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ABSTRACT In this work, we highlight an electrophysiological feature often observed in recordings from mouse CA1 pyramidal
cells that has so far been ignored by experimentalists and modelers. It consists of a large and dynamic increase in the depolar-
ization baseline (i.e., the minimum value of the membrane potential between successive action potentials during a sustained
input) in response to strong somatic current injections. Such an increase can directly affect neurotransmitter release properties
and, more generally, the efficacy of synaptic transmission. However, it cannot be explained by any currently available conduc-
tance-based computational model. Here we present a model addressing this issue, demonstrating that experimental recordings
can be reproduced by assuming that an input current modifies, in a time-dependent manner, the electrical and permeability prop-
erties of the neuron membrane by shifting the ionic reversal potentials and channel kinetics. For this reason, we propose that any
detailed model of ion channel kinetics for neurons exhibiting this characteristic should be adapted to correctly represent the
response and the synaptic integration process during strong and sustained inputs.
SIGNIFICANCE Stimulus-induced dynamic changes in neuron excitability, such as an increase in the spike threshold
and of the depolarization baseline often observed in mouse recordings as a function of the current injection, are poorly
understood. Conventional conductance-based computational models cannot reproduce these processes, and technical
problems when measuring fast transient effects during a stimulus prevent adequate experimental investigation. Here we
introduce a dynamic model suggesting that these effects may be caused by a significant dynamic alteration of the local
membrane’s ionic permeability.
INTRODUCTION

The standard experimental current-clamp protocols, used
routinely and almost exclusively to establish the electro-
physiological properties and the excitability profile of neu-
rons, are to inject different currents into the soma and
record its membrane voltage for a few hundreds of millisec-
onds. Different variations on this common theme are applied
to study specific characteristics or properties. For example, a
large and diversified set of injection protocols has been sug-
gested to maximize the information that can be extracted
from the recordings (1), and a systematic increase in stimu-
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lation frequency during a long current injection, called a zap
current, is used widely to study resonance properties (2–4).
Essentially the same protocols are used for neurons from
any species, from squids to humans. Modelers have been us-
ing electrophysiological features extracted from traces re-
corded with these protocols to implement computational
models able to reproduce and predict experimental findings
regarding the response of a variety of neurons in different
brain areas and under different conditions (5–7). Here we
introduce and investigate a new electrophysiological feature
often observed experimentally in mice. It consists of a large
and transient increase in the average depolarization baseline
(DBL), defined as the minimum value of the membrane po-
tential between action potentials during a sustained input, as
a function of current injection. This dynamic is inconsistent
with the conventional Hodgkin-Huxley (HH) channel dy-
namics, and it cannot be reproduced by any known
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Membrane depolarization baseline
computational model. However, we show that it can signif-
icantly change a neuron’s response to strong inputs in a way
that can have important consequences for synaptic integra-
tion and transmission. So far, this DBL phenomenon has
been completely neglected. Here we present a model that
addresses this and suggest that it can be caused by a previ-
ously unnoticed and uncharacterized large dynamic change
in the local cell’s ionic permeability.
MATERIALS AND METHODS

Experiments

Laboratory 1

3- to 10-month-old C57BL6J/Rj mice (bred in house) were used. The ani-

mals were group housed in Makrolon cages at a temperature of 21�C5 2�C
and a 12:12 h light/dark cycle with lights on at 07:00 am. They had free ac-

cess to food and water. All experimental procedures were performed in

accordance with the ethical guidelines for the use of animals in experiments

and in accordance with European Committees Council Directive 2010/63/

EU.

The animal was anesthetized using ketamine (150 mg/kg)/xylazine

(10 mg/kg) solution (Sigma-Aldrich, Lyon, France). Loss of consciousness

was confirmed by absence of reflex activity following a toe pinch. The

mouse was submitted to transcardial perfusion with an ice-cold sucrose cut-

ting solution containing 2.5 mM KCl, 1.25 mM NaH2PO4, 10 mMMgSO4,

0.5 mM CaCl2, 11 mM glucose, 234 mM sucrose, and 26 mM NaHCO3,

saturated with 95% O2 and 5% CO2. The mouse was then decapitated

immediately, the brain was removed, and the hippocampus was dissected

and left to cool down in ice-cold sucrose cutting solution for 5 min. The hip-

pocampus was then mounted in an agar support and placed in oxygenated

ice-cold sucrose cutting solution. 350-mm-thick transverse hippocampal sli-

ces were collected, starting from the first slice that allowed identification of

a clearly separated dentate gyrus and all cornu ammonis (CA) regions using

a vibratome (Microm HM600V, Thermo Scientific, France). Slices were

then placed in a pre-warmed chamber containing artificial cerebrospinal

fluid (aCSF) composed of 119 mMNaCl, 2.5 mMKCl, 1.25 mMNaH2PO4,

1.3 mMMgSO4, 2.5 mM CaCl2, 26 mM NaHCO3, and 11 mM glucose (pH

7.4, 290–295 mOsm/L) saturated with 95%O2 and 5% CO2, placed in a wa-

ter bath at 37�C for 1 h, and then kept at room temperature until use.

For whole-cell recordings, slices were transferred to a recording chamber

containing continuously circulating (2 mL/min) oxygenated and warm

(31�C–33�C) aCSF on an upright microscope with infrared differential

interference contrast (IR-DIC) illumination and epifluorescence (Scientif-

ica, UK). Pyramidal neurons in the CA1 region of the hippocampus were

visualized with differential interference contrast infrared video microscopy

(WAT-902H ultimate camera [Watec, France] coupled to Patchvision soft-

ware [Scientifica]). A tight seal (>1 GU) on the cell body of CA1 neurons

was obtained with fire-polished glass pipettes (pipette resistance, 4–6 MU)

filled with intracellular solution containing 135 mM K-D-gluconate, 5 mM

NaCl, 2 mM MgCl2, 10 mM HEPES, 0.5 mM EGTA, 2 mM MgATP, and

0.4 mM NaGTP; pH was adjusted to 7.25 using 1 M KOH (285–290

mOsm/L). The resting membrane potential was first measured in the

absence of any spontaneous firing, and only cells more negative than

�60 mVat the start of recording were considered for further analysis. Cells

selected for recordings had an average input resistance of 141 5 60.6 MU

(standard deviation, n ¼ 32). The intrinsic excitability of CA1 pyramidal

neurons was assessed in current-clamp mode. Pipette capacitance, CA1 py-

ramidal cell capacitance, and serial resistance were compensated manually.

Their values were not recorded. At the beginning of an experiment, the

membrane potential of the neuron was set to a value close to �65 mV

(average value of 64.4 5 5.5 mV, n ¼ 32) using holding currents between

�100 and þ75 pA. The action potential frequency readout was then ob-
tained in response to 0–400 pA (50-pA increments) depolarizing somatic

current injections of 400-ms duration. Traces reported in the figures include

a �15-mV liquid junction potential correction. Recordings were obtained

using a Multiclamp 700B (Molecular Devices, Sunnyvale, CA, USA). Sig-

nals were collected and stored using a Digidata 1440 A converter and

pCLAMP 10.2 software (Molecular Devices). Data were filtered at 2 kHz

and digitized at 10 kHz. In total, 226 traces from 32 cells were used for

this work.

Laboratory 2

Six-month-old C57BL6J/Rj mice, derived from our own breeding colony,

were used. The animals were group housed in Makrolon cages at a temper-

ature of 21�C 5 2�C and a 12:12 h light/dark cycle with lights on at

07:00 am. They had free access to food and water. All experimental proced-

ures were performed in accordance with the ethical guidelines for the use of

animals in experiments and in accordance with European Committees

Council Directive 2010/63/EU. All experimental procedures were approved

by the Landesverwaltungsamt Saxony-Anhalt.

The animal was anesthetized using isoflurane (Isofluran CP, cp-pharma,

Germany). Loss of consciousness was confirmed by absence of reflex activ-

ity following a toe pinch. The mouse was decapitated immediately, and the

brain was separated from the skull. The brain was kept in ice-cold aCSF

containing 125 mM NaCl, 2.5 mM KCl, 25 mM NaHCO3, 0.8 mM

NaH2PO4, 25 mM glucose, 1 mM MgCl2, and 2 mM CaCl2 saturated

with 95% O2 and 5% CO2 (pH 7.2–7.4, 301–304 mOsm/L, Fiske Micro-

osmometer Model 210, Fiske Associates, USA). The cerebellum, brain

stem, and one-third of the frontal brain were removed before brain slicing.

The ventral part of the brain was cut transversely at an angle of 11� to obtain
transversal slices. The brain was cut with a vibratome (VT1200S vibratome,

Leica Biosystems, Germany), and 350-mm-thick acute hippocampal slices

were collected, starting from the first slice that allowed identification of a

clearly separated dentate gyrus and all CA regions. These slices were

used for intrinsic excitability experiments and represent the intermediate

and ventral region of the hippocampus. About 6 slices were transferred

into the interface-style chamber and allowed to incubate for 25 min in

continuously carboxygenated (5% CO2, 95% O2), pre-warmed aCSF

(200 mL, same composition as the slice preparation medium mentioned

above) at 34�C–35�C to allow the slice surface to recover from blade

trauma, followed by at least 1 h of recovery at room temperature. All slices

were maintained in this interface chamber at room temperature until trans-

fer to the recording chamber of an upright microscope for electrophysiolog-

ical recordings.

For all experiments, 350-mm-thick acute, transversal hippocampal slices

were used. For whole-cell recordings, pyramidal neurons in the CA1 region

of hippocampus were visualized with differential interference contrast

infrared video microscopy (VX45 camera, Optronis, Germany; Examiner

A1 microscope, Zeiss). aCSF was composed of 125 mM NaCl, 2.5 mM

KCl, 25 mM NaHCO3, 0.8 NaH2PO4, 25 glucose, 2 mM CaCl2, and

1 mM MgCl2 saturated with 95% O2 and 5% CO2 (pH 7.2–7.4, 301–304

mOsm/L). Slices were incubated for 5–10 min in the recording chamber

before start of recording. Whole-cell recordings were performed at 34�C–
36�C with glass pipettes (pipette resistance, 4–6 MU) filled with intracel-

lular solution containing 140 mM potassium gluconate, 10 mM HEPES,

20 mMKCl, 4 mMMg-ATP, 0.3 mMNa-GTP, and 10 mMNa-phosphocre-

atine; pH was adjusted to 7.2–7.4 using 1 M KOH (280–290 mOsm/L).

Pipette capacitance, CA1 pyramidal cell capacitance, and serial resistance

were manually compensated with an EPC8 patch-clamp amplifier. Their

values were not recorded. The intrinsic excitability of CA1 pyramidal neu-

rons was assessed by action potential frequency readout in response to 0–

450 pA (50-pA increments, repeated five times for each current injection

at 5-s intervals) depolarizing somatic current injections for 500-ms duration

in current-clamp mode from the endogenous resting membrane potential

(i.e., no holding current was used). Cells selected for recordings had an

average input resistance of 141.65 25.95MU (n¼ 35), and a resting mem-

brane potential of 67.4 5 3.9 mV (range, �74 to �62 mV). All traces
Biophysical Journal 121, 644–657, February 15, 2022 645
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reported in all figures include a �10-mV liquid junction potential correc-

tion. Cells with an endogenous resting membrane potential more positive

than�60 mVat the start of the recording were discarded from analysis. Re-

cordings were performed using an EPC8 patch-clamp amplifier connected

to a LiH8þ8 interface (HEKA, Germany) and acquired with Patchmaster

software (HEKA). Data were filtered at 3 kHz and digitized at 10 kHz.

Data analyses were performed using FitMaster (HEKA). In total, 350 traces

from 7 cells were used for this work.
Modeling

All simulations were carried out using the NEURON simulation environ-

ment (8). In a few cases we used NEURON integrated with Python (9)

into a parallel code executed on different high-performance computing sys-

tems: JURECA (Juelich Supercomputing Center, Germany), Galileo

(CINECA, Italy), Piz Daint (Swiss National Supercomputing Center

CSCS), and the Neuroscience Gateway (San Diego, CA, USA (10)). A

morphology reconstruction of a CA1 pyramidal neuron from the same

strain used in the experiments was downloaded from http://www.

neuromorpho.org (cell fx_CA1_8.CNG.swc). The channel kinetics were

based on those used in previously published papers on CA1 hippocampal

neurons and validated against a number of experimental findings. In partic-

ular, the model was implemented by merging model files from Migliore

et al. (11) (ModelDB account number 244688) and Bianchi et al. (12)

(ModelDB account number 143719). From Migliore et al. (11), we used

a delayed-rectifier type currents (KDR), two A-type potassium (KA) currents

(for proximal and distal dendrites), a non-specific hyperpolarization-acti-

vated current (Ih), three types of voltage-dependent calcium currents

(CaL, CaT, and CaN), and two types of calcium-dependent Kþ current (a

slow and a medium afterhyperpolarization (AHP) current). The Naþ and

R-type Ca2þ current, M-type potassium current, and the calcium pump

were taken from Bianchi et al. (12). The calcium currents were distributed

according to experimental findings (13), and the KA and Ih increased line-

arly with distance from the soma (14,15). Passive properties and peak

conductance for each channel were adapted from their original values to

qualitatively reproduce the specific experimental findings used in this

work. For simulations using synaptic inputs, we implemented two main

excitatory synaptic afferent pathways as in (16), following experimental

findings (17): one mimicking entorhinal cortex (EC) inputs (40 synapses

based on a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid recep-

tors (AMPA), each with a peak conductance of 0.6 nS), randomly located

in distal dendrites (>140 mm from the soma), and another one modeling

CA3 Schaffer collateral (SC) inputs (20 AMPA and 20 synapses based on

N-methyl D-aspartate receptors (NMDA) with maximum peak conduc-

tances of 0.5 and 0.25 nS, respectively) randomly located in the proximal

dendrites. Synaptic activation details are discussed in Response to synaptic

inputs. Simulation and model files are available on ModelDB (http://

senselab.med.yale.edu/ModelDB/, account number 266900) and as an

interactive entry in the ‘‘Live Papers’’ section of the Cellular Level Simula-

tion Platform of the EBRAINS Infrastructure (https://humanbrainproject.

github.io/hbp-bsp-live-papers). For each trace, the DBL was calculated as

the average value of the minimum voltage between spikes for all spikes

in the train.
RESULTS

Experimental traces exhibit a large increase of
DBL with current injection

Fig. 1 illustrates the new electrophysiological feature in a
few typical experimental recordings. Here we show the so-
matic membrane potential from four CA1 pyramidal neu-
rons under increasing somatic current injections. They
646 Biophysical Journal 121, 644–657, February 15, 2022
were obtained independently in two labs (laboratory 1 and
laboratory 2 in Fig. 1) from mice of the same strain under
almost identical recording conditions and show some vari-
ability in terms of spike number, amplitude, and overall
pattern (e.g., compare the traces for the two cells from lab-
oratory 1). This can be expected because, as noted previ-
ously for rats (11), recordings from different neurons
belonging to the same population exhibit a large variability
of their response to a given external input. However, in
contrast with the recordings obtained from rats, in mice,
the DBL increased systematically with increasing current
injection for all CA1 neurons recorded. DBL values, its pro-
gression with increasing current injections, and the
maximum value (indicated by a dashed line in Fig. 1)
were different in different neurons. It is important to note
that this increase was also associated with an increase in
the spike threshold. Furthermore, the peak amplitude of
the action potentials (APs) was not changed significantly
(Mann-Whitney test, p ¼ 0.244, calculated from the first
AP of traces for 0.15- and 0.4-nA current injection). This
is surprising, given that the increase of the DBL should
result in incomplete Naþ current recovery from inactivation.
These results suggest that pyramidal neurons of mice, at
least in the CA1 region of the hippocampus, may harbor
an intrinsic electrophysiological mechanism responsible
for limiting membrane repolarization after an AP, during a
sustained input, without affecting the peak AP amplitude.
In neurons where the DBL is higher than the threshold for
synaptic release, this mechanism may significantly modu-
late network activity in a way that has so far not been
considered.
The DBL level can be different in different
neurons and is associated with an increase in the
spike threshold as a function of the input

A more detailed illustration of the DBL experimental vari-
ability is shown in Fig. 2 A, where we plot the DBL as a
function of the somatic current injection for all cells used
in this work, together with the average values calculated
from the results of each laboratory. We found that DBL
levels were spread over a wide range of values, with the so-
matic potential being depolarized up to þ60 mV from the
resting potential. This is a huge effect that may strongly
affect the input/output (I/O) properties of a neuron. A large
variability within and between laboratories is evident, with
many neurons from both laboratories exhibiting a similar
DBL profile (overlapping red and blues lines in Fig. 2 A).
It should be noted that, even when all traces start from a
similar resting potential (approximately �80/�70 mV;
Fig. 1), because of the slightly different experimental proto-
col used in the two laboratories, we found that groups of
neurons from different laboratories exhibited average values
of DBL that are significantly different (Mann-Whitney or t-
test, p < 0.001 for all currents). This difference may be
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FIGURE 1 DBL increases with current injec-

tion. Typical somatic membrane potential from

four cells from two laboratories, in response to

400 (top) or 500 ms (bottom) depolarizing current

steps of different amplitude injected into the soma.

The dashed lines mark the highest DBL value

observed in each neuron..

Membrane depolarization baseline
caused by the animal’s age, experimental procedures, the
specific recording location, or some other morphological,
electrochemical, or physiological condition. The investiga-
tion of this issue was outside the scope of this paper, but,
nonetheless, these results demonstrated that the DBL is a
clear and measurable effect and that it can be observed in
traces recorded in independent laboratories. A clear input
current-dependent change was also observed for the spike
FIGURE 2 The DBL and spike threshold can be

very different in different neurons. (A) Thick lines

and symbols represent average (5standard error

(SE)) DBL values, calculated from all cells from

the two laboratories, in response to 400-ms (labo-

ratory 1) or 500-ms (laboratory 2) depolarizing

current steps. Thick red and blue lines represent

the DBL of cell 203030003_R (from laboratory

1) and cell 170518_4e (from laboratory 2), respec-

tively. Thin lines represent results for all the other

cells. (B) Average spike threshold, automatically

calculated from all APs in a train with the feature

extraction tool available on the EBRAINS Plat-

form of the Human Brain Project (https://

hbp-bsp-hhnb.cineca.it/efelg/). Thick lines and

symbols represent average (5SE) values calcu-

lated from all cells from the two laboratories; thick

red and blue lines represent cell 203030003_R and

cell 170518_4e, respectively; and thin lines indi-

cate results for all other cells.
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threshold (Fig. 2 B). If, as we hypothesize, these effects are
caused by one or more electrophysiological mechanisms
that so far have not been considered, then it is important
to have a model able to capture them to have a better repre-
sentation of the intrinsic membrane properties. For these
reason, we decided to further investigate the possible under-
lying mechanisms.
Conventional computational models cannot
reproduce the observed change in the spike
threshold

Our first step was to illustrate why a conventional model
cannot reproduce the experimentally observed increase in
the spike threshold. In the left panel of Fig. 3 A , we plot
the Naþ steady-state activation and inactivation curves,
highlighting (Fig. 3 A, shaded area) the range of experimen-
tally observed DBL, and the first two APs, from the same
neuron, recorded during a 0.1- and 0.4-nA current step
(Fig. 3 A, center panel). The spike threshold increase in
this case was �10 mV (dashed lines in Fig. 3 A, center
panel), and the first two APs had a very similar amplitude
and dynamics but shifted by approximately the same
amount (Fig. 3 A, right panel). We then arranged a model us-
ing only a limited set of channels (Na, KDR, and KA) to
simplify interpretation of the results, and their peak channel
conductance was adjusted to qualitatively reproduce the first
AP obtained experimentally for 0.1- and 0.4-nA injections
(Fig. 3 B, left and center panels). A direct comparison be-
tween experimental and model traces at 0.4 nA (Fig. 3 B,
648 Biophysical Journal 121, 644–657, February 15, 2022
center panel) highlights the problem. The model is not
able to reproduce the higher DBL, the higher spike
threshold, and the amplitude of the AP following the first
one in the train; in contrast with the experimental trace,
the membrane potential quickly enters a depolarization
block state after the first AP. The dynamic of the underlying
biophysical mechanism is illustrated in Fig. 3 C, where we
plot the instantaneous value of the Naþ activation and inac-
tivation gate variables during the simulations with 0.1 and
0.4 nA. During each AP elicited by the weak 0.1-nA input,
the Naþ activation and inactivation gate variables (Fig. 3 C,
left panel) follow a complete cycle that brings them close to
their original steady-state value soon after the AP ends and
the membrane repolarizes. This occurs even when the depo-
larizing effect of the sustained input current causes the
membrane potential to return to approximately �60mV
instead of its natural resting value of approximately
�80 mV. The neuron is able to elicit additional APs at
full amplitude because, in this range of membrane potential,
the activation and inactivation gate variables can fully
recover their initial state (see gray area in Fig. 3 A, left).
Note, in particular, that the inactivation variable (gray line
in Fig. 3 C, left) returns to a value close to 1 before the sec-
ond spike. The situation during a stronger input is drastically
different (Fig. 3 C, right). In this case, after the first spike,
the input current drives the membrane into a more depolar-
ized level, and this prevents full recovery from inactivation
(gray line in Fig. 3 C, right). The end result is that there is
not enough Naþ current available to generate another full-
amplitude AP, and the cell goes into a depolarization block
FIGURE 3 A conventional model cannot take

into account the change in the spike threshold. (A)

Steady-state Naþ activation and inactivation ki-

netics; the gray area represents the range of experi-

mentally observed DBL (left). Initial APs of cell

203030003_R in response to current injections of

0.1 and 0.4 nA; dashed lines represent the corre-

sponding spike threshold values (center). Phase

plots from experimental traces at 0.1 and 0.4 nA

(right). (B) Somatic membrane potential frommodel

and experiments for 0.1 nA and 0.4 nA somatic cur-

rent injections. (C) Sodium activation and inactiva-

tion gate variables during current injections of 0.1

nA (left) and 0.4 nA (right).
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state. This effect is not observed in the experimental record-
ings, where APs are elicited at full amplitude even for
currents strengths that drive the membrane potential well
above the range required for full recovery of Naþ activa-
tion/inactivation. These results should make it clear why
conventional conductance-based models cannot reproduce
experimental findings. With a DBL above approximately
�60 mV, there is no way for Naþ channels to fully recover
from inactivation after the first AP, and a sustained input will
inevitably fail to elicit full-amplitude APs. It may be argued
that, in principle, Naþ channels with resurgent properties
(18) could help because they can provide an additional de-
polarizing drive. However, the size of the resurgent compo-
nent (approximately 10% of the main current) and its kinetic
properties (fast activation soon after AP repolarization)
makes them unsuitable to reproduce, even qualitatively,
the transient increase in the spike threshold observed
experimentally.
Biophysical mechanisms that can underlie the
observed DBL level

To investigate the mechanisms that can be responsible for
the DBL, we considered the experimental trace recorded
from a neuron (cell 203030003_R) in response to a
0.3-nA somatic current injection compared with a conven-
tional conductance-based model (Fig. 4 A, left). The number
of APs was well reproduced by the model, but there were
two strong discrepancies between the recording and the
model trace: 1) the model was unable to reproduce the
experimentally observed DBL at the beginning or the cur-
rent step, and 2) the DBL decreased further during the train
of APs, in striking contrast with experiments (red trace in
Fig. 4 A, left).

To explore possible solutions for these problems, it is
important to note that, although the DBL at the beginning
of a current step depends on the dynamic interaction be-
tween the Naþ and Kþ channels to elicit APs at full ampli-
tude, its reduction during a train of APs mainly depends on
progressive activation of the M-type potassium current and
Ca-dependent Kþ current. The results presented in the pre-
vious section (Fig. 3) suggested that the only plausible bio-
physical mechanism able to reproduce full-amplitude APs
during a sustained input is a transient and input-dependent
shift of channels’ kinetics. This is shown in Fig. 4 A, right
panel, where we show how the model can reproduce the
initial DBL by assuming a þ11-mV shift of all channels’
kinetics.

We now consider the progressive DBL reduction during a
train. It may be argued that a transmembrane channel ex-
pressed specifically on the mouse neuron membrane, with
peculiar kinetic properties, could contribute to maintaining
a stable DBL during a train of APs. In principle, any rela-
tively slow inward ionic current could provide a progressive
depolarizing component that could compensate for the pro-
gressive opening of the outward Kþ currents during a sus-
tained input. The non-specific Ih current, with a reversal
potential around �30mV (15), or a persistent Naþ current
(19,20) appear to be suitable candidates for this. The non-
specific Ih current cannot help because it inactivates with
depolarization, and, in CA1 pyramidal neurons, it has an
inhibitory effect (21). To test whether a persistent Naþ cur-
rent (Nap) can help to maintain a stable DBL during a train,
we used a previously published kinetic model for CA1
FIGURE 4 Modeling the mechanisms underly-

ing a DBL. (A) Left: cell 203030003_R firing

pattern in response to a 0.3-nA somatic current in-

jection (red line) and modeling results using a con-

ventional model for ion channel kinetics (black

line). Right: comparison of experimental and

model traces after a þ11-mV shift of Naþ and

Kþ channel kinetics (black line). (B) Left: steady-

state activation curve of the persistent Naþ current

(Nap). Right: comparison of experimental and

model traces using a Nap; the top trace represents

Nap activation during the simulation. (C) Left:

comparison of the experimental trace with a simu-

lation obtained using a dynamic shift of channel ki-

netics and reversal potential. Right: corresponding

plots of the fvrun function for Naþ and Kþ during

the simulation. Model traces were sampled at

10 KHz and filtered at 2 kHz, as in the experiments.
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pyramidal neurons (ModelDB account number 123927 (20);
Fig. 4 B, left). We found that, by modifying the activation
and deactivation time constants to 300 ms and 1 ms, respec-
tively, the DBL was in very good agreement with the exper-
iment, as shown in Fig. 4 B, right panel. However, this
mechanism has the major drawback of making the cell
progressively more excitable than in the experiments,
decreasing the interspike interval during the current step,
in striking contrast with the experimental trace. Because
the Nap is a depolarizing current, this effect cannot be
avoided. Essentially the same effect would be generated
by any other inward current, such as a calcium current.

We thus hypothesized that another possible mechanism
would be an input-dependent change in membrane ionic
permeability, which could transiently and significantly
reduce the ionic chemical gradient across the membrane
of a cell through a progressive shift of the ion reversal poten-
tials. Together with the input-dependent shift in the chan-
nels’ kinetics, these mechanisms could explain the DBL at
all currents. To model these effects, we considered the
instantaneous and past neuron activity to generate, during
a simulation, a dynamic shift of the reversal potential,
Eion, and of the activation/inactivation kinetics (shion) of
the ionic currents, using an exponential moving average
(EMAÞ (22,23) of the membrane potential, v.

An EMA is a type of Moving Average that places a
greater weight and significance on the most recent data
points.

The equations for EMA can be written as

EMA½1� ¼ x½1�
EMA½n� ¼ ax½n� þ ð1�aÞEMA½n� 1�
, where n is the number of data points, EMA½n� the current
output, EMA½n�1� the previous output, and a a coefficient
ð 0<a<1Þ representing the amount of weight decrease.
A higher a reduces the weight of older observations
faster, and the factor for previous inputs decreases expo-
nentially as

EMA½n� ¼ ax½n� þ ð1� aÞEMA½n� 1� ¼
¼ ax½n� þ ð1� aÞðax½n� 1� þ ð1� aÞEMA½n� 2�Þ ¼

¼ ax½n� þ ð1� aÞðax½n� 1� þ ð1� aÞðax½n� 2�
þð1� aÞðax½n� 3� þ ð1� aÞEMA½n� 3�Þ ¼ .

. ¼ a
Xn

k¼ 1

ð1� aÞkx½n� k�
; the weight of x½n�i� is thus að1� aÞi.
We applied EMA using
650 Biophysical Journal 121, 644–657, February 15, 2022
a ¼

8>><
>>:

2

nþ 1
n ¼ 2;.; tstep

2

tstep þ 1
n>tstep

and calculated as

EMA½1� ¼ x½1� ;

2
�

2
�

EMA½s� ¼
sþ 1

x½s� þ 1�
sþ 1

EMA½s� 1�

¼ 2

sþ 1
x½s� þ

�
s� 1

sþ 1

�
EMA½s� 1� ;

if s ¼ 2;.; tstep, or

EMA½n� ¼ 2

tstep þ 1
x½n� þ

�
1� 2

tstep þ 1

�
EMA½n� 1�

¼ 2

tstep þ 1

Xn

k¼ tstep

�
1� 2

tstep þ 1

�
kx½n� k�;

for n>tstep.
In our case, x ¼ v� vrest, so we obtain

EMAðt; vÞ¼½x�EMAðt �1; vÞ �, Fi

cnt þ 1
þ EMAðt�1; vÞ¼

¼ x ,
Fi

cnt þ 1
þ
�
1� Fi

cnt þ 1

�
EMAðt � 1; vÞ

, where cnt ¼ t if ðt <tstep þ1Þ else cnt ¼ tstep and tstep is
the number of simulation time steps within the fixed
time window. With preliminary tests, we found that a
tstep ¼ 1000 was sufficient to appropriately consider the
past activity history. The shift of Eion and shion was calcu-
lated from the EMA as

fvrunðt; vÞ ¼ BiCi

EMAðt; vÞ
Ci þ EMAðt; vÞ; (1)

Ejðt; vÞ ¼ Ejðt ¼ 0Þ � aEj , fvrunðt; vÞ;
shiðt; vÞ ¼ shiðt ¼ 0Þ þ ai , fvrunðt; vÞ:
In these equations, vrest is the resting membrane potential,
cnt is the EMA time window size (in time step units)
and fvrun is a Hill function of the EMA, Fi ¼ 2, and aj,
ai, Bi and Ci parameters, with j ¼ {Na, K} and i ¼ {Na,
K, Ca}.

Because the amount of this effect is cell and input current
specific, when modeling a specific neuron, the parameters
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would need to be tuned in a neuron-by-neuron manner, just
as the set of peak channel conductances. In Fig. 4 C we
compare a simulation with the experimental trace for a
0.3-nA somatic current injection and the corresponding
plots of the fvrun function for Naþ and Kþ during the simu-
lation. These results suggest that, in mouse neurons, there
are mechanisms in effect that could dynamically alter the
electrophysiological properties of the membrane during sus-
tained current injections.
FIGURE 5 A dynamic shift of channel kinetics and reversal potential can

take into account the DBL. Top: somatic membrane potential during

different current injections in the model (black traces) and in experiments

(red traces) for cell 203030003_R (left, from laboratory 1) and cell

170518_4e (right, from laboratory 2). Bottom: time evolution of the

fvrunðt; vÞ function in the model of the two cells. Model traces were sampled

at 10 KHz and filtered at 2 kHz (for cell 203030003_R) and 3 KHz (for cell

170518_4e), as in the experiments.
Dynamic change in the cell’s local ionic
permeability explains the DBL increase

In the previous section we introduced an effective and bio-
physically plausible model able to reproduce the experimen-
tally observed increase in DBL during a sustained input. It
suggested that a current injection could transiently modulate
channel kinetics and ion reversal potentials. Because virtu-
ally all conductance-based computational models assume
these properties to be constant, it should be clear why
they cannot reproduce the DBL dynamics. We tested the
robustness of our model, using as a reference the entire
experimental current sweep recordings from two neurons,
one from each laboratory (cells 203030003_R and 170,518_
4e; Fig. 1). A manual trial-and-error procedure was used
independently for the two neurons to find a set of parameters
able to simultaneously reproduce the firing pattern and the
DBL observed experimentally for all current injections.
During the fit procedure, we prioritized only the average
spike frequency as a function of the current injection
because this is by far the most important electrophysiolog-
ical feature that needs to be reproduced for an individual
neuron model, especially when it is meant to be integrated
into a network. In this case, we preferred a manual rather
than an automatic fitting procedure. The rationale for this
choice is that automatic fitting is appropriate when a basic
set of validated mechanisms is available. This is what we
did, for example, when implementing a unified pipeline
approach to generate families of biophysical models for
rat CA1 pyramidal neurons and interneurons (11) or to
find out how and to what extent specific biochemical path-
ways involved in synaptic transmission can be affected by
pharmacological or genetic manipulation (24,25). In a
case like the one presented in this paper, where no previous
information is available regarding the underlying mecha-
nisms, we believe that a manual procedure should be
preferred because it allows better determination of qualita-
tive correlations between parameters. The main point here
was to determine whether the hypothesized mechanisms
are able to explain the puzzling experimental findings.
This will then set the stage for an automatic fitting proced-
ure able to routinely find ensembles of parameters fitting
equally well the DBL of any given neurons or neuron pop-
ulation. Typical results are shown in Fig. 5, where we
compare model and experimental traces for 0.15 and
0.35 nA. The DBL-related parameters for each neuron are
reported in Table 1.

The model was in very good agreement with the experi-
ments in terms of number of spikes and extent of DBL.
These results suggest that the new model introduced here
is able to take into account the dynamic change of the elec-
tric properties of a neuron during sustained inputs.

Next we carried out a more systematic comparison be-
tween experiments and models. The results are shown in
Fig. 6, where we report, for the two neurons, the average
spike frequency and DBL as a function of the injected cur-
rent. The model was able to also capture the correct trend for
the DBL level as a function of the input current (black plots
in Fig. 6), with a deviation from experimental values that
was never higher than a few millivolts. A conventional
model was clearly not able to reproduce the DBL level
(blue plots in Fig. 6). The different experimental range of
DBL level observed between the two cells can be correlated
to their different firing frequencies and suggests that
morphological characteristics may also underlie the level
of DBL observed from the soma of any given cell. We did
not investigate this issue further because it would have
required a detailed reconstruction of the very same cells
from which the recordings were obtained. These results sug-
gest that our approach is an effective way to reproduce the
experimentally observed DBL in mouse hippocampal pyra-
midal neurons.
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TABLE 1 fvrun Parameters

Parameter aENa aNa BNa CNa aEK aK BK CK aCa BCa CCa

203030003_R 0.25 0.13 2.60 60 1.06 0.15 2.11 48 0.15 2 50

170518_4e 0.30 0.17 2.50 68 1.12 0.12 2.13 68 0.10 2 70

Values are for cell 203030003_R (from Laboratory 1) and cell 170518_4e (from Laboratory 2).
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Predicted shifts of channel kinetics and ion
reversal potentials

The shift our model predicted to reproduce the experimental
recordings, as a function of the input current, is shown for
the two neurons in Fig. 7, left panels, for the Naþ and the
Kþ reversal potential (the Ca2þ reversal potential is updated
explicitly during the simulation) and in Fig. 7, right panels,
for the shift of the activation/inactivation kinetics. The
change predicted in the two neurons for the reversal poten-
tial of Naþ was between 5 and 20 mV, similar for the two
neurons, whereas a much larger change, between 15 and
65 mV, was required for the Kþ current, with a range that
was different for the two neurons (approximately 30–
50 mV for neuron 203030003_R and 20–65 mV for neuron
170518_4e). For channel kinetics, the model predicted a
shift of up to approximately 10 mV for all channels, with
the Naþ channel requiring a larger shift with respect to
Kþ and Ca2þ channels. These results suggest that the exper-
FIGURE 6 Comparison of results obtained for spike frequency and DBL

level as a function of current injection, using a conventional HH-like model

(blue), our model (black), and experiments (red). (A) Results for cell

203030003_R (from laboratory 1). (B) Results for cell 170518_4e (from

laboratory 2).
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imentally observed DBL can be caused by a cell-dependent
transient alteration of channel kinetics and ion current
reversal potential in response to external inputs.
A DBL implies a local, transient change of internal
and external ion concentrations

A shift in the reversal potential of an ionic current implies a
change in the ratio between an ion’s internal and external
concentration. From the changes in the reversal potential
predicted by the model and the total initial concentrations
of each ion, using the classic Nernst law at 35�C, we calcu-
lated the corresponding variation in the concentration inside
and outside of a cell as a function of the input current. The
results for the two neurons that were modeled are reported in
Fig. 8 and suggest an approximately 20 mM change in
(local) concentration for Naþ and Kþ during a strong input.
Because of the different initial concentrations on either side
of the membrane for each ion, this change corresponds to
approximately doubling the local concentration of internal
Naþ ions and a less than 15% decrease in the external
Naþ. For Kþ ions, an approximate decrease of 15% of the
internal concentration corresponded to a 10-fold increase
in the external concentration. These results suggest that,
during strong and sustained current injections, the local
ion concentration of Naþ and Kþ inside and outside of the
membrane can change in a way that has not been considered
previously when implementing computational models.
Response to synaptic inputs

The results discussed above were obtained under somatic
current injection steps. Although this is by far the most
studied experimental protocol for in vitro studies, neurons
in vivo operate under a highly variable barrage of synaptic
input activations. It was thus important to test what our
model predicted under this condition. For this purpose,
we investigated what would happen in a CA1 pyramidal
cell during a bursting excitatory synaptic activity eliciting
up and down states similar to those observed during spatial
exploration (26) or expected from a theta-burst long term
potentiation (LTP) induction protocol (27–30). A set of sim-
ulations (n ¼ 20) was carried out, stimulating the model re-
producing the traces from the 203030003_R cell with
synaptic inputs targeting random locations of the distal
and proximal dendrites to model excitatory EC and CA3
afferent pathways, respectively. To model a random synap-
tic background, all synapses were randomly (Poisson)



FIGURE 7 Shift of reversal potentials and chan-

nel kinetics. The plots show the shift of reversal

potential with respect to control (left panels) and

channel activation/inactivation kinetics (right

panels) required to reproduce the DBL observed

experimentally as a function of current injection.

Top: results for cell 203030003_R (from labora-

tory 1). Bottom: results for cell 170518_4e (from

laboratory 2).
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activated at an average frequency of 4 Hz in the q-rhythm
range. SC synapses were further synchronously activated
with bursts of 10 activations at 100 Hz elicited at an average
frequency of 4 Hz. Examples of somatic and dendritic po-
tential using the model with the mechanisms implementing
the DBL (Fig. 9 A, blue traces) show that this stimulation
protocol generates the typical up and down states observed
in experimental recordings from hippocampus CA1 pyrami-
dal neurons during spatial exploration (compare with Fig. 1
g in (16)). To illustrate the difference from the results ob-
tained with a model not able to reproduce the DBL, we
turned off the dynamic shifts by setting the parameter
Bj ¼ 0 (see Eq. [1] and Table 1) and adjusted the ionic
peak conductances to obtain the same average number of
APs. Fig. 9 A, bottom panels (black traces) illustrate the re-
sults under this condition. The neuron displayed roughly the
same bursting activity but with much shorter interburst in-
tervals and without the depolarizing envelope during the
high-frequency synaptic activation periods. These effects
were caused by the fixed Naþ and Kþ current kinetic prop-
erties and reversal potentials. To study the possible conse-
quences for somatic and dendritic signal processing, we
calculated the average spectral power of the membrane po-
tential during the 20 simulations at the soma and one den-
dritic location (Fig. 9 B, right panel). The power spectra
(Fig. 9 B, black traces) show that the lack of DBL in a
neuron model subjected to a theta-burst synaptic activation
protocol will essentially filter out the signal component in
the q range (4–8 Hz) from the response and will amplify os-
cillations in the low g range (�30 Hz). These results sug-
gest that the DBL mechanism can significantly affect a
mouse hippocampus model operation during synaptic
activity.
DISCUSSION

In this work we focused on a particular electrophysiological
feature observed in somatic recordings from mice CA1 hip-
pocampal pyramidal neurons: a progressive increase in the
spike threshold and in the DBL observed in voltage traces
during current injections. These effects have so far been
ignored in conductance-based computational models, which
Biophysical Journal 121, 644–657, February 15, 2022 653



FIGURE 8 Local changes in the [ion]in/[ion]out concentration ratio. Top:

intra- and extracellular concentration of Naþ ions, calculated from the

reversal potential shift predicted for two neurons, as a function of the cur-

rent injection. Bottom: same as in the top panel but for Kþ ions.
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cannot reproduce them. We think that they may have impor-
tant consequences for the input/output properties and den-
dritic signal processing of hippocampal neurons. In this
work, we introduced empirical implementation of these
mechanisms, which can be easily added to the current im-
plementation of ion channel kinetics. The model suggested
that the processes responsible for the DBL can be a local,
stimulus-induced change in 1) the ionic microenvironment,
resulting in a transient alteration of reversal potentials, and
2) in a change of membrane properties shifting channel ki-
netics, which may act as a sort of compensatory mechanism
to restore full AP amplitude during a DBL.

The model suggested the physiologically plausible mech-
anisms that can be responsible for the substantial and dy-
namic change of the spike threshold and for a DBL up to
more than 30 mV as a function of the external stimulus
and without any significant effect on the spike amplitude.
The predicted changes in the internal and external concen-
tration ratios for Naþ and Kþ (up to 10–20 mM) are consis-
tent with experimental findings in rats during external
654 Biophysical Journal 121, 644–657, February 15, 2022
stimulation of the cortical surface under physiological
conditions (31,32), and with the results obtained with iono-
phoretic applications of excitatory amino acids to the rat
motor cortex (33). Interestingly, the changes predicted by
our model are smaller than those measured in rats during
hypoxia (50–100 mM (34)). In principle, ion-sensitive elec-
trodes could be used to monitor large variations in pH,
calcium, or potassium ions during agonist/antagonist appli-
cations, network oscillations, or epileptiform activities, as
done in a few cases on hippocampal slices ex vivo (35,36).
One study used these electrodes coupled with extracellular
field potentials in hippocampal slices (37). However, to
the best of our knowledge, ion-sensitive electrodes have
not been adapted for use with single-cell patch-clamp anal-
ysis of excitability. Most likely, although highly sensitive,
they do not have the capacity to sense single neuron-induced
alterations in local ion flow.

Stimulus-induced changes in extracellular ion concentra-
tions have been found and measured in vivo for more than 40
years; for example, in the adult cat sensorimotor cortex
(31,32) and rat motor cortex (33). Furthermore, an increase
in extracellular Kþ has also been correlated with patholog-
ical states like spreading depression and epilepsy (38,39)
and with a change in the conformational state of membrane
proteins that can modulate ionic channel currents (40).
These are exactly the effects that we empirically modeled
here in the context of reproducing the electrophysiological
recordings obtained from mice. There are rather elegant
mathematical implementations of ionic electrodiffusion
(40,41) that, for example, can greatly help with understand-
ing the complex mechanisms that can act to limit extracel-
lular Kþ increases. In a more general theoretical context,
previous papers on electrodiffusion have explicitly consid-
ered changes over time in reversal potentials (e.g.,
(42,43)) and their effect on membrane potential. However,
they have not been validated against experimentally
observed electrophysiological features. Finally, it may be
argued that more sophisticated implementation of channel
kinetics, such as Markov models (44), may be able to take
into account the effects shown here. However, our results
suggest that the transition rates between states of the chan-
nel are not only voltage dependent but also history depen-
dent, implying that even a Markov model would be
inadequate (45). It would be interesting to investigate these
theories experimentally in more detail.

The stimulus- and history-dependent shifts in the ion
channel kinetics may be caused by the direct effect of the
(local) electric field generated by the input current. There
are experimental and theoretical data suggesting that
external or internal electric fields affect membrane perme-
ability, among other properties (reviewed in (46)) and that
polarization can alter the mechanocapacitive properties of
a biological membrane (47). Our results suggest that the
transition rates between states of the channel are not only
voltage dependent but also history dependent. They support



FIGURE 9 Response to synaptic inputs. (A) So-

matic (left) and dendritic (right) membrane poten-

tial during an in-vivo-like synaptic input, using a

model with DBL (blue traces) or a conventional

model without DBL (black traces). (B) Normalized

average power spectral density calculated from 20

10-s-long simulations; the image on the right shows

the model neuron and the location of dendritic

recording.
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experimental findings suggesting that (at least) sodium
channel properties, determined via voltage-clamp protocols,
are history dependent (48).

Here we pointed out the possible mechanisms underlying
these effects in a set of recordings from independent labora-
tories. This is the first explicit modeling demonstration of
how to consider them in an empirical but biophysically
plausible manner. Unfortunately, it is not known whether
these effects can also be induced explicitly in rats. Stim-
ulus-dependent effects on spike threshold have been
observed in recordings from chick brain stem (49) and rat
barrel cortex neurons (50). In general, it would be inter-
esting to systematically explore the conditions under which
they can be observed in other species. The results obtained
here suggest that morphological differences and the conse-
quent relative changes in the biophysical properties of the
membrane and/or the size of the intra- and extracellular
spatial domains relevant for ion fluxes can be important fac-
tors in determining the level of input that is needed to
observe significant effects in different species. To the best
of our knowledge, there are no experimental studies investi-
gating in detail stimulus-induced dynamic changes of ion
channel properties in hippocampal neurons. Part of the prob-
lem may be the technical difficulty of measuring a transient
effect during a stimulus. Furthermore, the lack of significant
changes in recordings from larger mammals, such as rats or
humans, has also probably limited the interest in these
effects. However, the model results point to potentially
important consequences for I/O and dendritic integration
properties that should be considered by modelers and exper-
imentalists when they occur during normal in vivo activity.
Modelers implementing detailed computational models of
neurons and networks subjected to strong bursting inputs
without taking into consideration the effects discussed
here can miss low-frequency components (in the q range
in our case) of membrane oscillations at the soma and at
dendritic synaptic locations. The former can alter the fre-
quency content of the signal propagated to the rest of the
Biophysical Journal 121, 644–657, February 15, 2022 655
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network, and the latter can unpredictably alter induction of
local synaptic plasticity. Experimentalists may want to
reconsider the range of input currents used in vitro to assess
the intrinsic neurons’ excitability. For example, at the same
somatic current injection, hippocampal CA1 pyramidal neu-
rons of mice fire APs at an average frequency that is approx-
imately 5-fold higher than in rats (11). If this activity can be
considered physiologically plausible, then it implies that the
range of currents used to test neurons of other species needs
to be extended to include strengths able to fire APs at the
same rate as for the mouse. In this case, and assuming
that the mammalian hippocampus has a similar local ionic
microenvironment at rest, the model predicts that the same
phenomena should also be observed for other species during
inputs able to generate (somatic or dendritic) APs above
approximately 40 Hz, with a DBL amount that will depend
on the specific neuron properties.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2022.01.002.
AUTHOR CONTRIBUTIONS

D.B., R.M., and P.V. analyzed data and implemented the code. M.G., P.A.P.,

H.M., and V.L. performed the experiments. M.M. designed the study and

wrote the manuscript with help from all other authors.
ACKNOWLEDGMENTS

This research has received funding from the European Union’s Horizon

2020 Framework Program for Research and Innovation under Specific

Grant Agreement 945539 (Human Brain Project SGA3) and Flag ERA

JTC 2019 (MILEDI Project 825207), Fenix computing and storage re-

sources under Specific Grant Agreement 800858 (Human Brain Project

ICEI), and a grant from the Swiss National Supercomputing Centre

(CSCS) under project ID ich002 and supported by the EU Joint Pro-

gram–Neurodegenerative Disease Research (JPND) project CIRCPROT

(jointly funded by BMBF, MIUR, ANR, and EU Horizon 2020 grant agree-

ment no. 643417).
REFERENCES

1. Druckmann, S., T. K. Berger, ., I. Segev. 2011. Effective stimuli
for constructing reliable neuron models. PLoS Comput. Biol.
7:e1002133. https://doi.org/10.1371/journal.pcbi.1002133.

2. Narayanan, R., and D. Johnston. 2007. Long-term potentiation in rat
hippocampal neurons is accompanied by spatially widespread changes
in intrinsic oscillatory dynamics and excitability. Neuron. 56:1061–
1075. https://doi.org/10.1016/j.neuron.2007.10.033.

3. Narayanan, R., and D. Johnston. 2008. The h channel mediates location
dependence and plasticity of intrinsic phase response in rat hippocam-
pal neurons. J. Neurosci. 28:5846–5860. https://doi.org/10.1523/
JNEUROSCI.0835-08.2008.

4. Marcelin, B., L. Chauvière,., C. Bernard. 2009. h channel-dependent
deficit of theta oscillation resonance and phase shift in temporal lobe
epilepsy. Neurobiol. Dis. 33:436–447. https://doi.org/10.1016/j.nbd.
2008.11.019.
656 Biophysical Journal 121, 644–657, February 15, 2022
5. Migliore, M., D. A. Hoffman,., D. Johnston. 1999. Role of an A-type
Kþ conductance in the back-propagation of action potentials in the
dendrites of hippocampal pyramidal neurons. J. Comput. Neurosci.
7:5–15. https://doi.org/10.1023/A:1008906225285.

6. Migliore, M., F. Cavarretta, ., G. M. Shepherd. 2015. Synaptic clus-
ters function as odor operators in the olfactory bulb. Proc. Natl. Acad.
Sci. U S A. 112:8499–8504. https://doi.org/10.1073/pnas.1502513112.

7. Enrico, P., M. Migliore, ., M. Diana. 2016. Morphofunctional alter-
ations in ventral tegmental area dopamine neurons in acute and
prolonged opiates withdrawal. A computational perspective. Neurosci-
ence. 322:195–207. https://doi.org/10.1016/j.neuroscience.2016.02.
006.

8. Carnevale, N. T., and M. L. Hines. 2006. The NEURON Book. Cam-
bridge University Press.

9. Hines, M. L., A. P. Davison, and E. Muller. 2009. NEURON and Py-
thon. Front. Neuroinform. 3:1. https://doi.org/10.3389/neuro.11.001.
2009.

10. Sivagnanam, S., A. Majumdar, ., N. T. Carnevale. 2013. Introducing
the neuroscience gateway. In IWSG, Volume 993 of CEURWorkshop
Proceedings, CEUR-WS.org.

11. Migliore, R., C. A. Lupascu, ., M. Migliore. 2018. The physiological
variability of channel density in hippocampal CA1 pyramidal cells and
interneurons explored using a unified data-driven modeling workflow.
PLoS Comput. Biol. 14:e1006423. https://doi.org/10.1371/journal.
pcbi.1006423.

12. Bianchi, D., A. Marasco, ., M. Migliore. 2012. On the mechanisms
underlying the depolarization block in the spiking dynamics of CA1
pyramidal neurons. J. Comput. Neurosci. 33:207–225. https://doi.org/
10.1007/s10827-012-0383-y.

13. Magee, J. C., and D. Johnston. 1995. Characterization of single
voltage-gated Naþ and Ca2þ channels in apical dendrites of rat
CA1 pyramidal neurons. J. Physiol. 487:67–90. https://doi.org/10.
1113/jphysiol.1995.sp020862.

14. Hoffman, D. A., and D. Johnston. 1999. Neuromodulation of dendritic
action potentials. J. Neurophysiol. 81:408–411. https://doi.org/10.
1152/jn.1999.81.1.408.

15. Magee, J. C. 1999. Dendritic Ih normalizes temporal summation in hip-
pocampal CA1 neurons. Nat. Neurosci. 2:508–514. https://doi.org/10.
1038/9158.

16. Bianchi, D., P. De Michele, ., M. Migliore. 2014. Effects of
increasing CREB-dependent transcription on the storage and recall
processes in a hippocampal CA1 microcircuit. Hippocampus.
24:165–177. https://doi.org/10.1002/hipo.22212.

17. Megias, M., Z. Emri, ., A. I. Gulyàs. 2001. Total number and distri-
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