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Main objectives
This study aims at the development of GPU-accelerated code for a fast and scalable seismic wave mod-
elling using the spectral element method (SEM) within the framework of our full waveform modelling
and inversion code SEM46. Overall, it contains the single GPU algorithm investigation to explore the
computational efficiency that stems from the application of Cartesian-based structured meshes and the
multi-GPU implementation based on the domain-decomposition strategy.
New aspects covered
(1) Three types of parallel prototypes of SEM-based CUDA kernel are presented and compared in terms
of modelling accuracy and computational efficiency. (2) To benefit from the Cartesian-based structured
mesh, an element-wise parallelization with odd-even mesh coloring is proposed which achieves a signif-
icant speedup over the equivalent serial CPU reference code. (3) With the help of CUDA-AWARE MPI,
an excellent scaling is obtained in the domain-decomposition-based multi-GPU implementation, which
boosts its applicability on large-scale realistic problems.

Summary (200 words)
Modelling of seismic wave propagation is widely used in the study and imaging of the Earth’s interior.
Especially for the techniques of reverse time migration and full waveform inversion, an accurate and
efficient seismic wave modelling solver plays a key role in handling complex and large-scale problems.
In addition to developing novel modelling algorithms from a mathematical standpoint, it is necessary
to study how to implement existing methods on modern heterogeneous high-performance computing
(HPC) platforms, including at least one type of accelerator. Utilizing GPUs as accelerators has been
shown to be attractive in the geophysical applications. To benefit from this multi-threaded architecture,
we explore its implementation in the spectral element modelling (SEM) engine of our full waveform
modelling and inversion code SEM46. Based on the features of SEM algorithm and the Cartesian-based
structured mesh in SEM46, we investigate GPU kernels with three different parallel prototypes with
particular focus on the modelling accuracy and computational efficiency. The memory constraint in the
3D implementation is addressed by domain decomposition using multiple GPUs with CUDA-AWARE
MPI to achieve direct GPU-to-GPU communications. The resulting GPU solver exhibits a high speedup
and excellent scaling over multi-GPUs, making it promising for large-scale realistic 3D problems.



Introduction
In seismology and exploration geophysics, seismic wave modelling serves as the foundation for under-
standing and interpreting geophysical data in the Earth’s interior investigation. Full waveform inversion
(FWI), as an efficient seismic imaging tool, has shown the potential of extracting high-resolution quanti-
tative medium parameters of the subsurface using the full seismic data information (Virieux and Operto,
2009). Many successful FWI applications have been reported in the oil & gas community, especially for
marine surveys. As the exploration targets are becoming larger (industry-sized 3D problems) and more
complex (e.g. the consideration of elastic effects for reservoir characterization), this technique relies
heavily on high-performance computing (HPC) for its success. Over the past two decades, using GPUs
as accelerators is getting more and more popular in the speedup of key kernels for seismic imaging and
inversion applications, such as their modelling kernels (Micikevicius, 2009; Komatitsch et al., 2010),
since it has a wider memory bandwidth and light-weight parallelism to launch thousands of threads con-
currently. In this paper, we investigate the GPU parallelization of spectral-element-based seismic wave
modelling within the framework of our full waveform modelling and inversion code SEM46, thereby
extending it to be executable on multi-GPU clusters with a high speedup and scalability.
SEM46: Spectral-element based full waveform modelling and inversion code
SEM46 (“Spectral Element Method for Seismic Imaging at eXploration scale”) is a code developed
within the SEISCOPE project to perform 3D full waveform modelling and inversion for a wide range
of exploration scenarios: acoustic media, anisotropic (visco)elastic media and fluid-solid coupled media
(Trinh et al., 2019; Cao et al., 2022). Its modelling engine employs a classical hexahedra-based SEM
frame (Komatitsch and Tromp, 1999) for solving the wave equations in the second-order formulation.
Here we consider an elastic wave modelling scenario. The elastodynamics equation is given as

ρ∂ttu = ∇ ·σσσ + f, σσσ = C : εεε, εεε =
1
2

[
∇u+(∇u)T

]
, (1)

where u and f are the displacement and force vectors, σσσ and εεε are the stress and strain tensors, and ρ and
C are the medium density and elasticity tensor. In SEM, the weak form of PDE (1) is established by using
high-order Lagrange polynomials as basis functions and Gauss–Lobatto–Legendre (GLL) quadrature for
each discrete element. After the assembly, the resulting global semi-discretized system is

M∂ttu =−Ku+F, (2)
where M and K denote the global mass and stiffness matrices, and vectors u and F correspond to the dis-
placement field and source term in the entire computation domain. This semi-discretized linear system
is solved using the second-order Newmark time scheme in a prediction-correction format (Komatitsch
and Tromp, 1999). To get an intuitive view of global matrices M and K, we illustrate them in symbolic
form for a 1D case with three elements using second-order polynomials as basis functions (three points
involved in GLL quadratures)
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It can be clearly seen that the global mass and stiffness matrices contain the sum of the values at the bor-
der between two elements, which implies that those nodes need to be carefully treated to avoid “race”
problems in parallel executions. The existing HPC implementation of SEM46 is based upon a two-level
MPI parallelization. The inner level performs a domain decomposition over a Cartesian-based struc-
tured mesh which is easily partitioned and accurately conforms to complex geological surfaces through
vertical deformation of elements (Figure 3a). The outer level manages multi-sources in parallel, which
is embarrassingly parallel, to handle computation with a large number of shots in FWI applications.
Single- and multi-GPU implementations and examples
We use CUDA (Compute Unified Device Architecture) from Nvidia in our implementation and focus on
speeding up the inner level of SEM46, since the outer level generally satisfies theoretical efficiency.
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Figure 1: Schematic of three GPU parallel prototypes (a, b and c) in 2D and speedups on one GPU (Quadro
RTX 4000) over a serial reference code on CPU (Intel Core i9-9880H @3.2GHz) (d). (a) GLL-quadrature-wise
parallelization, (b) element-wise parallelization with neighboring and (c) element-wise parallelization with odd-
even mesh coloring. The red lines delineate element borders in those figures. For (b) and (c), the element border
points in blue and yellow indicate two and four cumulative sums are required in the SEM assembly, respectively.

By following the SEM algorithm given in the previous section, we can create three separated CUDA
kernels in the Newmark time-marching loop: the first kernel is the prediction process to update the cur-
rent displacement vector u using the wavefield variables at the previous time step, the second kernel
computes the matrix-vector product of the stiffness matrix K and updated u vector on the right hand side
of Eq. (2), and the last kernel is the correction process to obtain the updated acceleration and velocity
vectors. Except for the second kernel, the other two kernels perform point-to-point manipulations which
is trivially parallel in the GPU implementation. Therefore, we focus on the design of the second kernel
that is also the bottleneck of the SEM modelling (about 70% computational cost). Figures 1a-1c illus-
trate three alternative GPU parallel prototypes to achieve the matrix-vector product for the second kernel
in 2D SEM modelling. Their corresponding CUDA algorithms are illustrated in Table 1. Prototype (a) is
a straightforward implementation following the procedure of discrete system building in SEM, namely
parallelizing the involved GLL quadrature for each independent element and assembling them globally
over the mesh in a sequential manner (Algorithm 1). This prototype is easy to implement with CUDA
and can be used in both structured and unstructured meshes (Komatitsch et al., 2010). Prototypes (b) and
(c) are both based on the element-wise parallelization (one thread per element) but use different ways
to avoid the race problem related to the sum of the values at the element borders. As shown in Figure
1b, the strategy adopted in Prototype (b) is to compute the matrix-vector products of both the element
assigned for the thread and the elements which share the same border with it, which involves extra com-
putations (8x in 2D and 26x in 3D) for each thread (Algorithm 2). To circumvent those computations,
an odd-even mesh coloring strategy is introduced in Prototype (c), thanks to the property of Cartesian-
based structured mesh (the spatial position of each element can be directly associated to the CUDA
thread IDs). This prototype contains two key points: 1) coloring different element groups according to
their assigned thread IDs in the block being odd or even, which makes the elements in the same group
(even/odd coloring) have no dependencies, 2) performing a color-based assembly hierarchically in the
shared memory to benefit from fast on-chip memory. The modelling tests on a truncated Marmousi-II
model in Figure 2 shows that GPU codes with all these prototypes can produce accurate SEM modelling
results with negligible differences with respect to the serial CPU reference code. However, their per-
formance is quite different as shown in Figure 1d. GPU speedups with the element-wise parallelization
(Prototypes b and c) are superior to the GLL-quadrature-wise parallelization (Prototype a), since the
way of assigning one thread per element allows for a higher count of simultaneous active CUDA cores.
The comparison of both element-wise GPU codes indicates a higher speedup (70x) can be obtained from
Prototype (c), owing to the odd-even mesh coloring strategy and fast IO on shared memory.
When moving to the 3D implementation, the single-GPU size constraints of both shared memory and
global memory need to be taken into consideration. Typically, the size of shared memory is 48 KB,
which is not sufficient for assembling a 3D subdomain. Therefore, we flatten the 3D model to many 2D
element tiles fitting the shared memory, which is also helpful to use the same Prototype (c) designed
in the above 2D modelling. The global memory limitation can be solved by using multiple GPUs with
the same domain decomposition as in the MPI-based CPU code. Figure 3b illustrates the speedup and
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Algorithm 1 - Prototype a
1: Execution configuration:

dim3 dimBlock(8,8);
dim3 dimGrid(1,1);

2: Thread assign:
int tx=threadIdx.x;
int ty=threadIdx.y;

3: if (tx < NGLL && ty < NGLL) then
4: for iel = 1 to nel1*nel2 do
5: GLL_quadrature(iel,tx,ty,...)
6: end for
7: end if

Algorithm 2 - Prototype b
1: Execution configuration:

dim3 dimBlock(8,8);
dim3 dimGrid((nel1+dimBlock.x-1)/dimBlock.x,

nel2+dimBlock.y-1)/dimBlock.y);
2: Thread assign:

int iel1=blockIdx.x*blockDim.x+threadIdx.x;
int iel2=blockIdx.y*blockDim.y+threadIdx.y;

3: if (iel1 < nel1 && iel2 < nel2) then
4: for iel2_local = iel2-1 to iel2+1 do
5: for iel1_local = iel1-1 to iel1+1 do
6: for igll2 = 1 to NGLL do
7: for igll1 = 1 to NGLL do
8: GLL_quadrature(iel1,iel2,igll1,igll2,...)
9: end for

10: end for
11: end for
12: end for
13: end if

Algorithm 3 - Prototype c
1: Execution configuration:

dim3 dimBlock(8,8);
dim3 dimGrid((nel1+dimBlock.x-1)/dimBlock.x,

nel2+dimBlock.y-1)/dimBlock.y);
2: Thread assign:

int iel1=blockIdx.x*blockDim.x+threadIdx.x;
int iel2=blockIdx.y*blockDim.y+threadIdx.y;
int tx=threadIdx.x;
int ty=threadIdx.y;

3: Shared memory initialization:
Copy data from global memory to shared memory
__syncthreads();

4: if (iel1 < nel1 && iel2 < nel2) then
5: if tx%2 == 0 && ty%2 == 0 then
6: Loops for GLL quadrature within the element
7: end if
8: __syncthreads();
9: if tx%2 != 0 && ty%2 != 0 then

10: Loops for GLL quadrature within the element
11: end if
12: __syncthreads();
13: if tx%2 == 0 && ty%2 != 0 then
14: Loops for GLL quadrature within the element
15: end if
16: __syncthreads();
17: if tx%2 != 0 && ty%2 == 0 then
18: Loops for GLL quadrature within the element
19: end if
20: __syncthreads();
21: end if

Table 1: Algorithms of Prototypes a-c. “nel” and “NGLL” are number of elements and GLL points, respectively.

scalability of multi-GPU implementations with two different communication protocols: 1) peer-to-peer
(GPU-to-GPU) transfer with CUDA-AWARE MPI and 2) GPU-to-CPU-to-GPU transfer with regular
MPI. As expected, a direct GPU-to-GPU communication is more efficient than the one involving mem-
ory copied between GPU and CPU, although some ways of increasing the computational scale and
using CUDA streams and asynchronous memory copies can be used to overlap those communications
with computations (Micikevicius, 2009). The modelling accuracies are validated on a 3D homogeneous
model with rough topography (Figure 4). The seismogram comparison shows an excellent agreement
between the results of GPU and CPU codes, and the slight residuals come from the differences in ma-
nipulating math operations between the GPU and CPU architectures (Weiss and Shragge, 2013).
Conclusions
We present the GPU implementation of a SEM-based modelling engine within the framework of SEIS-
COPE SEM46 code. To address the computing bottleneck in SEM modelling, namely the product
of stiffness matrix and displacement vectors, we develop and compare three parallel prototypes in the
CUDA kernel design from aspects of modelling accuracy and efficiency. A significant speedup of 70x
has been achieved by the CUDA kernel using an element-wise parallelization with odd-even mesh col-
oring in the 2D elastic modelling. The single-GPU memory limitation in the 3D modelling is solved by
the domain-decomposition based multi-GPU implementation with a direct GPU-to-GPU communication
provided by CUDA-AWARE MPI technique to achieve a linear scaling.
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(a) (b)

(c) (d) (e)
Figure 2: Modelling tests in 2D on a truncated Marmousi-II model. (a) P-wave velocity (Vp) of the test model, and
the S-wave velocity (Vs) is defined by Vs =Vp/

√
3. Panels (b), (c), (d) and (e) correspond to wavefield snapshots

of vertical displacement component (Uz) at time t = 0.8 s computed from a serial CPU reference code and three
GPU codes with Prototypes (a), (b) and (c), respectively. All the codes are in single precision.

(a) (b)
Figure 3: (a) Schematic of the domain decomposition on the Cartesian-based structured mesh in both CPU and
GPU implementations. (b) Performance metrics in terms of speedup and scalability in the multi-GPU implemen-
tation for 3D problems, where data at the edge of each domain need to be shared with their neighbors using either
CUDA-AWARE MPI (GPU-to-GPU transfer) or regular MPI (GPU-to-CPU-to-GPU transfer). Tests are run on the
CTE IBM Power9 cluster from Barcelona Supercomputing Center: for each node, 2 × IBM Power9 8335-GTH
CPU @2.4GHz (3.0GHz on turbo, 20 cores) and 4 × GPU NVIDIA V100 (Volta) with 16GB HBM2.

(a) (b)
Figure 4: Multi-GPU modelling tests in 3D on a homogeneous elastic model with a rough topography using 4
GPUs. (a) Vertical component snapshot (Uz) at t = 1.8 s with CUDA-AWARE MPI, (b) seismogram comparison
of two GPU codes and the existing CPU reference code on 40 CPU cores. All the codes are in single precision and
run on the CTE IBM Power9 cluster from Barcelona Supercomputing Center: for each node, 2 × IBM Power9
8335-GTH CPU @2.4GHz (3.0GHz on turbo, 20 cores) and 4 × GPU NVIDIA V100 (Volta) with 16GB HBM2.
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