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Abstract 26 

Sulfur is a minor element in magmas but one of the major volatile elements released in 27 

volcanic systems, from the magma to the fluid phase upon ascent. Not only are sulfur 28 

gases potentially toxic for humans and plants, they are also involved in causing drastic 29 

climate changes after major volcanic eruptions. Therefore, studies are carried out by the 30 

geoscience community to assess the magmatic sulfur flux by looking at the sulfur content 31 

and isotopes in erupted products, with the ultimate aim of improving understanding of 32 

the sulfur cycle in subduction zones. Kyushu island in Japan hosts 25 volcanoes among 33 

which 11 are active and represent a natural hazard for the local population. It is perhaps 34 

the most suitable site for the study of the sulfur cycle for its availability of recent volcanic 35 

deposits and its many, highly monitored volcanoes. We investigated sulfur and sulfur 36 

isotope compositions of the magma source of Kyushu Island arc using olivine-hosted melt 37 

inclusions in mafic tephras and lavas, from 8 volcanoes (9 Holocene samples) going from 38 

Northern Kyushu with Oninomi, Yufu, Kuju, and Aso, to Southern Kyushu volcanoes 39 

such as Kirishima-Ohachidake, Kirishima-Shinmoedake, Sumiyoshi-ike, and 40 

Kaimondake, and one back arc volcano, Fukue-Onidake. We measured major, trace and 41 

volatile elements and S isotopes (δ34S) in melt inclusions. Magma composition recorded 42 

in the inclusions ranges from basalt to andesite (SiO2 ranging from 40.3 to 60.7 wt. %). 43 

For each edifice, we identified the least degassed and least differentiated compositions 44 

based on volatile and trace element systematics, and selected the melt inclusions closest 45 

to their primitive melts. Comparing these primitive magmas, Sr/Y underlines a 46 

compositional dichotomy between volcanoes from northern (Sr/Y>20) and southern 47 

Kyushu (Sr/Y<20), separated by a non-volcanic area corresponding to the subduction of 48 

the Kyushu-Palau ridge. The δ34S in melt inclusions range from -0.32±0.79 ‰ to 49 

+9.43±0.47 ‰ (2σ) and trace the source of the magma from the different volcanoes, rather 50 

than degassing or crustal fractionation processes. δ34S is not fractionated by the nature of 51 

the fluid (aqueous or melt) metasomatizing the mantle wedge, therefore it is not the first 52 

order factor controlling the sulfur isotope variations. Instead, this study illustrates the 53 

need for a heavy δ34S component, likely sulfate from seawater, contained in the agent that 54 

metasomatized the mantle beneath the arc. If such an observation is confirmed in other 55 

subduction zones, sulfur isotopes in melt inclusions may be an effective way to trace 56 



seawater input into the mantle beneath arcs. 57 
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Introduction 62 

The behavior of sulfur (and of its isotopes) in magma is complex because of its 63 

multiple valency and its partitioning into melt, gas, fluids and S-bearing minerals. 64 

Because sulfur can become saturated in the magmatic system and crystallize as sulfides, 65 

its geochemical behavior is expected to differ significantly from lithophile trace elements, 66 

such as lanthanide series rare earth elements (REE), or high field strength elements (Nb, 67 

Ta, Hf: HFSE). Yet, assessments of the sulfur budget and its evolution in magma are 68 

important to volcanology and mantle geochemistry, especially since SO2 in volcanic gas 69 

is considered as an indicator of magmatic flux beneath a volcano (e.g. Symonds et al. 70 

1994; Métrich and Mandeville, 2010). Furthermore, the sulfur isotope composition of arc 71 

magma sources is challenging to determine precisely, partly because significant sulfur 72 

isotope fractionation is overprinted in erupted products (e.g. Mandeville et al., 2009). It 73 

appears nearly impossible to determine the source sulfur isotope composition through 74 

subaerial eruption products. Instead, the systematic study of sulfur isotope composition 75 

in olivine-hosted magmatic inclusions is much more revealing, as the olivine can prevent 76 

diffusive sulfur-loss through the host crystal (e.g. Bucholz et al., 2013). There have also 77 

been successful attempts recently to find primitive sulfur isotopic compositions in melt 78 

inclusions from Lassen volcano and the 2018 Kilauea flow (Muth and Wallace 2021; 79 

Lerner et al. 2021). However, other olivine inclusions have not been as successful in 80 

sampling unmodified magmas; the melt inclusion studies of the Lesser Antilles, Canary 81 

Islands and Kamchatka have recorded indications of degassing or sulfide fractionation 82 

(Bouvier et al., 2008; Beaudry et al., 2018; Gurenko et al., 2018; 2021, respectively), with  83 

δ34S values ranging from -9.0 to +7.0 ‰, -5.9 to +3.2 ‰ and -1.6 to +12.3 ‰, 84 

respectively. Clearly, further efforts to interpret sulfur systematics in different arc systems 85 

are needed to help improve our understanding of the sulfur cycle in subduction zones. 86 

Kyushu Island is one of the four main islands of Japan and is known for its high 87 

concentration of active volcanoes; 12 volcanoes are considered active along the 240 km 88 

segment of Kyushu. This makes it an ideal location to sample Holocene eruptions along 89 

an arc section. Despite this ideal setting, there are no systematic studies reporting melt 90 

inclusion compositions along this arc or characterization of mantle variations below these 91 

arc volcanoes. Furthermore, sulfur fluxes of the volcanoes are well-monitored, and for 92 



example, Aso volcano is known for its persistent sulfur emissions (approximately 600 93 

tons per day; Carn et al. 2017; Japan Meteorological Agency, 2020). It is therefore an 94 

ideal arc to carry out a systematic investigation of sulfur along the arc segment. This study 95 

reports the variation in sulfur isotopes recorded in this volcanic segment, and its relation 96 

to the geodynamic setting of this arc. 97 

 98 

Geological setting 99 

Tectonic setting 100 

The modern volcanic activity of Kyushu Island is related to the subduction of the 101 

Philippine Sea plate (Nakada and Kamata, 1991; Miyoshi et al., 2008ab, 2010; Shibata et 102 

al., 2014). This is composed of two segments of different ages, divided by the Kyushu-103 

Palau ridge (Fig. 1a): a young, hot northern segment (Shikoku Basin, 15 – 26 Ma; Okino 104 

et al., 1994), and an old, cold southern segment (West Philippine Basin, 30 – 54 Ma; 105 

Shibata et al., 1977; Deschamps and Lallemand, 2002; Ishizuka et al., 2018). The 106 

Kyushu-Palau ridge is a remnant of Eocene–Oligocene arc that split away from the Izu-107 

Bonin-Mariana arc, due to spreading in the Shikoku Basin (e.g., Seno and Maruyama, 108 

1984). Recent seismic and geomagnetic studies indicate the presence of the subducting 109 

Kyushu-Palau ridge beneath central Kyushu, precisely beneath the non-volcanic region 110 

between Aso and Kirishima volcanoes (e.g. Park et al., 2009; Fig. 1b). The slab has been 111 

subducting aseismically, down to a depth of 430 km beneath Kyushu Island (Zhao et al., 112 

2012; Fig. 1b).  113 

P- and S-wave seismic tomography images identify a low-velocity zone along the 114 

subducting slab down to a depth of 300 – 400 km, but with no contrast between the two 115 

segments (Zhao et al., 2012; Liu and Zhao, 2016). On the other hand, the receiver function 116 

tomography shows dehydration at much shallower depths, with hydrated oceanic crust 117 

present to a depth of 70 km beneath Southern Kyushu, but only reaching 50 km beneath 118 

Northern Kyushu (Abe et al., 2013). This suggests extensive dehydration beneath the 119 

fore-arc region in the north. Lastly, numerical simulations place the location of the low-120 

velocity zone beneath the volcanic front to fore-arc region in Northern Kyushu and 121 

beneath the volcanic front to the back-arc side in the case of central to Southern Kyushu. 122 

This north-south dichotomy is due to the contrasting thermal state of the slab because of 123 



its age variation (Iwamori, 2007).  124 

Low-velocity and high-Poisson’s ratio anomalies are identified in the upper mantle 125 

beneath the back-arc region (Huang et al., 2013; Asamori and Zhao, 2015). This 126 

anomalous region extends from the Tsushima Strait in the north (between the Korean 127 

peninsula and Kyushu Island) to the southern edge of Kyushu Island. This anomaly 128 

extends beneath the back-arc to a depth of more than 200 km, reaching below the slab. It 129 

potentially indicates the existence of mantle upwelling, induced by a slab window. This 130 

mantle upwelling, originating beneath the Philippine Sea plate, is possibly caused by a 131 

deep dehydration reaction of the Pacific slab located below (at depths of 600-670 km), 132 

and suggests the presence of convective circulation above the stagnant Pacific slab, with 133 

the mantle flowing across the Philippine Sea plate via a window or around its leading 134 

edge. Such “big mantle wedge” convection is thought to be the cause of the continental 135 

rift systems and intraplate volcanism in East Asia (Tatsumi et al., 1990; Zhao et al., 2009; 136 

Zhao and Tian, 2013).  137 

 138 

Volcanism 139 

The modern volcanism in Kyushu Island is grouped into three main volcanic 140 

provinces based on geographical distribution and geochemical signature: Northern 141 

Kyushu, Southern Kyushu, and the back-arc region. The volcanic activity in the frontal-142 

arc of Northern Kyushu is characterized by hot-subduction zone magmatism, such as the 143 

eruption of adakitic-magmas from Yufu-Tsurumi volcano (YF in Fig. 1b; Sugimoto et 144 

al., 2006; Shibata et al., 2014) and the calc-alkaline high-magnesium andesites (6 – 3 Ma; 145 

Nakada and Kamata, 1991; Kakubuchi et al., 1995). Also in the north, high-alumina 146 

island-arc basalts are found in Kuju (KJ) and Aso (AS) volcanoes from 2 – 0 Ma (Nakada 147 

and Kamata, 1991; Mahony et al., 2011). The temporal evolution of the source mantle, 148 

showing progressive increase of the slab component, potentially explains the variations 149 

in major and trace element signatures of the area (Nakada and Kamata, 1991). Oninomi 150 

(ON) basalt is an exception with an adakite and OIB-like affinity (i.e. high Sr/Y no HFSE 151 

depletion), and an eruption age of 16 ka (Ohta et al., 1992; Shitaoka et al., 2014). 152 

In Southern Kyushu, the modern activity is characterized by calc-alkaline magma 153 

for both the back-arc (7.6 – 0.4 Ma; Nagao et al., 1999) and the volcanic front, where 154 



Kirishima (KR) Sumiyoshi-ike (SM), Sakurajima (SK) and Kaimondake (KM) volcanoes 155 

are located (Mahony et al., 2011). Alkali basalts erupted at ~1 Ma were reported in the 156 

back-arc side (Uto and Uchiumi, 1997; Kita et al., 2012) and at 0.08 Ma (Aojiki cone 157 

adjacent to Sumiyoshi-ike volcano, Kita et al., 2012). In the back-arc region, alkali to 158 

tholeiitic basalts have erupted episodically from ~15 Ma (Mahony et al., 2011). Onidake 159 

volcano on Fukue Island (FK, Fig. 1b; referred to as Fukue hereafter) is a typical active 160 

back-arc volcano in this region. Both alkali basalts and calc-alkaline andesites erupted at 161 

similar ages, in a zone between the frontal-arc and back-arc regions, such as Unzen 162 

volcano (UZ, Fig. 1b) and the adjacent area, (Sugimoto et al., 2005; Kita et al., 2001).  163 

Magmatic H2O concentrations are estimated to be 3.6 – 6.0 wt. % for Northern 164 

Kyushu volcanoes, calculated from the observed high-An plagioclase and whole rock 165 

compositions (Zellmer et al., 2012). This indicates that the primary basaltic magma was 166 

potentially water-rich, although source lithology and slab-derived fluid/melt 167 

characteristics are poorly constrained. Miyoshi et al. (2008ab; 2010) determined boron 168 

concentrations in basaltic rocks and identified an increase in the B/Nb ratio from Yufu 169 

toward Kirishima, that they interpreted as an increase in slab-derived fluid contribution. 170 

Similarly, partial melting of the subducted young Philippine Sea plate has been suggested 171 

based on the systematics of its adakitic signature and Sr-Nd-Pb isotope ratios of rocks in 172 

Northern Kyushu (Sugimoto et al., 2006; Shibata et al., 2014).  173 
 174 

Samples and Methods 175 

Sample description 176 

Nine olivine-bearing rocks were selected from 49 samples, covering major active 177 

volcanoes of Kyushu Island (Fig. 1ab and Table 1). We focused on lapilli-sized samples 178 

to have a higher chance of finding quenched volcanic products (thus avoiding daughter 179 

mineral crystallization within melt inclusions) and to minimize the effect of the diffusive 180 

volatile-loss (Danyushevsky et al., 2002; Lloyd et al., 2013). An exception was made for 181 

Yufu volcano, where we collected a block of lava from a pyroclastic flow deposit (YF1L) 182 

since no olivine-bearing tephra was found. The inclusions of Kuju (KJ5S), Aso (KSS), 183 

Kirishima-Ohachidake (KROHTH), Kirishima-Shinmoedake (KRSM11), Sumiyoshi-ike 184 

(SM1S), Kaimondake (KM1S12a) and Fukue (FKONON) were glassy while those of 185 



YF1L were completely crystallized. In the case of Oninomi (ON2S), the inclusions hosted 186 

in the core of the olivines were mostly rounded and crystallized, while glass found at the 187 

rim of skeletal olivines tended to be clear, tubular and often open to the outside of the 188 

host crystal. Although the olivines of FKONON were also skeletal, the melt inclusions 189 

were fully enclosed. Complete descriptions of the appearance and size of the samples are 190 

given in Supplementary material Table S1 and document S2, following the recommended 191 

practices for melt inclusion studies (Rose-Koga et al., 2021). 192 

Whole rock sample descriptions are from the literature and brief descriptions are 193 

summarized here: YF1L is a mafic enclave found in a Nonokusa pyroclastic-flow deposit 194 

on the southern slope of the edifice (Ohta et al., 1990; Okuno et al., 1999), which is 195 

interpreted as being equivalent to the mafic endmember of the Yufu-Tsurumi volcanic 196 

group (Ohta and Aoki, 1991). The olivine-bearing mafic blocks are typically vesiculated 197 

augite-hornblende-plagioclase basalt to basaltic andesite.  ON2S is a coarse black scoria 198 

forming the edifice of Oninomi scoria cone. Its composition ranges from basalt to basaltic 199 

andesite containing plagioclase, olivine, augite, occasional orthopyroxene, destabilized 200 

hornblende, and Ti-Fe oxides. It also contains abundant granitic xenoliths (Ohta et al., 201 

1992). KJ5S is the Hiijidake scoria, a brown scoria fall deposit, erupted from the Hiijidake 202 

cone of Kuju volcano. It is a basaltic andesite containing plagioclase, clinopyroxene, 203 

orthopyroxene, olivine (Kamata, 1997; Nagaoka and Okuno, 2014; Kawanabe et al., 204 

2015). KSS is the Kishimadake scoria, a coarse black scoria fall deposit, erupted from the 205 

Kishimadake cone of Aso volcano (Miyabuchi and Watanabe, 1997), which is the same 206 

sample as in Kawaguchi et al. (2021) and identified as the mafic end member of Holocene 207 

Aso eruptions. KROHTH is the Takaharu scoria, a black vesiculated basaltic andesite 208 

scoria fall deposit, erupted from Ohachidake cone, from the Kirishima volcanic group, 209 

which corresponds to the fall unit ThT of Tsutsui et al. (2007). The related lava unit 210 

contains plagioclase, clinopyroxene, orthopyroxene and olivine. KRSM11 is a mixed 211 

andesitic pumice erupted in 2011 from Shinmoedake cone, from the Kirishima volcanic 212 

group, and corresponds to Unit 2 of Miyabuchi et al. (2013), whose bulk composition is 213 

andesitic, containing phenocrysts of plagioclase, clinopyroxene, orthopyroxene, olivine, 214 

magnetite and ilmenite. SM1S is a fine to coarse black scoria produced by a 215 

phreatomagmatic eruption of Sumiyoshi-ike volcano (Moriwaki et al., 1986). It is a 216 

basaltic scoria with olivine, plagioclase and clinopyroxene phenocrysts and glassy 217 



groundmass with microlites. KM1S12a is a lithic-rich dense to vesiculated scoria 218 

containing plagioclase, clinopyroxene and olivine phenocrysts, and corresponds to the 219 

fall unit Km12a of Fujino and Kobayashi (1997), erupted from Kaimondake volcano 220 

(Kawanabe and Sakaguchi, 2005); FKONON is a vesiculated coarse scoria, and 221 

corresponds to the Onidake scoria fall unit of Nagaoka and Furuyama (2004), erupted 222 

from the Onidake cone, from Fukue volcanic group.  223 

 224 

Melt inclusion preparation 225 

Olivine-hosted melt inclusions of these nine samples were prepared for chemical 226 

analysis. Loose olivine crystals (250 to 630 µm) were hand-picked from crushed and 227 

sieved samples. The dimensions of the inclusions and vapor bubbles were measured under 228 

a microscope (Table S1). Crystallized inclusions of YF1L and ON2S were homogenized 229 

using a Vernadsky-type microscope heating stage following the method described by Le 230 

Voyer et al. (2010). A detailed description of the heating procedure is given in 231 

Supplementary material document S1. Fully enclosed inclusions were exposed using a 232 

silicon carbide mat for coarse polishing, and corundum mats (3 µm and 1 µm mats) were 233 

used to complete the polishing. To avoid possible carbon contamination, diamond-based 234 

paste was avoided. Polished olivine crystals were subsequently mounted in indium for 235 

analysis, and a final polish with a 0.25 µm alumina paste was performed to remove 236 

scratches on the exposed surface.  237 

Analytical methods 238 

Volatile element concentrations (H2O, CO2, S, Cl, and F) in the inclusions were 239 

measured by SIMS (Cameca IMS-1280HR of Kochi Institute of Core Sample Research, 240 

JAMSTEC, Japan) following the procedure described by Shimizu et al. (2017), 241 

comparable to that of Rose-Koga et al. (2020) for F, S and Cl. In brief, we used a 20 keV 242 

Cs+ primary ion beam of 300 – 500 pA defocused to be 10 – 15 µm in diameter. 243 

Secondary ions were accelerated at 10 kV. Then a 10 keV electron beam with a diameter 244 

of ~100 µm was applied for electrostatic charge compensation over the area of the Cs 245 

beam spot. The field aperture was set to the size corresponding to 5 x 5 µm on the sample 246 

surface. Mass resolving power was set at ~6000 to separate mass interferences (for 247 

example, to separate 34S1H interference from 35Cl requires 5120 MRP; Burdo and 248 



Morrison 1971). Negative secondary ions of 12C, 16OH, 19F, 30Si, 31P, 32S, and 35Cl and 249 

the mass position of 11.9 amu were measured by an axial electron multiplier using the 250 

peak switching method. Each analysis consisted of 10 cycles, and the total measurement 251 

time was ~6 min. Typical relative standard deviations (1σ) obtained from repeated 252 

analysis of a secondary basaltic glass standard from the East Pacific Rise, EPR-G3 253 

(Shimizu et al., 2017; Supp. Table S9), were 1.4, 3.2, 0.9, 2.5 and 1.5% for H2O, CO2, S, 254 

Cl and F, respectively, and the measured values of EPR-G3 usually agreed with the 255 

known value. In the event that the secondary standard value deviated significantly, the 256 

calibration curves were revised.  257 

Sulfur isotopes in the inclusions were measured by SIMS at 1) Kochi Institute of 258 

Core Sample Research, JAMSTEC, Japan (Cameca IMS-1280HR) and 2) Centre de 259 

Recherches Pétrographiques et Géochimiques (CRPG)-CNRS-Nancy, France (Cameca 260 

IMS-1270). At Kochi, analyses were conducted following the procedure described by 261 

Shimizu et al. (2019). To summarize, we used a 20 keV Cs+ ion beam of ~0.5 nA 262 

defocused to be ~10 µm in diameter. A 10 keV electron beam of ~100 µm diameter was 263 

used to flood the sample surface for electrostatic charge compensation. Secondary ions 264 

were accelerated to 10 kV. The field aperture was set at a size corresponding to 15 × 15 265 

µm2 on the sample surface. Negative secondary ions of 32S and 34S were measured in 266 

multi-detection mode with an FC and axial EM, respectively. Mass resolving power was 267 

set at ~2200 and ~5000 for FC and EM detectors, respectively, to separate mass 268 

interferences of 31P1H from 32S and of 33S1H from 34S. Each measurement consisted of 20 269 

s pre-sputtering, 120 s auto-centering of 32S to the field and contrast apertures, and 5 s × 270 

50 cycles for measurements. The total measurement time for each analysis was ~7 271 

minutes. At CRPG, the set-up was similar except we used a stronger primary beam of 3 272 

nA defocused to ~15 µm in diameter. Mass resolving power was set to 4500. Negative 273 

secondary ions of 32S and 34S were measured in the multi-detection mode with an FC and 274 

axial EM, respectively. Each measurement consisted of 60 s pre-sputtering and 5 s × 40 275 

cycles for measurements, giving a total analysis time of ~5 minutes for each spot. Before 276 

each measurement, we adjusted the center for 32S. In both cases, the standard basaltic 277 

glass, EPR-G3 (d32SVCDT=-0.09±0.55‰, 2SD; Shimizu et al., 2019), was systematically 278 

measured during the analytical session to monitor EM drift and to define the instrumental 279 

mass fractionation factor (IMF) for 34S: IMF = (34S/32S)measured/( 34S/32S)reference). At 280 



CRPG, other standard glasses were analyzed with EPR-G3, and we did not find any 281 

matrix-dependent variation for IMF, unlike in the recent report of Taracsak et al. (2021) 282 

(further discussion in Supplementary document S1). Sulfur isotopes in the samples are 283 

expressed in δ34S relative to the Vienna Canyon Diablo Troilite (VCDT, 34S/32S = 284 

1/22.6436; Ding et al., 2001; δ34S = [(34S/32S)unknown/IMF/( 34S /32S)VCDT – 1] × 1000, in 285 

per mil). The analytical error (2σ) obtained from repeated measurements of the EPR-G3 286 

standard during the analytical session was less than 1.2 ‰ for both SIMS laboratories, 287 

and the internal precision (2σ) is also reported for individual analysis, with an average of 288 

0.8 ‰ (Supplementary material Table S4).  289 

Major element compositions of melt inclusion and host-olivine phenocryst were 290 

determined using a CAMECA SX100 electron microprobe at the Laboratoire Magmas et 291 

Volcans, Clermont-Ferrand, France (LMV). The analytical settings for silicate glass were 292 

15 kV acceleration voltage, 4 nA beam current, with counting times at 30 s for Ti, at 20 293 

s for Si, Al, Fe, Mg, Na and K, and at 10 s for Mn, Ca, and P. For olivine, we used a 15 294 

nA beam current with counting time at 30 s for Ca, at 20 s for Si and Al, at 15 s for Ti 295 

and Cr, and at 10 s for Fe, Mn, Mg, and Ni. Beam diameter was set at 5 or 10 µm 296 

depending on the size of the inclusion, and focused for olivine measurements. Relative 297 

analytical uncertainties (1σ) obtained from repeated measurements of the basaltic glass 298 

standard (VG-2, Juan de Fuca ridge basalt, Jarosewich et al., 1980; Dixon et al., 1991) 299 

were less than 0.6% for SiO2, 1% for Al2O3, FeO and CaO, 3.5% for TiO2 and Na2O, 300 

10% for MnO, 1.5% for MgO, 4.5% for K2O, 17% for P2O5 (Supplementary Table S3).   301 

In addition, the S, Cl and F concentrations of 12 melt inclusions were also 302 

determined, using a 40 nA beam current with counting times of 50 s for S and Cl, and 303 

200 s for F. For each analysis, an average of 5 measurements was taken.  The standard 304 

deviations (1σ) for S, Cl, and F were less than 143 ppm, 95 ppm, and 397 ppm, 305 

respectively. Further details of the analytical methods, accuracy and verification, are 306 

found in Rose-Koga et al. (2020).   307 

Sulfur speciation of selected inclusions was determined by measuring a relative 308 

sulfur Kα peak position in a melt inclusion sample compared to the standard anhydrite 309 

mineral using the EPMA (Carroll and Rutherford, 1988), with an assumption that S2- and 310 

S6+ are the only two relevant species in silicate melt (e.g. Jugo et al., 2010). We took an 311 

average of three spots per melt inclusion, and the standard error (1σ) was approximately 312 



±10% S6+/STotal for samples with S concentration > 1000 ppm, which is the case for 84% 313 

of the melt inclusions.   314 

Trace element concentrations in melt inclusions were determined using a laser 315 

ablation system (193 nm Excimer Resonetics M-50E laser ablation system) coupled with 316 

an inductively coupled plasma mass spectrometer, Agilent 7500 cs (LA-ICP-MS) at LMV 317 

following the classical procedure described by Rose-Koga et al. (2012, 2017). Analyses 318 

were conducted with a laser pulse frequency of 1–3 Hz, a spot diameter between 15 and 319 

33 µm depending on the MI size, and a fluence of 2.8 mJ/cm2. Twenty-six masses were 320 

collected: 7Li, 45Sc, 51V, 65Cu, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 137Ba, 139La, 140Ce, 141Pr, 146Nd, 321 
147Sm, 153Eu, 157Gd, 163Dy, 166Er, 172Yb, 175Lu, 178Hf, 181Ta, 208Pb, 232Th, 238U. The internal 322 

reference mass was 44Ca, with the CaO concentration taken from the electron microprobe 323 

analysis. A typical signal acquisition started by collecting a background for 30s, which 324 

was followed by the laser firing for 70 s or less depending on the thickness of the 325 

inclusion. Data reduction was performed by the GLITTER software (GEMOC, 326 

Macquarie University, Australia). BCR-2G, NIST 610 and NIST 612 glasses (Gao et al., 327 

2002; Gagnon et al. 2008) were also analyzed to monitor the reproducibility and accuracy 328 

of the analyses. Typical relative standard errors on samples (1σ error of mean; σ/√𝑛, 329 

where n is the number of cycles) were < 5% for V, Rb, Sr, Y, Zr, Ba, La, and Ce, < 8% 330 

for Sc, Nb, Pr, and Nd, < 15% for Cu, Sm, Eu, Gd, Dy, Er, Hf, Pb, Th, and U, < 25% for 331 

Li, Yb, Lu, and Ta.  332 

Correction for post-entrapment modification  333 

Post-entrapment crystallization 334 

Major, volatile and trace element concentrations of melt inclusions were corrected 335 

for post-entrapment crystallization (PEC; e.g., Danyushevsky et al., 2000) by incremental 336 

addition of equilibrium olivine (0.1 wt. % step) into the melt, until it reached equilibrium 337 

with the host olivine (Toplis, 2005). We adopted a constant Fe2+/FeTotal ratio calculated 338 

from the empirical equation of Kilinc et al. (1983) from the averages of measured SKα 339 

peak shifts. For example, a single fO2 value was assumed to represent a rock sample (Jugo 340 

et al., 2010). Olivine-melt equilibrium temperatures were calculated using the olivine-341 

saturated melt thermometer of Sugawara (2000), corrected for the effect of H2O on the 342 



olivine liquidus temperature (Médard and Grove, 2008). The correction for post-343 

entrapment Fe-Mg exchange (also called “diffusive Fe-loss”; Danyushevsky et al., 2000) 344 

was not necessary (see Supplementary material document S1), because the FeO 345 

concentration in a melt inclusion plots along the compositional trend defined by the whole 346 

rock data. Concentration of volatile and trace elements was adjusted by assuming their 347 

perfect incompatibility in the host olivine (Table S2). The corrected concentrations are 348 

used throughout this paper (Table S8). Raw data are reported in Supplementary Tables 349 

S3, S4 and S5). It should be noted that PEC added less than 6 % of olivine to melt, for 350 

95% of the sample. 351 

Vapor-bubble formation 352 

In general, more than 40 – 90% of the initially dissolved CO2 in the melt at the time 353 

of entrapment is lost to shrinkage bubbles, when vapor bubble growth occurs within an 354 

inclusion (e.g. Wallace et al., 2015). Therefore, the total CO2 concentration in a melt 355 

inclusion was determined as (dissolved + exsolved),  356 

𝐶𝑂&'()*+ = 𝐶𝑂&-.+) + 𝜙
𝜌2
𝜌3

× 107	357 

where CO2Melt is the dissolved CO2 concentration in the melt, ϕ is volume fraction of the 358 

bubble in the melt inclusion, ρv is the volumetric CO2 vapor density, and ρm is the melt 359 

density, calculated from the glass composition. The ϕ was determined based on 360 

measurements of the two visible axes, a and b, under the microscope (Table S1) assuming 361 

the length of the third axis as c = (a + b) / 2 (e.g. Tucker et al., 2019). The ρv value was 362 

estimated using RhyoliteMELTS ver. 1.2.0 (Ghiorso and Sack, 1995; Gualda et al., 2012; 363 

Ghiorso and Gualda, 2015), based on CO2-H2O solubility at the glass transition 364 

temperature, Tglass, and an equation of state (EOS) for the fluid (Duan and Zhang, 2006). 365 

The Tglass value was calculated from the temperature dependence of the viscosity at the 366 

given hydrous glass composition and a constant viscosity of 1012 Pa·s (Giordano et al., 367 

2005, 2008). The total CO2 concentrations were first calculated using the measured glass 368 

composition and the equation above, and they were then corrected for PEC in the same 369 

way as for the other volatile elements. This EOS calculates ρv with an assumption that the 370 

bubble and melt are in equilibrium until the bubble ceases to expand. Since carbon (C) 371 

diffusion is temperature dependent, if the diffusive closure temperature is effectively 372 

higher than Tglass, the bubble would expand without C exsolution, resulting in an 373 



overestimation of ρv and of the total CO2 concentration (e.g. Pichavant et al., 2013; Bali 374 

et al., 2018).  If this non-equilibrium expansion has occurred, the estimated total CO2 375 

concentration represents a maximum value.  376 

We conducted an additional test based on the method of Moore et al. (2015), which 377 

calculates the expected vapor bubble volume in a melt inclusion to assess the extent of 378 

the thermal contraction of the melt and host olivine due to post-entrapment cooling. This 379 

calculation provides a mechanical upper limit of the bubble size formed by post-380 

entrapment cooling. For example, the test concludes that a melt inclusion contained a pre-381 

entrapment bubble if a measured bubble volume fraction exceeds the expected value. In 382 

this case we did not apply the “CO2 bubble correction”. This is because the calculation of 383 

total CO2 is strongly dependent on the bubble volume fraction. Therefore, if a pre-384 

entrapment bubble had been present, because the observed bubble volume would have 385 

been larger than the expected shrinkage bubble, it would result in an overestimation of 386 

the total CO2.  387 

The major source of error of the total CO2 in the inclusions is the uncertainty of the 388 

melt inclusion volume, as the volume is estimated assuming an ellipsoid with 389 

measurements of only two axes. A recent numerical simulation reports that the 390 

assumption taking an arithmetic mean for the third ellipsoid axis yields a relative error 391 

(1σ) of 37% to 48% (Tucker et al., 2019). We conservatively assigned a 50 % (1σ) relative 392 

uncertainty to inclusion volumes. The uncertainties (1σ) on the total CO2 concentration 393 

therefore ranged from 10 to 50% after accounting for the volume error (Table S6). 394 

Results 395 

Major element compositions 396 

The melt inclusions in this study varied from basalt to andesite with SiO2 ranging 397 

from 40.3 to 60.7 wt. % (Table S2, Fig. 2). Fo content [Mg / (Fe + Mg) × 100 in mole] of 398 

host olivine varied from 65.2 to 83.1 (Table S7). The composition of melt inclusions 399 

formed tight clusters for each tephra sample, except Aso and Oninomi. The melt 400 

inclusions of Fukue, Yufu and Sumiyoshi-ike were classified as alkali-basalt to 401 

picrobasalt and basanite. Those of Kuju, Kirishima-Ohachidake, Kirishima-Shinmoedake 402 

and Kaimondake were sub-alkaline basaltic andesites. Melt inclusions of Aso exhibited 403 

a wide range of SiO2 and were classified as transitional basalt and sub-alkaline basaltic 404 



andesite to andesite (Kawaguchi et al., 2021). The melt inclusions of Oninomi varied 405 

from basanite to basalt, except for one andesite inclusion. Basanite magmas are rare 406 

around Kyushu Island especially at the volcanic front (Iwamori, 1991, 1992). Similar 407 

basanite rocks are found in the northern part of the Izu-Bonin volcanic arc (Oshika et al., 408 

2014) and in primitive rocks from the central Chugoku district, SW Japan (Iwamori, 1991, 409 

1992). The subalkaline melt inclusions from Northern Kyushu were higher in total alkali 410 

(Na2O + K2O) compared to those from the Southern Kyushu for the same SiO2 411 

concentration.  412 

Trace element compositions 413 

The melt inclusions in this study were enriched in large-ion lithophile elements 414 

(LILE) over high field strength elements (HFSE) resulting in high LILE/HFSE values 415 

(Fig. 3), characteristic of island arc basalts (IAB; e.g., Elliott, 2003). Positive K, Pb and 416 

Sr anomalies were present. Positive Sr anomalies in samples from the Northern Kyushu 417 

(Yufu, Kuju, Aso) were stronger than those from Southern Kyushu (Kirishima, 418 

Sumiyoshi-ike, Kaimondake). The trace element patterns of Fukue and Oninomi 419 

displayed no Nb-Ta negative anomalies and high Nb concentration (Nb ≥ 23 ppm), as 420 

found for the whole rock data (e.g., Ohta et al., 1992; Miyoshi et al., 2008). Melt 421 

inclusions from Oninomi had higher light rare earth element concentrations (LREE), and 422 

lower HREE compared to those from Fukue (Fig. 3). Two Oninomi melt inclusions were 423 

4 to 25 times richer in Ba than the other melt inclusions.  424 

 425 

Volatile element and sulfur isotope compositions 426 

H2O and CO2 concentrations in melt inclusions were corrected for PEC and post-427 

entrapment vapor bubble growth, and the corrected values were used throughout this 428 

paper. H2O concentrations varied between 0.01 and 6.06 wt. % (Table S2), and there was 429 

no systematic difference between Northern and Southern Kyushu. H2O concentrations 430 

within the same tephra sample varied less than 1 or 2 wt. % (Fig. 4). CO2 concentrations 431 

ranged from a few ppm to 1.2 wt.% (Fig. 4). S, Cl and F concentrations varied from 142 432 

to 3800 ppm, from 89 to 1440 ppm, and from 55 to 1170 ppm, respectively (Table S2). 433 

The high volatile contents indicate successful sampling of less-degassed, near-primitive 434 

volatile in magmas. 435 



Chlorine concentrations in the melt inclusions varied from 89 to 1440 ppm but with 436 

less than 7% of the melt inclusions with Cl <500ppm (8 out of 117; Table S2). Most Cl 437 

concentrations were higher than those of MORB (max ~500 ppm Cl; e.g. Le Voyer et al., 438 

2015), indicating the addition of Cl to the sub-arc mantle from the subducting slab (e.g., 439 

Straub and Layne, 2003). Similarly, F concentrations in melt inclusions (55 to 1170 ppm) 440 

were higher than those of MORB (71 to 576 ppm; e.g. Le Voyer et al., 2015), indicating 441 

a variable degree of F addition from the subducted slab. These elevated Cl and F values 442 

are characteristic of arc basalts (e.g., Rose-Koga et al., 2014; Van den Bleeken and Koga, 443 

2015).   444 

Measured δ34S values ranged from -0.3 ± 0.8 ‰ to +9.4 ± 0.5 ‰ (Table S4), and 445 

were significantly higher than those of MORB (-0.91±0.50‰, Kanehira et al., 1973; 446 

Sakai et al., 1984; Peters et al., 2010; Labidi et al., 2012, 2014), and within the range 447 

reported for bulk S isotope data of Japanese arc volcanic rocks (from -0.2 to +18.3‰, 448 

Ueda and Sakai, 1984). Most samples have δ34S > +3.4‰ (Table S4), with Fukue and 449 

Oninomi showing relatively lower δ34S values (<+2.5‰ with one exception at +3.63‰; 450 

Table S4).  451 

 452 

Discussions 453 

The discussion is organized into six sections. The first three sections concern the 454 

determination of the primitive magmas of each volcano, for geochemical characteristics 455 

of major, trace, and volatile elements as well as sulfur isotopes: entitled “Major and trace 456 

element composition of the primitive magma”, “Volatile element concentration in the 457 

primitive magma”, and “S isotope composition of the primitive magma”. Then, the 458 

following two sections discuss the relationship between the geochemical characteristics 459 

of the primitive magmas and the geodynamic characteristics of the Kyushu Arc, which 460 

are entitled “The magma groups of Kyushu”, and “Geodynamic significance of the source 461 

regions”. Finally, the last section, “Sources of sulfur in the subduction zone”, outlines the 462 

contributions of sulfur isotope signatures to the arc.  463 

Identification of the primitive magma makes it possible to characterize the magma 464 

source mantle, which is a mixture of mantle and slab-derived components in this case of 465 

arc volcanism. However, arc lavas are commonly modified through interaction with the 466 



crust before eruption. An olivine-hosted melt inclusion is considered as being a droplet 467 

of magma trapped early in the growing crystal, and is generally assumed to have 468 

undergone negligible modification through crystal fractionation in the crust as olivine is 469 

typically the first liquidus phase in basalt. However, melt inclusions may not be 470 

completely free from modifications prior to entrapment. Therefore, it is necessary to 471 

exclude geochemical signals relating to any pre-entrapment crustal processes such as 472 

crystal fractionation, magma mixing, wall-rock assimilation, and pre-entrapment volatile 473 

element degassing, before interpreting the chemical variations of melt inclusion 474 

compositions. Once such an analysis has been done, the remaining variation represents 475 

the melting and metasomatic processes in the source region, and its relationship to the 476 

geodynamic setting. 477 

Major and trace element composition of the primitive magma 478 

Combinations of incompatible and compatible elements and their ratios are useful 479 

indicators for discriminating the effects of fractional crystallization, magma mixing and 480 

partial melting of source (e.g. Fourcade and Allegre, 1981; Schiano et al., 2010). 481 

Following the method of Schiano et al. (2010), we determine for each volcano, if the 482 

variation in melt inclusion composition is due to mixing, partial melting or crystal 483 

fractionation (Supplementary material document S1). In detail, some of the inclusions 484 

showed insignificant compositional variation within a sample (Fig. 5a), and those 485 

compositions were placed at the mafic end of whole rock variation (Fig. S4). In other 486 

cases, the inclusions showed variations of Ba/Nb ratio, which is a trace element ratio of 487 

two highly incompatible elements that does not vary during mantle partial melting and 488 

crystal fractionation in magma (Fig.5b). Overall, each sample appears to form either a 489 

distinct cluster (e.g. Kirishima, Kuju), or a trend (e.g. Kaimondake, Yufu) when plotted 490 

using different sets of major and trace elements (Fig. 5). From this initial analysis, we 491 

concluded that a distinct primitive magma (or magmas) exists for each sample, and we 492 

determined a primitive melt composition for each volcano (Table 2).  493 

All inclusion samples, except for those of Fukue, show significant variations in 494 

trace element ratios, such as Rb/Nd and Th/Nd. This indicates that magma mixing and/or 495 

partial melting is the dominant process rather than fractional crystallization (Fig.S3) since 496 

these incompatible element ratios do not fractionate with early crystallization of phases 497 



such as olivine, plagioclase, and pyroxene (see inset, Fig.S3). Inspecting the geochemical 498 

variations for individual volcanoes (Fig. S4), we found that the magmas of Yufu, Aso, 499 

Sumiyoshi-ike and Kaimondake showed geochemical systematics indicating magma 500 

mixing and/or crustal assimilation. On the contrary, fractionation of elements during 501 

partial melting was identified for the magmas of Kuju, Kirishima-OH and Kirishima-SM. 502 

Lastly, the variations of the final group, Fukue and Oninomi, were best explained by 503 

crystal fractionation (Fig. S3).  Because the major and trace element data of Fukue formed 504 

a tight cluster, we chose the least evolved melt based on trace elements (i.e. lowest 505 

concentrations), as being representative of the primitive melt of Fukue (A-I, Fig. S3).  506 

These primitive melt compositions have the lowest SiO2 contents of the magma 507 

series for each volcano, with high MgO, and low incompatible element concentration 508 

(Table 2). Trace element ratios are expected to reflect the composition of mantle derived 509 

magma, but the Fo contents of the host-olivines were more evolved (from 73 to 83) than 510 

the expected mantle value of 89. This suggests that our “primitive magmas” have 511 

potentially suffered from pre-entrapment fractional crystallization and/or pre-entrapment 512 

magma mixing. Alternatively, low Fo content can be acquired through Fe-Mg exchange 513 

with an evolved magma while maintaining the trace element abundance at the time of 514 

entrapment (e.g. Cottrell et al., 2002; Rose-Koga et al., 2021). In this case, primitive trace 515 

element and isotope compositions are conserved in the inclusion. 516 

Melt inclusions of Oninomi show a wide range of SiO2 concentration from 42.7 to 517 

58.6 wt. %, with the variation being greater than that reported for the bulk rocks (51.0 – 518 

54.5 wt. % SiO2, Ohta et al., 1992). While 10 out of the 11 inclusions have less than 48.5 519 

wt. % SiO2, one melt inclusion has an andesitic composition (U-I, 58.6 wt. % SiO2, Table 520 

S2). This andesitic inclusion is tubular and glassy, trapped in the rim of an olivine, 521 

indicating a late-stage entrapment during the crystallization of a cooler magma (Table S1 522 

and Supplementary document S2). We exclude this inclusion during the rest of the 523 

discussion, because of its texture, and the reported evidence of crustal assimilation in 524 

Oninomi basaltic lava, such as the presence of granitic xenoliths and disequilibrium 525 

quartz phenocrysts (Ohta et al., 1992), and a high 87Sr/86Sr ratio (0.704821±0.000011, 526 

Kita et al., 2001; Shibata et al. 2014). Similarly, the anomalous enrichment of Ba, and 527 

LREE found in the two melt inclusions (L-I and DZ-I) is again inferred to be indicative 528 

of crustal assimilation (Fig.3). The remaining inclusions show nearly identical trace 529 



element patterns (Fig. 3), suggesting a similar origin. We chose the least evolved melt in 530 

this group as the primitive melt composition to represent Oninomi volcano (Z-I). 531 

The melt inclusions from Aso volcanoes (KSS), especially the ones from the 532 

eruptions of the last 3700 years, have been described previously, and showed 533 

compositional variations and phenocryst textures consistent with magma mixing 534 

(Kawaguchi et al., 2021). Typically, evolved melt inclusions were trapped in reversely 535 

zoned olivines, with lower Fo content in the core (< 72) than the rim (68-78), while 536 

primitive melts were trapped in normally zoned olivine. The data in this study corroborate 537 

such a conclusion. As shown in Fig.S4, the melt inclusions and reported bulk rock data 538 

of Aso volcano indicate magma mixing (Fig. S4). For Aso (KSS), the least evolved melt 539 

of the mafic endmember is taken as being closest to the primitive composition (K-II). 540 

There is no previous trace element data reported for Kaimondake volcano, and this 541 

limited our “test” to find definitive conclusions on the systematics of its magma 542 

composition. Kaimondake illustrates a weak concave curve on Rb versus Rb/V and Rb 543 

versus Rb/Sr plots, indicating magma mixing between a mafic magma and a more evolved 544 

magma (Fig.S4). Based on this, the composition of a melt inclusion from the mafic 545 

endmember was chosen as the primitive magma composition (J-I).  546 

Melt inclusions of Sumiyoshi-ike (SM1S) show a variation requiring three 547 

component mixing (Supplementary material document S1). First, significant variations 548 

in K2O (or K2O/TiO2), Rb and Ba/Nb are seen for a given SiO2 (Fig. 5, and Fig. S5), 549 

indicating the presence of at least two distinct parental magmas since such incompatible 550 

element variations cannot be generated by fractional crystallization or partial melting of 551 

a single source. Furthermore, the plot of Ba/Nb against K2O/TiO2 (or Rb/Sr) shows that 552 

a third component is required to explain the compositional variation of the inclusions 553 

(Fig. S5ab). One component appears to be granite, added via crustal assimilation, as 554 

already identified by Pb isotope systematics (Brown et al., 2020). The other two 555 

endmembers are the low K2O/TiO2 with the lowest Ba/Nb endmember (S-II), and the low 556 

K2O/TiO2 with the highest Ba/Nb (AA-I). These are considered to be the two 557 

endmembers of the primitive magmas. 558 

For Yufu volcano (YF1L), a negative linear correlation between SiO2 and 559 

incompatible element concentrations, such as K2O and Rb, indicates the mixing of two 560 

magmas. This correlation is independent of the mixing reported from the bulk rock 561 



chemical variations between a basaltic and a dacitic magma (Fig. 5 and Fig. S4, Ohta et 562 

al., 1990; Ohta and Aoki, 1991). Furthermore, this negative correlation cannot be 563 

generated by crustal assimilation, since the partial melt of a crust is SiO2-rich melt (e.g. 564 

granite) with high incompatible element concentrations (e.g., DePaolo, 1981). Melt 565 

inclusions of Yufu show a significant variation in Ba/Nb, which correlates inversely with 566 

SiO2 concentration. The lack of correlation with K2O/TiO2 or CaO/Al2O3 ratios (not 567 

shown) indicates the Ba/Nb variations are not due to the assimilation of plagioclase or of 568 

crustal rocks. Therefore, the geochemical systematics of Yufu melt inclusions indicate 569 

mixing, and the two endmembers have two distinct primitive melt compositions: high and 570 

low Ba/Nb (we selected BQ-III and BD-I, respectively).  571 

Magmas of Kirishima (KROHTH, KRSM11) and Kuju (KJ5S) show geochemical 572 

systematics consistent with a variation of degrees of partial melting from a single source 573 

(Fig.S4). For Kirishima volcano, this interpretation is consistent with whole rock studies 574 

showing the existence of two parental magmas generated by different degrees of partial 575 

melting of a similar source (Inoue, 1985; Miyamoto, 1997). The SiO2 variations are so 576 

restricted that we decided to rely on trace elements for the choice of the most primitive 577 

compositions. We chose the melt inclusions with the consistently lowest trace element 578 

concentrations (i.e. highest degree of partial melting) representing the primitive magma 579 

compositions for Kuju (AD-V) and Kirishima (Ohachidake, G-I and Shinmoedake, E-II).  580 

 581 

Volatile element concentrations in the primitive magma 582 

Volatile concentrations, especially the concentration of H2O and CO2, in primitive 583 

arc magmas are critical geochemical parameters that can constrain models of magma 584 

genesis. While it has been studied extensively, the current consensus is that it would be 585 

highly improbable to be able to measure the primitive H2O and CO2 content directly from 586 

geological materials. In fact, because of the high-diffusivity of H2O in host-olivines, 587 

measured H2O concentrations of melt inclusions likely equilibrated at crustal magma 588 

chamber depths (Portnyagin et al., 2008; Chen et al. 2011; Gaetani et al., 2012; Ferriss et 589 

al., 2018). Nevertheless, the H2O concentrations trapped in melt inclusions are higher 590 

than those of erupted lava, and it is thus considered to provide a minimum estimate. On 591 

the contrary, the other volatile elements, such as CO2, S, Cl and F, do not diffuse out 592 



through the host-olivine within the lifetime of a magma (e.g. Bucholz et al., 2013) and 593 

they retain the values at the time of entrapment. It should be noted that if CO2 degassing 594 

starts before entrapment of the melt in the host olivine, the primitive CO2 composition 595 

cannot be trapped in a melt inclusion.  596 

In this study, several methods were combined to estimate the minimum H2O content 597 

in the primitive magmas of each edifice and the values are reported in Table 2. First, the 598 

melt inclusions from Kuju, Kirishima, and Kaimondake displayed H2O values from 2.8 599 

to 6.1 wt. % (Table S2). These would commonly qualify as “high-H2O” values for the arc 600 

magma (e.g. see compilation in Cooper et al., 2012). Alternatively, the H2O content in 601 

magma can be estimated using a plagioclase-hygrometer (Lange et al., 2009; Waters and 602 

Lange, 2015) in combination with an olivine-liquid thermometer (Sugawara, 2000; 603 

Médard et al., 2008) with a typical uncertainty of 23 ˚C and 0.6 wt. % H2O (Sakuyama et 604 

al., 2014). It should be noted that the hygrometer records the water content in the magma 605 

at the time of plagioclase crystallization, which may happen after melt entrapment in 606 

olivine. Again, this is a minimum H2O estimate for the primitive magma. For example, 607 

for the case of Aso, the plagioclase hygrometer gives an H2O concentration of 4.7 wt.%, 608 

while measured H2O concentration in melt inclusions is approximately 3.0 wt. % (Table 609 

S2, and Kawaguchi et al., 2021). In this case, 4.7 wt. % is taken as the minimum primitive 610 

H2O content.  611 

Another method for estimating H2O content in magma is to adopt the maximum 612 

H2O/K2O ratio of the melt inclusions (Fig. 6a). As these elements are incompatible to 613 

silicate minerals in basalt, the ratio does not vary with crystallization. The highest ratio 614 

should indicate the minimum H2O loss, if a magmatic suite shares the same parental 615 

magma. In the case of mixed magmas, H2O/K2O of the mafic endmember likely defines 616 

the least degassed ratio. This K2O normalization also eliminates the effect of post-617 

entrapment crystallization. Specifically, we looked for the highest H2O/K2O values of the 618 

melt inclusions in this study and the whole rock H2O/K2O from previous studies, in which 619 

H2O content from the plagioclase hygrometer is combined with measured K2O 620 

concentration (Table 3; Zellmer et al., 2012; 2014; Kawaguchi et al., 2021). The H2O 621 

concentration is then calculated by multiplying the highest H2O/K2O ratio by the K2O 622 

concentration of the selected primitive melt (Table 2). This approach is especially 623 

effective for the samples from Oninomi, Yufu, Aso, and Kirishima samples, as H2O in 624 



the inclusions was re-equilibrated to low values. It should be noted that the highest 625 

H2O/K2O ratios among the melt inclusions for each edifice correspond to those of the 626 

selected primitive ones identified in the previous section (Table S2), confirming the least 627 

degassed characteristic of our chosen primitive magma compositions. The exceptions 628 

were for Kuju, Yufu, and Sumiyoshi-ike, for which the highest H2O/K2O is not that of 629 

the selected inclusions representing primitive magma compositions. For Kuju, the 630 

difference in H2O/K2O between the highest melt inclusion and the selected primitive 631 

endmember was within measurement uncertainty, so we chose the value of the 632 

endmember (KJ5S-AD-V). Yufu and Sumiyoshi-ike melt inclusions both have two 633 

parental magmas (see previous section) possibly indicating two sources with different 634 

H2O concentrations; H2O/K2O of the magma cannot be assumed to be constant 635 

throughout mixing. In addition, judging from the low H2O concentrations, these melt 636 

inclusions lost a significant amount of their initial water. While we used the same 637 

approach to present the highest H2O concentrations, those of Yufu and Sumiyoshi-ike 638 

remain truly minimum estimates.  639 

We used the maximum CO2 concentration of each sample as the minimum estimate 640 

for the primitive value, using a similar reasoning as for H2O. We considered the bubbles 641 

present in melt inclusions as an exsolved fluid phase, and “added the CO2 back” to the 642 

melt using the equation of state method (e.g., Tucker et al., 2019). The CO2 content in the 643 

melt inclusions is reported in Table S2, and the comparison before and after the correction 644 

is displayed on Figure 4. The highest CO2 content is found in the alkali basalt of Fukue, 645 

reaching 1.2 wt. %. Taking these corrected values, nearly all melt inclusions were formed 646 

at depths exceeding 10 km (Figure 4). The highest entrapment pressure determined using 647 

the volatile content of an inclusion is 12 kb (Fukue), and 7.4 kb (Aso) for the inclusions 648 

from the volcanic front. 649 

Cl and F concentrations in primitive magmas are likely representative of primary 650 

concentrations, since these elements exsolve at shallow pressure and depth (~100 MPa 651 

for Cl and ~10 MPa for F; Spilliaert et al., 2006). In addition, the expected minimum 652 

entrapment depth inferred from H2O and CO2 concentrations in magma is mostly greater 653 

than 100 MPa, so that Cl and F could not have exsolved before entrapment. Therefore, 654 

the Cl and F concentrations of the selected melt inclusions (Table 2) are considered as 655 

being those of the primitive melt compositions. The primitive F and Cl concentrations 656 



range from 250 to 1160 ppm and 580 to 1270 ppm, respectively. These values yield F/Nd 657 

ratios that are systematically higher by 27 to 45 than a typical MORB mantle value of 658 

21±5 (Workman et al., 2006) or 20 (NMORB Shimizu et al. 2016). Similarly, Cl/K varies 659 

from 0.074 to 0.43, higher than the canonical mantle value of 0.0075 ± 0.0025 (Saal et al. 660 

2002). Such high ratios are consistent with all other arc magmas and attest to these 661 

magmas incorporating a volatile component from the slab (e.g. Van den Bleeken and 662 

Koga, 2015). 663 

S concentrations in primitive magmas are assessed from melt inclusion 664 

compositions, taking into account potential modifications by degassing and sulfide 665 

fractionation. S is a volatile element that is incorporated into the gas phase, and is also a 666 

major element constituting the sulfides that can crystallize in magmas. In silicate magmas, 667 

sulfur solubility depends on redox conditions and therefore on the relative proportions of 668 

sulfide and sulfate ions in the melt (e.g. Carrol and Webster, 1994; Jugo et al., 2005). 669 

Observed high dissolved S concentrations are characteristic of oxidized- and hydrous-670 

basalts found in subduction zones (Roggensack, 2001; Wallace, 2005; Webster et al., 671 

2010, Narvaez et al., 2018). The melt inclusions from our samples (except Kirishima-672 

Ohachidake, Fukue and Oninomi) plot above the S concentration at the sulfide saturation 673 

(SCSS) curve (Fig. 7) and thus appear to be supersaturated in sulfide. The SCSS is 674 

calculated based on the saturation of FeS in which S2- is the dominant S species. However, 675 

no sulfide was found in these samples, suggesting that the majority of S is in the form of 676 

S6+, preventing the formation of FeS. The remaining S is in the form of S2-, and the 677 

concentration must be lower than the SCSS. This explains why these samples are in fact 678 

undersaturated. There are a few exceptions (Y-I and BC-I of Sumiyoshi-ike) in which 679 

sulfide globules were present, suggesting that the SCSS is reached for some 680 

compositions. Lastly, S concentrations of all our melt inclusions are under-saturated with 681 

respect to anhydrite saturation (SCAS), indicating sulfate fractionation had not occurred 682 

(Li and Ripley, 2009; calculated SCAS between 5270 to 8560 ppm for our samples). 683 

Considering that high S concentrations were found in the inclusions, and that inclusions 684 

were trapped deep in the crust, we conclude that S depletion due to degassing is minimal, 685 

except for Yufu and Sumiyoshi-ike. 686 

Fukue and Oninomi are different, and occur at the line of sulfide saturation (Fig. 687 

7). This is consistent with the observations of sulfide globules commonly found in the 688 



whole rock samples. For these samples, clearly it is not possible to determine the primitive 689 

S concentrations. The magmas are sulfide (S2-) saturated at the surface (Fig. 7) and as 690 

solubility of S decreases with pressure (e.g. Mavrogenes and O’Neill, 1999; Hart and 691 

Gaetani, 2006), then the magmas are also sulfide saturated at the depth of melting, 692 

assuming that the redox state of the sub-arc mantle remained reduced. Alternatively, 693 

because the sub-arc mantle is oxidized (e.g. Parkinson and Arculus, 1999; Kelley and 694 

Cottrell, 2009), then the magma remains undersaturated and the melt inclusions 695 

potentially record the primitive S compositions. In the latter case, the magmas of Fukue 696 

and Oninomi became reduced at a late stage, just prior to eruption, to explain the presence 697 

of sulfides. Kirishima-Ohachidake plots on the SCSS, but no sulfides were observed in 698 

the melt inclusions (Fig. 7). The sample has an elevated proportion of S6+ (0.5-0.9, Table 699 

S2), explaining the absence of sulfide (based on visual inspection of hand samples). 700 

Because the sample has the lowest S of all the Kyushu melt inclusions, and the 701 

concentration of H2O, CO2, and S are lower than those of the sample from the near-by 702 

Shinmoedake edifice, the melt inclusions of Kirishima-Ohachidake have potentially 703 

experienced substantial degassing prior to entrapment. We report the sulfur concentration 704 

of the previously selected G-I melt inclusions (800 ppm) as the probable primitive value, 705 

with a footnote (Table 2).  706 

Sulfur may leave the magma through partitioning into the fluid during degassing 707 

(i.e. degassing of H2O and CO2). This S-loss via degassing results in a positive correlation 708 

of H2O with S as reported in natural and experimental samples (e.g. Spilliaert et al. 2006; 709 

Lesne et al. 2011). Such correlations were found among the inclusions from Kirishima 710 

SM, Kaimondake, Kuju, but not for Sumiyoshi-ike, Kirishima-OH, and Yufu, whose 711 

samples showed sulfide saturation (Fig. 6a). The correlation of H2O and S could 712 

alternatively derive from mixing, which is confirmed by correlations between the non-713 

degassing elements F and S (Fig. 6b). It is possible to conclude that S variation is in fact 714 

due to processes other than degassing, and that the S concentration of the mafic 715 

endmember could therefore represent the primitive composition (e.g. Kaimondake). The 716 

compositional variations of Kuju and Kirishima are considered to represent a melting 717 

process. In this case, the highest degree melt represents the least fractionation from the 718 

source, and the lowest trace element concentrations (Table 2). Such primitive magmas 719 

globally coincide with the highest concentrations of S and H2O in the melt inclusions 720 



from a sample. 721 

For Yufu, the S concentrations are paradoxical. The Yufu samples plot above the 722 

SCSS line (Fig. 7; for example, up to 3793), suggesting a high proportion of S6+ in the 723 

magmas. However, the measured S speciation gives negligible S6+ abundances in the melt 724 

inclusions, implying reduced fO2 conditions (Table S3). Furthermore, if the melt 725 

inclusion is really reduced, sulfide should precipitate and the S concentration should be 726 

at the SCSS, but no sulfides were found in Yufu melt inclusions. We argue that this 727 

paradox is a consequence of the heating procedure specific to the sample. As Yufu melt 728 

inclusions were partially crystallized, they were re-homogenized with the heating stage 729 

(e.g. Le Voyer et al., 2010). During this process, a purified He flux was flushed in and 730 

the oxygen fugacity was kept between 10-10 and 10-9 atm, to avoid oxidation of the host 731 

mineral and to ensure an efficient quench. These extremely reduced conditions affected 732 

the S speciation of the melt inclusion, even if the sample were to have originally been 733 

oxidized. In fact, independent analyses from amphibole compositions of basaltic mafic 734 

enclaves found in Yufu indicate oxidized conditions (∆NNO+1 ± 0.4; Ohta et al., 1990; 735 

Ridolfi et al., 2010). Thus, we conclude that the Yufu magma was originally oxidized and 736 

the high-S concentrations of its melt inclusions reflect the value at the time of entrapment.  737 

Mineral phases such as carbonates, sulfides, sulfates and native sulfur were reported 738 

inside the bubbles upon cooling (Kamenetsky et al., 2002, Moore et al., 2015; Robidoux 739 

et al., 2018). Here we did not study the inside of the inclusion bubbles. If such S-bearing 740 

phases were present on the wall of the vapor bubble, primary S concentrations would be 741 

significantly underestimated. Although it is impossible to examine the exposed vapor 742 

bubble a posteriori after polishing, the bubbles in the melt inclusions of this study did not 743 

contain visible solid precipitates (inspection under an optical microscope, Supplementary 744 

material document S2). Without this quantification, we assumed our oxidized melt 745 

inclusions to be undersaturated, and to not crystallize either anhydrites or sulfides.  746 

 747 

S isotope composition of the primitive magma 748 

Identifying the source of magmatic volatiles through S-isotope characterization 749 

requires careful evaluation of all potential modifications to the initial isotopic signature. 750 

In general, modification and variation of sulfur isotope compositions is caused by two 751 

processes: mixing of sulfur derived from isotopically distinct sources, and isotopic 752 



fractionation due to changes in sulfur speciation. For the latter case, a significant 753 

equilibrium sulfur isotope fractionation factor (αgas-melt) was calculated for the degassing 754 

of a magma (αgas-melt = 0.996 to 0.998 at the degassing conditions of the Mazama magma, 755 

e.g. Mandeville et al., 2009), leading to δ34Smelt being heavier than equilibrium δ34Sgas at 756 

oxidized conditions (typically higher than at ~ΔFMQ+1; Marini, 2011; Fiege et al., 2015). 757 

The implication was that open-system degassing potentially reaches an even higher 758 

δ34Smelt (Marini et al., 1994; example of Krakatau 1883 eruption, Mandeville et al., 1998). 759 

For the other case, where modification of S-isotope composition is due to mixing, 760 

previous studies have interpreted variations in S isotope composition of arc lavas as 761 

resulting from the addition of a slab-derived seawater sulfur component to the sub-arc 762 

mantle (Sasaki and Ishihara, 1979; Alt et al., 1993, 2012; Evans et al., 2014). However, 763 

these studies pointed out that the fractionation of S isotopes during the transformation 764 

mechanisms of seawater SO42- to dissolved S in primitive arc magma is poorly 765 

constrained. The variation observed in the present sulfur isotope data (Fig. 8) is caused 766 

by mixing and is unlikely to have been influenced by degassing, because the melt 767 

inclusions of this study trapped magmas before degassing, as inferred from the high CO2 768 

contents (note, the bubble corrected values), with the exception of the Kirishima-OH 769 

sample. 770 

The sulfur fractionation model showed that the variation in δ34S is maximal during 771 

open-system degassing (Marini et al., 2011; Supplementary document S1).  In detail, the 772 

model predicts that even if there was extensive degassing and all the melt inclusions were 773 

affected by open-system degassing of up to 50% of the initial S, the δ34S of the melt 774 

inclusions would be changed by a maximum of 2 ‰, which is the 2σ error of our δ34S 775 

measurements. The δ34S measurement is insensitive to less than 50% degassing due to its 776 

uncertainty in this study. In the case of extremely degassed whole rocks, a study has 777 

reported δ34S of +18.0 ‰ for S contents down to 9 ppm (Aso Nakadake; Ueda and Saki, 778 

1984). Therefore, systematic degassing of 50% is unlikely among the inclusion data here, 779 

since S concentrations of Kyushu melt inclusions are in the range of those reported for 780 

other primitive arc basalts in the world (e.g., as high as ~3000 ppm in Cascades, Wallace, 781 

2005). Furthermore, there is no along-arc correlation between δ34S and Cu (sulfide 782 

fractionation indicator, Beaudry et al. 2018), while local correlations within 3 ‰ are 783 

present, we conclude that the observed isotopic variation is not controlled by sulfide 784 



fractionation. The δ34S values of our primitive melt inclusions therefore reflect the values 785 

of the metasomatized mantle below the volcanoes (Table 2).  786 

A correlation between δ34S and S concentrations would be expected if magma 787 

degassing were to be significant. There is no such correlation among melt inclusions from 788 

each individual Kyushu volcano (Fig. 8a). The inclusions Yufu are the only samples 789 

showing a weak negative correlation (Fig. 8a) and the values of other volcanoes are 790 

clustered around a single value. There is an overall weak negative correlation for samples 791 

from several of the volcanic edifices. However, this correlation is less likely to be due to 792 

degassing as it would require a common S concentration in the parental magmas and 793 

exactly the same fractionation mechanism during degassing of individual edifices spread 794 

across the island. Sulfur depletion through degassing can be illustrated by normalizing 795 

the concentration with a non-degassing, incompatible element such as K2O, (Fig. 8b). 796 

The negative correlations with δ34S are slightly more apparent for Yufu, and Sumiyoshi-797 

ike. Given that trace element concentrations of these samples were controlled by mixing 798 

rather than degassing (Supplementary material document S1), we would argue that the 799 

negative trend is also due to mixing. Therefore, the δ34S values of the mixing endmembers 800 

potentially represent the magma source values, considering their mafic character and high 801 

S concentration. Both endmembers are reported as the potential primitive magmas of 802 

Yufu and Sumiyoshi-ike (Table 2). For Oninomi and Fukue, δ34S values are 803 

systematically lower than those of other oxidized magmas. In fact, the S concentration of 804 

these samples was controlled by sulfide saturation, so the low δ34S values are potentially 805 

explained by fractionation during sulfide precipitation, which leaves the remaining melt 806 

slightly lighter than the oxidized magmas (e.g. Marini et al., 2011).  807 

 808 

The three magma groups of Kyushu  809 

Magma sources are identified using trace element ratios of highly incompatible 810 

elements. Firstly, an inspection of the trace element spidergrams shows that Fukue and 811 

Oninomi magmas are different to the others due to their absence of Nb depletion, 812 

otherwise common in arc magmas (Fig. 3). While the differences between Northern and 813 

Southern Kyushu may not be obvious from the spidergram, they can be distinguished on 814 

ratio-ratio plots. The plot of Ba/Zr against Nb/Zr illustrates the contrast between the arc 815 



magmas and the mantle array derived from MORB samples (Fig. 9a, Ba/Nb ~ 7, note also 816 

model mantle compositions are indicated). Because the contribution of slab-derived 817 

material to the magma source increases the Ba/Zr ratio (Fig. 9a; e.g. Leeman et al. 2005), 818 

arc magmas show elevated Ba compared to Nb. Fukue and Oninomi magmas plot close, 819 

and almost parallel, to the MORB mantle array, while other Kyushu magmas plot above 820 

it and reflect the addition of slab-derived material, rich in Ba. Furthermore, Northern 821 

Kyushu magmas (open symbols in Fig. 9a) show, in general, higher Ba/Zr (and Ba/Nb), 822 

than Southern Kyushu, with the exception of one endmember of Yufu.  823 

The distinct groups are also clearly visible in Fig. 9b (Sr/Y against Th/Nb). The 824 

MORB melt inclusion compositions (small light blue triangles) cluster near the values of 825 

the model depleted MORB mantle, with Sr/Y = 2.3 and Th/Nb = 0.053 (Workman and 826 

Hart, 2005). For peridotite partial melting, Sr/Y in MORB melt inclusions show limited 827 

variation, whereas the Kyushu melt inclusions show a variation of more than a factor of 828 

5, with those of the North (open symbols) plotting at higher Sr/Y values (>30) than those 829 

of the South (<30) and MORB. There is also a variation in Th/Nb, a ratio of highly 830 

incompatible elements (Fig. 9b). This variation is caused by the input of a mobile agent 831 

from the slab to the arc magma source (i.e. metasomatism), and the resulting variation is 832 

characteristic of arc magmatism (see light pink solid circle representing arc olivine-hosted 833 

melt inclusions). The Th/Nb of the slab agent is potentially characterized both by its 834 

physical nature (aqueous flux, silicate melt, or supercritical fluid) and by the source 835 

composition (sediment, altered oceanic crust). For example, Nb is strongly partitioned 836 

into rutile,  DNbrutile/melt ranging 14 to 550 (Foley et al. 2000; Klemme et al., 2005), and 837 

the Th abundance can be controlled by allanite and apatite (Hermann, 2002). As these 838 

minerals are commonly found in the sedimentary and magmatic part of the slab, the slab-839 

issued flux can be characterized by these phases (Klimm et al, 2008). Furthermore, the 840 

value of Th/Nb in the altered oceanic crust is expected to be similar to that of MORB, 841 

and variations in mantle fertility only causes a range in Th/Nb from 0.05 to 0.14 (Fig. 842 

9b). On the contrary, subducting sediments can vary significantly, from 0.10 to 1.5, with 843 

an average of 0.77 (Plank and Langmuir, 1998). As HFSE elements are poorly soluble in 844 



aqueous fluid, it is generally inferred that only silicate melt, especially that deriving from 845 

subducting sediment, is the most effective slab agent that can change Th/Nb ratio.  846 

The high Sr/Y values are often interpreted as being adakite signatures, as they are 847 

the result of partial melting of a slab containing residual garnet (e.g. Defant and 848 

Drummond, 1990; Martin et al. 2005). In this scenario, melting, instead of dehydration, 849 

is the process required to fractionate Sr and Y. High Sr/Y values in Northern Kyushu are 850 

comparable to those from other arc systems, for example the Southern Cascades (1 to 851 

~10% slab melt addition into source mantle, Walowski et al., 2016). Alternatively, high 852 

Sr/Y ratios are potentially derived from magma interacting with garnet and/or amphibole 853 

in the lower arc crust during magma ascent (e.g. Davidson et al., 2007). Because the melt 854 

inclusions of this study have experienced little crystal fractionation and the primitive 855 

chemical components were carefully selected (Supplementary material document S1), the 856 

Sr/Y ratios of our inclusions are unlikely to reflect the extensive lower crust interaction 857 

processes required to change the Sr/Y ratios.  858 

Putting together all of the characteristics of Fig. 9, Northern Kyushu magmas are 859 

higher in Sr/Y and Ba/Zr than Southern Kyushu ones, and the volcanic front magmas 860 

(Northern and Southern Kyushu) are higher in Th/Nb and lower in Nb/Zr than MORB. 861 

There are therefore three sources of the Holocene mafic magmas. Among those, Oninomi 862 

and Fukue are the closest to the mantle array (Fig. 9a), with the lowest Ba/Zr enrichments 863 

of about 1.5 and 1.8, respectively. This very modest slab contribution, particularly for 864 

Fukue, is explained by its back arc location, where the distance to the slab surface is over 865 

400 km (Fig. 1). A low Ba/Th enrichment is also seen in Akashima volcano from the 866 

same Fukue volcanic group (Kuritani et al., 2017). While Ba/Th and Ba/Nb are close to 867 

the mantle values, Sr/Y is significantly different from the depleted mantle value, both for 868 

Fukue and Oninomi. Because the DMM can yield a maximum Sr/Y of ~10 (determined 869 

using [Sr]DMM /[Y]DMM *DYmantle/melt /DSrmantle/melt) during mantle partial melting 870 

(Workman and Hart, 2005), and the Sr/Y values of Fukue and Oninomi are >20, they 871 

must reflect the source composition.  872 

The melt inclusions from the other edifices plot above the mantle array (Fig. 9a). 873 



For example, fluid derived from the slab increased the Ba/Zr of melt inclusions (Fig. 9a) 874 

by a factor of 2.8 (Kaimon) to 9 (Aso). Th/Nb varies by up to a factor of 10 (1.0 for 875 

Kirishima Shinmoedake) compared to that of the MORB-cluster (~ 0.1). The slab 876 

contribution is the most significant for the two Kirishima samples, Aso and Yufu (Fig. 877 

9a), and is interpreted as being mainly due to silicate melt addition causing high Th/Nb 878 

and Sr/Y (Fig. 9ab). On the contrary, for Sumiyoshi-ike and Kaimondake the contribution 879 

is weaker and likely due to aqueous fluids.  880 

Geodynamic significance of the source regions 881 

The presence of these three magma groups indicates that there are at least three 882 

sources responsible for magma genesis below Kyushu Island. Compositional variation of 883 

arc primitive magmas is derived from variations in the degree of melting and the source 884 

composition of the metasomatized mantle, whose composition is controlled by the 885 

quantity and composition of flux added from the slab (e.g. Stolper and Newman, 1994; 886 

Tatsumi and Eggins, 1995). Such variation is observed on a scale of a whole arc (1000s 887 

of km) to within a single volcano (e.g.  Le Voyer et al., 2010). The studied volcanic area 888 

covers a length of 250 km, and the subducting plate underneath has a discontinuity in the 889 

plate, separating a young northern plate from an older southern one (Shikoku Basin and 890 

West Philippine Basin, respectively, Fig. 1).  891 

First, we examine the potential heterogeneity of the mantle below Kyushu 892 

volcanoes prior to metasomatism from the slab. This is particularly important for the 893 

Northern Kyushu volcanoes, for which basalts were previously described as “OIB-like” 894 

for their enriched trace element characteristics (e.g., Nakada and Kamata, 1991). In fact, 895 

Fukue and Oninomi magmas are alkali basalts, as commonly found in oceanic islands, 896 

with slightly elevated Th/Nb values compared to MORB-DM (Fig. 9b), and the Th/Nb 897 

ratio is closer to the value of the bulk silicate earth, which is the enriched mantle 898 

(McDonough and Sun, 1995; Palme and O’Neill, 2003; Lyubetskaya and Korenaga, 899 

2007). Similar systematics can be seen on a Ba/Zr - Nb/Zr plot (Fig. 9a). These diagrams 900 

also show that arc magmas in general have a significant addition of Ba and Th compared 901 

to Nb. The addition of a component rich in Ba and Th to a typical upper mantle (i.e. 902 



depleted mantle) potentially creates similar characteristics to an “enriched” mantle and 903 

detecting the difference between the two is not easy from these diagrams. In detail, given 904 

the ranges of Th/Nb and Ba/Nb of enriched and depleted mantle are much smaller than 905 

the variation of these ratios observed in arcs, we conclude that the initial mantle 906 

heterogeneity does not significantly impact the trace element characteristics of arc 907 

magmas. Therefore, it does not matter if we consider the mantle as being initially enriched 908 

or depleted before the slab agent addition. For the following discussion, we consider 909 

depleted mantle (Workman and Hart, 2005; Salters and Stracke, 2004) as the reference 910 

mantle composition below the arc volcanoes prior to metasomatism.  911 

The dichotomy of Sr/Y values separating North and South Kyushu is thus explained 912 

by slab contribution (Fig. 9b and Fig. 10). Fractionation of Sr/Y is due to the presence of 913 

garnet as a residual phase, and the residual garnet is potentially present in the mantle, 914 

metasomatized mantle, and slab (i.e. sediment and AOC). Following the consensus about 915 

the thermal structure of the arc mantle (e.g., Syracuse et al. 2010), the hottest part of the 916 

mantle below a volcano is located about midway between the bottom of the Moho and 917 

the top of the slab, which is approximately 65-75 km (Fig. 1). This is not a depth at which 918 

melt would form in garnet peridotite (e.g. Walter, 1998). Considering that there is no 919 

strong upward movement of the solid mantle below a volcano, the maximum melting is 920 

expected to be attained at the level of this hottest area of the mantle, and this is likely the 921 

condition of equilibration between mantle and melt. The garnet signature cannot be 922 

produced in the mantle beneath the volcanic front. The residual garnet signature must 923 

therefore come from the slab either from subducted sediments or AOC (Defant and 924 

Drummond, 1990; Martin et al. 2005), or the metasomatized mantle near the slab-mantle 925 

interface (e.g. Lara and Dasgupta, 2020). Furthermore, Sr/Y is more strongly fractionated 926 

by the garnet-melt pair, than by garnet-aqueous fluid (Martin et al., 2005). On this basis, 927 

the high Sr/Y magmas in Northern Kyushu are more consistent with the presence of a 928 

silicate melt near the slab - mantle interface with the presence of residual garnet in 929 

sediment and/or AOC.  930 

There remains the question, does the difference between the north and south simply 931 



represent the presence/absence of silicate melt or does it represent variable contributions 932 

from different lithologies of the slab (i.e. AOC and sediments)? The answer to this 933 

question is non-unique, as the exact compositions of the subducting material are 934 

undeterminable, as are the exact pressure-temperature conditions at which the 935 

dehydration/melting reactions take place. Nevertheless, there exists a wealth of databases 936 

which allow an educated guess to be made about the composition of the slab material 937 

(e.g. Plank and Langmuir, 1998; Plank, 2014), and geodynamic models of pressure-938 

temperature paths along the subduction zones (Syracuse et al., 2010). Here, we used the 939 

model package, Arc Basalt Simulator 5 (ABS 5, Kimura 2017), to test the role of the 940 

fluxes from sediments and AOC, as well as the presence/absence of silicate melt 941 

(Supplementary document S1 for detail). ABS 5 conveniently includes sediment and 942 

AOC compositions from around Japan. Furthermore, it includes the models of pressure - 943 

temperature trajectory, pseudosection diagrams for related lithologies, a composite slab 944 

with six lithologies, and chromatographic fluid/melt modification adjustments. In Fig. 945 

11a,b, the endmember fluids/melts derived from a sediment (Nankai sediment, ABS 5) 946 

and AOC (Shikoku basin, ABS 5) are plotted, together with depleted mantle. As expected, 947 

the Th/Nb ratio of the fluxes derived from AOC is close to the value of the depleted 948 

mantle, and those derived from the sediments have significantly higher Th/Nb. Because 949 

the composition of the slab derived agent controls the ratios of highly incompatible 950 

elements, both fluid/melt phases from sediment and AOC must modify the source mantle 951 

to cover the range of variation observed (see mixing curve in Fig. 11b). However, because 952 

of the contrast in the proportion of water in the fluid (~90%) and melt (~10%), it requires 953 

a lower aqueous fluid flux to attain the equivalent extent of wet mantle melting. In other 954 

words, to reach the same amount of melted mantle, the proportion of slab melt needed 955 

will be greater than that of fluid. On Fig. 11, this tendency is displayed by the position of 956 

thick dashed lines, which are the result of the flux melting model with degrees of melting 957 

ranging from 5- 20%. For example, the arc magmas derived from slab melt (blue and 958 

orange lines) systematically plot at higher Sr/Y than those derived from fluid (Fig. 11b). 959 

This explains why slab derived melt modifies the mantle more than fluid at a given 960 



melting percentage. 961 

The compositions of the mantle fluxing agent illustrate the first-order influence on 962 

the trace element characteristics of arc magma, as has been known and discussed for many 963 

years (e.g., Tatsumi, 1989; Kessel et al., 2005). As shown in Fig. 11, one approach is to 964 

use a detailed forward model to predict the flux from the slab. Alternatively, ABS 5 also 965 

includes a function of the inverse fit, by iteratively searching for the best fit solution by 966 

changing conditions of fluid release along the slab. Given the multiple parameters, it was 967 

fairly easy to create an inverse model that yielded results showing a contrast of slab 968 

surface temperatures between North and South Kyushu. However, we concluded that the 969 

fit-results of the inverse calculation of ABS 5 do not strengthen the conclusion already 970 

shown with Fig. 11, so we did not discuss this further. Instead, we tested a mixing model 971 

using three components: the depleted mantle, a sediment flux, and an AOC flux (Table 972 

S8), and calculated the proportion of a mixture satisfying the observed incompatible ratios 973 

(Th/Nb, Rb/Ba, Ba/Nb, Sr/Y, Sr/Nd, Nb/Zr). The results of the calculation also confirm 974 

the conclusion drawn from Figs. 9, 10, and 11. Based on the proportion of the mixing 975 

model (Fig. 12), Northern Kyushu volcanoes show stronger slab input than the Southern 976 

volcanoes, suggesting a higher amount of flux due to higher temperatures. Sediment - 977 

AOC contributions are also variable but do not correlate with the geographical 978 

distribution of volcanoes. Lastly, we caution that this trend is just based on the Holocene 979 

mafic melt inclusions that we could find, and the existence of the north-south dichotomy 980 

needs to be tested by extending the sampling to other mafic eruptions of different ages.  981 

The Northern Kyushu group, Yufu, Kuju, and Aso, are associated with silicate melt 982 

input from the slab, and the southern Kyushu group, Kirishima, Sumiyoshi-ike, 983 

Kaimondake, are associated with aqueous fluids (Fig. 11b). However, the amount of flux 984 

from sediment compared to the amount of flux from AOC creates different sub-groups. 985 

Aso, Kirishima and one endmember of Yufu (BQ-III) have higher Th/Nb values than 986 

Kuju, Kaimondake, Sumiyoshi-ike, and the other endmember of Yufu (BD-I). This 987 

difference is explained by a higher proportion of sediment flux than that of AOC (Fig. 988 

11ab). Aso, Kirishima, and Yufu (BQ-III) plot closer to the mixing curves of sediment-989 



depleted mantle (Fig. 11ab). Curiously, this variation of sediment-AOC contributions 990 

does not correlate with the geographical north-south separation, or with the depth to the 991 

slab surface, or the dip of subduction. It should be noted that Yufu volcano melt inclusion 992 

magmas are a mixture of both melts, that with more sediment-derived flux and that with 993 

less. This variability within a single volcano indicates that primitive magmas arriving at 994 

the base of the crust can be heterogeneous for different reasons. We also note that the 995 

degrees of dehydration of the slab in the forearc region along Kyushu are variable, with 996 

patchy regions of high and low water contents in the forearc mantle wedge, as identified 997 

by a seismic tomography study (Abe et al. 2013). This indicates that availability of 998 

“water” in the slab below the arc volcanic front may vary with respect to spatial and 999 

perhaps temporal distributions, causing non-systematic contributions of sediment and 1000 

AOC fluxes. 1001 

Magmas from Fukue and Oninomi are significantly different from those of the main 1002 

volcanic front. They appear to record significantly different mantle processes. Fukue 1003 

magma is slightly higher in Ba/Th and Th/Nb than the depleted mantle alignment (Fig. 1004 

9a). Fukue volcano is located in the back-arc region, where slab surface depth is 1005 

approximately 400 km. At such a depth, the slab is mostly dehydrated and unlikely to 1006 

contribute significant aqueous flux that could lead to melting. Instead, magma genesis at 1007 

Fukue is caused by mantle upwelling, potentially responding to the extension of the back-1008 

arc region, because Fukue is located broadly at the northern extension of Okinawa trough. 1009 

If the degree of partial melting is low, it explains the LREE enriched pattern of the 1010 

spidergram (Fig. 3). Alternatively, the magma genesis could be related to a deep fluid 1011 

released from the older Pacific plate stagnating at the mantle transition zone, extending 1012 

over a much broader area than the young Philippine Sea plate (Kuritani et al., 2017). This 1013 

model is constrained by isotopic composition of Fukue magmas, which are similar to 1014 

deeply recycled sediment (EM2), and provides the mechanism for broader magmatic 1015 

activities extending to China. A recent seismic tomography study appears to indicate the 1016 

that Philippine Sea plate is present beneath Fukue (Zhao et al., 2012; Liu and Zhao, 2016), 1017 

and if the contribution of the Pacific plate is critical, such mantle upwellings must flow 1018 



around the upper Philippine sea plate. 1019 

Lastly, Oninomi volcano is unique in character, quite different from the near-by 1020 

volcanoes (e.g. Yufu, Kuju, and Tsurumi-dake, not studied). The spidergram of Oninomi 1021 

magma shows no arc-magma-like character (Fig. 3), and it is somewhat similar to that of 1022 

Fukue. The Ba/Nb and Th/Nb values are close to those of depleted mantle, suggesting it 1023 

records little input form the slab. It seems that a small degree of partial melting of a 1024 

slightly metasomatized mantle would be sufficient to explain the magma composition. As 1025 

the volcano is located in the middle of a 40 km wide graben, active for the last 6 Ma 1026 

(Kamata and Kodama, 1994), then if the extension is accompanied by lithospheric 1027 

thinning, corresponding upward decompressing in the mantle below could cause adiabatic 1028 

melting (McKenzie and Bickle, 1988). It should be noted that mantle melting in response 1029 

to a small change in crustal load has been observed and demonstrated in Iceland, where 1030 

deglaciation has caused magmatism (Slater et al., 1998). We consider that this upward 1031 

decompression melting in response to the extension is the most plausible mechanism for 1032 

magma genesis at Oninomi. 1033 

 1034 

Sources of sulfur in the subduction zone 1035 

The sulfur isotope compositions of melt inclusions from the Kyushu volcanoes in 1036 

this study reflect the compositional variation of magma sources rather than degassing 1037 

process. Now we need to look at what could be the main contribution to sulfur isotope 1038 

variation in the subduction zone magmas? In our data set, δ34S weakly correlates with 1039 

Th/Nb, which is sensitive to slab input (Fig. 13a). As Th/Nb indicates the composition of 1040 

the metasomatized magma source, and the depleted mantle is at -0.91 ‰ for δ34S, and 1041 

0.06 for Th/Nb, the variation is reflecting the slab input. Comparing with other melt 1042 

inclusion measurements from Antilles and Kamchatka (Bouvier et al., 2008; Gurenko et 1043 

al., 2018; 2021), our data plot in a similar range, showing global systematics. Fig. 13b 1044 

illustrates a lack of systematics of δ34S and Cl/F, which is strongly influenced by the 1045 

presence of fluid and hydroxyl minerals (amphibole and mica). It is inferred that an 1046 

aqueous fluid flux from lithologies with residual hydroxyl minerals yields higher Cl/F 1047 

than a slab melt flux (e.g. Van den Bleeken and Koga, 2015). For example, Cl/F of a cold 1048 



subduction volcano is 3.0±2.0 (e.g. melt inclusions from Iwate volcano; Rose-Koga et 1049 

al., 2014), and melt inclusions from typical fresh MORB are expected to have values 1050 

around 0.4±0.4 (Le Voyer et al., 2015, 2019; Wanless et al., 2014). Kyushu magmas 1051 

cluster around Cl/F = 2.1±0.8. We conclude from this systematics that the nature of the 1052 

fluid (aqueous or melt) is not the main factor controlling the variation in sulfur isotopes. 1053 

We have also examined other trace element indicators that are considered sensitive to 1054 

fractionation processes rather than source composition. For example, V (either 1055 

concentration or ratios normalized to other trace elements) does not correlate with δ34S. 1056 

This suggests that variation in sulfur isotopes may not be due to changes in oxidation state 1057 

of the fluid carrying the sulfur. Similarly, δ34S does not correlate with Sr/Y (residual 1058 

garnet), F/Nd (residual hydroxyl minerals or breakdown), or La/Sm (degree of melting). 1059 

The variation in δ34S in Kyushu magma must be related to the compositional variation of 1060 

the slab component, which is transported into the mantle wedge by a flux of mobile 1061 

agents, likely a solute rich melt.     1062 

Positive correlations between δ34S and trace element ratios are also found, for 1063 

example with Rb/Ba, and Pb/Ce, in addition to Th/Nb (Fig. 14). Such recurring 1064 

correlations underlines that the variation in δ34S of these Kyushu magmas is again related 1065 

to the slab flux. Careful inspection of these correlations identifies two distinct 1066 

contributions in addition to the depleted mantle.  In Fig. 14a, the positive trend for the 1067 

samples from the main volcanic front (excluding Fukue and Oninomi) can be explained 1068 

by mixing between a first endmember with a low δ34S and a Rb/Ba lower than that of 1069 

depleted mantle (approximately δ34S < +3 ‰, Rb/Ba < 0.03), and a second endmember 1070 

with a high δ34S and high Rb/Ba. Along this positive trend, the Rb/Ba variations of the 1071 

slab flux come from the different source composition, combined with Rb/Ba 1072 

fractionations due to the presence of specific minerals, for example (i) the presence of 1073 

residual phyllosilicates, which have an affinity for Rb and Ba, and can fractionate them 1074 

from the slab flux, (ii) Ba is preferentially incorporated into feldspar relative to a silica 1075 

rich melt. As for the sources from the slab, first, the AOC is expected to inherit the Rb/Ba 1076 

ratio of MORB, because only slight addition of Rb is expected during MORB alteration 1077 

(0.09; Staudigel, 2003), and this value is similar to that of the depleted mantle (0.089; 1078 

Workman and Hart, 2005 and 0.073; Salters and Stracke, 2004). During subduction of 1079 

this AOC there is no significant amount of phyllosilicates in the metamorphosed basalt 1080 



and gabbro, therefore neither endmember can be derived from the AOC. We note that 1081 

altered basalts sampled at the ocean floor often have high Rb/Ba (e.g. Shu et al., 2017; 1082 

Hickey-Vargas et al., 2018) but such basalts are volumetrically insignificant compared to 1083 

the total mafic material subducted. Second, the sediment flux component used in Fig. 11 1084 

gives Rb/Ba as 0.007 and 0.009 for fluid and melt respectively. Even considering oceanic 1085 

manganese nodules and carbonates, they all have Rb/Ba <0.01 (e.g. Li and Schoomaker, 1086 

2005). So, based on the Rb/Ba ratio, the sediments would be the best candidate for the 1087 

endmember with low Rb/Ba and low δ34S. Subduction zone sediments are reported to 1088 

have a range of negative δ34S values (-40 to +10 ‰; e.g. Sasaki and Ishihara, 1979; Lew, 1089 

1981; Alt and Burdett, 1992; Canfield and Farquhar, 2009; Alt and Shanks, 2011; Peters 1090 

et al., 2010). 1091 

For the high Rb/Ba endmember, we considered other specific slab components. For 1092 

example, the Rb/Ba ratio of shale is high (0.24) and seawater has a Rb/Ba of 8 (Li and 1093 

Schoomaker, 2005). The corresponding δ34S values range from -16 to -38 ‰ (Sasaki and 1094 

Ishihara, 1979; Cruse and Lyons, 2004) for shale, and +21 ‰ for seawater (Rees et al., 1095 

1978). Seawater sulfur is sulfate, and thus seawater derived material rich in sulfate tends 1096 

to give strong positive sulfur isotope values. The systematics of δ34S and Rb/Ba suggest 1097 

a slab component of seawater itself (or rocks impregnated by seawater sulfate). Forearc 1098 

serpentinites also show variable but high Rb/Ba, because of varying interactions with 1099 

seawater (Savov et al. 2005; Deschamps et al., 2010; Albers et al. 2020). Similarly, 1100 

feldspar-bearing sandstone, as well as granite from south-west Japan, is also reported to 1101 

have high Rb/Ba (Shinjoe 1997; Kiminami et al. 2009). These rocks are magnetite-1102 

bearing (and often sulfide-bearing) and sulfate is not expected to be stable. Only brown 1103 

clasts of serpentinites are reported to have an oxidized state due to extensive interaction 1104 

with seawater expected to have occurred near the seafloor (Albers et al. 2020). Because 1105 

of this, it is not clear if serpentinite is an adequate sink for high δ34S, commonly related 1106 

to sulfate. Alternatively, serpentinites in the subducting slab can potentially carry sulfides 1107 

with positive δ34S, due to extensive seawater interaction. Such serpentinites are expected 1108 

to release sulfate-bearing fluids with δ34S = 14 ‰, at the time of serpentinite dehydration 1109 

to chlorite harzburgite (Alt et al. 2013). It is not clear if these ultramafic rocks are the 1110 

definitive carrier satisfying both the high δ34S and high Rb/Ba, but it appears that they are 1111 

certainly the potential carriers of a seawater sulfur isotope signature.  1112 



Considering the discussion above and our current knowledge, we conclude that 1113 

seawater is a plausible vector responsible for causing the high δ34S and high Rb/Ba 1114 

geochemical signature in Kyushu arc magmas. Direct injection of seawater into the source 1115 

region of arc magmas is a possible scenario as there are reports indicating the presence 1116 

of seawater in the subduction zone eclogite (seawater fluid inclusions; e.g. Sumino et al., 1117 

2010; Kawamoto et al., 2013). The model of the deep injection of seawater fluids 1118 

contradicts with observations of mantle-like sulfur isotopes in the most primitive deep 1119 

arc cumulates (Lee et al., 2018), where the δ34S in a suite from Sierra Nevada cumulates 1120 

correlates with an index of magma evolution indicating that high δ34S is a result of crustal 1121 

assimilation and crystal fractionation process (Lee et al., 2018). Consequently, this 1122 

suggests an efficient release of sulfate from the slab before the arc magmatic front, 1123 

leaving the reduced sulfide with lighter δ34S as the dominant sulfur species transported to 1124 

the deep mantle (Lee et al., 2018). Similar conclusion about the negative δ34S of the slab 1125 

component was presented by Li et al. 2020 based on the measurements of sulfides in 1126 

metamorphic veins. On the contrary, Walters et al. 2019 concluded that the slab 1127 

component had a positive δ34S based on their analysis of sulfides in subducted ophiolites. 1128 

Lastly, the analysis of subarc xenoliths indicates the presence of positive δ34S primitive 1129 

magma (Bénard et al. 2018). We think this disparity illustrates the complexity of sulfur 1130 

behavior in magma. It should be noted that sulfur in the Kyushu inclusions are dominantly 1131 

sulfate, while the cumulates in Lee et al.’s study (2018) and the slab component of Li et 1132 

al. (2020) suggest the presence of reduced magma and crystallization at reduced condition 1133 

dominated by sulfide. Such a contrast may mean that there is a range of redox states of 1134 

arc magmas controlling the sulfur isotopic signature.   1135 

The ratio of Pb/Ce correlates with δ34S. This correlation is consistent with the 1136 

interpretation based on the systematics of Fig. 14a (δ34S vs. Rb/Ba). The flux from the 1137 

slab gives a Pb/Ce value ranging from 0.13 ~ 0.45 for an AOC-derived flux (ABS 5 model 1138 

in our study), of 1.1 to 4.0 for a sediment-derived flux, and 1.7 for seawater (Li and 1139 

Schoomaker 2005). Furthermore, no negative δ34S component is needed to describe the 1140 

systematics of the Kyushu magmas, so long as a strongly negative sulfur isotope 1141 

component is subducted. For example, sulfide in sediments and oceanic crust is as low as 1142 

- 40 ‰ (Peters et al., 2010; Alt and Shanks, 2011). The lack of a negative component 1143 

suggests that the dominant sulfur mobility from the slab is carried out by sulfate rather 1144 



than sulfide, and the negative δ34S of sulfide is perhaps not incorporated into the slab flux. 1145 

While our findings may apply only to the local sulfur cycle in Kyushu volcanoes, it shows 1146 

potential isotopic filters operating at the subduction zone that are primarily controlled by 1147 

initial sulfur speciation. Lastly, some negative δ34S values are reported in melt inclusions 1148 

and embayments from the Lesser Antilles, where there are known to be large sediment 1149 

inputs into the mantle wedge (Bouvier et al., 2008), and a decreasing δ34S with decreasing 1150 

S concentration for melt inclusions from Kamchatka (Gurenko, 2021); they are 1151 

interpreted as the result of sulfur fractionation in the crust (i.e. sulfide precipitation and/or 1152 

degassing). The presence or absence of negative δ34S slab flux is thus critical in 1153 

understanding S cycle systematics in the subduction zone system. 1154 

 1155 

Conclusions 1156 

- Olivine-hosted magmatic melt inclusions along the Kyushu arc in this study are 1157 

from mafic tephra deposits. We identified the melt inclusion with the most 1158 

primitive magma composition for each volcano. 1159 

- The highest water content was 6.1 wt. %, in agreement with the high values of 1160 

other arcs, while the CO2 in the inclusions was lost. The minimum entrapment 1161 

pressures determined by the volatile content of inclusions reaches the base of the 1162 

arc crust, indicating deep entrapment of the inclusion. 1163 

- We found three primitive magma groups: North and South Kyushu, and a group 1164 

with little slab input (Oninomi and Fukue). The northern group systematically 1165 

shows higher Sr/Y values than the southern group. This can be explained by the 1166 

slab agent being hotter and recording a stronger slab melt signature with residual 1167 

garnet.  1168 

- Magma at Oninomi volcano is likely produced by a small degree of mantle melt 1169 

with nearly no input from the slab. The crustal extension in the area may have 1170 

triggered such a small degree of melting. 1171 

- Fukue is located in the back-arc and its magma with small slab input is consistent 1172 

with its geodynamic setting. 1173 

- The sulfur isotope composition of the magma source was determined by carefully 1174 

examining the trace element systematics and checking that the melt inclusions 1175 



were not influenced by any degassing processes. Careful analysis of such results 1176 

reveals that sulfur isotopes from the Kyushu arc magmas are characterized by a 1177 

mixture of the depleted mantle, slab sediment, and a third component, which could 1178 

potentially be seawater.  1179 
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 1213 

Figure captions 1214 
 1215 
Fig. 1 Map of the Japanese Island arc and Kyushu sample locations. a) Map shows the tectonic 1216 
setting of Japanese Islands (after Miyoshi et al., 2008 and Mahony et al., 2011). Gray solid lines 1217 
represent the volcanic front. Major ridge and plateau of the Philippine Sea plate are indicated by 1218 
gray dashed lines. The formation ages of the Philippine Sea plate are from Okino et al. (1994, 1219 
1998) and Deschamps and Lallemand (2002), and that of the Pacific plate is from Müller et al. 1220 
(2008). Location of the study area is indicated by a red square. b) Map of Kyushu Island showing 1221 
target volcanoes. Open and solid triangles indicate the locations of Quaternary volcanoes, with 1222 
active volcanoes shown as solid red triangles. Gray solid lines and dotted lines denote the iso-1223 
depth contours to the upper boundary of the seismic (Nakamura and Kaneshiro, 2000; Baba et al., 1224 
2002; Nakajima and Hasegawa, 2007; Hirose et al., 2008; Saito, 2017) and aseismic parts of the 1225 
subducting plate (Zhao et al., 2012), respectively. The blue field and red dotted line mark the 1226 
inferred subducting Kyushu-Palau ridge and slab fracture, respectively (Park et al., 2009). FK: 1227 
Fukue, UZ: Unzen, TS: Tsurumi, ON: Oninomi, YF: Yufu, KJ: Kuju, AS: Aso, KR: Kirishima, 1228 
SM: Sumiyoshi-ike, SK: Sakurajima, KM: Kaimondake. 1229 

 1230 
Fig. 2. Total alkali (Na2O + K2O) vs. SiO2 diagram for olivine-hosted melt inclusions. Dashed 1231 
lines represent boundaries of classification of volcanic rocks (Le Maitre et al., 2002). Black solid 1232 
line indicates the boundary between alkalic and sub-alkalic volcanic rocks (Miyashiro, 1978). All 1233 
oxide concentrations have been corrected for post-entrapment crystallization and normalized to 1234 
100 wt. % as volatile-free. Reported whole rock compositions of Kyushu Island volcanic rocks 1235 
are shown as small solid circles for comparison: pink, volcanic rocks along the volcanic front; 1236 
grey, other volcanic rocks of Kyushu. WR data: Sawamura and Matsui, 1957; Shinno, 1966; 1237 
Nakamura, 1971; Nakada, 1986; Nakada and Kamata, 1988; Kakubuchi and Matsumoto, 1990; 1238 
Ohta et al., 1990, 1992, Ohta and Aoki, 1991; Iwamori et al., 1991, 1992; Nagao et al., 1992; 1239 
Kakubuchi et al., 1995; Imura and Kobayashi, 2001; Kita et al., 2001, 2012; Uto et al., 2004; 1240 



Kawanabe and Sakaguchi, 2005; Sugimoto et al., 2005, 2006; Miyoshi et al., 2005, 2008a, b, 1241 
2010, 2011; Sakuyama et al., 2009, 2014; Hoang et al., 2013; Tajima et al., 2013, 2014; Shibata 1242 
et al., 2013, 2014; Kawanabe et al., 2015; Yamasaki et al., 2016; Kuritani et al., 2017; Brown et 1243 
al., 2020; Nche et al., 2021. 1244 

 1245 
Fig. 3. Primitive mantle-normalized trace element compositions of melt inclusions. The evolved 1246 
melt inclusions of KSS (higher than 52 wt.% SiO2 on hydrous basis) and assimilated inclusions 1247 
of ON2S are shown in different colors, as they may be influenced by secondary processes. 1248 
Composition of the primitive mantle is taken from Sun and McDonough (1989). The order of 1249 
elements after Pearce et al. (2005). 1250 

 1251 

Fig. 4. H2O and CO2 concentrations in melt inclusions. The concentrations have been corrected 1252 
for PEC and for gas bubbles. Gas bubble-uncorrected CO2 concentrations measured in melt 1253 
inclusion are also shown in light gray. Dashed contour lines represent solubility at 1, 3 and 5 kbars 1254 
(from inside to outside) at 1100 ˚C, calculated for a typical basaltic melt of 49 wt.% SiO2 and 1255 
1100 ˚C using VolatileCalc (black lines, Newman and Lowenstern, 2002) and for our K-rich melt 1256 
inclusion (FKONON-O-I) using MagmaSat (red lines, Ghiorso and Gualda, 2015). Error bar is 1257 
standard error (1σ).  1258 

 1259 
Fig. 5 Variations of melt inclusion compositions. (a) K2O vs. SiO2 shows an absence of overall 1260 
correlation of Kyushu magmas. For individual volcanoes, Aso, Kaimondake and Kirishinma-1261 
Shinmoedake (SM) magmas show a positive correlation and Yufu shows a weak negative 1262 

correlation. (b) Ba/Nb vs. SiO2 shows a scatter of melt inclusion compositions, while showing 1263 

tight clusters for each volcano. The scatter suggests the absence of a common geochemical 1264 
process along the arc. Some individual clusters show a small variation in Ba/Nb, a ratio of two 1265 
highly incompatible elements, indicating the absence of mixing, either of the source, magma, or 1266 
crust. On the contrary, Yufu and Sumiyoshi-ike magmas show a negative slope with significant 1267 
variation of Ba/Nb, indicating the presence of mixing. Note that the evolved melt inclusions of 1268 
Aso are excluded for clarity (higher than 52 wt.% SiO2 on hydrous basis). 1269 

 1270 
Fig. 6. K2O-normalized volatile element abundances in the melt inclusions. (a) H2O and S show 1271 
a positive correlation (except for Oninomi, Sumiyoshi-ike, and Yufu). Such a correlation is often 1272 
interpreted as a result of magmatic degassing. However, (b) F vs. S also shows a strong correlation 1273 
(i.e. Kaimon) indicating that the correlation is not caused by H2O-loss through degassing because 1274 



F is only weakly soluble in magmatic fluids. Note, the horizontal axis is on a log-scale to illustrate 1275 
the wide range of S/K2O values. 1276 

 1277 
Fig. 7 Comparison of measured sulfur concentrations in primitive melt inclusions with the sulfur 1278 
content at sulfide saturation (SCSS). Concentrations for all the other melt inclusions are shown 1279 
as grey symbols. Symbols are the same as in Figure 2. Dashed black line indicates the 1:1 line. 1280 
SCSS was calculated according to Fortin et al. (2015) using measured H2O concentration and the 1281 
trapping temperature (Ttrap of Table S7) of melt inclusions at 0.1 GPa. For primitive melt 1282 
inclusions, we used minimum H2O concentrations estimated from the highest H2O/K2O ratio 1283 
(Table 3). We took the average measured H2O concentration of the melt inclusions from each 1284 
edifice and assigned this value to the melt inclusions of the same edifice for which H2O data was 1285 
missing. Decrease of SCSS caused by pressure increments does not change our conclusions, since 1286 
it does not significantly decrease the S concentration. For example, an increase in pressure from 1287 
0.1 GPa to 0.5 GPa decreases the S concentration in the primitive melt inclusions by a maximum 1288 
of 300 ppm. 1289 

 1290 
Fig. 8. Sulfur isotope composition plotted against sulfur abundance. (a) δ34S vs. S plot to illustrate 1291 
isotope fractionation due to degassing. Here, there is no obvious trend, except perhaps for Yufu. 1292 
(b) δ34S vs. S/K2O plot may illustrate the degassing process better by compensating concentration 1293 
increase due to magma differentiation. Even here, Yufu, Kaimondake and Sumiyoshi-ike show a 1294 
weak negative trend. Error bars represent 2 standard errors, corresponding to approximately 95 1295 
% confidence interval. 1296 

 1297 
Fig.9 Slab-derived material contribution to the magma source. a) Ba/Zr vs. Nb/Zr plot. Small blue 1298 
triangles are melt inclusion and glass MORB data (Shaw et al. 2010; Wanless et al., 2012; 2014; 1299 
Le Voyer et al. 2015; 2017; 2019; Shimizu et al. 2019), and they define a trend with a slope of 1300 
Ba/Nb of 7, shown with a blue line (also called the “MORB-OIB mantle array; Leeman et al., 1301 
1990). Small pink circles are arc melt inclusions (Straub and Layne, 2003; Churikova et al., 2007; 1302 
Elburg et al., 2007; Portnyagin et al., 2007; Sadofsky et al., 2008; Vigouroux et al., 2008; 1303 
Wysoczanski et al., 2006;  Bouvier et al., 2008, 2010a,b; Sorbadere et al., 2011, 2013; Rose-Koga 1304 
et al., 2014; Walowski et al., 2016; Narvaez et al., 2018; Barker et al., 2020). Blue circles with a 1305 
cross indicate the models of the depleted mantle (Workman and Hart 2005; Salters and Stracke 1306 
2004). Purple circles with a cross indicate the model bulk silicate Earth (McDonough and Sun 1307 
1995; Palme and O’Neill, 2003; Lyubetskaya and Korenaga, 2007). All the melt inclusions from 1308 



Kyushu volcanoes plot above the blue line, in the arc magma field.  b) Sr/Y vs. Th/Nb plot. Melt 1309 
inclusions from volcanoes of Northern Kyushu (open symbols) have Sr/Y values higher than 1310 
those from Southern Kyushu volcanoes (filled symbols), with a Sr/Y value of 20 separating the 1311 
two groups (see text for explanation). 1312 

 1313 
Fig.10 Sr/Y ratio and Y concentration of melt inclusions. As in Fig. 9, pink and blue filled 1314 
symbols indicate olivine hosted melt inclusion compositions for arc magmas, and MORB, 1315 
respectively. Symbols filled in white are samples from Northern Kyushu, and filled with color 1316 
indicates samples from Southern Kyushu. Sr/Y clearly separates the north from the south.  1317 
 1318 
Fig.11 Mixing and melting trajectories of subduction zone endmembers are overlaid on Fig. 9ab. 1319 
Blue cloud is MORB melt inclusion data, and pink cloud is arc basaltic melt inclusion data. Green 1320 
square indicates the depleted mantle (Workman and Hart, 2005), and filled circles are slab derived 1321 
fluxes: blue, silicate melt from AOC; light blue, aqueous fluid from AOC; orange, sediment melt; 1322 
brick-red, sediment fluid (exact compositions of these fluids are in Table S8). Black lines are 1323 
mixing curves between a flux and the mantle. Metasomatized mantle plots along this curve. In 1324 
the case of three component mixing between the mantle and other fluxes, the metasomatized 1325 
mantle plots in the region between two mixing curves. Thick colored lines indicate the trajectory 1326 
of a melting model (modified after the flux model of Van den Bleeken and Koga 2015). Tick 1327 
marks indicate 5% intervals of the degree of melting ranging from 5 to 20 %. The larger degree 1328 
of melting approaches the mixing curve. It should be noted that variation caused by melting does 1329 
not deviate significantly from the mixing lines. (a) the figure illustrates a clear mantle array, and 1330 
the input from the slab is the main cause of deviation from the array. The melt flux is more 1331 
efficient than the fluid flux at raising Ba/Zr. (b) the figure indicates high Sr/Y, a signature of 1332 
residual garnet. Again, the melt flux is more efficient at producing high Sr/Y magmas than the 1333 
fluid flux. 1334 

 1335 
Fig. 12. Results of mixing calculations for the primitive end members. Note that trace element 1336 
characteristics are dominantly controlled by the depleted mantle. Small additions of fluxes from 1337 
the slab are sufficient to satisfy the model. It should be noted that this calculation is based on the 1338 
incompatible element ratios. Specifically, the optimal solution for mixing was confirmed by 1339 
element ratios rather than concentration match. Thus the mixing fraction is independent of the 1340 
element fractionation by partial melting. Northern Kyushu samples are more strongly influenced 1341 
by slab signature, i.e. a slightly smaller fraction of the deleted mantle. 1342 



 1343 
Fig. 13. Isotopic composition of sulfur plotted against trace element ratios. (a) Th/Nb; the plot 1344 
distinguishes AOC and sediment fluxes as illustrated by Fig. 11a. (b) Cl/F; the plot potentially 1345 
separates fluid from melt. However, there is no systematic separation. Blue circles with a cross 1346 
indicate the depleted mantle. Filled sky blue triangles are MORB values (Labidi et al., 2012; 1347 
2014). Filled pink circles are the arc melt inclusion data (Bouvier et al. 2012; Gurenko et al., 1348 
2018; 2021), shown for comparison. Blue circles with a cross indicate the depleted mantle (trace 1349 
elements: Workman and Hart 2005; Salters and Stracke 2004, S-isotope Labidi et al., 2012, 2014). 1350 

 1351 
Fig. 14. Isotopic composition of sulfur plotted against trace element ratios. (a) Rb/Ba; the plot 1352 
shows the data distribution that requires three component mixing. (b) Pb/Ce; the plot shows Pb 1353 
input from the slab, correlating with δ34S. Blue circles with cross indicate the depleted mantle. 1354 
Filled sky blue triangles are the MORB values (Labidi et al., 2012; 2014). The arc melt inclusion 1355 
data are not shown as Rb and Pb data are not available. (trace elements: Workman and Hart 2005; 1356 
Salters and Stracke 2004, S-isotope Labidi et al., 2012, 2014). Note, the samples with little slab 1357 
input Fukue and Oninomi) plots close to the depleted mantle and MORB.   1358 
 1359 
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