚 2 (Fernandez and White, 2010) 47 to 2.1 ⋅ 10 3 𝑛𝑆 (NeuroElectro:CA1)
	membrane capacitance	𝐶 𝑚 = 6 ⋅ 10 -3 𝑝𝐹 ∕𝜇𝑚 2	1 ⋅ 10 -2 𝑝𝐹 ∕𝜇𝑚 2 (Hines and Carnevale, 1997) 17 to 177 𝑝𝐹 (NeuroElectro:CA1)
	axial resistivity of cytoplasm	𝑅 𝑎 = 1 ⋅ 10 -2 𝐺Ω𝜇𝑚	2 ⋅ 10 -3 𝐺Ω𝜇𝑚 (Golding et al., 2001)
	Dendrite			
	dendrite diameter	𝐷 𝑑𝑒𝑛𝑑 = 2 𝜇𝑚	same as Yi et al. (2017)
	dendrite length	𝐿 𝑑𝑒𝑛𝑑 = 1400 𝜇𝑚	apical dendrites, 1200 to 1600 𝜇 m (Mendoza et al., 2018)
	dendrite surface area	𝐴 𝑑𝑒𝑛𝑑 = 8.79 ⋅ 10 3 𝜇𝑚 2		𝜋 ⋅ 𝐷 𝑑𝑒𝑛𝑑 ⋅ 𝐿 𝑑𝑒𝑛𝑑
	dendrite volume	𝑉 𝑜𝑙 𝑑𝑒𝑛𝑑 = 4.4 ⋅ 10 3 𝜇𝑚 3		𝜋 ⋅ (𝐷 𝑑𝑒𝑛𝑑 ∕2) 2 ⋅ 𝐿 𝑑𝑒𝑛𝑑
	dendritic membrane capacitance 𝐶 𝑑𝑒𝑛𝑑 = 52.77 𝑝𝐹		𝐶 𝑚 ⋅ 𝐴 𝑑𝑒𝑛𝑑
	dendrite leak reversal potential	𝑔 𝑙𝑒𝑎𝑘𝑑𝑒𝑛𝑑 = 3.51 ⋅ 10 -2 𝑛𝑆		𝑔 𝑙𝑒𝑎𝑘 ⋅ 𝐴 𝑑𝑒𝑛𝑑
	dendrite axial conductance	𝑔 𝑑𝑖𝑓 𝑓 = 50 𝑛𝑆		𝑅 𝑎 ⋅ 𝐴 𝑑𝑒𝑛𝑑
	Soma			
	soma diameter	𝐷 𝑠𝑜𝑚𝑎 = 30 𝜇𝑚	21 𝜇𝑚 (Stuart et al., 2016) page 3
	soma area (sphere)	𝐴 𝑠𝑜𝑚𝑎 = 2.82 ⋅ 10 3 𝜇𝑚 2		
	Dendritic spine			
	spine head volume	𝑉 𝑜𝑙 𝑠𝑝 = 0.03 𝜇𝑚 3		Bartol et al. (2015)
	spine head surface	𝐴 𝑠𝑝 = 4.66 ⋅ 10 -1 𝜇𝑚 2		4𝜋 ⋅ (3𝑉 𝑜𝑙 𝑠𝑝 ∕4𝜋) 2∕3
	spine membrane capacitance	𝐶 𝑠𝑝 = 2.8 ⋅ 10 -3 𝑝𝐹		𝐶 𝑚 ⋅ 𝐴 𝑠𝑝
	spine head leak conductance	𝑔 𝑙𝑒𝑎𝑘𝑠𝑝 = 1.86 ⋅ 10 -6 𝑛𝑆		𝑔 𝑙𝑒𝑎𝑘 ⋅ 𝐴 𝑠𝑝
	Dendritic spine neck			
	spine neck diameter	𝐷 𝑛𝑒𝑐𝑘 = 0.1 𝜇𝑚	0.05 to 0.6 𝜇𝑚 (Harris et al., 1992)
	neck length	𝐿 𝑛𝑒𝑐𝑘 = 0.2 𝜇𝑚	0.7 ± 0.6 𝜇𝑚 (Adrian et al., 2017)
	neck cross sectional area	𝐶𝑆 𝑛𝑒𝑐𝑘 = 7.85 ⋅ 10 -3 𝜇𝑚 2		𝜋 ⋅ (𝐷 𝑛𝑒𝑐𝑘 ∕2) 2
	neck resistance	𝑔 𝑛𝑒𝑐𝑘 = 3.92 𝑛𝑆 ≈ 255.1 𝑀Ω	50 to 550 𝑀Ω (275 ± 27 𝑀Ω) (	𝐶𝑆 𝑛𝑒𝑐𝑘 ∕(𝐿 𝑛𝑒𝑐𝑘 ⋅ 𝑅 𝑎 )

(4𝜋∕3) ⋅ (𝐷 𝑠𝑜𝑚𝑎 ∕2) 3 ; 2.12 ⋅ 10 3 𝜇𝑚 2 (Zhuravleva et al., 1997) soma membrane capacitance 𝐶 𝑠𝑜𝑚𝑎 = 16.96 𝑝𝐹 𝐶 𝑚 ⋅ 𝐴 𝑠𝑜𝑚𝑎 soma leaking conductance 𝑔 𝑙𝑒𝑎𝑘𝑠𝑜𝑚𝑎 = 15 𝑛𝑆 𝑔 𝑠𝑜𝑚𝑎 ⋅ 𝐴 𝑠𝑜𝑚𝑎

[START_REF] Fernandez | Gain control in CA1 pyramidal cells using changes in somatic conductance[END_REF] 

Table 6 .

 6 Parameter values for the AMPAr Markov chain and glutamate release affecting NMDAr, AMPAr.Properties of GABA release are the same as those for glutamate.

	Name	Value

Table 7 .

 7 Postsynaptic calcium dynamics parameters.

	Name	Value

𝐶𝑎 = 10 𝑚𝑠 50 to 500 ms for with dye

[START_REF] Maravall Á, Mainen | Estimating intracellular calcium concentrations and buffering without wavelength ratioing[END_REF] 

therefore < 50 to 500 𝑚𝑠 undyed (unbufered) Calcium diffusion 𝐷 𝐶𝑎 = 0.3338 𝜇𝑚 2 𝑚𝑠 -1 0.22 to 0.4 𝜇𝑚 2 𝑚𝑠 -1

[START_REF] Bartol | Computational reconstitution of spine calcium transients from individual proteins[END_REF][START_REF] Holcman | Calcium dynamics in dendritic spines, modeling and experiments[END_REF] 

Calcium diffusion time constant 𝜏 𝐶𝑎𝐷𝑖𝑓 𝑓 = = 0.5 𝑚𝑠 8 𝑚𝑠 for a 𝑉 𝑠𝑝 = 0.7 𝜇𝑚 3

[START_REF] Holcman | Calcium dynamics in dendritic spines, modeling and experiments[END_REF] 

Table 8 .

 8 NMDAr parameters.

	Name	Value

Popescu et al., 2004; Iacobucci and Popescu, 2018)

  

	backward rate	𝑠 -𝑑 = 0.23𝑘 -𝑑	adapted from GluN2A (

Popescu et al., 2004; Iacobucci and Popescu, 2018)

  

	backward rate	𝑠 -𝑐 = 0.23𝑘 -𝑐	adapted from GluN2A (

Popescu et al., 2004; Iacobucci and Popescu, 2018)

  

	glutamate unbinding	𝑠 -𝑏 = 0.23𝑘 -𝑏	adapted from GluN2A (

Popescu et al., 2004; Iacobucci and Popescu, 2018)

  

	glutamate unbinding	𝑠 -𝑎 = 0.23𝑘 -𝑎	adapted from GluN2A (

Popescu et al., 2004; Iacobucci and Popescu, 2018) other parameters

  

	total number of NMDAr	𝑁 𝑁𝑀𝐷𝐴 = 15	5-30 (

Spruston et al., 1995; Bartol et al., 2015; Nimchinsky et al., 2004)

  

	distribution of GluN2A and GluN2B	defined by 𝑟 𝑎𝑔𝑒	Sinclair et al. (2016)
	NMDAr conductance depending on calcium 𝛾 𝑁𝑀𝐷𝐴	Maki and Popescu (2014)
	NMDAr reversal potential	Erev 𝑁𝑀𝐷𝐴 = 0 𝑚𝑉	Destexhe et al. (1994)
	fraction of calcium carried by NMDAr	𝑓 𝐶𝑎 = 0.1	Griffith et al. (2016)

Table 9

 9 presents the parameters to model the GABAr.

960

Table 9 .

 9 GABAr parameters.

	Name	Value

𝑐2 = 400 𝑠 -1 based on

[START_REF] Busch | Cold Spring Harbor Laboratory Press. Synaptic transmission in hippocampal neurons: numerical reconstruction of quantal IPSCs[END_REF][START_REF] Otis | Modulation of decay kinetics and frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons[END_REF] 

closing rate 𝑟 𝑐2 = 9.8 ⋅ 10 3 𝑠 -1 based on

[START_REF] Busch | Cold Spring Harbor Laboratory Press. Synaptic transmission in hippocampal neurons: numerical reconstruction of quantal IPSCs[END_REF][START_REF] Otis | Modulation of decay kinetics and frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons[END_REF] 

Table 10 .

 10 VGCC parameters type isoforms are considered. Indeed, they can have temperature factors that accelerate or 975 slow down the kinetics. For instance, when passing from room to physiological temperatures, the 976 isoform Ca 𝑣 3.3 has a closing time ∼50 % faster

	Name	Value	Reference
	VGCC		
	VGCC T-type conductance 𝛾 𝐶𝑎𝑇 = 12 𝑝𝑆	same as (Magee and Johnston, 1995)
	VGCC R-type conductance 𝛾 𝐶𝑎𝑅 = 17 𝑝𝑆	same as (Magee and Johnston, 1995)
	VGCC L-type conductance 𝛾 𝐶𝑎𝐿 = 27 𝑝𝑆	same as (Magee and Johnston, 1995)
	number of VGCCs	3 for each subtype	1 to 20 (Higley and Sabatini, 2012)
	The VGCC subtypes are differently sensitive to temperature, with temperature factors for decay
	times ranging from 2 (Iftinca et al., 2006) to 50-fold (Peloquin et al., 2008). It further complicates
			36 of 64

Table 11 .

 11 SK channel parameters.

	Name	Value	Reference
	SK channel		
	number of SK channels 𝑁 𝑆𝐾 = 15	10-200 (Bock et al., 2019)
	SK conductance	𝛾 𝑆𝐾 = 10 pS	Maylie et al. (2004)
	SK reversal potential	𝐸 𝑆𝐾 𝑟𝑒𝑣 = -90 mV	Griffith et al. (2016)
	SK half-activation	ℎ 𝑆𝐾 = 0.333 µM	Griffith et al. (2016)
	SK half-activation slope 𝜎 = 6	4 (Griffith et al., 2016)
	SK time constant	𝜏 𝑆𝐾 = 6.3 ms	Griffith et al. (2016)

Figure 18. | Coarse-grained model of CaM, CaMKII and CaN adapted from Chang et al. (2019) and Pepke et al.

  (2017). Note that the CaMKII dynamic has two time scales and we capture only the fastest timescale which ends after stimulation ceases (at 60 s). The slowest dynamic occurs at the end of the stimulus, close to the maximum (Figure19a). This can be caused by the transient

					𝑘 2𝑁 𝑓		
		𝑘 2𝐶 𝑓	𝐶𝑎𝑀0	𝑘 2𝑁 𝑏			𝑘 2𝐶 𝑓	𝐶𝑎𝑀2𝑁
	CaN and CaM reactions	𝑘 2𝐶 𝑏		𝑘 2𝑁 𝑓				𝑘 2𝐶 𝑏	𝜌 𝐶𝑎𝑁 𝑓	⋅ 𝑘 𝐶𝑎𝑁 𝑓	(2010). Reaction from the CaM-Ca reactions (first layer) are attributed to
	𝐶𝑎𝑀2𝐶		𝑘 2𝑁 𝑏	𝐶𝑎𝑀4	𝜌 𝐶𝑎𝑁 𝑏	⋅ 𝑘 𝐶𝑎𝑁 𝑏	𝐶𝑎𝑁𝐶𝑎𝑀4	2Ca release and binding from different CaM saturation states CaM2C (2Ca
		𝑘 𝐶𝑎𝑀0 𝑓	𝑘 𝐶𝑎𝑀0 𝑏				𝑘 𝐶𝑎𝑀2𝑁 𝑓	𝑘 𝐶𝑎𝑀2𝑁 𝑏	bound to terminal C), CaM2N (2Ca
								bound to terminal N), CaM0 (no calcium
								bound), CaM4(Ca bound to both C and
								N terminal). Note that CaN is allowed
	𝑘 𝐶𝑎𝑀2𝐶 𝑓	𝑘 𝐶𝑎𝑀2𝐶 𝑏			𝑘 𝐶𝑎𝑀4 𝑓	𝑘 𝐶𝑎𝑀4 𝑏	to bind only to fully saturated CaM.
					𝑘 𝐾2𝑁 𝑓			Activated CaN is represented by the
		𝐾𝐶𝑎𝑀0 𝑘 𝐾2𝐶 𝑓	𝑘 𝐾2𝑁 𝑏			𝐾𝐶𝑎𝑀2𝑁 𝑘 𝐾2𝐶 𝑓	state CaNCaM4. Reactions between the first (CaM-Ca reactions) and the second
	KCaM reactions	𝑘 𝐾2𝐶 𝑏	𝑘 𝐾2𝑁 𝑓				𝑘 𝐾2𝐶 𝑏	layer (KCaM-Ca reactions) represent the binding of free/monomeric CaMKII
	𝐾𝐶𝑎𝑀2𝐶		𝑘 𝐾2𝑁 𝑏	𝐾𝐶𝑎𝑀4	(mKCaM) (Pepke et al., 2010) to different saturation levels of CaM.
		𝐹 ⋅ 𝑘 1					𝐹 ⋅ 𝑘 1	Reactions within the layer KCaM-Ca
								represent the binding of calcium to
								Calmodulin bound to CaMKII (KCaM0,
								KCaM2C, KCaM2N, KCaM4). Transition
	𝐹 ⋅ 𝑘 1				𝐹 ⋅ 𝑘 1		of layer KCaM-Ca reactions to layer
			𝑃 𝐶𝑎𝑀0				𝑃 𝐶𝑎𝑀2𝑁	KCaM-phosphorylation represents CaMKII bound to CaM that became
								phosphorylated (PCaM states)
	KCaM phosphorylation						
	𝑃 𝐶𝑎𝑀2𝐶			𝑃 𝐶𝑎𝑀4
		𝜌 𝐶𝑎𝑀𝐾𝐼𝐼 𝑏	⋅ 𝑘 2			𝜌 𝐶𝑎𝑀𝐾𝐼𝐼 𝑏	⋅ 𝑘 2
		𝜌 𝐶𝑎𝑀𝐾𝐼𝐼 𝑏	⋅ 𝑘 2		𝜌 𝐶𝑎𝑀𝐾𝐼𝐼 𝑏	⋅ 𝑘 2
					𝜌 𝐶𝑎𝑀𝐾𝐼𝐼 𝑏	⋅ 𝑘 3	
	Autonomous			𝑃		𝑚𝐾𝐶𝑎𝑀
				𝑘 4	𝜌 𝐶𝑎𝑀𝐾𝐼𝐼 𝑏	⋅ 𝑘 5	
				𝑃 2		
		Chang et al. (2019) data provides a high-temporal resolution fluorescence measurements for
		CaMKII in dendritic spines of rat CA1 pyramidal neurons and advances the description of CaMKII
		self-phosphorylation (at room temperature). We modified Chang's model of CaMKII unbinding
		rates 𝑘 2 , 𝑘 3 , 𝑘 4 , 𝑘 5 to fit CaMKII dynamics at room/physiological temperature as shown by Chang
		et al. (2017) supplemental files. Previous modelling of CaMKII (Chang et al., 2019; Pepke et al.,
		2010) used a stereotyped waveform with no adaptation to model calcium. Our contribution to
		CaMKII modelling was to use calcium dynamics sensitive to the experimental conditions to re-
		produce CaMKII data, therefore, allowing us to capture physiological temperature measurements
		from Chang et al. 38 of 64

Table 12 .

 12 Concentration of each enzyme.

	Name	Value	Reference
	Enzyme concentrations		
	free CaM concentration (spine)	𝐶𝑎𝑀 𝑐𝑜𝑛 = 30 µM	Kakiuchi et al. (1982)
	free KCaM concentration (spine)	𝑚𝐾𝐶𝑎𝑀 𝑐𝑜𝑛 = 70 µM	Feng et al. (2011); Lee et al. (2009)
	free CaN spine concentration (spine) 𝑚𝐶𝑎𝑁 𝑐𝑜𝑛 = 20 µM	>10 µM (estimation from Kuno et al. (1992))

Table 13 .

 13 Parameters for the coarse-grained model published in Pepke et al. (2010) and adapted by Chang et al. (2019) and this work. Pepke et al. (2010) rate adaptation for the coarse-grained model 𝑎𝑑𝑎𝑝𝑡(𝑎, 𝑏, 𝑐, 𝑑, 𝐶𝑎) = 𝑎⋅𝑏 𝑐+𝑑⋅𝐶𝑎 . Refer to Figure 18f or definition of variables.

	REACTIONS	Value

3 

to > 1 ⋅ 10 3 𝑠 -1 (Pepke et al.

, 2010) Coarse-grained model, KCaM-Ca reactions

  

	KCaM0 + 2Ca ⇒ KCaM2C KCaM2N + 2Ca ⇒ KCaM4	𝑘 𝐾2𝐶 𝑓	= 𝑎𝑑𝑎𝑝𝑡(𝑘 𝐾1𝐶 𝑜𝑛 , 𝑘 𝐾2𝐶 𝑜𝑛 , 𝑘 𝐾1𝐶 𝑜𝑓 𝑓 , 𝑘 𝐾2𝐶 𝑜𝑛 , 𝐶𝑎)	Pepke et al. (2010)
	KCaM0 + 2Ca ⇒ KCaM2N KCaM2C + 2Ca ⇒ KCaM4	𝑘 𝐾2𝑁 𝑓	= 𝑎𝑑𝑎𝑝𝑡(𝑘 𝐾1𝑁 𝑜𝑛 , 𝑘 𝐾2𝑁 𝑜𝑛 , 𝑘 𝐾1𝑁 𝑜𝑓 𝑓 , 𝑘 𝐾2𝑁 𝑜𝑛 , 𝐶𝑎)	Pepke et al. (2010)
	KCaM2C ⇒ KCaM0 + 2Ca KCaM4 ⇒ KCaM2N + 2Ca	𝑘 𝐾2𝐶 𝑏	= 𝑎𝑑𝑎𝑝𝑡(𝑘 𝐾1𝐶 𝑜𝑓 𝑓 , 𝑘 𝐾2𝐶 𝑜𝑓 𝑓 , 𝑘 𝐾1𝐶 𝑜𝑓 𝑓 , 𝑘 𝐾2𝐶 𝑜𝑛 , 𝐶𝑎)	Pepke et al. (2010)
	KCaM2N ⇒ KCaM0 + 2Ca KCaM4 ⇒ KCaM2C + 2Ca	𝑘 𝐾2𝑁 𝑏	= 𝑎𝑑𝑎𝑝𝑡(𝑘 𝐾1𝑁 𝑜𝑓 𝑓 , 𝑘 𝐾2𝑁 𝑜𝑓 𝑓 , 𝑘 𝐾1𝑁 𝑜𝑓 𝑓 , 𝑘 𝐾2𝑁 𝑜𝑛 , 𝐶𝑎)	Pepke et al. (2010)
		𝑘 𝐾1𝐶 𝑜𝑛	= 44 ⋅ 10 6 𝑀 -1 𝑠 -1	Pepke et al. (2010)
		𝑘 𝐾2𝐶 𝑜𝑛	= 44 ⋅ 10 6 𝑀 -1 𝑠 -1	Pepke et al. (2010)
		𝑘 𝐾1𝑁 𝑜𝑛	= 76 ⋅ 10 6 𝑀 -1 𝑠 -1	Pepke et al. (2010)
		𝑘 𝐾2𝑁 𝑜𝑛	= 76 ⋅ 10 6 𝑀 -1 𝑠 -1	Pepke et al. (2010)
		𝑘 𝐾1𝐶 𝑜𝑓 𝑓 = 33 𝑠 -1	Pepke et al. (2010)
		𝑘 𝐾2𝐶 𝑜𝑓 𝑓 = 0.8 𝑠 -1	0.49 to 4.9 𝑠 -1 (Pepke et al., 2010)
		𝑘 𝐾1𝑁 𝑜𝑓 𝑓 = 300 𝑠 -1	Pepke et al. (2010)
		𝑘 𝐾2𝑁 𝑜𝑓 𝑓 = 20 𝑠 -1	6 to 60 𝑠 -1

Pepke et al. (2010) Coarse-grained model, CaM-mKCaM reactions

  

	CaM0 + mKCaM ⇒ mKCaM0	𝑘 𝐶𝑎𝑀0 𝑓	= 3.8 ⋅ 10 3 𝑀 -1 𝑠 -1	Pepke et al. (2010)
	CaM2C + mKCaM ⇒ mKCaM2C	𝑘 𝐶𝑎𝑀2𝐶 𝑓	= 0.92 ⋅ 10 6 𝑀 -1 𝑠 -1	Pepke et al. (2010)
	CaM2N + mKCaM ⇒ mKCaM2N 𝑘 𝐶𝑎𝑀2𝑁 𝑓	= 0.12 ⋅ 10 6 𝑀 -1 𝑠 -1	Pepke et al. (2010)
	CaM4 + mKCaM ⇒ mKCaM4	𝑘 𝐶𝑎𝑀4		

𝑓

= 30 ⋅ 10 6 𝑀 -1 𝑠 -1 14 to 60 ⋅ 10 6 𝑀 -1 𝑠 -1 (Pepke

et al., 2010)

  

	mKCaM0 ⇒ CaM0 + mKCaM	𝑘 𝐶𝑎𝑀0 𝑏	= 5.5 𝑠 -1	Pepke et al. (2010)
	mKCaM2C ⇒ CaM2C + mKCaM	𝑘 𝐶𝑎𝑀2𝐶 𝑏	= 6.8 𝑠 -1	Pepke et al. (2010)
	mKCaM2N ⇒ CaM2N + mKCaM 𝑘 𝐶𝑎𝑀2𝑁 𝑏	= 1.7 𝑠 -1	Pepke et al. (2010)
	mKCaM4 ⇒ CaM0 + mKCaM	𝑘 𝐶𝑎𝑀4 𝑏	= 1.5 𝑠 -1	1.1 to 2.3 𝑠 -1 (Pepke

et al., 2010) Coarse-grained model, self-phosphorylation reactions

  

	KCaM0 ⇒ PCaM0		
	KCaM2N ⇒ PCaM2N KCaM2C⇒ PCaM2C	𝑘 1 = 12.6 𝑠 -1	Chang et al. (2019)
	KCaM4 ⇒ PCaM4		
	Fraction of activated CaMKII	𝐹 = 𝐶𝑎𝑀𝐾𝐼𝐼∕𝑚𝐾𝐶𝑎𝑀 𝑐𝑜𝑛	see Equation 19 (Chang et al., 2019)
	PCaM0 ⇒ P+CaM0		
	PCaM2N ⇒ P+CaM2N PCaM2C⇒ P+CaM2C	𝑘 2 = 0.33 𝑠 -1	0.33 𝑠 -1 ; adapted from (Chang et al., 2019)
	PCaM4 ⇒ P+CaM4		
	P⇒mKCaM	𝑘 3 = 4 ⋅ 0.17𝑠 -1	0.17𝑠 -1 adapted from (Chang et al., 2019)
	P⇒P2	𝑘 4 = 4 ⋅ 0.041𝑠 -1	0.041𝑠 -1 adapted from (Chang et al., 2019)
	P2⇒P	𝑘 5 = 8 ⋅ 0.017𝑠 -1	0.017𝑠

-1 adapted from

(Chang et al., 

2019) Calcineurin model, CaM-CaM4 reactions

  

	CaM4+mCaN⇒mCaNCaM4	𝑘 𝐶𝑎𝑁

𝑓 = 10.75 ⋅ 10 6 𝑀 -1 𝑠 -1 46 ⋅ 10 6 𝑀 -1 𝑠 -1 (Quintana et al., 2005) mCaNCaM4⇒CaM4+mCaN 𝑘 𝐶𝑎𝑁 𝑏 = 0.02 𝑠 -1 fit from Fujii et al. 2014 (Fujii et al., 2013) see Figure 20

Table 14 .

 14 Parameters to define the plasticity readout. 𝑎.𝑢. ⋅ 𝑚𝑠 -1 fitted to cover all protocols in Table 1 rise constant inside the LTP region 𝑎 𝑃 = 0.2 𝑎.𝑢. ⋅ 𝑚𝑠 -1 fitted to cover all protocols in Table 1 decay constant outside the LTD region 𝑏 𝐷 = 2 ⋅ 10 -5 𝑎.𝑢. ⋅ 𝑚𝑠 -1 fitted to cover all protocols in Table 1 decay constant outside the LTP region 𝑏 𝑃 = 1 ⋅ 10 -4 𝑎.𝑢. ⋅ 𝑚𝑠 -1 fitted to cover all protocols in Table 1

	Name	Value	Reference
	Leaking variable (a.u.)		
	rise constant inside the LTD region 𝑎 𝐷 = 0.1 Plasticity Markov chain	
	LTD rate time constant	𝑡 𝐷 = 1.8 ⋅ 10 4 𝑚𝑠	fitted to cover all protocols in Table 1
	LTP rate time constant	𝑡 𝑃 = 1.3 ⋅ 10 4 𝑚𝑠	fitted to cover all protocols in Table 1
	half occupation LTP	𝐾 𝑃 = 1.3 ⋅ 10 4 𝑎.𝑢.	fitted to cover all protocols in Table 1
	half occupation LTD	𝐾 𝐷 = 8 ⋅ 10 4 𝑎.𝑢.	fitted to cover all protocols in Table 1
	Plasticity regions (vertices determining the polygons)		
	LTP region (CaN,CaMKII)	[6.35,1.4],[10,1.4],[6.35,29.5],[10,29.5]	fitted to cover all protocols in Table 1
	LTD region (CaN,CaMKII)	[6.35,1.4],[6.35,23.25],[6.35,29.5],[1.85,11.32] fitted to cover all protocols in Table 1
		[1.85,23.25],[3.76,1.4],[5.65,29.5]	fitted to cover all protocols in Table 1

Table 1 )

 1 ) showing a full LTD window. Our model also reproduces the data showing that when temperature is increased to 32 -34 • 𝐶 LTD is abolished (data not shown). b, Mean synaptic weight change (%) for Wittenberg and[START_REF] Wittenberg | Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse[END_REF] STDP experiment for 1Pre2Post10, 70-100 at 5 Hz (see (Table1)) showing a bidirectional window. c, Mean synaptic weight change (%) for Wittenberg and[START_REF] Wittenberg | Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse[END_REF] STDP experiment for 1Pre2Post10, 20-30 at 5 Hz (see (Table1)) showing a bidirectional window. We noticed that for Wittenberg and[START_REF] Wittenberg | Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse[END_REF] experiment, done in room temperature, the temperature sensitivity was higher than for other experiments. d, The blue and white bars represent the circadian rhythm as shown in McCauley et al.(2020). However, the "rest rhythm" for young rats (P5-14) may vary. e, Dotted grey line represents the averaged physiological temperature at different ages in the rat (estimated from mean value of panel d). For the papers the we fitted by the model, we depict the range of temperature and age used. Note that only few experiments were performed at near physiological conditions. f, Initial conditions for CaN-CaMKII resting concentration for different[Ca 2+ ] o and temperature values. When [Ca 2+ ] o is changed, temperature is fixed at 35 • 𝐶, while when temperature is changed, [Ca 2+ ] o is fixed at 2 mM.

	Core

temperature varying with age representing the thermoregulation maturation. This function (not shown) was fitted using rat

[START_REF] Wood | Treatment temperature and insult severity influence the neuroprotective effects of therapeutic hypothermia[END_REF] 

and mouse data

[START_REF] Mccauley | Circadian modulation of neurons and astrocytes controls synaptic plasticity in hippocampal area CA1[END_REF] 

added by 1 • 𝐶 to compensate species differences

[START_REF] Wood | Treatment temperature and insult severity influence the neuroprotective effects of therapeutic hypothermia[END_REF]

.

Table 1 -

 1 Supplement 1. Comparison of recent computational models for plasticity highlighting the experimental conditions implemented and the experiments in the hippocampus and cortex they reproduce. See Table 1-Table Supplement 2 for additional details on experimental conditions of experimental works.

Table 1 -

 1 Supplement 2. Comparison of the experimental conditions for the different reproduced datasets in

Table 1 -

 1 Table Supplement 1 covering experiments from neocortex, hippocampus and striatum

	Experimental work	Age (days)	[Ca 2+ ] o (Mm)	[Mg 2+ ] o (Mm)	Temperature ( 𝑜 C)
	Sjöström et al. (2001)	12-21	2.5	1	32-34
	Wittenberg and Wang (2006)	14-21	2	1	24-30 or 30-34
	Wang et al. (2005)	embryonic day 17-18	3	2	room
	Sjöström and Häusser (2006)	14-21	2	1	32-35
	Nevian and Sakmann (2006)	13-15	2	1	32-35
	Letzkus et al. (2006)	21-42	2	1	34-35
	Weber et al. (2016)	49-77	1.25	1.3 or 0.1	32-35
	Fino et al. (2010)	15-21	2	1	34
	Pawlak and Kerr (2008)	19-22	2.5	2	31-33
	Shen et al. (2008)	19-26	2	1	room
	Inglebert et al. (2020)	14-20	1.3-3.0	Ca/1.5	30
	Markram et al. (1997)	14-16	2	1	32-34
	Rodriguez-Moreno and Paulsen (2008)	9-14	2	2	room
	Egger et al. (1999)	12-14	2	1	34-36
	Tigaret et al. (2016)	50-55	2.5	1.3	35
	Dudek and Bear (1992)	35	2.5	1.5	35
	Dudek and Bear (1993)	7-35	2.5	1.5	35
	Mizuno et al. (2001)	12-28	2.4	Mg-Free (most experiments)	30
	Meredith et al. (2003)	9-45	2	2	24-28
	O'Connor et al. (2005)	14-21	2	1	27.5-32
	Bittner et al. (2017)	42-63	2	1	35

conditions. Note the effect of VGCC blocking on the initial conditions. b, Region indicator associated to panel a. c Plasticity prediction for the simulated experiment with and without VGCCs. Note that when VGCCs are blocked LTP cannot be induced, in agreement with Tigaret et al.(2016) experimental data.