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Abstract: Calcite twinning is a dominant deformation mechanism at low temperatures. It is often
used to reconstruct paleostresses: orientations of the principal stress axes, stress ratios and differential
stress. Despite numerous studies, on single crystals and aggregates, questions remain about the
initiation and evolution of the twinning. In particular, the existence of a critical value for the activation
of twin planes is debated. In this study, Carrara marble samples were uniaxially deformed at low
temperature. The experiments were monitored in situ in an SEM (Scanning Electron Microscope) and
a deformation analysis was performed at regular intervals using image correlation. Image correlation
analysis shows the link between the overconcentration of strains and the appearance of the first
twinned planes. This is followed by a densification and a gradual thickening of the twin lamellae.
Fracturing only appears in a third stage as a precursor to the collapse of the sample. The inversion,
using the CSIT-2 technique, showed that the twinned planes are globally related to the applied
macroscopic stress. The inversion allows one to retrieve the macroscopic stress tensor. Schmid factors
were extracted from this analysis and correlated to the loading curves. For crystals of about 200 µm
diameter, the threshold value is in between 6.75 and 8.25 MPa.

Keywords: calcite twin; critical resolved shear stress; in-situ deformation experiment

1. Introduction

The safety of CO2 geological sequestration in carbonate aquifers or depleted hy-
drocarbon reservoirs depends on the long-term mechanical behaviour of the host rock.
The short-term hydro-mechanical behaviour of carbonate rocks is addressed in numerous
studies investigating damage criteria and formation of compaction bands [1–4]. The latter
essentially involves micro-damage and grain rearrangement, leading to localized cata-
clastic flow and pore collapse. Conversely, long-term creep of carbonates is shown to
involve local contribution of crystal slip plasticity [5]. Twinning activity is often reported
in natural carbonates and experimental deformation studies [6–11], but its contribution
remains quantitatively unclear. For instance, due to different experimental conditions and
analytical techniques, controversy still exists about the critical resolved shear stress needed
to activate twinning. Similarly, no clear consensus exists about the thickening evolution
of twin lamella. Understanding how, when and where calcite twinning occurs and how
it evolves is, therefore, among the key questions for the understanding of the long-term
mechanical behaviour of carbonate rocks.

The geometrical analysis of calcite twinning dates back to the 1950s, with the first data
inversion [12], which reconstructed the orientation of the palaeostresses. This approach
was followed by other inversion methods [13–18], in order to reconstruct the strain tensors
and the improvement in inversion procedures to reconstruct the orientations but also the
magnitudes of the paleostresses [19–22]. In calcite, three twin planes of trigonal symmetry
can be activated in a direction and sense imposed by the host crystal. Thus, a twin plane
is compared, in analogy, to a simple homogeneous shear, allowing one to calculate the
orientations of the main stresses as well as the magnitude.
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The twinning mechanism is known to be very common in carbonates, as it can be
activated at low temperatures and very low stress magnitudes ([23] and references therein).
Twinning boundaries are the result of the twinning dislocations (or disconnections). This
has severe consequences at the crystal scale but also implications for the aggregate. Indeed,
from the moment the crystal is twinned, it can no longer be considered as a single crystal.
Instead, it will behave as a “composite” grain, with portions of different crystallographic
orientations, separated by coherent interfaces. The latter will interact with other twinning
systems, but also will act as barriers for crystal slip plasticity mediated by dislocation glide.
It was predicted that such interactions would result in strain hardening, which could lead
to fracturing [24]. It has been stated that the formation of multiple twin lamellae could
be seen as a reduction in grain size, which could increase the strength of the rock at low
temperatures or could lead to softening at high temperatures [25]. In a recent study [26], we
studied the twinning of calcite single crystals deformed by uniaxial compression at room
temperature. We show that, at first, twinning leads to strong strain hardening, followed by
a quasi-steady-state flow stress, related to twinning densification.

Twinning of calcite only activates if one component of the applied deviatoric stress
exceeds the critical resolved shear stress corresponding to a twin system; the compo-
nent of traction along the twin gliding direction must exceed a critical threshold value.
The existence of a well-defined critical threshold for activation of twinning is subject to
debate [24,27–32]. In particular, the study on metals [33] showed that, depending on the
degree of imperfections, one should rather speak of a range of critical resolved shear
stresses that can cause twinning. From a different perspective, previous works [24,34,35]
attributed the thickening mechanisms of twin lamella solely to temperature. Our study,
based on in-situ observation of the twinning deformation of single crystals [26], provided
new insights about the evolution of twinning deformation. Our results from direct in-situ
testing observation provided experimental evidence for (1) very small initial critical shear
stress; (2) time-dependent thickening of lamella, operating at room temperature. However,
direct application of these results to natural systems is not straightforward. Indeed, on
the one hand, we used pure and large cm sized calcite single crystals, whereas natural
calcite usually contains impurities, inclusions and is often pre-twinned. On the other
hand, the uniaxial compression tests result in samples with free and unconstrained lateral
surfaces, which hardly compare to the boundary conditions of aggregate constitutive calcite
grains. The crucial question of the critical threshold shear stress that must be considered
for twinning inversion methods still remains.

In this study, we monitor, using in-situ SEM (scanning electron microscope), the uniax-
ial deformation of Carrara marbles, in order to determine the critical resolved shear stresses
for twinning, corresponding to the individual constitutive grains of a dense aggregate.

2. Materials and Preparation Protocol
2.1. Sample Preparation

The samples were all cut from the same block of Carrara marble. This material was
chosen because the grain size is fairly homogeneous and we may neglect a possible effect
of grain-size distribution on the critical resolved shear stress [25,27,28]. A broad grain-size
distribution may induce heterogeneities of inherited strain and crystal defects, which would
result in variable threshold shear stresses for the different grain-size fractions.

Samples were cut with a low-speed diamond saw with dimensions of approximately
4 × 4 mm2 for the compression faces and 8 mm in length. All the surfaces were carefully
ground and polished. The observation lateral face was further mirror polished using
colloidal silica. The finish was obtained with broad ion beam polishing in the central area
of the observation area, in order to remove any cold worked zone.

The observation sample surface was analysed by EBSD (Electron Back-Scatter Diffrac-
tion) in order to determine the individual crystallographic orientations of the constitutive
grains (Figure 1). This analysis is essential to obtain the orientations of the twinning systems
and, thus, to calculate the related Schmid factors according to the orientation of the force
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applied to the sample. The SEM is a QUANTA 650 FEG-ESEM, equipped for EBSD analysis
(HKL Nordlys II S camera is operated with Aztek 3.1 and data are post-processed with
Channel 5 software).
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Figure 1. Result of EBSD analysis of a Carrara marble sample. Some twin planes are already
distinguished. In this example, the analysis step is quite large, 1.1 µm. The yellow arrows indicate
the EBSD-indexed twinned planes.

2.2. Kinematic Markers and DIC Principles

The Digital Image Correlation (DIC) technique is based on the sequential comparison
of images of the sample taken at different deformation stages. In practice, DIC compares
an image representing an actual deformed state to an image representing a previous refer-
ence state. The procedure aims at the characterization of the mechanical transformation
leading from the reference state to the actual one. In the present case, we applied simpli-
fied DIC, which implies solely the characterization of in-plane displacements (2D) and
corresponding deformation.

The DIC method relies on the existence of local contrasts, which can be assigned
to the surficial material points as characteristic signatures in terms of local grey-scale
levels. The procedure aims to determine the surficial displacement field of material points
distributed following a periodic pattern, like a grid. These measurement points are centred
within restricted domains, called correlation domains, where grey-scale level is considered
as the discriminative signature of the measurement point. The displacement field of
the measurement points, corresponding to the mechanical transformation between the
reference and the actual states, is obtained by the minimization of a correlation coefficient,
defined on the basis of the grey-scale levels of the reference and the actual states. By
definition, strain is an intrinsically discrete concept, which is inseparable from the choice
of a gage length. The in-plane transformation gradient corresponding to the measured
displacement field is, therefore, computed following different local integration schemes,
based on a contour integral defined by a chosen number (usually from 2 to 8) of nearest
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neighbouring measurement points. The computation of the in-plane strain components
depends on a strong hypothesis, such as volume conservation, or axisymmetric deformation.
The accuracy of strain computation increases with the number of considered neighbouring
points (large contour integral). Conversely, the resolution of the computed strain field
decreases due to the increasing local gage length [36].

The surficial kinematic field associated to the deformation process is determined on
the basis of the grey-scale levels of the correlation windows. Hence, the sample surface
must offer adequate contrasts, which may for instance relate to the presence of different
phases, or porosity. However, in the case of the dense and monophasic Carrara marble
we must provide artificial surface contrasts. The techniques of artificial marking depend
on the scale of observation and on the imaging technique. For optical monitoring, the
kinematic markers may simply consist of paint-sprayed speckled pattern [2]. For SEM
observation, the marking consists in the deposition of a thin metallic grid thanks to electron
microlithography [37]. We applied the latter technique for the deposition of golden grid
patterns onto the observed surfaces of the samples. The procedure consists of several
steps. At first, a polymer layer is deposited on the sample surface. The polymer is then
irradiated with the electron beam of the SEM following a specific pattern. The latter is
usually a simple regular grid. Secondly, the samples are treated with a solvent that removes
solely the irradiated polymer. A thin metallic film of a few nanometres is subsequently
evaporated onto the sample, hence, filling out the formally etched grid-like pattern. At last,
the original non-irradiated polymer is dissolved, leaving solely the metallic grid on the
sample surface.

An alternative technique consists of high-temperature dewetting of thin (10–50 nm)
metallic film, which results in the formation of tiny metallic spheroids dispersed over
the sample surface [36]. The film thickness, temperature and annealing time must be
adapted to the substrate material and its microstructure. The technique proved successful
for coarse-grained (ca 300 µm) synthetic rock salt annealed at 450 ◦C, which resulted in
micrometre-sized gold particle kinematic markers. In our case, temperature was limited
to 220 ◦C in order to avoid thermal cracking. At these conditions a 20 nm thick gold film
resulted in nm sized gold particles. The latter are much smaller than the grain size, which
in turn precludes kinematic analysis at the aggregate scale, because the smaller the particles,
the smaller the observation area. Indeed, in order to ensure an appropriate local grey-scale
distribution a marker must contain several pixels. The electron microlithography was only
partly successful. The protective polymer used to coat the sample surface prior to electron
irradiation (see details in [37]) did not adequately adhere polished calcite surfaces onto
the mirror. The polymerization process also needs heat treatment at 140 ◦C. However, the
annealing procedures of both techniques proved problematic for our cm sized samples,
because annealing resulted in pre-damage and grain boundary de-cohesion (Figure 2).

The anisotropic thermal expansion of calcite is a phenomenon that has been studied,
particularly in architecture and for the purpose of conservation of historical monuments
and sculptures subjected to thermic damage related to seasonal temperature variations [38].
The protocols described above imply heating the sample. The grains are easily discernible
due to thermally pre-damaged and open grain boundaries (Figure 2).

All the samples prepared using the microlithography method exhibited de-cohesive
grain boundary sliding and rapid fracturing (Figure 3). The marking technique we finally
approved was to use a stencil forming a grid of 12.7 µm sized squares. This stencil grid is
placed onto the sample surface using silver lacquer, prior to deposition of approximately
15 nm gold by evaporation. After removing the stencil, the sample surface presents square-
shaped gold markers (Figure 4).
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Figure 4. Step 0 shot of the deformation of a Carrara marble sample. The SEM parameters of the
image are indicated at the bottom of the image. The gold marking is visible with the grid of squares
highlighted. The grain boundaries have been redrawn to better distinguish them. The numbering
corresponds to the crystals that were twinned during the experiment. The red arrow indicates the
direction of the applied force.
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2.3. In-Situ SEM Deformation

In-situ monitoring of the deformation was carried out using a scanning electron
microscope (SEM), with a uniaxial compression rig specifically designed to fit the SEM
chamber (Figure 5). After EBSD analysis the sample is placed in between the pistons of
the uniaxial press (Figure 5). The basis of each piston has a conically machined shape and
is in contact with a steel sphere allowing one to accommodate by small tilting potential
imperfections of sample faces parallelism.
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Figure 5. Photograph of the installation of the sample in the uniaxial press. The whole set up is
mounted on the scanning electron microscope stand. The black rubber sheath partially surrounding
the sample placed between the pistons is used to avoid, as much as possible, the pollution of the SEM
chamber by the calcite fragments detached from the sample.

The rig frame is machined out of stainless steel and provides maximum accessibility
to the loading column and the sample (Figure 5). Compression is driven by a conven-
tional DC-motor Mattke 3557-K024C (nominal rotation speed and torque of 3000 rpm and
0.040 N.m, respectively). A gearbox reduces the rotation speed while increasing the torque.
Rotation transforms into translation thanks to a screw nut system and the crosshead glides
on linear ball bearing along two stainless steel shafts. The crosshead is instrumented with a
linear displacement sensor (optical rule type from Solartron), which is fixed on the frame
and measures the piston displacements in order to allow loading rate control. The loading
capacity is 5 kN. The applied force is measured by a load cell from Ametek, inserted within
the assembly of the loading column (Figure 5). The compression stroke ranges within
12 mm.
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The in-situ SEM testing allows one to monitor the deformation process and to collect
a series of images during stepwise uniaxial loading performed at constant displacement
rate of 8.10–2 µm/s. In order to limit brittle fracturing, the chosen loading rate is the
slowest possible value ensuring smooth displacement control. Indeed, the elastic-to-brittle
transition of carbonate samples occurs very early in carbonate rocks, with the development
of fractures sub-parallel to the applied force [39–42].

Figure 6 shows a typical example of the sample resistance as a function of time or
piston displacement. Both curves show the stepwise loading stages and the periods of
SEM imaging, which include focus processing and image acquisition. During these periods
limited sample relaxation occurs, resulting in small progressive stress decrease.
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Figure 6. Example of a curve obtained during an in-situ SEM experiment of a Carrara marble sample.
The displacement speed of the piston is constant during the whole loading period at 8.10−5 mm/s.
(A) Loading curve of the stress applied on the sample surfaces as a function of the piston displacement.
(B) Curve of stress versus time.

3. Results
3.1. Overall Surface Observation

The initial state of the region of interest of the sample surface and the different consti-
tutive crystals that could be observed and monitored is shown in Figure 4. These individual
grains are numbered from 1 to 24. The force applied to the sample is rotated 20.3◦ down-
wards with respect to the X-axis of this picture, so that the positioning of the gold grid
is optimal for image correlation. Grain boundaries identified from the EBSD analysis are
drawn with solid black lines for clarity.

To quantify the deformations of the crystals, we used the DIC software CorrelManuV
(Michel Bornert). The in-plane strain computation is performed assuming axisymmetric
deformation, which is a reasonable hypothesis for a non-textured polycrystalline material.
Figure 7 shows the equivalent strain map (second invariant of the in-plane strain tensor)
obtained for loading step 6 and corresponding to sample resistance of 40.1 MPa (Figure 6).
The largest plastic strains are localized at the grain boundaries, although plastic strain
bands do cross some individual grains. Intra- and inter-granular micro-fracture opening is
indicated in red, together with frictional sliding along de-cohesive grain boundaries. Both
semi-brittle features are aligned sub-parallel to the compression direction. The marker size
is not fine enough to obtain high spatial resolution; therefore, the ductile intra-granular
localization bands, reaching about 2% strain, appear diffuse. The corresponding twin-
ning activity, observed on the original SEM micrographs, is superimposed as green solid
straight lines.
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Figure 7. Map of the percentage of deformation at Step 6 of the deformation superimposed on the
grain boundaries (in black), fractures (in red) and twin planes (in green).

Strain localization, along the disjointed grain boundaries (Figure 8), occurs very early,
at loading step 3. Shear localization related to the appearance of twin planes is also observed.
The areas where early activated twinning is detected correspond to future densification of
twins. In step 3 of the deformation (Figure 8), we find an early deformation of 0.35% in
crystal 9 (Figure 6). In Figure 8, we can see the evolution of the deformation of the grain at
steps 3, 6 and 9, showing the progressive localization of strain in the same shear zone where
the initial twinning is observed at step 3 (0.35% strain). The twin planes activated at step 3
continue to thicken throughout the experiment until the final step (Figure 9), accumulating
over 3% strain. This family of twin planes is the densest across the entire crystal surface.
Similar thickening of early activated twins is observed in almost all crystals that twinned
early in the experiment. Further, thickening of the early twins precedes the activation of
new twins from the same family. Sometimes, a second family of twins can be activated but
it never becomes dominant.
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Figure 8. Map of the percentage of deformation from steps 2, 3, 4 of the experiment. The applied
force being at 20.3◦ downward along the x-axis. Each picture is 800 µm wide.
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Figure 9. SEM image of the first twin lamella appearing in crystal 9 and its thickening with the
progressive increase in the deformation. A square in the image is 12 µm wide.

3.2. Observation of Individual Grains

DIC analysis was also used to quantify the intra-granular strain of the individual
calcite grains constituting the region of interest. EBSD analysis subsequent to deformation
allowed us to determine the orientation of the twin planes that were activated in the
individual calcite crystals, based on their traces on the observation surface. In the following,
we describe, in detail, the active deformation mechanisms for selected grains.

Crystal 1 is located at the left-edge limit of the observation surface. It is, therefore,
not fully visible. Only one family of twin systems has been activated and is visible from
step 5. It starts by activating only one twin lamella. As the load increases, twinning activity
increases and the lamella thickens, as shown in Figure 9.

Crystal 2 (Figure 10) activates the twinning between steps 4 and 6, so that the trace
of the twinned plane becomes visible on the surface of the sample from step 6. The DIC
analysis shows that strain is first localized at the grain boundaries. At Step 6, up to 0.3%
strain localizes as twinning. It is interesting to note that several twins originate from
triple-grain junctions, which may act as stress concentration zones. A few intra-granular
fractures remain limited, close to grain boundaries.

The strain map of crystal 4 in step 4 (Figure 11) shows no evidence of the fracturing
that occurs in step 5. The strain is located preferentially at the grain boundaries. In step 5, a
localized deformation band originates from the tip of the micro-crack initiated at step 5.
It relates to the first twin lamella. In step 6, the associated strain becomes more pronounced
and a second twin family is activated. Strain is essentially localized in the micro-fracture
and along the first twinned planes of the crystal. The gold markers are sheared by the
gliding movement of twinning, as shown in Figure 9. Step 9 summarises the total strain,
including intra- and inter-granular fracturing and grain boundary opening (at the bottom
interface). Densification and propagation of the twin planes are observed. The inter-
granular fracturing is sub-parallel to the macroscopic applied stress.

For crystal 5, strain is localized at the grain boundaries until step 6. The first twinned
lamella appears at step 7 and localizes at about 0.25% strain. (Figure 12). The second
twinning activation happens at step 8, where a new twinned lamella of the same family
appears along with intra-granular fracturing. Step 9 shows no further evidence of twinning
densification or thickening of the previously activated lamellae. The overall strain, however,
intensifies up to 0.7% and is rather homogeneous over the entire grain. This is surprising
when compared with the other grains, which show strong localizations at Step 9.
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Figure 10. Equivalent Von Mises deformation map of crystal 2 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes. 
The red lines show the fracture zones. 

 
Figure 11. Equivalent Von Mises deformation map of crystal 4 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes. 

Figure 10. Equivalent Von Mises deformation map of crystal 2 at different steps of sample deformation.
The black lines represent the grain boundaries. The green lines show the twinned planes. The red
lines show the fracture zones.
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Figure 11. Equivalent Von Mises deformation map of crystal 4 at different steps of sample deformation.
The black lines represent the grain boundaries. The green lines show the twinned planes. The red
lines show the fracture zones. The yellow arrows show the stretched gold marks compared to the
surrounding ones.



Geosciences 2022, 12, 233 12 of 28

Geosciences 2022, 12, x FOR PEER REVIEW 12 of 28 
 

 

The red lines show the fracture zones. The yellow arrows show the stretched gold marks compared 
to the surrounding ones. 

 
Figure 12. Equivalent Von Mises deformation map of crystal 5 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes. 
The red lines show the fracture zones. 

Along the loading history, crystal 6, like the other crystals, shows strain concentra-
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step 4, the corresponding strain extends and a twinned plane appears (second arrow). At 
step 6, another localization is attributed to a second twinned plane. The very first twinned 
plane can be interpreted as being caused by shear transmission across the grain boundary 
by a twin lamellae, activated in an adjacent crystal. In step 7, a short segment of the twin 
appears next to a previous one. Other twinned planes also appear in the lower part of the 
crystal but they do not localise as much strain as the two long lamellae. At this stage, the 
micro-fracturing at the grain boundaries becomes more pronounced and continuously in-
creases until the end of the experiment. The intra-grain micro-fracturing remains modest. 
Several fractures extend to the twin planes and mark the end of the lamellae. In steps 8 
and 9, the late activated twin continues to progress until it reaches the opposite grain 
boundary. Between step 6 and step 9, the early activated twin thickens from about 0.95 
µm to 1.80 µm (apparent thickness). 

Crystal 7 is located at a border of the observation surface (Figure 14). As for the pre-
vious crystals, strain is first localized at the grain boundaries before twinning activation 
(step 3). The first twin lamella appears in step 4, followed by the same family of twins, 
densifying and thickening. In addition, fracturing and sliding at the grain boundaries oc-
cur in step 9. The observed crystal portion shows no evidence of internal fracturing. 

For crystal 8, strain first localizes along grain boundaries. The first twin lamellae ap-
pear at step 5 (Figure 15). Limited intra-granular fracturing occurs at the same time. Later 
on, twinning densifies and lamellae thicken progressively and concomitantly, with further 
inter- and intra-granular micro-fracturing. It is noteworthy that twins often originate from 
irregularities at grain boundaries. 

Figure 12. Equivalent Von Mises deformation map of crystal 5 at different steps of sample deformation.
The black lines represent the grain boundaries. The green lines show the twinned planes. The red
lines show the fracture zones.

Along the loading history, crystal 6, like the other crystals, shows strain concentrations
at grain boundaries (Figure 13). At step 3, the area of the strongest strain localization (arrow)
coincides with a twin lamella emerging from the adjacent bottom-right grain. At step 4,
the corresponding strain extends and a twinned plane appears (second arrow). At step 6,
another localization is attributed to a second twinned plane. The very first twinned plane
can be interpreted as being caused by shear transmission across the grain boundary by
a twin lamellae, activated in an adjacent crystal. In step 7, a short segment of the twin
appears next to a previous one. Other twinned planes also appear in the lower part of
the crystal but they do not localise as much strain as the two long lamellae. At this stage,
the micro-fracturing at the grain boundaries becomes more pronounced and continuously
increases until the end of the experiment. The intra-grain micro-fracturing remains modest.
Several fractures extend to the twin planes and mark the end of the lamellae. In steps 8 and
9, the late activated twin continues to progress until it reaches the opposite grain boundary.
Between step 6 and step 9, the early activated twin thickens from about 0.95 µm to 1.80 µm
(apparent thickness).

Crystal 7 is located at a border of the observation surface (Figure 14). As for the
previous crystals, strain is first localized at the grain boundaries before twinning activation
(step 3). The first twin lamella appears in step 4, followed by the same family of twins,
densifying and thickening. In addition, fracturing and sliding at the grain boundaries occur
in step 9. The observed crystal portion shows no evidence of internal fracturing.

For crystal 8, strain first localizes along grain boundaries. The first twin lamellae
appear at step 5 (Figure 15). Limited intra-granular fracturing occurs at the same time.
Later on, twinning densifies and lamellae thicken progressively and concomitantly, with
further inter- and intra-granular micro-fracturing. It is noteworthy that twins often originate
from irregularities at grain boundaries.
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Figure 13. Equivalent Von Mises deformation map of crystal 6 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes. 
The red lines show the fracture zones. The blue arrow points to the tiny twin planned that appeared 
step 4 due to the strain concentration of an adjacent twinned plane. 

 
Figure 14. Equivalent Von Mises deformation map of crystal 7 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes. 
The red lines show the fracture zones. 

Figure 13. Equivalent Von Mises deformation map of crystal 6 at different steps of sample deformation.
The black lines represent the grain boundaries. The green lines show the twinned planes. The red
lines show the fracture zones. The blue arrow points to the tiny twin planned that appeared step 4
due to the strain concentration of an adjacent twinned plane.
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Figure 14. Equivalent Von Mises deformation map of crystal 7 at different steps of sample deformation.
The black lines represent the grain boundaries. The green lines show the twinned planes. The red
lines show the fracture zones.
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mation. The black lines represent the grain boundaries. The green lines show the twinned planes. 
The red lines show the fracture zones. 

Crystal 9 (Figure 16) also shows localised strain at the grain boundaries before the 
appearance of the first twinned plane at step 3, which crosses the entire crystal. At step 6, 
after densification of the family of twins initially activated, a second family is activated 
but the lamella is incomplete, as shown by the dotted line along the crystal. The last family 
of twin planes is activated at the very end of the experiment, at step 8, and thickens very 
abruptly until it reaches the same thickness as the initially activated twinning. The two 
late active families do not dominate the overall crystal strain. Having a crystal twinning 
on its three families of twin planes is not an isolated phenomenon; it has also been ob-
served in other crystals. 

 

Figure 15. Equivalent Von Mises deformation map of crystal 8 at different steps of sample deformation.
The black lines represent the grain boundaries. The green lines show the twinned planes. The red
lines show the fracture zones.

Crystal 9 (Figure 16) also shows localised strain at the grain boundaries before the
appearance of the first twinned plane at step 3, which crosses the entire crystal. At step 6,
after densification of the family of twins initially activated, a second family is activated but
the lamella is incomplete, as shown by the dotted line along the crystal. The last family
of twin planes is activated at the very end of the experiment, at step 8, and thickens very
abruptly until it reaches the same thickness as the initially activated twinning. The two late
active families do not dominate the overall crystal strain. Having a crystal twinning on its
three families of twin planes is not an isolated phenomenon; it has also been observed in
other crystals.
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Crystal 10 shows the activation of a single family of twin planes at step 6 (Figure 17).
The number and thickness of twin lamellae progressively increase with loading. The strain
map shows the same evolution as for the previous crystals. The deformation is first
localized at the grain boundaries before activating the accommodation of the deformation
in the crystal via the twinning. The crystal does not show fracturing on its visible face.
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to the grain boundary locations adjacent to the crystal. 

 
Figure 17. Equivalent Von Mises deformation map of crystal 10 at different steps of sample defor-
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Figure 17. Equivalent Von Mises deformation map of crystal 10 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes.
The red lines show the fracture zones.

Crystal 11 is among the crystals that did not twin (Figure 18). It did fracture at its
centre along the axis of the applied macroscopic stress. This fracture connects the opening
to the grain boundary locations adjacent to the crystal.
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Figure 18. Equivalent Von Mises deformation map of crystal 11 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes. 
The red lines show the fracture zones. 

Crystal 12 was already pre-twinned with one twin lamella before the experiment 
started (Figure 19). This family of twins did not develop further during the experiment 
and another one prevailed in the accommodation of the crystal deformation during the 
loading. This second family of twin planes appeared between step 6 and 7. All the intra-
crystalline deformation is located along the twinned plane at the moment of its activation. 
Only one other twin lamella from the same family activates later on and the thickening of 
the initial twin remains limited. No intra-grain fracturing occurs, but there is large open-
ing at the grain boundaries. 

 
Figure 19. Equivalent Von Mises deformation map of crystal 12 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes. 
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Figure 18. Equivalent Von Mises deformation map of crystal 11 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes.
The red lines show the fracture zones.

Crystal 12 was already pre-twinned with one twin lamella before the experiment
started (Figure 19). This family of twins did not develop further during the experiment and
another one prevailed in the accommodation of the crystal deformation during the loading.
This second family of twin planes appeared between step 6 and 7. All the intra-crystalline
deformation is located along the twinned plane at the moment of its activation. Only one
other twin lamella from the same family activates later on and the thickening of the initial
twin remains limited. No intra-grain fracturing occurs, but there is large opening at the
grain boundaries.
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Figure 19. Equivalent Von Mises deformation map of crystal 12 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes.
The red lines show the fracture zones.
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Crystal 13 shows only one single twinned plane on its surface (Figure 20). The defor-
mation seems to be mainly accommodated via sliding at the grain boundaries.
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Figure 20. Equivalent Von Mises deformation map of crystal 13 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes.
The red lines show the fracture zones.

The deformation in crystal 15 (Figure 21) is localized at the grain boundaries before
the first twins appear. Those emerge between step 4 and step 5. Some of these lamellae will
not cross the whole crystal but will develop later. At step 9, the deformation by twinning
and fracturing of the crystal is observed, as well as displacements at the grain boundaries.
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Figure 21. Equivalent Von Mises deformation map of crystal 15 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes.
The red lines show the fracture zones.
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Crystal 16 only activates a single twin lamella, and the strain is first mostly diffuse
(Figure 22). This single twin plane is placed at the southern end of the crystal and appears
very late (step 6). By the end, strain localizes close to the grain borders.
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The deformation of crystal 17 takes place in several stages. A very early initiation of 
the first twin occurs at step 3 (21 MPa) (Figure 23). This is followed by the appearance of 

Figure 22. Equivalent Von Mises deformation map of crystal 16 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes.
The red lines show the fracture zones. The blue arrow is indicating the location of the twinned plane.

The deformation of crystal 17 takes place in several stages. A very early initiation of
the first twin occurs at step 3 (21 MPa) (Figure 23). This is followed by the appearance
of the second family of twins (step 6). The latter does not take over the evolution of the
deformation accommodation. Thus, only the first family of twins continues to develop,
producing more twin lamellae and thickening.
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Figure 23. Von Mises deformation map of crystal 17 at different steps of sample deformation.
The black lines represent the grain boundaries. The green lines show the twinned planes. The red
lines show the fracture zones.

Crystal 18 shows only slight twinning with a single lamella that does not thicken. Most
strain remains mainly at the grain boundaries, which is clearly visible at step 9 (Figure 24).
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The deformation of crystal 20 begins at step 4 with the appearance of two joined twin
lamellae (Figure 25). One crosses the entire crystal, while the other stops at the point where
a fracture starts during the following loading step. It is at the point of fracturing that
the final step records the maximum local strain, of more than 16%. The direction of this
fracturing is sub-parallel to the overall stress applied. At steps 5 and 9, a single family
of twin planes largely developed. It presents several thickened twin lamellae crossing
the entire crystal. It seems that the twinned planes of the second family, which are less
developed, are only initiated at the junction with the first family of twins. The percentage
of deformation recorded within a twin lamella does not appear to exceed 1% deformation,
even in the final phase before rupture and disaggregation.
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Figure 26 shows the evolution of the deformation of crystal 21. The North–South lo-
cation on the deformation map marks the exact location of the appearance of twin lamellae 
(step 3). However, they are only visible in the next step. In step 5, a second family of twins 
becomes active. This is the only observation of a secondary twin family that activates in a 
later phase and that develops more than a previously activated family. The number of 
lamellae and their thickening increase rapidly. 

Crystals 22 and 23 are side by side and each has activated a family of twin planes. 
Crystal 22 will twin at step 5 when the adjacent crystal 23 will deform at step 7. There was 
no thickening of the twin lamellae on these crystals and only a slight increase in the num-
ber of twinned planes. 

To summarise, the deformation is often initially localised at the grain boundaries. 
Intragranular deformation via twinning occurs later. The families of twins activated early 
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Figure 25. Equivalent Von Mises deformation map of crystal 20 at different steps of sample defor-
mation. The black lines represent the grain boundaries. The green lines show the twinned planes.
The red lines show the fracture zones.

Figure 26 shows the evolution of the deformation of crystal 21. The North–South
location on the deformation map marks the exact location of the appearance of twin lamellae
(step 3). However, they are only visible in the next step. In step 5, a second family of twins
becomes active. This is the only observation of a secondary twin family that activates in
a later phase and that develops more than a previously activated family. The number of
lamellae and their thickening increase rapidly.

Crystals 22 and 23 are side by side and each has activated a family of twin planes.
Crystal 22 will twin at step 5 when the adjacent crystal 23 will deform at step 7. There
was no thickening of the twin lamellae on these crystals and only a slight increase in the
number of twinned planes.

To summarise, the deformation is often initially localised at the grain boundaries. Intra-
granular deformation via twinning occurs later. The families of twins activated early during
loading evolve throughout the deformation process by multiplying the number of twinned
planes and by their thickening. On the contrary, those that appear later do not evolve
at all, or only slightly. Indeed, the intra-crystalline deformation is very quickly replaced
by the activation of slip at the grain boundaries, which prefigures sample disaggregation.
Intra-crystalline fracturing does not necessarily activate. Crystallographic orientation does
not seem to influence the intra-crystalline micro-fracturing. Some fractures appear to be
related to the twinned planes and are located at the end of the lamellae. These fractures do
not cross the whole crystal. In opposition, the intra-crystalline fractures, which are aligned
with the applied macroscopic stress, do cross the whole grain. It should be noted that the
latter always link strongly opening grain boundaries and that the concerned crystals are
usually elongated, with their long axis oriented perpendicular to macroscopic stress.
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3.3. CSIT-2 Inversion

The study of the twinning-related deformation of natural calcite crystals is used to
reconstruct the regional or local stress states at the origin of the deformation: orientations
of the principal stress axes (σ1, σ2 and σ3), stress ratios and stress differentials. For this
purpose, data inversion analyses were developed in the past. The CSIT-2 [13] method
of calcite twinning inversion is used in the present study and applied to the sample, for
which twinning history was detailed above. CSIT-2 considers that the orientation data of
the calcite twins will be obtained via a universal stage mounted on an optical microscope.
This is the usual protocol used, giving a good ratio of measuring time/quantity. However,
as this study requires samples of several-millimetre widths, it is impossible to use this
protocol. The EBSD allowed us to overcome this problem by giving the orientation of the
crystal lattice at a given point. For this purpose, a twin data collection code, using both
EBSD analysis and SEM photography, was developed to determine the orientations of the
twinned and untwinned planes on the surface of a sample. The new data inputs were
implemented in CSIT-2, including information on the orientation of the crystal and whether
or not the three twin planes are activated.

The force is applied along the long axis of the sample, defined as the X axis (east).
The Y axis is defined as the north. The applied stress tensor is, therefore, defined as east–
west. The Calcite Twin Inversion Method (CSIT-2) [13] was applied to the sample and gave
the following tensor:

σ1: N108-04
σ2: N210-71
σ3: N016-18
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And a stress ratio of 0.39. The stress ratio is expressed as follows:

Φ =
σ2 − σ3

σ1 − σ3

The overall stress tensor reconstructed from the whole data set is consistent with the
uniaxial macroscopic stress applied to the sample, with a maximum stress in the east–west
direction. In this study, the magnitude of σ2 is considered to be equal to σ3 at the sample
scale. However, at the scale of the grain trapped in an aggregate with crystals surrounding
it on all sides, σ2 is not equal to σ3. The stress ratio will necessarily increase. As for the
orientation of the principal axes σ3 and σ2, it is difficult to forecast, for the same reasons.

The inversion method also allows for estimation of the resolved shear stresses ex-
perienced by every activated twin system. The code calculates the Schmid factors with
respect to the macroscopic stress state for all possible twin planes, whether activated or
not. Table 1 shows the results of the corresponding Schmid factors. From the inversion
analysis of calcite twinning, the Carrara marble sample shows that 90% of the twinned
planes have a positive Schmid factor value. It shows that the tensor can activate these
twin planes. The twinned planes with a Schmidt factor of less than zero correspond to the
uncertainty range of the inversion. Indeed, the inversion does not take into account the
effect of the stress concentration at the grain boundaries. The stress can, therefore, be more
or less deviated by the succession of deformations in the aggregate, which locally modify
the orientation of the stress applied to a crystal.

Table 1. In the first column is the numbering of the crystals that can be found in Figure 6. Columns
E1, E2 and E3 represent the twin planes and their Schmid factors, which result from the inversion of
the data. In green, the twinned planes compatible with the tensor and in red, the twinned planes
incompatible with the tensor. The rest is the list of Schmid factors for the twin planes not activated in
the experiment. The last column counts the number of families of activated twin planes.

Schmid Factor (Tensor from the Inversion)

Crystal E1 E2 E3 nb Activation

1 0.454 −0.249 −0.062 1
2 −0.35 −0.099 −0.089 1
4 −0.45 0.119 0.283 2
5 −0.044 −0.047 0.466 1
6 0.469 −0.275 −0.079 1
8 0.181 −0.171 −0.316 1
9 0.467 0.181 0.125 3
11 −0.191 0.127 0.047 0
12 −0.299 0.204 −0.118 2
13 0.026 −0.124 −0.175 1
15 −0.399 0.158 0.146 1
16 0.17 −0.032 0.266 1
17 0.447 0.193 0.203 2
18 0.287 0.068 −0.179 1
21 0.109 −0.243 −0.283 2
22 0.238 −0.106 −0.232 1
23 −0.16 0.119 0.058 1

Total 22

The previous analysis of the deformation for each crystal observed on the sample
surface allowed for the determination of a range of applied stresses, for which twinned
planes appear. The minimum and maximum applied stresses correspond to the stages
of deformation, between which the SEM micrographs allowed us to detect the activation
of the considered twinning system. From these extrema, we can infer a range of possible
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resolved shear stresses experienced by the activated twinning systems, with values between
6.75 MPa ± 4.13 MPa and 8.25 MPa ± 4.86 MPa (Figure 27).
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Figure 27. Graph showing the relationship between the Schmid factor obtained after inversion of the
twin data using CSIT2 and the range of global stresses at the time of twin appearance. The twinned
planes with a negative Schmid factor have been removed. From the photographs taken throughout
the experiment it is possible to determine a resolved shear stress for which the appearance of the twin
plane can be seen. Thus, a twin appearing in a photo x appeared in the interval [x − 1; x]. In fact, the
previous photo did not yet show a twin plane. Thus, the minimum value approximated in this graph
corresponds to the resolved shear stress calculated for x − 1. The maximum value corresponds to
that for step x.

4. Discussion
4.1. Crystal Deformation

Previous work on uniaxial compression of synthetic calcite single crystals [26] showed
the following deformation evolution: (1) micro-fracturing at the sample ends and first
twinned planes during the beginning of loading, with strain hardening. (2) Densification of
the number of twinned planes and lamella thickening, during several percent macroscopic
axial deformation, with a pseudo constant flow stress. (3) Rupture of the sample following
a major fracture.

It was suggested that the presence of free lateral surfaces could be a facilitating factor
for the thickening of the twin lamellae. The present study shows that thickening also occurs
in the context of an aggregate, where each grain has only one free surface. With regard to
the development of twins, a similar evolution is observed, with an initial twinned plane
followed by an increase in the number of activated planes of the same family. Sometimes, a
second family of twins can be activated, but only one accommodates most of the imposed
strain by multiplication of the twinned planes and their thickening.

As with synthetic single crystals, the twins do not always develop instantaneously over
the entire crystal. Instead, many twins propagate gradually through the crystal. Synthetic
calcite single crystals were of optical quality, with no visible defects. This is not the case
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with the natural calcite aggregates in the present work. Defects, such as pre-existing micro-
fractures or inclusions, may either initiate or hinder the propagation of twins. Some of the
twinned planes finish at micro-fractures. This phenomenon has been observed before [39]
and the twin planes are interpreted as causing the micro-fracturing. An obstacle to the
propagation of the twin creates a stress concentration, inducing fracturing. These types of
fractures were not observed in the synthetic single crystals.

The thickening of the twin lamellae in the Carrara marble is much less pronounced
than that observed in single crystals of calcite. In the marble, the grain boundaries are not
free surfaces. Most of the thickened lamellae are found at the edges of grain boundaries,
which have shown inter-crystalline micro-fracturing, with either opening or sliding. It is
not clear whether the thickening relates to a previously activated grain boundary, or if
the grain boundary activates prior to twin thickening. The time lapse of SEM imaging
and the sequential step-by-step loading do not allow one to precisely follow the temporal
evolution. Optical microscopy allows for a high image acquisition rate [43], but the spatial
resolution precludes the identification of twinning and the technique stems mostly for
fracturing evolution.

The fracturing of calcite single crystals is progressive, but is not due to twinning.
It occurs at a later stage, when large portions of the crystal have twinned. In the present case,
intra-granular fracturing seems to relate to previously activated inter-granular fracturing.

4.2. Inversion and Critical Resolved Shear Stress

In the context of calcite twinning inversion, the value of the critical resolved shear
stress for twinning is the key issue for calculating stress differentials. This was already
addressed in the previous study on single crystals. However, these were far too large for
the value to be used in a natural sampling context. Here, Carrara marble has crystal sizes
that are much closer to what will be analysed and measured in the sedimentary basin
problems. For the reasons mentioned above, it also avoids the debate on crystal sizes or
crystal size distribution in the definition of a critical value.

Analysis using CSIT-2 revealed a range of resolved shear stress values for the observed
200 µm-sized crystals: ≈6.75–8.25 MPa (±4.5 MPa) (Figure 28), constitutive of Carrara
marble samples cumulating less than 1% macroscopic strain. The range of values for the
same crystal size is, therefore, very wide and this is explained by the fact that the determi-
nation of the Schmid factors was established by taking into account only the macroscopic
stress applied to the sample. Nothing is known about the stress concentration at the grain
boundaries. It is clear from the observations that the strains are first localised at the grain
boundaries before propagating into the crystal via twinning and then fracturing. Although
SEM images were taken at regular and close intervals, the exact time of appearance of a
twin plane has yet to be determined. In this study, it was only possible to determine a
minimum and maximum range of values, in which the first twinned plane appears.

It would, therefore, be necessary to reduce this interval of shots, which requires
stopping the loading more often. The sample preparation protocol is highly unrepeatable.
The cohesion between the crystals is difficult to maintain. The polishing of the observation
surface induces local variation in the temperature. Cold working of the surface during
sample preparation is only poorly controllable by maintaining the sample under cold water
during polishing. The natural porosity and permeability of the sample also play a major
role. Some samples from the same marble block only used fracturing and slippage at the
grain boundaries to accommodate deformation, despite a preparation protocol scrupulously
identical to this one.
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Another point concerned the appearance of a twinned plane on the surface. It has
been found on several occasions that the planes of calcite twins do not necessarily cross the
entire crystal as soon as they appear. It is, therefore, possible for the crystal to be partially
twinned without being visible on the observation surface. This, again, questions the value
given above. It should, therefore, be seen as a high value of the resolved shear stress for
this crystal size range.

5. Conclusions

The evolution of the deformation within the calcite crystal showed a progressive
propagation of the deformation with: (1) localisation of the strain at the grain boundaries,
(2) appearance of the first twin planes, (3) densification and thickening of the twin lamel-
lae and eventual fracturing of the crystal sub-parallel to the applied macroscopic stress,
(4) fracturing and significant engagement of the deformation accommodation by sliding
and opening at the grain boundaries.

This study confirms that the thickening of twin lamellae also occurs at low tempera-
tures. The duration of application and the increase in stress have an impact on the thickness
of the twins.

New values for the critical resolved shear stress were obtained for use in reconstructing
stress tensors. Initially, the value used for 200–300 µm wide crystals was 10 MPa [45],
which may be slightly overestimated, since we find values around 6–8 MPa for 200 µm
sized crystals.
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