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Abstract: In this report, some properties of the set of Nash equilibria (NEs) of 2 x 2 zero-sum
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of the payoff matrix. Moreover, closed-form expressions for the NE strategies and the payoff at the
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Quelques propriétés des équilibres de Nash des jeux 2 x 2 a
somme nulle

Résumé : Dans ce rapport, certaines propriétés de I’ensemble des équilibres de Nash (EN) des
jeux 2 x 2 a4 somme nulle sont étudiés. En particulier, la cardinalité de ’ensemble des EN est
donnée en termes des entrées de la matrice du jeu. De plus, des expressions explicites pour les
stratégies d’équilibre et la valeur du jeu sont présentées. Ces résultats ne sont pas nécessairement
des connaissances nouvelles, car ils découlent de la définition de ’EN aprés quelques calculs.
Neéanmoins, cette présentation synthétique est originale dans la littérature.

Mots-clés : jeux 2 x 2 4 somme nulle, jeux en forme normale, et équilibre de Nash.
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Some Properties of the NE in 2 x 2 Zero-Sum Games 1

1 Zero-Sum Games in Normal Form

The notations that are used in this report are listed in the following. Given a finite set X,
the notation 2% represents the power set of X. The notation A (X) represents the set of all
probability measures that can be defined on the measurable space (X , 2% ) The set of all subsets
of A (X) is denoted by 22(¥),

Consider a two-player two-action zero-sum game in normal form with payoff matrix
u= U1 U2 ) (1)
U2,1 U222
Let the elements of the set K = {1,2} represent the indices of the players; and let the elements
of the set A; = As = {ay,as} represent the actions of the players. Hence, for all (i, ) € {1,2}2,

when Player 1 plays a; and Player 2 plays a;, the outcome of the game is u; ;. In the following,
such a game is represented by the tuple

GE(K, Ay, Ag,u) . (2)

For all k € IC, the strategy of Player k is a probability measure denoted by P4, € A (Ag). At
each repetition of the game, players choose their actions by sampling their probability measures
(strategies). Let the average payoff be represented by the function u : A (A4;) X A (Az) = R
such that, given the strategies P4, and Pa,,

U’(PANPA?,): Z PAI (ai)PAz (aj)ui,j' (3)
(i,7)€{1,2}2

Player 1 chooses its strategy P4, aiming to maximize the expected payoff u (Pa,, Pa,), whereas
Player 2 chooses the strategy P4, to minimize it.

The set of best responses of Player 1 to a given strategy of Player 2 is determined by the
correspondence BR; : A (A43) — 22(A1) " such that given the strategy P for Player 2, it holds
that

BR; (P) = arg ol | w(@Q, P), (4)

where the function u is defined in . Similarly, the set of best responses of Player 2 to a given
strategy of Player 1 is determined by the correspondence BRy : A (A1) — 28(A2) " such that
given the strategy @ for Player 1, it holds that

BR; (Q) = arg Pergi&{z) u(Q, P). (5)

When both players choose their actions simultaneously, a relevant outcome of the game is
the Nash equilibrium (NE).

Definition 1.1 (Nash Equilibrium) A pair of strategies (P} , P%.) € A (A1) x A (Az) forms
an NE in the game & in (@, if and only if the following conditions simultaneously hold:

(i) For all Q € A (Ay),
w(Pi,,Pi,) > u(Q,P4,); and (6)

(ii) For all Q € A\ (As),
u(P5,. P5,) <u(Pi,Q), o

where the function u is defined in (@

RR n°® 9492



2 Ke Sun

1.1 Multiplicity of the Nash Equilibrium

The following lemma shows that if the game ¢ in possesses an NE in which one of the players
uses a pure strategy, while the other uses a strictly mixed strategy, then the game ¢ possesses
infinitely many NEs.

Lemma 1.1 If a pair of strategies (P} ,P4,) € A (A1) x A (As) forms an NE in the game 4
mn (@, and one of the following statements holds:

1. P} (a1) € {0,1} and P}, (a1) € (0,1); or
2. P} (a1) € (0,1) and P}, (a1) € {0,1},
then, the game & possesses infinitely many NEs.

Proof: The proof of Lemma [I.1]is provided in Appendix [A]
|
The following lemma shows that if the number of NEs in the game ¢ in is finite, then
an NE in which both players use pure strategies and an NE in which both players use strictly
mixed strategies cannot simultaneously exist.

Lemma 1.2 Let P C A (A;) x A(Az) be the set of NEs of the game & in (). Assume that
|P| < co. The following statements hold:

1. If there exists a pair of strategies (PXI,PQQ) € P such that for all i € {1,2}, P} (a1) €
{0,1}, then, a pair (Qa,,Q4a,) € A (A1) x A (Az) such that for all j € {1,2}, Qa,(a1) €
(0,1), satisfies (Qa,,RQa4,) & P.

2. If there exists a pair of strategies (P;‘h,PZQ) € P such that for all i € {1,2}, P} (a1) €
(0,1), then, a pair (Qa,,Qa,) € A (A1) x A (Az) such that for all j € {1,2}, Qa,(a1) €
{0,1}, satisfies (Qa,,RQa,) & P.

Proof: The proof of Lemma is provided in Appendix
|

The following lemma shows that if there exists a finite number of NEs in the game ¢ in
and an NE in strictly mixed strategies exists, then such equilibrium is unique.

Lemma 1.3 Let P C A (A;) x A (Az) be the set of NEs of the game & in (3). If |P| < oo and
there exists a pair of strategies (le,lez) € P be such that for all i € {1,2},

PIZ7 (al) € (Ov 1)7 (8)
then, the pair (P;;NPXQ) forms the unique NE.

Proof: The proof of Lemma [I.3]is provided in Appendix [C]
|
The following lemma shows that if there exists a finite number of NEs in the game ¢ in
and an NE in pure strategies exists, then such NE is unique.

Lemma 1.4 Let P C A (A;) x A (Az) be the set of NEs of the game & in (3). If |P| < oo and
there exists a pair of strategies (le,P22) € P such that for all i € {1,2},

P}, (a1) € {0, 1}, (9)

then, the pair (P:h’lez) forms the unique NE.

Inria



Some Properties of the NE in 2 x 2 Zero-Sum Games 3

Proof: The proof of Lemma [T.4]is provided in Appendix
|
The following theorem specifies the number of NEs that can be observed in a 2 X 2 zero-sum
game in normal form.

Theorem 1.1 (Multiplicity of the Nash Equilibria) Let P C A (A1) x A (Asg) be the set
of NEs of the game ¢ in (9). Then either |P| =1 or |P| = co. In particular, if it holds that
P = {(PXI,P;“Z)}, then only one of the following statement is true:

1. for alli € {1,2}, P (a1) € {0,1}; or
2. for alli € {1,2}, P} (a1) € (0,1).

Proof: The proof is provided in Appendix [E]

1.2 Closed-form Expressions for the Nash Equilibrium Strategies

Before showing the closed-form expression of the NE, closed-form expressions for the best re-
sponses in and are presented.

Lemma 1.5 Let § £ U — U — Uz + ug2. For a given Py, € A (Az), the best response
BR;1(Pa,) in satisfies:
(i) if 6 #0, then

{Pa, € A(Ay) : Py, (a1) = 0}, if § > 0 and Pa,(a1) < p@, or
§ <0 and Pa,(a;) > p®?
BR; (Pa,) = {Pa, € A(A)): P4, (a1) = 1}, if § >0 and Pa,(a1) >p®, or (10)
d < 0and Pa,(a1) < p2
{Pa, € A(A1) : Pa,(a1) = 8,8 € [0,1]}, if Pa,(ar) = p®
where
1
2 5 (u22 —u12); (11)
(i) if 6 =0, then
{PA1 S A(Al) : PA1 (al) = O}, if u1,2 < U2 2
BRl (PA2) = {PA1 S A(Al) . PAl (al) = 1}, lf ’Z,LLQ > u2_’2 . (12)
{PA1 c A(Al) : PAl (al) = ﬁ,ﬁ S [0, 1]}, if U2 = U2,2
Proof: The proof of Lemma [1.5]is provided in Appendix [E] ]

The best response of Player 2 in follows directly from Lemma by exchanging the roles
of the players, i.e. Player 1 is the column player and Player 2 is the row player, and reverting
the payoff matrix from u to —u, which is stated in the following lemma.

Lemma 1.6 Let § = ujq — Ut — U1 + U o. For a given Py, € A(Ay), the best response
BRy(Pa,) in (3) satisfies:
(i) if § # 0, then

{PA2 S A(.Ag) : PA2 (al) = O}, if 6 >0 and PA1 (CL1) > p(l), or
§ <0 and Py, (a1) < p™
BRy(Pa,) = {Pa4, € A(Ag) : Pa,(a1) =1}, if § > 0 and Pa,(a1) < p), or (13)
§ <0 and Py, (ay) > p™M
{Pa, € A(Az) : Pa,(a1) = 8,5 €[0,1]}, if P, (a1) =p™,

RR n°® 9492



Ke Sun

where

pval

o

(U2,2 - U2,1) 5
(i) if 6 = 0, then

{PA2 S A(Az) : PAz(al) = 0},
BR» (PAI) = {PAQ € A(AQ) : PA2(0’1) = 1}7
{PAQ € A(AQ) : PAz(al) =B,8¢€ [07 1”)

Proof: The proof of Lemma [I.6] is provided in Appendix [G}

(14)

if U211 > U2, 2
if U211 < U2 - (15)
if U2,1 = U2,2

In the case in which the zero-sum game ¢ in exhibits a unique NE, the strategies of each

player have the following closed-form expressions.

Theorem 1.2 (Unique Nash Equilibrium) Let P C A (A1) x A (Az) be the set of NEs of
the game 9 in such that |P| = 1. Let the pair of strategies (P;l,PXQ) € P form an NE in¥

m .
(i) The pair of strategies (P:h,Pzz) is the unique NE with

P4, (a1) € (0,1) and Pj_(a1) € (0,1), (16)

if and only if, the entries in the matriz uw in satisfy

(u1,1 —u12)(uge —ug1) >0 and

(u1,1 —u21)(ug,2 —u12) > 0.

Furthermore, the unique NE satisfies

(17)
(18)

U2 — U1
P (ay)= ’ ; 0,1) and 19
4, (a1) Ui1 — Uiz —Uzi T U2z €(0,1) an (19)
P}, (@)= te2 T ML € (0,1) (20)

U] —UL2 — U2,1 + U2
and

U1,1U2,2 — UL, 2U2,1

U(PZI ? PZQ) =

(i1) The pair of strategies (PQI,PIZQ) 18 the unique NE with
P} (a1) =1 and P} (a1) =1,
if and only if, the entries in the matriz u in satisfy
U2 > Uyl > U27-
Furthermore, the payoff at the NE is

1-

)

w(Ph,, Pi,) =w
(11i) The pair of strategies (P:prf*lg) 1s the unique NE with

P} (a1)=1 and P} (a;1) =0,

U1 — UL — U2,1 + U2

(21)

(22)

(23)

(24)

(25)

Inria



Some Properties of the NE in 2 x 2 Zero-Sum Games 5

if and only if, the entries in the matriz u in satisfy
Uyl > U2 > U22. (26)
Furthermore, the payoff at the NE is
u(P}3,, Pi,) = u1,z. (27)
(iv) The pair of strategies (P:h,P:‘Q) is the unique NE with
Pj (a1) =0 and P} (a1)=1, (28)
if and only if, the entries in the matriz uw in satisfy
Ug2 > Uz > Up 1. (29)
Furthermore, the payoff at the NE is
u(Pj,, P3,) =uz1. (50)
(v) The pair of strategies (P;“I,ij) 1s the unique NE with
P} (a1) =0 and P} (a1) =0, (51)
if and only if, the entries in the matriz u in satisfy
U1 > Ug2 > Ul 2. (52)
Furthermore, the payoff at the NE is
u(P},, Ph,) = uz. (33)

Proof: The proof of Theorem is provided in Appendix [H]
|
In the case in which the zero-sum game ¥ in exhibits an infinite number of NEs, the
following lemma shows the closed-form expressions for the NE strategies when there exists an
i € {1,2} such that P} (a1) € [0, 1].

Theorem 1.3 (Infinite Nash Equilibrium-I) Let P C A (A1) x A (Asz) be the set of NEs of
the game ¢4 in @)
(i) The set P satisfies

P={(P,P2) € A(A) x A(A2): Pi(a1) =1 and P € A(A2)}, (34)
if and only if, the entries of the matriz w in satisfy

U1 = U2 > U21 = U222 or (35)

U1 = U2 > max{ull,u;g} > min{u271,u272}. (36)
Furthermore, the payoff at the NEs is

u(Pj3,, Pi,) =u1,1 = uip. (87)
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(ii) The set P satisfies

P={(P,P) e (A)xA(A): Pia)=0and Py € A (As)},

if and only if, the entries of the matrix u in satisfy

U1 = Ug2 > U1 = UL2 or

U1 = U9 > max{ui 1, w12} > minf{us 1,u1 2}
Furthermore, the payoff at the NEs is
w(P},, Pi,) = uz,1 = uz.
(1ii) The set P satisfies
P={(P,P) € A(A1) x A (Az): P € A(Ar)and Po(aq) =1},
if and only if, the entries of the matrix u in satisfy

U1 = U211 <UL = U2 or

ur,1 = ug1 < min{ug 2, ug o} < max{u 2, ug2},
Furthermore, the payoff at the NEs is
w(P},, Pi,) = w11 = uz,.
(iv) The set P satisfies
P={(P,P) € A(A1) x A(Ag) : P € A (A1) and Py(aq) =0},
if and only if, the entries of the matrix u in satisfy

U =U22 < U1 = U2 or

u12 = ugo < minfuy g, up 1} < max{uy 1, ua;1}
Furthermore, the payoff at the NFEs is
w(Pji,, Ph,) = ui2 = uzp.

(v) The set P satisfies

’P:{(Pl,Pz)EA(Al)XA(.AQ):PlEA(Al)and PQEA(.AQ)},

if and only if, the entries of the matrix w in satisfy
U1,1 = U2 = U2,1 = U2,2.
Furthermore, the payoff at the NEs is
u(Pj,, P3,) =ui1 =u12 =uz1 = ugp.

Proof: The proof of Theorem [I.3]is provided in Appendix [}

(38)

(39)
(40)

(41)

(42)

(43)
(44)

(49)

(46)

(47)
(48)

(49)

(50)

(51)

(52)

In the case in which the zero-sum game ¥ in exhibits an infinite number of NEs, the
following lemma shows the closed-form expressions for the NE strategies when there exists an

i € {1,2} such that P} (a1) € [0,a] or P} (a1) € [b, 1] for some a € (0,1) and b € (0, 1).

Inria



Some Properties of the NE in 2 x 2 Zero-Sum Games

Theorem 1.4 (Infinite Nash Equilibrium-IT) Let P C A (A;) x A (Ag) be the set of NEs

of the game 4 in (@
(i) The set P satisfies

P= {(pl,Pg) € A(A1) x A(Ag): Py(ar) =0 and Ps(ar) € |0, 2,2 71,2 ”

Up,1 — U2 —U2,1 T U2

with 0 < coEl e < 1, if and only if, the entries of the matriz uw in satisfy

U1 —UL2— U2, 1 U2, 2
Up,1 > U2l = U2 > UL 2.
Furthermore, the payoff at the NEs satisfies
u(Ph,, Px,) = u21 = uz2.

(i) The set P satisfies

U2,2 —UL,2
P=<(P,P)eA(A AN(Ag): P =0 and P € : : 1
{(1 )€ 5(A) X A(As): Pian) =0 and P |22 H

with 0 < La2_ 2 < 1, if and only if, the entries of the matriz w in satisfy

U1 —UL,2— U2, 1T U2, 2
Uy < Uz = u22 < Up2.
Furthermore, the payoff at the NEs satisfies
w(Pji,, Ph,) = u2,1 = uzp.

(iii) The set P satisfies

73={(Pl,PQ)EA(Al)XA(AQ):Pl(al)zl and Py(ay) € Y2272 1”

b
Uy, —UL2 — U1 T U2

with 0 < fes s < 1, if and only if, the entries of the matriz w in satisfy

U1 —UL,2—U2,1 U2, 2
U292 > U2 = U1 > U21-
Furthermore, the payoff at the NEs satisfies
u(Pjh,ij) =u1,1 = Ui2.

(iv) The set P satisfies

U222 — U2
P=13(P1,P2) e A(A1) x A(Ag) : Pi(a1) =1 and Py(a;) € |0, ’ : }}
{(rre i) <o) Pi(a) 2(an) € 0.t
with 0 < ul,ﬁz?z:Z;ijm < 1, if and only if, the entries of the matriz u in satisfy

Uz < U2 =Up1 < U27-
Furthermore, the payoff at the NEs satisfies

U(Pfxlvpfxg) =u1,1 = U1,2.

RR n°® 9492
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8 Ke Sun

(v) The set P satisfies

U2,2 —U2,1
=< (P, P A A : P, : : 1 P. =
P {( 1, 2)6 (Al)x (AQ) 1(@1)6 u1,17u1727u271+u2,2, :| and 2(a1> 0} (65)

with 0 < 2221 < 1, if and only if, the entries of the matriz uw in satisfy

U1 —UL,2—U2,1+ U2, 2

U1 > U2 = U222 > U 1. (66)

Furthermore, the payoff at the NEs satisfies

uw(P3,, Py,) =u12 = upo. (67)
(vi) The set P satisfies
u — U
P:{(Pl,Pg)eA(Al)xA(Ag):Pl(al)e 0, 1ui’zuz71+u22} and Pg(al):O} (68)

with 0 < L2l 2) < 1, if and only if, the entries of the matriz w in satisfy

U1 —UL2— U2, 1T U2, 2

U <upe =u22 < U1 (69)

Furthermore, the payoff at the NEs satisfies

u(P},, Py,) =u12 = upo. (70)
(vii) The set P satisfies
U2 2 —U21
P=2(P,P)e (A1) x A(As): P, € 10, : . d P, =1 71
{(rryeacan<ata:nee o222 | ad pe) =1} 1)

with 0 < co2_ 2 < 1, if and only if, the entries of the matriz w in satisfy

U1 —UL2— U2, 1T U2, 2

U212 > U1 = UL,] > UL 2. (72)

Furthermore, the payoff at the NEs satisfies

u(P},,P),) =u11 = u21. (73)
(viii) The set P satisfies
U2 —U
P:{(Pl,Pg)eA(Al)xA(Az):Pl(al)e UMU?ZUZEMMJ} and P2<a1):1} (74)

with 0 < ul’lfﬁ?;:ﬁ:;uzz < 1, if and only if, the entries of the matriz u in satisfy
Uz < Uz =uin < Up2. (75)
Furthermore, the payoff at the NEs satisfies
u(P3,, Pi,) = w11 = uz. (76)

Proof: The proof of Theorem is provided in Appendix [J]

Inria



Some Properties of the NE in 2 x 2 Zero-Sum Games 9

1.3 Payoff at the Nash Equilibrium

The payoff at the NE (the value of the game) is characterized by the following theorem.

Theorem 1.5 (Value of the Game) Let the probability measures P € A (A;) and P}, €
A (Az) form an NE of the game & in @) If the entries of the matriz w in satisfy

(u11 —ur2) (U2 —ug1) >0 and (77a)
(w11 — U2,1) (U2,2 —u12) >0, (77b)

then, the NE of the game ¢ in (@ s unique, with

U222 — U2 1

U] —UL2 — U1 T U22
Ug 2 — U1,2

U] —UL2 — U2,1 T U292

P} (a1)= € (0,1) and (78a)

P‘Zz (a’l): € <07 1)' (78b)

Moreover, the expected payoff at the NE is

Up,1U2,2 — UL 2U2 1
u(P},, Pi,)= ~ (79)
U] —UL2 — U2,1 T U222

If the entries of the matriz u in satisfy

(u1,1 —u12) (ug,2 — u21)

0 or (80a)
(u1,1 —u2,1) (ug2 —ur2) <0

<
<0, (80)

then, there exists either a unique NE or infinitely many NEs. Moreover, all NE strategies lead
to the same payolff,

u(P},, P}, )=min{max{uy 1,us 1 },max{ui 2,uz2}} (81a)

=max{min{u 1,u1,2},min{us 1,uz2}}. (81b)

Proof: The proof of Theorem [I.5]is provided in Appendix [K]
|
A key observation of the proof of Theorem is that if the entries of the payoff matrix w
satisfy , the value of 2 X 2 zero sum game can be searched exclusively in pure strategies. The
following lemma shows that if the entries of the payoff matrix w satisfy (77), it is not true.

Lemma 1.7 If the entries of the payoff matriz uw in satisfy , then

. U1,1U2,2 — U12U21
min {max {u1,1, U2,1 | , Max {uy 2, U2} > — = 82
{max {u1,1,uz,1} {u1,2,u,2}} T (82)
> max {min{uy 1,u12},min{ug o, u21}}. (83)
Proof: The proof of Lemma [I.7]is provided in Appendix [[] [ |

1.4 Leadership of Player 2

In this subsection, the case in which the players do not choose the strategies simultaneously is
considered. Without loss of generality, it is assumed that Player 2 chooses the strategy first.
Player 1 observes the strategy of Player 2 and chooses a strategy to maximize the payoff. Hence,

RR n°® 9492
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the payoff under this case is fully characterized by the function @ : A (A3) — R such that for all
PeA (Az),

ﬁ(P):QGHXc%ﬁl)U(QP% (84)

with the function u defined in .
Note that the best response of Player 1 in Lemma is either a pure strategy or the simplex
A (Ay). Hence, it follows that

i (P)= a P 85
U( ) QE{TGA(.AI?):%((al)E{O,l}}U(Q ) ( )

= max {u(Q’,P),u(Q“,P)} ) (86)

where Q' € A (A;) satisfies Q'(a1) =1 and Q" € A (A;) satisfies Q”(a1) = 0. Plugging (3) into
(85) yields

i (P) = max {ulylP(al) + ULQP(GQ), u2,1P(a1) + UQ’QP((LQ)} . (87)

The following lemma shows a closed-form expression when the entries of the payoff matrix u

in satisfy .

Lemma 1.8 Assume that the matriz w in satisfies . Let P; € A(A1) and P}, €
A (Az) form an NE in the game (u) in @) And let § = uy 1 —uy o — us 1 +uza. Then for all
P e A(Ay), the function 4 in satisfies:

ug,1P(a1) + ug 2 P(a2), if P(a;) < P}, (a1) and 6 >0 or
P(ay) > P}, (a1) and § <0,
w(P) = uy 1 P(a1) + ui 2 P(az), if P(a;) > P}, (a1) and 6 >0 or (88)
P(ay1) < Pj,(a1) and § <0,
U(le’Pzz)v ifP(al):Pzz(al)a

with P}, (ay) in ,

Proof: The proof of Lemma [I.8]is provided in Appendix [M}
|
The following lemma shows the monotonicity of 4(P4,) in in the interval Pa,(a1) €
[O,Pj{z (al)] and Py,(a1) € [P;“z (a1)71].

Lemma 1.9 Assume that the entries of the matriz u in satisfy . For all tuples (P, Q) €
A(A2) x A(Az), if 0 < P(a1) < Q(a1) < P}, (a1), then it holds that

a(P) > o(Q). (89)
Alternatively, if P, (a1) < P(a1) < Q(a1) <1, then it holds that
W(P) < 0(Q). (90)

Proof: The proof of Lemma [I.9]is provided in Appendix [N]
|
The following lemma shows that the minimum value of 4 in equals the value of the game.

Inria
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Lemma 1.10 Let the probability measures Py € A (A;y) and Py, € A (Az) be one of the NEs
of the game in (@ Then,

i u(P)=u(P}. , P; 91
Bty HP)=UPA i) (%)

where U s in .
Proof: The proof of Lemma [1.10]is provided in Appendix
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A Proof of Lemma [1.1]

The proof consists in studying the following cases.

Case I:
P} (a1) =1— P} (a2) =0 and (92)
P}, (1) =1- P}, (a2) = a, (93)
with o € (0, 1).
Case II:
P} (a1) =1—P}3 (az) =1 and (94)
P}, (a1) =1-P},(a2) = a, (95)
with a € (0,1).
Case III:
P} (a1) =1— P} (a2) =a and (96)
P}, (a1) =1 - P} (a2) =0, (97)
with o € (0, 1).
Case IV:
P} (a1) =1— P} (az) =« and (98)
Pj,(a1) =1-P},(a2) =1, (99)

with a € (0,1).

Note that in the proof, the set of all the NEs in the game ¢ in is denoted by P C
A (A1) x A(As).

The proof of Case I is as follows. Assume that the pair of strategies (P:h , PL) in and
forms an NE in the game ¢ in . Then, from the indifference principle |1, Theorem 5.18],
it follows that Player 2 is indifferent to using either action a; or as. That is,

uw(Pj,, Pi,) = (0, Du(l, 00" =(0, Du(0, 1)7, (100)
which implies that
U2,1 = U2.2. (101)

Under the assumption that (P} , P, ) forms an NE, it follows from @ that for all 5 € [0, 1], it
holds that

u(P%,, P4) = (0, D)u(e,1—a)" > (8,1 - Blul(a,l—a), (102)
which implies that
U+ ugo(l — ) > afurg + (1 —a)ur o+ (1 — Baug + (1 — B)(1 — a)uge. (103)
Note that taking the equality in into yields that

ug,1 > oug g+ (1 — o) uge. (104)

Inria
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The following proof proves that either

{(Pl,Pg) SAN (.Al) X A(Ag) : Pl(al) =1 and Pg(al) S [0,0é]} CP or (105)
{(P17P2) eN (Al) x A (AQ) : Pl(al) =1 and Pg(al) € [a, 1]} cP (106)

holds, which implies that P is a set of cardinality infinite.
First, consider the case in which u; 1 > wi2. From (101)), for all P € A(A3) such that
P(a1) € [0, ], and for all o/ € [0,1], it holds that
(0, D)u(P(ar), 1 - P(al))T =uz1 = (0, Du(a’, 1- O/)T =uy;. (107)
Furthermore, from (101)) and (104)), for all P € A(Ag) such that P(a1) € [0,a] and all 8 € [0,1],

(0, 1)g(P(a1), 1-— P(al))T

= ug, (108)
> 5(P(a1)u1,1 +(1- P(al))um) + (1 - Bug (109)
= P(a1)Bury + B(1 — P(ay))urs + (1 — B)P(a1)uzs + (1 — B)(1 — P(ay))uzo (110)
= (8, 1= B u(P(ar), 1 - Pla))", (111)

where the inequality follows from the fact that if w11 > w12 and P(a1) < ¢, from (104)), it holds
that

U271 Z auy 1 + (1 — a) U1,2 Z P(al)uLl + (1 — P(al))’ul’g. (112)
Hence, it holds that
{(Pl,PQ) [SVAN (Al) x A (.AQ) : Pl(al) =0 and Pg(al) S [0,0[]} c P. (113)

Alternatively, consider the case in which 4y ; < u12. From (101), for all P € A(Az) such
that P(a1) € [a, 1], and for all &’ € [0, 1], it holds that

(0, Yu(P(ar), 1—P(a1))" =ugs = (0, Dau(a/, 1—a/)" = ugy. (114)

Furthermore, from (101)) and (104)), for all P € A(Az) such that P(a1) € [a, 1] and all 8 € [0, 1],

0, Du(P(ar), 1—Play))’

= U1 (115)
> B(P(ar)ur + (1= P(ar))ur2) + (1 — B)uzg, (116)
= P(a1)pui1 + B(1 — P(ay))ui 2 + (1 — B)P(ar)ugy + (1 = B)(1 — P(a1))uz2 (117)
= (8, 1= B u(P(a), 1 - P(a))’, (118)

where the inequality follows from the fact that if u1 1 < w12 and P(a1) > ¢, from (104)), it holds
that

u2’1 Z O[’U,Ll + (1 — Ol) ’U,LQ Z P(al)uu + (1 — P(al))ulvg. (119)
Hence, it holds that

{(Pl,PQ) [SVAN (Al) x A (./42) : Pl(al) =0 and Pg(al) S [Oé7 1]} c P. (120)
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This completes the proof.

The proof of Case II is as follows. Assume that the pair of strategies (P;;1 , Pj;z) in and
forms an NE in the game ¢ in . Then from the indifference principle |1, Theorem 5.18],
it follows that Player 2 is indifferent to using either action a; or as. That is,

(1, 0u(l, 0)" = (1, 0)u T, (121)
which implies that
uig = ups. (122)
Under the assumption that (P;“1 , P:lz) forms an NE, from @, for all 8 € [0, 1], it holds that
(1,0u(a,1—a) > (8,1-Bu(a,1—a), (123)
which implies that
uria+uio(l —a) > afurg + (1 —a)urz + (1 — Baugs + (1 — B)(1 — a)ug. (124)
Note that taking the equality in into yields that for all g € [0, 1], it holds that
ur,1 > augq + (1 — o) uge. (125)
The following proof proves that either

{(Pl,PQ) SAN (./41) X A(Ag) : Pl(al) =1 and Pg(al) € [0,0[}} CP or (126)
{(P]_,Pg) e (.Al) X A(Ag) : Pl(al) =1 and Pg(al) € [CY, 1]} cP (127)

holds, which implies that P is a set of cardinality infinite.
First, consider the case in which us1 > wugs. From (101)), for all P € A(A3) such that
P(ay) € [0,a], and for all & € [0, 1], it holds that

(1, 0)w(P(ar), 1= P(ar))" =ury = (1, 0)u(c/, 1—a’)" =uys. (128)

Furthermore, from (122]) and (125)), for all P € A(As) such that P(a1) € [0, ] and all 8 € [0, 1],

(1, 0)u(P(ar), 1 —P(ar))"

= U1, (129)
> Buiy + (1= B)(Plar)uz,1 + (1 — P(ar))uz,2) (130)
= P(a1)Bui,1 + B(1 — P(a1))ur2 + (1 — B)Par)uz + (1 = B)(1 — P(a1))uz,2 (131)
= (8 1-B)u(P(@), 1 - P(a)), (132)

where the inequality follows from the fact that if ug 1 > u2 2 and P(a1) < ¢, from (125)), it holds
that

U1,1 > Quz1 + (1 — Oé) U2,2 > P(al)um + (1 — P(al))ul,g. (133)
Hence, it holds that

{(Pl,PQ) S A(.A1) x A (AQ) : Pl(al) =1 and Pz(al) S [0,0é]} c P. (134)
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Alternatively, consider the case in which ug1 < ug2. From (122)), for all P € A(A3) such
that P(ay) € [, 1], and for all o’ € [0,1], it holds that

(1, 0)w(P(ar), 1= P(a1))" =urs = (1, 0)u(a’, 1—a/)" = ups. (135)
Furthermore, from (101]) and (104]), for all P € A(Az) such that P(a1) € [a, 1] and all g € [0, 1],

(1, 0)u(P(ar), 1— P(ay))"

=u1,1 (136)
> Bur + (1= B)(Plar)uzy + (1 — P(ar))uz2) (137)
= P(a1)Bui,1 + B(1 — P(a1))ur2 + (1 — B)Par)uz1 + (1 — B)(1 — P(a1))uz,2 (138)
= (8, 1 B)u(P(ar), 1 - Plar))", (139)

where the inequality follows from the fact that if ug 1 < u22 and P(a1) > ¢, from (125)), it holds
that

U1,1 > Quz1 + (1 — a) U2,2 > P(al)ug,l =+ (1 — P(al))ug’g. (140)
Hence, it holds that
{(P1,Py) € A(A1) x A(A2) : Pi(a1) =1 and Py(a;) € [a, 1]} C P. (141)

This completes the proof.

The proof of Case I1I is as follows. Assume that the pair of strategies (P} , P},) in and
forms an NE in the game ¢ in . Then from the indifference principle |1, Theorem 5.18],
it follows that Player 1 is indifferent to using either action a; or as. That is,

(1, 0)u (0, )" = (0, Du(0, 1)T, (142)
which implies that
U12 = Uz2.2. (143)
Under the assumption that (P;“1 , ij) forms an NE, from , for all g € [0, 1], it holds that
(0,1 —a)u(0,1)T < (a,1—a)u(B,1-5)T, (144)
which implies that
oo+ uzo(l— ) <afuig +a(l —Puig + (1 —a)busi + (1 —B)(1 —a)ug. (145)
Note that taking the equality in into yields that for all 8 € [0, 1], it holds that
Ugo <ourq+ (1 —a)ug . (146)
The following proof proves that either

{(P1,P2) € A(Ay) x A(Az) : Pi(a1) € [0,a] and Pa(a1) =0} CP or (147)
{(Pl,PQ) eN (.Al) X A(AQ) : Pl(al) S [0471] and Pg(al) = 0} cP (148)

holds, which implies that P is a set of cardinality infinite.
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First, consider the case in which ug 1 > u1,1. Given the fact that the equality in (143)) holds,
for all P € A(A;) such that P(a1) € [0,a], and for all &’ € [0, 1],

(P(ay), 1— P(al))y(O, 1)T =uj2=(a/, 1—-a) @(0, 1)T = u12. (149)
Furthermore, from (143)) and (146)), for all P € A(A;) such that P(a1) € [0,a] and all 8 € [0,1],
(P(a1), 1~ P(ar) (0, 1)7

= Uz2,2 (150)
< (1= Blugz + B(P(ar)ur1 + (1 — Plar))uz1) (151)
= P(a1)Buiy + (1 = B)P(ar)ur o + B(1 — P(a1))uz1 + (1 — B)(1 — P(ay))uz,2 (152)
= (P(a), 1= P(a)u(8, 1-8)", (153)

where the inequality follows from the fact that if ua 1 > w11 and P(a1) < «, from (146)), it holds
that

ug2 < il + (1 - Oé) uz1 < P(al)um + (1 — P(al))ul,g. (154)
Hence, it holds that
((P1,Py) € A (A1) x A (As) : Pi(a) € [0,a] and Py(ar) = 0} C P. (155)

Alternatively, consider the case in which up1 < w11. From (143), for all P € A(A;) such
that P(a1) € [a, 1], and for all o’ € [0, 1], it holds that

(P(ar), 1= P(a1)u(0, 1) =15 = (o, 1—a')u(0, 1)7 = uys. (156)
Furthermore, from (143)) and (146]), for all P € A(A;) such that P(a1) € [0,a] and all 8 € [0,1],
(P(a1), 1~ P(ar) (0, 1)"

= Uz,2 (157)
< (1= Bluzz + B(Par)ur,r + (1 — P(ar))uz,1) (158)
= P(a1)Buiy + (1 = B)P(ar)uro + B(1 — P(a1))uz1 + (1 = B)(1 — P(ax))uz,2 (159)
= (P(a), 1= P(a)u(8, 1-8)", (160)

where the inequality follows from the fact that if us 1 < w11 and P(a1) > «, from (146)), it holds
that

ug2 < Qi + (1 — Oé) u21 < P(al)um + (1 — P(al))ul,g. (161)
Hence, it holds that
{(Pl,P2> ISIVAN (Al) x A (.AQ) : Pl(al) S [Oé, 1] and Pg(al) = 0} cP. (162)

This completes the proof.

The proof of Case VI is as follows. Assume that the pair of strategies (P;11 , P;§2) in and
forms an NE in the game ¢ in . Then from the indifference principle |1, Theorem 5.18],
it follows that Player 1 is indifferent to using either action a; or as. That is,

(1, 0)u(1, 0)" = (0, Hu(L, 0)", (163)
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which implies that
U1 = Uz2.1. (164)
Under the assumption that (P} , lez) forms an NE, from (7)), for all 5 € [0,1], it holds that
(0,1 —a)u(1,0)T < (a,1 —a)u(B,1-5)7, (165)
which implies that
uria+uzi(l—a) <afuig+a(l —Buis + (1 —a)buzi + (1 —B8)(1 —a)ugs. (166)
Note that taking the equality in into yields that for all 8 € [0, 1], it holds that
w1 <aupg+ (1 —a)ugs. (167)
The following proof proves that either

{(Pl,PQ) GA(Al) XA(AQ) :Pl(al) € [0,0é] and Pg(al)zl}CP or (168)
{(Phpg) ISAN (./41) X A(Ag) : Pl(al) € [OL, 1] and Pg(al) = 1} cP (169)

holds, which implies that P is a set of cardinality infinite.
First, consider the case in which u; 2 > ug 2. Given the fact that the equality in (164) holds,
for all P € A(A;) such that P(a1) € [0,a], and for all &’ € [0, 1],

(P(ar), 1= P(a))u(l, 0) = ury = (o, 1—a')u(l, 0)" = up ;. (170)
Furthermore, from ((164)) and (167)), for all P € A(A;) such that P(a1) € [0,«] and all 5 € [0, 1],
(P(a1), 1= P(a1))u(l, 0)7

=U1,1 (171)
< Burg + (1= B)(Pa)urz + (1 — Play))us2) (172)
= P(a1)Burs + (1 = B)P(ar)ur2 + B(1 — P(a1))uz,1 + (1 = B)(1 — Par))uz2 (173)
= (P(a1), 1 - P(ar)u(B, 1-B)", (174)

where the inequality follows from the fact that if uz 2 > uy 2 and P(a1) < «, from (167)), it holds
that

ul,l S O[’U,LQ —+ (1 — Ol) ’U,QQ S P(al)ulg -+ (1 — P(al))’ll,gvg. (175)
Hence, it holds that
{(Pl,PQ) € A(Al) x A (AQ) : Pl(al) S [070[} and Pg(al) = ].} cP. (176)

Alternatively, consider the case in which u; o < ug 2. From (143), for all P € A(A;) such
that P(ay) € [a, 1], and for all o’ € [0, 1], it holds that

(P(ay), 1—P(ar)u(l, 0)" =uyy = (o/, 1—a")u(0, 1)7 =uys. (177)
Furthermore, from ((164]) and (167)), for all P € A(.A;) such that P(a1) € [, 1] and all 8 € [0, 1],
(P(a1), 1= P(a1))u(l, 0)7

= U1 (178)
< Puri+ (1 -5) (P(al)ulyg +(1- P(al))ng) (179)
= P(a1)Bur1 + (1 — B)P(aj)ur 2 + B(1 — P(a1))uz1 + (1 — B8)(1 — P(a1))uz,2 (180)
= (P(a1), 1 P(a1))w(B, 1-5)", (181)
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where the inequality follows from the fact that if ug 2 < u1 2 and P(a1) > «, from (167)), it holds
that

U1,1 S auy 2 + (1 — Oé) U2,2 S P(al)uLg + (1 - P(al))uzg. (182)
Hence, it holds that
{(Pl,PQ) S A(.A1) x A (./42) : Pl(al) S [O(7 1] and Pg(al) = 1} c P. (183)

This completes the proof.
This completes the whole proof.

B Proof of Lemma [1.2

The proof of the first statement is as follows. Assume that the pair of strategies (P;‘h , P);Q) epP
satisfies

P} (a1) =1— P} (a2) € {0,1} and Pj (a1)=1- Pj, (a2) € {0,1}. (184)
If there exists another pair of strategies (th,Qf%) € P satisfying
Q4 (a1) =1—-Q%, (a2) € (0,1) and Q%,(a1) =1—-Q%,(a2) € (0,1), (185)

then from |1, Corollary 4.46], it holds that the pair of strategies (P} ,Q%,) also forms an NE.
Then, if (P} ,Q%,) forms an NE, from Lemma it holds that there exist infinitely many NEs,
which contradicts the assumption of the lemma.

The proof of the second statement is as follows. Assume that the pair of strategies (P} , P},) €
P satisfies

Pi (1) = 1 — P§ (as) € (0,1) and P (a1) = 1 — P, (as) € (0,1). (186)
If there exists another pair of strategies (Q%,,Q%,) € P satisfying
Qh,(a1) =1—-0Q%, (az) € {0,1} and Q%,(a1) =1—Qa,(az) € {0,1}, (187)

then from |1, Corollary 4.46], it holds that the pair of strategies (P} ,Q%,) also forms an NE.
Then, if (P}, Q%,) forms an NE, from Lemma it holds that there exist infinitely many NEs,
which contradicts the assumption of the lemma.

This completes the proof.

C Proof of Lemma 1.3

Assume that the pair of strategies (P;‘h , le,z) € P satisfies

P3 (a1) =1— P} (az) € (0,1) and (188)
P}, (a1) =1— P}, (a2) € (0,1). (189)

Assume also that there exists another pair of strategies (Qzl , Qf42) € P satisfying

@, (a1) =1-Q%, (az) €[0,1] and (190)
@, (a1) =1—-Q%,(az) € [0,1]. (191)
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Note that if the pair of strategies (Q%,,Q%,) satisfies

@4, (a1) =1—-Q%, (a2) €{0,1} and (192)
Qh,(a1) = 1 - Q% (a2) € {0,1}, (193)
then from Lemma there are infinitely many NEs in the game ¢, which contradicts the

assumption of the lemma. Hence, the proof continues by considering the following cases.
Case I: the pair of strategies (Q%,,Q%,) satisfies

Q4,(a1) =1—Q% (a2) € {0,1}, and (194)
Qu,(a1) =1—-Q%,(az2) € (0,1). (195)

Case II: the pair of strategies (le, 1*42) satisfies

Q%,(a1) =1—Q% (a2) € (0,1), and (196)

Qh,(a1) =1—Q%,(a2) € {0,1}. (197)
Case III: the pair of strategies (Q;l,th) satisfies

Q% (a1) =1—Q%, (a2) € (0,1), and (198)

Qh,(a1) =1 —Q,(a2) € (0,1). (199)

Proof of Case I: From Lemma [T} it holds that there are infinitely many NEs in the game ¢,
which contradicts the assumption that the game ¢ possesses a finite number of NEs.

Proof of Case II: From Lemma|[T.] it holds that there are infinitely many NEs in the game ¢,
which contradicts the assumption that the game ¢ possesses a finite number of NEs.

Proof of Case III: From the indifference principle |1, Theorem 5.18], it follows that Player 1
is indifferent to use action a; or action az when Player 2 uses strategy Pj, . That is,

(1, 0)w (P4, (@), 1= Pi,(a) = (0, Du(Pi,(a), 1-Pia))’ . (200
The above equality yields
u11 P}, (a1) + u12(1 = P, (a1)) = uz1 Pi,(a1) + uz2(1 — P, (a1)), (201)
which is equivalent to
(u1,1 — U1 —ug1 + uz2)Pi,(a1) = uz o — ug 2. (202)

Similarly, Player 1 is also indifferent to use action a; or action as when Player 2 uses strategy
Q%,- As aresult, it holds that

(u1,1 —ure —ug1 + u22)Q%,(a1) = uz2 — Uz 2. (203)

Note that the equalities in and are both first-order equations. Hence, there is a
unique solution in (0,1) if w11 — u1,2 — Uz + uz2 # 0 and ug 2 — u1,2 # 0, which implies that
P}, (a1) = Q%,(a1). Alternatively, there are infinitely many solutions if w1 1 —u1 2 —ug2 1 +uz 2 = 0
and uz 2 — uy 2 = 0, which implies that all strategies Q4, € A(Az), together with P} , form an
NE. This contradicts the assumption that there is a finite number of NEs. Finally, the case in
which there are no solutions to and contradicts the initial assumption, as (P}, P}, )
forms an NE. As a result, if the game ¢ exhibits a finite number of NEs, it holds that P} = Q7.
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For Player 2, the indifferent principle |1, Theorem 5.18] yields that
(Pi,(a1), 1= P4, (a1) u(1, 0)" = (P4, (ar), 1= P4, (a1)) u(0, 1), (204)
which is equivalent to
(u1,1 —uro —ug1 +uz2) Py (a1) = uz o — ug ;1. (205)

Similarly, Player 2 is also indifferent to use action a; or action as when Player 1 uses strategy
Qa4,. As a result, it holds that

(u1,1 —u1,2 —u21 +u22)Q%, (a1) = u22 —u21. (206)

Note that the equalities in (205)) and (206) are both a first-order equations. Hence, there is
a unique solution in (0,1) if w11 — w12 —u2,1 + u22 # 0 and ug 2 — uz,1 # 0, which implies that
P} (a1) = Q% (a1). Alternatively, there are infinitely many solutions if u1 1 —u1 2 —ugz 1 +uz 2 = 0
and ug 2 — ug,1 = 0, which implies that all strategies Q4, € A(A;), together with P}, form
an NE. This contradicts the assumption that there is a finite number of NEs. Finally, the case
in which there are no solutions to (205 and (206) also contradicts the initial assumption, as
(P4, Py,) forms an NE. As a result, if the game & exhibits a finite number of NEs, it holds that
Pr =Q%,-

This completes the proof.

D Proof of Lemma 1.4

Note that from Lemma if there exist a finite number of NEs in the game ¢, then an NE in
pure strategies and an NE in strictly mixed strategies cannot coexist. Furthermore, from Lemma
if there exist a finite number of NEs in the game ¢, then an NE in which one player uses
a pure strategy and the other players uses a strictly mixed strategy does not exists. Hence, the
proof is conducted by contradiction to prove that if there exist a finite number of NEs in the
game 4, two NEs in pure strategies cannot coexist.

Assume that there exists another pair of strategies (Q% ,Q%,) € P such that

Q% (a1) =1—-Q%, (a2) € {0,1} and (207)
Qh,(a1) =1 —Q%,(a2) € {0,1}. (208)

Given the fact that there are at most four NEs in pure strategies in 2 x 2 games, there are
4
2

following cases.

Case [: Strategies P} , P , Q% , and Q7 satisfy

= 6 scenarios in which two NEs in pure strategies exist. Hence, the proof considers the

P} (a2) =1—Pj3 (a1) =0 and P} (az)=1— P} (a1)=0, (209)
@, (a2) =1=Q%, (a1) =0 and @}, (a2) =1 —Q%,(a1) = 1. (210)

Case II: Strategies Py , P}, Q%,, and Q7 satisfy
Pj (a2) =1—- P} (a1) =0 and Pj (az) =1- P}, (a1) =0, (211)
Qh,(a2) =1-Q%, (a1)=1 and Q%,(a2) =1—Q%,(a1) =0. (212)
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Case III: Strategies P} , P3 , Q% , and @7, satisfy

P} (a2) =1—P} (a1) =0 and P} (az) =1— P} (a1) =0, (213)
@, (a2) =1-Q%, (a1) =1 and  Q%,(az) =1—-Q%,(a1) = 1. (214)

Case IV: Strategies P} , P , Q% , and Q% satisfy
P} (a2) =1—=P} (a1) =1 and P} (az)=1— P} (a1)=1, (215)
@4, (a2) =1-Q%, (1) =0 and Q},(az2) =1—Q%,(a1) =1. (216)
Case V: Strategies Py , P}, Q%,, and Q% satisfy
Pj (a2) =1—-P} (a1) =1 and Pj (az)=1- P} (a1) =1, (217)
Qi (az) =1-Q},(a1) =1 and Q},(az) =1—Q%,(a1) =0. (218)
Case VI: Strategies P} , P1 , Q% , and Q7 satisfy

P} (a2) =1—=P} (a1) =1 and P} (az) =1— P} (a1) =0, (219)
@, (az) =1-Q%,(a1) =0 and Q},(az) =1—Q%,(a1) =1 (220)

The proof of Case I is as follows. If (P} , P} ) forms the NE, then from Definition it
holds that for all a € [0, 1],

u(P4,, Pi,) = w11 > (a1 - a)u(1,0)"; (221)

and for all @ € A (As) such that Q(a;) = 5,

w(P4,, Px,) =wi1 < (1,00u(8,1-8)". (222)
Setting « in (221) and S in (222)) to zero yields
Ul 2> ULl 2> U1 (223)

Similarly, if (Q%,,@%,) forms the NE, then from Definition it holds that for all « € [0, 1],

u(@%,,Q4h,) = urz > (a1 - a)u(0,1)%; (224)
and for all 3 € [0,1],
w(@Qh,, Q4,) = w12 < (1,0)u(8,1-8)". (225)
Setting « in to zero and S in to one yields
UL, 2> UL 2> U2,2. (226)
Hence, the inequalities in and yields
U1 =uig > ugy and (227)
U1 = Ur2 > Ug2. (228)

If at most one of the inequalities in (227) and (228]) holds with equality, then, for Player 1,
action a; dominates action as. For this case, all strategies P4, € A (Az), together with strategy
Py, € A(Ay) such that Py, (a;) = 1, form an NE. Then there are infinitely many NEs, which
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contradicts the assumption of the lemma. Alternatively, if both the inequalities and
hold with equality, all pair of strategies (Pa,, Pa,) € A (A1) x A (Az) form an NE. Then there
are infinitely many NEs, which contradicts the assumption of the lemma and completes the proof.

The proof of Case I is as follows. If (P} , Pj,) forms the NE, then from Definition it
holds that for all Q € A (A;) such that Q(a1) = «,

u(Pj3,, Pi,) =ui1 > (a,1 —a)u(l, O)T; (229)

and for all @ € A (As) such that Q(a;) = 8,

u(P4,, Pi,) = ui1 < (1,0)u(8, 1 - B)T. (230)
Setting « in (229) and B in (230]) to zero yields
Up2 2> U1 = U2 1. (231)

Similarly, if (Q%,Q%,) forms the NE, then from Deﬁnition it holds that for all Q € A (A;)
such that Q(a1) = a,

w(@,,Q%,) =u21 > (a,1 — a)u(1,0)7; (232)

and for all @ € A (Az) such that Q(a1) = 8,

w(@h,,Q%,) =u21 < (0, )u(B,1—B)". (233)
Setting « in to one and § in to zero yields
U2 2 U1 2 Uil (234)
Hence, the inequalities in and yields
U1 =ug1 <ujo and (235)
Ur,1 = Uz,1 < Ug2. (236)

If at most one of the inequalities in and holds with equality, then, for Player 2,
action a; dominates action as. For this case, all strategies P4, € A (A1), together with strategy
Py, € A (Asz) such that Py,(a;) = 1, form an NE. Then there are infinitely many NEs, which
contradicts the assumption of the lemma. Alternatively, if both the inequalities and
hold with equality, all pair of strategies (Pa,, Pa,) € A (A1) x A (Az) form an NE. Then there
are infinitely many NEs, which contradicts the assumption of the lemma and completes the proof.

If Case III holds, from Definition the pair of strategies (P} , P}, ) forming the NE implies
that for all 8 € [0,1] and « € [0, 1], 1t holds that

(1,0)u(1,0)" < (1,0)u(s,1 - B)"; (237)
and
(1,0)w(1,0)" > (a,1 — a)u(1,0)T. (238)
Setting £ in and « in to zero yields
ug1 < U1l < U 2. (239)
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Similarly, from Definition the pair of strategies (Q%,,Q%,) forming the NE implies that for
all 5 €0,1] and « € [0, 1], it holds that

(0, u(0,1)" < (0, )u(B,1 - B)%; (240)
and
(0, D(0,1)" > (a, 1 — ) (0, 1)7. (241)
Setting £ in and « in to one yields
Ur2 S ug2 < Uzt (242)
Combing with yields that
Ul = U2 = U1 = Ugg. (243)

Then, for all strategies @ € A(A;) and P € A(Ap), it holds that

(Q(a1),1 — Q(a1))u(P(ar),1 — P(ar))T = w11 = w12 = us1 = uao, (244)

which implies that there exist infinitely many NEs. This contradicts the setting that there exists
a finite number of NEs in the game ¥.

The proof of Case IV is as follows. If (P} , Pj, ) forms the NE, then from Definition it
holds that for all Q € A (A;) such that Q(a1) = «,

Ug > (o, 1 — a)u(0,1)7; (245)

and for all @ € A (As) such that Q(a;) = 8,

uz2 < (0, Hu(B,1-p)". (246)
Setting « in (245)) and 3 in (246]) to one yields
Uzl 2> Ug2 2> U1 2. (247)

Similarly, if (Q%,,Q%,) forms the NE, then from Deﬁnition it holds that for all @ € A (A;)
such that Q(a1) = «,

urn > (o, 1 — a)u(0,1)7; (248)

and for all @ € A (Ay) such that Q(a1) = 5,

ure < (1,0)u(8,1-8)". (249)
Setting « in to zero and [ in to one yields
U1 2 U2 2 U2 2. (250)
Hence, the inequalities in and yields
Ure = U292 <usq and (251)
U2 = U222 <UL (252)
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If at most one of the inequalities in and holds with equality, then, for Player 2,
action as dominates action a;. For this case, all strategies Pa, € A (A;), together with strategy
Py, € A(Asz) such that P4,(a;) = 0, form an NE. Then there are infinitely many NEs, which
contradicts the assumption of the lemma. Alternatively, if both the inequalities and
hold with equality, all pair of strategies (Pa,, Pa,) € A (A1) x A (Az) form an NE. Then there
are infinitely many NEs, which contradicts the assumption of the lemma and completes the proof.

The proof of Case V is as follows. If (P} , Pj,) forms the NE, then from Definition it
holds that for all Q € A (A;) such that Q(a1) = «,

Uz > (e, 1 —a)u(0,1)7; (253)

and for all @ € A (Az) such that Q(a1) = 3,

ug2 < (0,1)u(8,1—p)". (254)
Setting « in (253)) and S in (254)) to one yields
U2l 2 U2 2 U1 2. (255)

Similarly, if (Q%,Q%,) forms the NE, then from Deﬁnition it holds that for all Q € A (A4;)
such that Q(a1) = «a,

uz1 > (1= )u(1,0)7; (256)
and for all @ € A (As) such that Q(a;) = 8,

us,1 < (0,1)u(B,1—-B)". (257)
Setting o in to one and S in to zero yields
U2 2 U1 = Ui,1- (258)
Hence, the inequalities in and yields
Ug2 =U21 > U2 and (259)
Uz2 = U2l 2> U11. (260)

If at most one of the inequalities in and holds with equality, then, for Player 1,
action as dominates action a;. For this case, all strategies P4, € A (A;), together with strategy
Py, € A(Asz) such that Pa,(a;) = 0, form an NE. Then there are infinitely many NEs, which
contradicts the assumption of the lemma. Alternatively, if both the inequalities and
hold with equality, all pair of strategies (Pa,, Pa,) € A (A1) x A (Ag) form an NE. Then there
are infinitely many NEs, which contradicts the assumption of the lemma and completes the proof.

If Case VI holds, from Deﬁnition the pair of strategies (P} , Pj,) forming the NE implies
that for all 8 € [0,1] and « € [0, 1], it holds that

(0, )u(1,0)" > (a,1— a)u(1,0)"; (261)
and
(0, D)u(1,0)" < (0,)u(B,1—B)T. (262)
Setting « in to 1 and B in to zero yields
url < ug1 < Ug2. (263)
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Similarly, from Definition the pair of strategies (Q%,,Q%,) forming the NE implies that for
all 5 €0,1] and « € [0, 1], it holds that

(1,0)u(0, )T < (1,0)u(s,1 - B)"; (264)
and
(1,0)(0,1)T > (a,1 — a)u(0,1)T. (265)
Setting 5 in to 1 and a in to zero yields
ug2 <ur2 < Upg- (266)
Combing with yields that
U1 = Ul = U = Uz (267)

Then, for all strategies @ € A(A;) and P € A(Ay), it holds that

(Q(a1),1 — Q(a1))u(P(a1),1— Par))" = w11 = w12 = uz1 = ug 2, (268)

which implies that there exist infinitely many NEs. This contradicts the setting that there exists
a finite number of NEs in the game ¢.
This completes the proof.

E Proof of Theorem [1.1]

The number of NEs in the game ¢ in is either infinite or finite. First, consider the case in
which there are finite number NEs. From |1, Theorem 4.49], it holds that there exists at least
one NE, denoted by (P} , P}, ), in the game &. Note that from Lemma (P31, P4,) satisfies

P} (a1) €{0,1} and P} (a1)€{0,1}; or (269)
P} (a1) € (0,1) and P} (a1) € (0,1). (270)
If (P},,P},) satisfies (269), then (P} , P} ) is the unique NE, see Lemma If (P},,P4,)

satisfies (270), then (P} , P},) is the unique NE, see Lemma As a result, if the zero-sum
game ¥ in (2) exhibits finite number of NEs, then there exist only one NE in the game ¥.
This completes the proof.

F Proof of Lemma [1.5]

Note that for all P4, € A (Ay) and all Py, € A (As), the payoff in satisfies

U(PAUPAQ)
= u1,1Pa, (a1)Pa,(a1) + ui2Pa, (a1)Pa,(az) + 21 Pa, (a2) Pa,(a1) 4 u2,2Pa, (az)Pa,(a2) (271)
= u1,1Pa, (a1)Pa,(a1) + u1,2Pa, (a1) (1 = Pa,(a1)) + uz1 (1 — Pa, (a1))Pa,(a1)
+ug,2(1 = Pa,(a1)) (1 — Pa,(ar)) (272)
= (u1,1 —u1,2 —u21 + u22)Pa, (a1)Pa,(a1) + (u1,2 — us2)Pa, (a1) + (u2,1 — u2,2)Pa,(a1)
+ug 2. (273)
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As a result, the best response of Player 1 to a strategy Pa, € A (As) is given by
BR1(Pa,) =
arg  max )((ul,1—u172—u2,1+u272)PA2(a1)+(U172—U2,2))P(al)+(uz,l—u2,2)PA2(a1)+u2,2- (274)
1

Assume that § = w31 — ui2 — u21 + ug2 # 0. Further assume that 6 > 0. Hence, if
Py, (a1) < p?, the payoff in (274) satisfies

((u1,1 —ur,2 — 2,1 + u22)Pay(a1) + (u12 — uz2)) Plar) + (ugq — uz,2)Pa,(a1) + uz2

=(u1,1 —u1,2 — U1 + U2 y2) (PA2 (a1) — p(2)) P(a1) + (u2,1 — u2,2)Pa,(a1) + ug 2 (275)
<(u2,1 — u2,2)Pa,(a1) + uz2, (276)

where the inequality holds with equality if and only if
P(ay) = 0. (277)
Hence, it holds that
BR, (Pa,) = {P € A(A)) : P(ay) = 0}, (278)
If Pa,(a1) > p®, the payoff in satisfies
((Ul,l — U9 — U1+ u22)Pa,(a1) + (w12 — u272))P(a1) + (u21 — u2,2)Pa,(a1) + ugo

=(u1,1 — u1,2 — U2, + U2y2) (PA2 (a1) — p(2)) P(a1) + (u2,1 — u2,2)Pa,(a1) + uz2 (279)
<(u1,1 — u1,2)Pa,(a1) + u1 2, (280)

where the inequality holds with equality if and only if
P(ay) = 1. (281)
Hence, it holds that
BR (Pa,) = {P € A(A)) : Plar) = 1. (252)
If Pa,(a;) = p@, for all P € A (A,), the payoff in satisfies
((Ul,l —u1 9 — U1 +u22)Pa,(ar) + (w12 — Uz,z))P(lh) + (u21 — u2,2)Pa,(a1) + ua2

=(u1,1 —u1,2 —uz,1 + u2,2) (PA2 (a1) — P(2)) P(ay) + (ug1 — u2.2)Pa,(a1) + ug2 (283)
=(ug,1 — u2,2)Pa,(a1) + uz2, (284)

Hence, it holds that
BR; (PAz) = {P S A(.Al) : P(al) = ﬁ,,@ S [O, 1]} (285)

Alternatively, assume that § = w11 —u12 —ug1 + u22 < 0. Hence, if Pa,(a1) > ), the payoff

in (274) satisfies
((U1,1 — U9 — U1 +u22)Pa,(a1) + (12 — U2,2))P(a1) + (u21 — u2,2)Pa,(a1) + ua2

=(u1,1 —u1,2 — U1 + U22) (PA2 (a1) — P(Q)) P(ay) + (u2,1 — u2,2)Pa,(a1) + uz 2 (286)
<(ug,1 —u2,2)Pa,(a1) + uzz2, (287)
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where the inequality holds with equality if and only if
P(ay) =0. (288)
Hence, it holds that
BRy (Pa,) = {P € A(Ay) : Play) = 0}. (289)
Hence, if Pa,(a1) < p®, the payoff in satisfies
((u1g — 1,2 —u2,1 + u22)Pay(a1) + (u12 — uz,2)) Plar) + (ugq — uz,2)Pa,(a1) + uz2

=(u11 — U2 — U1 + U2y2) (PA2 (a1) — p(2)> P(a1) + (u2,1 — u2,2)Pa,(a1) + ug,2 (290)
<(u1,1 —u1,2)Pa,(a1) + ui 2, (291)

where the inequality holds with equality if and only if
P(ay) =1. (292)
Hence, it holds that
BR, (Pa,) = {P € A(Ay) : Play) = 1}. (203)
Hence, if Pa,(a1) = p®, for all P € A (A,), the payoff in satisfies
(w11 — w12 —ugy +u22)Pay(a1) + (u12 — u22)) Plar) + (ug,1 — u22)Pa,(a1) + ug,

=(u1,1 — ui,2 — u2,;1 + u22) (PA2 (a1) — p(2)) P(ay) + (u2,1 — u2,2)Pa,(a1) + uz 2 (294)
=(ug.1 — u2.2)Pa,(a1) + ug2, (295)

Hence, it holds that
BRy (Pa,) = {P € A(A1) : P(a1) = 8,8 € 0,1]}. (296)

In a nutshell, if 6 = U1 — U2 — U1 + U2 2 # 0, it holds that

{PA1 S A(.Al) : PA1 (al) = 0}, if 6 > 0 and PAQ(CM) < p(2), or
0 < 0 and PAz(al) > p(2)
BR;(Pa,) = {Pa, € A(Ay) : Py, (ay) =1}, if § >0 and Pa,(a1) > p®, or (297)
§ <0 and Pya,(a1) < p®
{Pa, € A(Ay) : Py, (a1) = B,8 € [0,1]}, if Pa,(ar) = p®.

Then consider the case in which 6 = uy,1 — u1,2 — u2,1 + uz2 = 0. From (274]), the best
response of Player 1 to a strategy Pa, € A (As) is given by

BR; (PAQ) = arg max (ul,g — U272)P(a1) + (’LL271 — u272)PA2 (CL1) + uz 2. (298)
PeA(Ay)

Hence, if § = 0, the best responses BR; (P4, ) satisfies

{PAl S A(Al) : PAl (al) = 0}7 if U2 < U2
BRy (PAQ) = {PA1 S A(,Al) : Py, (al) = 1}7 if U2 > U222 (299)
{PAl S A(.Al) : PA1 (al) = 6,6 S [07 1]}, if Uy,2 = U22.

This completes the proof.
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G Proof of Lemma [1.6]

Note that for all P4, € A (A1) and all Pa, € A (As), the payoff in (3]) satisfies

u(Pa,, Pa,)

= u1,1Pa, (a1)Pa, (a1) + u1,2Pa, (a1) Pay (a2) + uz,1Pa, (a2) Pa, (a1) + u2,2Pa, (a2) Pa, (az) (300)

= u1,1Pa, (a1)Pa,(a1) + w1,2Pa, (a1) (1 = Pa,(a1)) + uz1 (1 — Pa, (a1))Pa,(a1)
+ug2(1 — Pa,(a1)) (1 — Pa,(ar)) (301)
= (w11 —u1,2 —U21 + u22)Pa, (a1)Pa,(a1) + (u1,2 — uz2)Pa, (a1) + (u21 — u2,2)Pa,(a1)
Fugs. (302)

As a result, the best response of Player 2 to a strategy Pa, € A (A;) is given by
BRy(Pa,) =
arg  min, )((u1,1—u1,2—u2,1+U2,2)PA1(a1)+(uz,1—u272))P(al)+(u1,2—u2,2)PA1(a1)+U2,2~ (303)

Assume that § = w31 —uj2 — ug1 + ug2 # 0. Further assume that 6 > 0. Hence, if
P4, (a1) < p, the payoff in (303 satisfies

((u1g — 1,2 — w21 + u2,2)Pa, (a1) + (uz1 — us,2)) Plar) + (u1,2 — ua,2)Pa, (a1) + ug 2.
=(u11 —u1,2 — U1 + U2,2) (PA1 (a1) — p(l)> P(ay) + (u1,2 — ug,2)Pa, (a1) + us22 (304)
<(u11 —u2,1)Pa,(a1) + ua 1, (305)

where the inequality holds with equality if and only if
P(ap) = 1. (306)
Hence, it holds that
BRs (Pa,) = {P € A(A) : Play) = 1}. (307)
If Pa,(a1) > p™V), the payoff in satisfies
((U1,1 — U2 — U1 + uz,2)Pa, (a1) + (u2,1 — uz,z))P(Ch) + (u1,2 — u2,2)Pa, (a1) + uz 2.

=(u1,1 — u1,2 — u2,;1 + u22) (PA1 (a1) — p(l)) P(ay) + (u1,2 — ug,2)Pa, (a1) + u22 (308)
<(u1,2 — u2,2)Pa, (@1) + uz2, (309)

where the inequality holds with equality if and only if
P(ay) = 0. (310)
Hence, it holds that
BRsy (Pa,) ={P € A(A1) : P(ay) =0}. (311)
If P4, (a1) = pV), for all P € A (Ay), the payoff in (303) satisfies
((u11 — w12 —ug 1 +u2)Pa, (a1) + (ug,1 — ug,2)) P(ay) + (u1,2 — u2,2) Pa, (a1) 4 ug,2.

=(u1,1 —u1,2 — U1 + U2,2) (PA1 (a1) — p(1)> P(ay) + (u1,2 — ug,2)Pa, (a1) + uz 2 (312)
=(u1,2 — u22)Pa, (a1) + ug 0. (313)
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Hence, it holds that
BRy (Pa,) ={P € A(A1) : P(a1) = 3,8 € [0,1]}. (314)

Alternatively, assume that § = w11 — u32 — ug1 + ug2 < 0. Hence, if Py, (a1) > pM) | the

payoff in (303) satisfies

((u1,1 — w12 — ua,1 + u,2)Pa, (a1) + (uzy — u22)) Plar) + (u1,2 — u22)Pa, (a1) + us 2.
=(u11 —ur2 — U1 + Uz2) (PAl(al) *P(l)) P(a1) + (u1,2 — u2,2)Pa, (a1) + uz.2 (315)
<(u1,1 —ug,1)Pa, (a1) + uz,1, (316)

where the inequality holds with equality if and only if
P(aj) = 1. (317)
Hence, it holds that
BR; (Pa,) = {P € A(A1) : Pa1) = 1}. (318)
If Py, (a1) < p™, the payoff in satisfies

((U1,1 — Uy 9 — U1 + U22)Pa, (a1) + (ug1 — U2,2))P(a1) + (u1,2 — u2,2)Pa, (a1) + uz 2.
=(u1,1 —u1,2 — u21 + U2,2) (PAl (1) — p(l)) P(a1) + (u1,2 — u2,2)Pa, (a1) + uz2 (319)
<(u1,2 — u2,2)Pa, (a1) + uz 2, (320)

where the inequality holds with equality if and only if
P(ay) = 0. (321)
Hence, it holds that
BRy (P4,) ={P € A(A1) : P(ay) =0}. (322)
If Py, (a1) = pV, for all P € A (Ay), the payoff in satisfies

((U1,1 — Uy — U1 + U22)Pa, (a1) + (ug1 — u272))P(a1) + (u1,2 — u2,2)Pa, (a1) + uz 2.
=(u1,1 —u1,2 — U1 + U22) (PA1 (a1) — p(l)) P(a1) + (u1,2 — u2,2)Pa, (a1) + uz,2 (323)
:(ULQ — UQ’Q)PAI (al) + ug 2. (324)

Hence, it holds that
BRs (Pa,) = {P € A(AY) : Plar) = 8,5 € [0, 1]}. (325)

In a nutshell, if § # 0, the best response BRy (P4, ) satisfies

{PA2 (S A(AQ) : PAz(al) = O}, if 6 > 0 and PA1 ((11) > p(l), or
§ <0 and Pa,(a;) < pM
BRy(Pa,) = {P4, € A(Ag) : Pa,(a1) =1}, if § >0 and Pa,(a1) < pM), or (326)
§ < 0and Pqa,(ar) > p™M
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Then, consider the case in which 6 = w11 — w12 —u21 + u22 = 0. From (303)), the best
respounse of Player 2 to a strategy P4, € A (A;) satisfies

BRQ(PAI) =arg min (U;Q’l — u272)P(a1) + (ULQ — UQ,Q)PAI (al) + Uz 2. (327)
PeA(As)

Hence, if § = 0, the best responses BRy (Pa, ) satisfies

{PA2 S A(AQ) : PA2 (al) = O}, if U1 > U2
BRo (PAl) = {PA2 € A(.AQ) : PA2 (al) = 1}, if U211 < U2 (328)
{PA2 < A(AQ) : PAz(al) = ,6,6 S [0, 1]}, if U2,1 = U22.

This completes the proof.

H Proof of Theorem [1.2

The proof is divided into two parts. The first part provides conditions on the entries of the
matrix u in such that (P;‘h,ij) is the unique NE and satisfies

P} (a1) € (0,1) and Pj, (a1) € (0,1). (329)

The second part provides conditions on the entries of the matrix w in such that (Pj ,Pj.)
is the unique NE and satisfies

Py (a) €{0,1} and Pj (a1) € {0,1}. (330)

The first part is as follows. First, consider the case in which u; 1 — w12 — u21 +ug2 # 0. If
the pair of strategies (P;‘h , P:b) € A(Ar) x A(Ay) forms an NE in the game ¢, then it holds
that

P}, € BRi(P3,) and P}, € BRy(P})). (331)
Moreover, if
P} (a1) =1— P} (a2) € (0,1) and P} (a1) =1— P} (a2) € (0,1), (332)
then from Lemma Lemma and (331)), it follows that p™) in and p? in satisfy
P (ay) = pV) = 2,2 — Y21 €(0,1) and 333
Aya) =p U1 — U2 — U1+ U2 1) (333)
P (a1) = p@ = Y22~ M2 € (0,1). 334
Ay) =p U1 — U2 — U1 + U2 1) (334)
Note that 1 > La2 L2 > 0 is equivalent to either

U1 —UL,2—U2,1TU2, 2

ug2 —uy2 > 0,u1 1 —uro —ug 1 +uge >0, and w11 — U2 — U1 + U2z > ug 2 —ur2; (335)
or
Uz —u12 < 0,u11 —uro —ugy +uge <0, and ui g —ur 2 — U1 +u22 < Uz —uy2. (336)

In (335), inequalities ug o — w12 > 0 and w11 — w12 — U1 + U2 > U2 — Ui,2 guarantee that
U1,1 — Ur,2 —U21 + U2 > 0. As a result, the condition in (335]) can be simplified to

U292 — UL 2 > 0 and U1 —uU2,1 > 0. (337)
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In " inequalities U222 — U2 < 0 and U1 — U2 — U1 + U292 < U22 — U2 guarantee that
U1,1 — Ur,2 — U1 + Ug2 < 0. So the second condition in (336) can be simplified as

U2 — U2 < 0 and U] —u21 < 0. (338)

U2,2—U2,1

Furthermore, 1 > WL uio—uz1Tuss

> 0 is equivalent to either

Ugo — U1 > 0,u17 — U1 —Uz1 +Uz2 >0, and w11 —ur2 — Ug1 + Uz2 > Uz o — U21; (339)
or

U220 —U2,1 < 0, U1 —UL2 — U1 FU22 < 0, and Uyl — UL — U1+ U222 < U2 — U2 1- (340)

In (339), inequalities ug o —ug1 > 0 and uy 1 — uy 2 — u2,1 + ug,2 > Uz 2 — Uz guarantee that
U1 —Ur2 — U1 + Uz > 0. As a result, the first condition in (339)) can be simplified to

U2 — U2,1 > 0 and U1 — U2 > 0. (341)

In (340), inequalities ug o —u21 < 0 and w11 — w12 — U1 + U2 < Uz 2 — U2, guarantee that
U1 — Ur,2 — Uz,1 + uz2 < 0. So the second condition in (340]) can be simplified to

U2 —U2,1 < 0 and U —ure < 0. (342)

Now, consider the case in which w1 — u1,2 — u21 + ug2 = 0. From Lemma Lemma @

and , if holds, then it follows that
Ul2 = U1 = U2 2. (343)
Given the fact that u; 1 —uj2 — u2,;1 + u22 = 0, it holds that
U1 = Upg = U = U (344)

Hence, from Lemmal|[l.5 and Lemma[L.6] all pairs of strategies (Py, Ps) € A (A7) x A (A) satisfy
(331). Hence, there is nothing to prove for this case, as there is no unique NE.

This proves that if there exists a unique NE satisfying , one of the conditions in 7
, and holds.

The converse is as follows. If the inequalities in and hold, p™") € (0,1). If the

inequalities in (337) and (338) hold, p® € (0,1). Hence, from Lemma and Lemma the
pair of strategies (Pa,, Pa,) € A (A1) X A (A1) such that

Py (a1) =p®M € (0,1) and Pa,(a;) =p® € (0,1) (345)

satisfies (331)). Given the fact that [P| = 1, then from Lemma and from Theorem the
pair of strategies (Pa,, Pa,) forms the unique NE.

Combining the conditions in (337), (338), and yields the conclusion that there
exists a unique NE satisfies if and only if (w11 —u12)(u2,2—u21) > 0and (u1,1 —u2,1)(u22—
’U,172) > 0.

Furthermore, it holds that

u(P},, Ph,)

= P}, (a1) P4, (@) w1 + P} (a1) Py, (az)ur 2 + P (a2) P, (a1)uz, + Ph, (a2) Ph, (a2)us,2 (346)

= ((ul,l —U12—U21 +UQ,2)P22 (al) + (ULQ — u272)) le (al) + (UQJ — UQ’Q)PXQ (al) +u2 2 (347)
Uyp,1U2,2 — UL,2U2 1

_ , (348)
Up,1 — UL — U2+ U2
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which completes the proof.

The second part is as follows. Given the fact that there exists at most four NEs satisfying
(330)), the following proof considers the following cases.
Case I: the NE (P}, P}, ) satisfies

P} (a1) =1—=P} (a2) =1 and P} (a1) =1— P} (az) = 1. (349)
Case II: the NE (P} , P})) satisfies

Pi (@) =1- P (a2) =1, and Pj(a1) = 1— Pj (az) = 0. (350)
Case IIT: the NE (P} , Pj,) satisfies

P} (a1) =1— P} (a2) =0, and P}, (a1)=1- P} (az)=1. (351)
Case IV: the NE (P} , P},) satisfies

P} (a1) =1— P} (az) =0, and P}, (a1)=1—- P} (az)=0. (352)

The proof of Case I is as follows. If (P:h’Psz) is the unique NE, from Definition for all
a €[0,1) and € [0,1), it holds that

u(Pj,, Pi,) = (1,0)u(1, O)T =u1 > (o, 1— a)g(l,O)T =oau;1+(1—a)ug; and  (353)
w(Ph,, Px) = (1,00u(1,0)T = u1,1 < (1,0)w(B,1 - B)" = Bus + (1 — B)us . (354)

The strict inequality follows from the assumption that the NE in unique. Note that the inequal-

ities in and are equivalent to
uig >ug1 and  upe > Uy, (355)
respectively. As a result, the inequalities in and are satisfied when
Up,2 > U1 > U21, (356)

which is the condition in .

The converse is as follows. First, consider the case in which w11 — w39 — u21 + ug2 > 0.
Under the assumption that wy 1 —u1,2 — ug,1 + uz,2 > 0, if the inequalities in ([356]) hold, then it
holds that

U —ure < 0 and U2 — U2,1 > 0, (357)

which, from , implies that p(*) > 1. Furthermore, if the inequalities in lj hold, then it
holds that

Uy, — U2,1 > 0. (358)
Under the assumption that w1 — w12 — u21 + ug,2 > 0, if ug 2 — u; 2 < 0, then from , it
holds that that p® < 0. And if Ug 2 —u1,2 > 0, from , it holds that that p® € (0,1). Hence,

in either case, it holds that p® < 1. Then from Lemma and Lemma if p > 1 and
p?) < 1, the pair of strategies (Pa,, Pa,) € A (A1) x A (A;) such that

PA1 (al) =1 and PA2 (al) =1 (359)
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satisfies
Py, € BR1(P4,) and Pa, € BRo(Pa,). (360)

Given the fact that |P| = 1, then from Lemma and from Theorem the pair of strategies
(Pa,, Pa,) forms the unique NE.

Then, consider the case in which w17 —u12 —u2,1 + u22 < 0. Under the assumption that
U1 — Ul — U + Uz < 0, if the inequalities in hold, then it holds that

Uyl —U2,1 > 0 and U2 — UL 2 < 0, (361)

which, from , implies that p® > 1. Furthermore, if the inequalities in 1] hold, then it
holds that

U — U2 < 0. (362)

Under the assumption that uy 1 — w12 — u21 + ug,2 < 0, if ug 2 —uz1 < 0, then from , it
holds that that p(") < 0. And if ugs — ug1 > 0, from , it holds that that p(*) < 0. Hence,
in either case, it holds that p(*) < 0. Then from Lemma and Lemma if p > 1 and
p(M) <0, the pair of strategies (Pa,, Pa,) € A (A1) x A (A;) such that

Pa,(a1) =1 and Py,(a1) =1 (363)
satisfies
P4, € BRy (PAQ) and Py, € BRQ(PAI). (364)

Given the fact that [P| = 1, then from Lemma[I.3]and from Theorem the pair of strategies
(Pa,, Pa,) forms the unique NE.

Finally, consider the case in which w1 — w12 — u2,1 + u2,2 = 0. Under the assumption that
U1 — U2 — U2,1 + Uz 2 = 0, it follows that

U2 = Up2 + U271 — UL - (365)
If the inequalities in (356)) and the equality in (365]) hold,
U2 > U2 and U2,2 > U271 (366)

Hence, from Lemma and Lemma the pair of strategies (Pa,, Pa,) € A (A1) X A (A1)
such that

Pa,(a1) =1 and Py,(a1) =1 (367)
satisfies
Py, € BR1(P4,) and Pa, € BRo(Pa,) (368)

and forms the unique NE. This completes the converse part.
Furthermore, the NE satisfying (349) implies that

u(P},, Pi,) = u11, (369)

which completes the proof.
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The proof of Case II is as follows. If (P;“1 , P;‘b) is the unique NE, from Definition for all
a €[0,1) and 8 € (0,1], it holds that

(1,00w(0,1)T =uy 9 > (,1 — @)u(0,1)T = auy o + (1 — @)ugo and  (370)
(1,002(0,1)" = w12 < (1,0)u(8,1 = B)" = Bur1 + (1 = Blus 2. (371)

u(P.Zl ? P22 )
w(P4,, Ph,)

The strict inequality follows from the assumption that the NE in unique. Note that the inequal-

ities in and are equivalent to
U2 >ugo and up1 > Uy, (372)
respectively. As a result, the inequalities in and are satisfied when
U1 > U2 > U2, (373)

which is the condition in .

The converse is as follows. First, consider the case in which w11 — w12 — u21 + ug22 > 0.
Under the assumption that wy 1 — u1,2 — ug,1 + uz,2 > 0, if the inequalities in (373]) hold, then it
holds that

U2 —UL2 < 0 and Uyl —U2,1 > 0, (374)

which, from , implies that p(® < 0. Furthermore, if the inequalities in 1) hold, then it
holds that

U1 —UL2 > 0. (375)
Under the assumption that w1 — w12 — u2,1 + u2,2 > 0, if up 2 — ug 1 > 0, then from , it
holds that that p(*) € (0,1). And if ug s —u; 2 < 0, from (11)), it holds that that p*) < 0. Hence,

in either case, it holds that p(*) < 1. Then from Lemma and Lemma if p < 0 and
pM) < 1, the pair of strategies (Pa,, Pa,) € A (A1) x A (A;) such that

Pa,(a1) =1 and Py,(a1)=0 (376)
satisfies
Py, € BR1(P4,) and Pa, € BRo(Pa,). (377)

Given the fact that |P| = 1, then from Lemma and from Theorem the pair of strategies
(Py,, Pa,) forms the unique NE.

Then, consider the case in which w11 —uj 2 — u2,1 + u22 < 0. Under the assumption that
U1, — U2 — U2,1 + uz2 < 0, if the inequalities in hold, then it holds that

U1 — U2 > 0 and Uz — U211 < 0, (378)

which, from , implies that p(*) > 1. Furthermore, if the inequalities in 1) hold, then it
holds that

U2 —UL2 < 0. (379)

Under the assumption that wi 1 — w12 —ug1 +ug2 <0, if uyg —ug1 <0, then from (11f), it
holds that that 0 < p® < 1.  And if uy; — uz,; > 0, from (LI), it holds that that p®T > 1.
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Hence, in either case, it holds that p® > 1. Then from Lemma |1.5{and Lemma if p() > 1
and p® > 0, the pair of strategies (Pa,, Pa,) € 2\ (A1) x A (A;p) such that

Pa,(a1) =1 and Py,(a1)=0 (380)
satisfies
Py, € BR1(PA2) and Py, € BRQ(PAI). (381)

Given the fact that |P| = 1, then from Lemma and from Theorem the pair of strategies
(P4,, P4,) forms the unique NE.

Finally, consider the case in which w11 — %12 — u2,1 + u22 = 0. Under the assumption that
U] —UL2 — U2,1 + U2 = 0, it follows that

U1 = U1,1 — U2 + U2.2. (382)
If the inequalities in (373) and the equality in (382]) hold,
U211 > U2 and Up,2 > U22- (383)

Hence, from Lemma and Lemma the pair of strategies (Pa,, Pa,) € A (A1) X A (A1)
such that

Pa,(a1) =1 and Py,(a1)=0 (384)
satisfies
Py, € BR1(P4,) and Pa, € BRo(Pa,) (385)

and forms the unique NE. This completes the converse part.
Furthermore, the NE satisfying (350 implies that

u(P},, Ph,) = w12, (386)

which completes the proof.
The proof of Case III is as follows. If (Pjh,PIZQ) is the unique NE, from Definition for
all @ € (0,1] and 8 € [0, 1), it holds that

u(Pj,, Pi,) = (0,1)u(l, O)T =us1 > (o, 1 — a)u(l, O)T =oau;1+(1—a)ug; and  (387)
u(P4,, Pi,) = (0, )u(1,0)" = ugy < (0, Du(B,1—B)" = Buas + (1 — Bua,s. (388)

The strict inequality follows from the assumption that the NE in unique. Note that the inequal-

ities in and are equivalent to
g1 >ui1 and  ugo > ug i, (389)
respectively. As a result, the inequalities in and are satisfied when
U292 > Uz 1 > UL 1, (390)

which is the condition in .

The converse is as follows. First, consider the case in which w11 — u1.2 — ug1 + u22 > 0.
Under the assumption that wy 1 — w12 — ug1 + uz,2 > 0, if the inequalities in (390) hold, then it
holds that

U2 — U2,1 > 0 and U —u21 < O7 (391)
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which, from , implies that p(*) > 1. Furthermore, if the inequalities in (390) hold, then it
holds that

U —u21 < 0. (392)

Under the assumption that uq 1 — w12 — u21 + u22 > 0, it holds that us o — u1 2 > 0, which,
from (11}, it holds that that p®> > 1. Then from Lemma and Lemma if p( > 1 and
p® > 1, the pair of strategies (Pa,, Pa,) € A (A1) x A (A;) such that

Pa,(a1) =0 and Py,(a1) =1 (393)
satisfies
PA1 € BR, (PAQ) and PA2 € BRQ(PAI). (394)

Given the fact that |P| = 1, then from Lemma[l.3]and from Theorem the pair of strategies
(Py,, P4,) forms the unique NE.

Then, consider the case in which 11 —u12 —u21 + u22 < 0. Under the assumption that
U1 — U2 — Uz + uz2 < 0, if the inequalities in hold, then it holds that

U2 — U2,1 > 0 and U —ur2 < 0, (395)

which, from , implies that p(*) < 0. Furthermore, if the inequalities in 1] hold, then it
holds that

Uy —u21 < 0. (396)
Under the assumption that wi 1 — w12 —ug1 +ug22 <0, if ugg —u12 < 0, then from (11f), it
holds that that 0 < p® < 1. And if ugs —u; 2 > 0, from (11)), it holds that that p(*) < 0.

Hence, in either case, it holds that p?) < 1. Then from Lemma and Lemma if p(M > 1
and p(? < 1, the pair of strategies (Pa,, Pa,) € A (A1) x A (A;) such that

PA1 (al) =0 and PA2 (al) =1 (397)
satisfies
Py, € BR1(P4,) and Pa, € BRo(Pa,). (398)

Given the fact that |P| = 1, then from Lemma[1.3 and from Theorem the pair of strategies
(Pa,, Pa,) forms the unique NE.

Finally, consider the case in which w1 — %12 — u2,1 + u2,2 = 0. Under the assumption that
U1 — U2 — u2,1 + ug2 = 0, it follows that

Ul = U1,1 — U2, + U2 2. (399)
If the inequalities in (407]) and the equality in (399) hold,
u2,1 < U2 and Uy < U22- (400)

Then from Lemma (1.5)) and Lemma (1.6)), the pair of strategies (Pa,, Pa,) € A (A1) x A (Ay)
such that

Py, (a1) =0 and Pg,(a;) =1 (401)
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satisfies
P4, € BRl(PAQ) and Py, € BRQ(PAl) (402)

and forms the unique NE. This completes the converse part.
Furthermore, the NE satisfying (351 implies that

u(P}3,, PL,) = ua 1, (403)

which completes the proof.
The proof of Case IV is as follows. If (P , P ) is the unique NE, from Definition for
all @ € (0,1] and 8 € (0, 1], it holds that

w(Ph,, Px) = (0,1)u(0,1)T = usp > (e, 1 — a)u(0,1)" = aus s+ (1 — a)us, and  (404)
u(Ph,, PA,) = (0,1)u(0,1)7 = uz < (0, Du(B, 1 = B) = Buay + (1 = Bluaz, (405)

The strict inequality follows from the assumption that the NE in unique. Note that the inequal-

ities in and are equivalent to
Ugo > upa and ugq > ug o, (406)
respectively. As a result, the inequalities in and are satisfied when
U1 > Ug2 > UL,2, (407)

which is the condition in .

The converse is as follows. First, consider the case in which w11 — u1.2 — ug1 + uz22 > 0.
Under the assumption that wy 1 — w12 — ug1 + ug,2 > 0, if the inequalities in (407) hold, then it
holds that

Ug2 —U2,1 < 0 and U] — U2 > 0, (408)

which, from , implies that p(!) < 0. Furthermore, if the inequalities in Ij hold, then it
holds that

U2 — UL > 0. (409)

Under the assumption that wy,; —u10 —ug 1 +u22 > 0, if u; 1 —ugy >0, from , it holds that
p@ >1. 1If U1 — uz,1 < 0, from 1) it holds that p® > 1. Hence, in either case, it holds that
p? > 1. Then from Lemma [1.5| and Lemma if p() < 0 and p® > 1, the pair of strategies
(Pa,, Pa,) € A (A1) x A (Ay) such that

Pa,(a1) =0 and Py,(a1)=0 (410)
satisfies
PAl c BRl(PA2) and PA2 c BRQ(PAl). (411)

Given the fact that |P| = 1, then from Lemma and from Theorem the pair of strategies
(Pa,, Pa,) forms the unique NE.

Then, consider the case in which w17 — 112 —u2,1 + u22 < 0. Under the assumption that
U1 — Ui — U + Uz < 0, if the inequalities in hold, then it holds that

U2 — UL > 0 and U —u21 < O7 (412)
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which, from , implies that p(? < 0. Furthermore, if the inequalities in (407) hold, then it
holds that

Uz —U2,1 < 0. (413)

Under the assumption that uq 1 — w12 — ugq +ug o < 0, if ug 3 —ug2 <0, from , it holds
that 0 < p™ < 1. If uyy —uy 2 > 0, from (14)), it holds that p(*) > 1. Hence, in either case, it
holds that p(*) > 0. Then from Lemma and Lemma if p® < 0 and p(M > 0, the pair of
strategies (Pa,, Pa,) € A (A1) x A (A1) such that

Py, (a1) =0 and Pgy,(a1)=0 (414)
satisfies
P4, € BR1<P22) and P4, € BRQ(PAZI). (415)

Given the fact that [P| = 1, then from Lemma[l.3|and from Theorem the pair of strategies
(Pa,, Pa,) forms the unique NE.

Finally, consider the case in which w1 — 1,2 — u2,1 + u2,2 = 0. Under the assumption that
U1 — U2 — U2,1 + ug2 = 0, it follows that

U2 = U1 — U2,1 + U22. (416)
If the inequalities in (407) and the equality in (416]) hold,
U2 < U2 and U1 > U2 2. (417)

Then from Lemma [1.5]and Lemmal[L.6] the pair of strategies (Pa,, Pa,) € A (A1) x A (A;) such
that

Ps,(a1) =0 and Pg,(a1)=0 (418)
satisfies
Py, € BR1(Pa,) and Py, € BRa(Py,) (419)

and forms the unique NE. This completes the converse part.
Furthermore, the NE satisfying (352) implies that

u(Pj,, P3,) = uzz2, (420)

which completes the proof.
This completes the whole proof.

I Proof of Theorem [1.3
The proof is divided into two parts. The first part considers the case in which

P={(P,P) e A(A1) x A(A2): P € A(Ay) and P, € A (Ag)}. (421)
The second part considers the case in which

P = {(Pl,PQ) ISAN (Al) x A (AQ) : Pl(al) € {0, 1} and P, € A (AQ)} or (422)
P = (P, Py) € A (A1) x A (As) : Pr € A (Ay) and Py(ar) € {0,1}} . (423)
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The first part is as follows. If the pair of strategies (P} , P3,) € A (A1) x A (Az) satisfies
P3 (a1) =1—P}3 (a2) =a and P} (a1) =1— P} (az) =f (424)

with @ € [0,1] and 8 € [0, 1]. From Definition it holds that for all strategies Q4, € A(A;),
with @4, (a1) = o € [0, 1], the following inequality holds:

U(PI\NPXZ) = (aa 1- CV)ﬂ(B’ 1- B)T > (0/7 1- O‘/)H(ﬁ7 1- B)T = (QA17PIZQ)’ (425)
which is equivalent to

Oé,BULl + Oé(l - 6)u1,2 + (1 - Oé)ﬂ'UQ,l + (1 — a)(l — /B)U272
>/ furg+a’ (1= Buig+ (1—a)Bugs+ (1 —a’)(1 = Bugs. (426)

The above inequality can be simplified as
(a—a)Buri+ (a—a) (1= Buiz+ () —a)Buzs + (& —a)(1 — Blug >0,  (427)
which is equivalent to

0< (Oé — o/)ﬁ(ul,l — ’IL271) + (a — O/)(l — 6)(“1)2 - ’U,272) (428)
= (=) (Bur —uz1) + (1 = B)(u1,2 — uz,2)) (429)

As a result, the above inequality holds for all o’ € [0,1], a € [0,1], and § € [0, 1], if and only if
it holds that

up1 =ug;1 and uj2 = ugs2. (430)

Similarly, from Definition it holds that for all strategies Q%, € A(Az) with Qa,(a1) =
B’ €[0,1], the following inequality holds:

U(PZNP,Zz) = (OZ, 1- O‘)Q(ﬁa 1- /B)T S (OZ, 1- O‘)Q(ﬁ/7 1- /BI)T = U(leaQAz)’ (431)
which is equivalent to

aﬂuLl + a(l — 6)U172 + (1 — OC)BUQJ + (1 — a)(l - B)Ugg
< aﬁ’ul,l + Oé(l — BI)ULQ + (1 — Oé)ﬁ/’u,gl + (1 — a)(l — B/)u272. (432)

The above inequality can be simplified as
(B =BNaur1 + (B = Blauiz + (1 — a)(B = fuzy + (8" = B)(1 — a)uz <0,  (433)
which is equivalent to
0= (8= Ba(ur,y —ur2) + (1 —a)(B — ') (uz,1 — u2,2) (434)
= (B—=8)(a(ur,1 —u12) + (1 — a)(ug,1 — uz2)) (435)

As a result, the above inequality holds for all « € [0,1], 5 € [0,1], and 5’ € [0, 1], if and only if
it holds that

Ur,1 = U1,2 and U2,1 = U2,2- (436)
Combining the inequalities in (430]) and (436) yields
Uyl = U2 = U21 = U2.2, (437)
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which is the condition in .

The converse follows trivially from the fact that if the equalities in holds then it holds
all pairs of strategies (Pa,, Pa,) € A (A1) x A (As) are NEs.

This completes the first part of the proof.

The second part is as follows. Given the fact the game ¢ in is a 2 X 2 game, there are at
most four cases when the strategy of only one of the players is pure. The four cases are:
Case I: the pair of strategies (P} , Pj,) satisfies

P3 (a1) =1—Pj3 (ax) =1 and Pj (a1)=1-Pj,(a2) =8 (438)

with 8 € [0,1].
Case II: the pair of strategies (P} , P}, ) satisfies

P3 (a1) =1—Pj3 (az) =0 and Pj (a1)=1—Pj,(a2)=p (439)

with g € [0,1].
Case II1: the pair of strategies (P} , Pj,) satisfies

P} (a1) =1—=P} (a2) =a and P} (a1) =1- P}, (az2) =1 (440)

with a € [0, 1].
Case IV: the pair of strategies (P} , Pj,) satisfies

P} (a1) =1— P} (a2) =a and P} (a1) =1- P}, (az) =0 (441)

with a € [0, 1].

The proof of Case I is as follows. If the pair of strategies (Pj ,Pj,) satisfies (438), from
Deﬁnition for all strategies P}, € A(Ag) such that P} (a1) = ', with 8" € [0, 1], it holds
that

u(Ph,, Pi,) = (1,0)u(B,1 - ﬂ)TZ Buii+(1—B)ui 2
<Bupg+(1-B)ure=(1,00u(s,1-8)" = u(P},,Ph,), (442)

which implies that, for all 8’ € [0,1], it holds that

(B = Bury > (8" = Bua 2. (443)
The inequality in (443) can be written as
(B" = B)(ur,1 —u12) > 0. (444)

As a result, the above inequality holds if
ul,l = ’U,LQ. (445)

Moreover, for all strategies P} € A(A;) such that P} (a;) = o/, with o/ € [0, 1], it holds
that

u(Pi,, Pi,) = (1,0)u(B,1 = B)T > (¢/,1 = a')u(B,1 - B)" = u(Py,, Pi,), (446)
which is equivalent to

uifB+ua(l—8) > Buis + /(1 —Burs + (11— )Bugy + (1 — ') (1 — B)ugz. (447)
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From (445), the above inequality is simplified to
uig =ure > durg+ (1 —a)Bugy + (1 —a’)(1 - Bua s, (448)
which is equivalent to
ur,1 = u12 > Pug1 + (1 — Bug. (449)
If ug1 = ug 2, then for all § € [0, 1], the inequality in implies that
U1 = U2 2> U1 = Uz 2. (450)

However, if the inequality in holds with equality, i.e. w11 = u1,2 = u2,1 = ug2, then all
strategies P € A(A;), together with P%  in , form an NE, see . This contradicts
the assumption that le(al) = 1. As a result, the inequality in is considered with strict
inequality. That is,

Up,1 = U2 > U1 = U2 (451)
If ug 1 # ug2, for all 8 € [0, 1], the inequality in (449) implies that
U1 = UL2 > max{uz’l,uZQ} > min{u271,u272}. (452)
Combining the inequalities in (451)) and (452) yields the conditions in and ([36).
The converse is as follows. If the conditions in hold, for all P4, € A (Asg) with Pa,(a1) =
B € [0,1], it holds that

(1,0)u(B,1—8)" > (0, )u(B,1-B)T, (453)

which implies that, for Player 1, the action as is dominated by action a;. Furthermore, if the
conditions in hold, for all P4, € A (Az) with Pa,(a1) = 3 € [0, 1], it holds that

(1,0)u(8,1=8)" = (0, )u(B,1 - A)T; (454)
and for all P4, € A (Ag) with Pa,(a1) = 8 € (0,1), it holds that
(1,0)u(8,1—B)" > (0, )u(8,1-H)". (455)

Hence, if the conditions in hold, for Player 1, the action as is dominated by action a;. As
a result, it holds that P} (a;) = 1. Given the fact that P} (a1) = 1, if either the conditions in
or the conditions in hold, Player 2 is indifferent between action a; and action as. This
implies that

Pj,(a1) = B, (456)

with 8 € [0, 1], which completes the proof of the converse part.

This completes the proof of Case L.

The proof of Case II is as follows. If the pair of strategies (P} , PJ,) satisfies , from
Definition for all strategies P}, € A(Az) such that P} (a1) = ', with 8" € [0, 1], it holds
that

u(PA, s Pi,) = (0, )w(B,1 = B)T= Buz + (1 — B)uz
< ﬁ/u2,1 + (1 —6’)@@72 = (0,1)@(ﬁ’,1 _/8/)—'— :u(levP;{z)a (457)
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which implies that, for all 8’ € [0,1], it holds that
(B" = Blugy > (8" = Bua,2. (458)
The inequality in can be written as
(8" = B)(uz,1 —uz2) > 0. (459)
As a result, the above inequality holds if it holds that
Ug,1 = U22. (460)

Moreover, for all strategies P) € A(A;) such that P} (a1) = o, with o’ € [0, 1], it holds
that

u(Ph,, Pi,) = (0, D)u(B,1-5)T > (a',1 - a')u(B,1 - B)" =u(P4,,Pi,),  (461)

which is equivalent to
u218 + ug2(l —B) > &/Burs + /(1 — Burs + (1 —o')Bugy + (1 — ') (1 — B)uzgz. (462)

From , the above inequality is simplified to

Uz =ugo > o/ Burg + ' (1 — Blus 2+ (1 — a')ug, (463)

which is equivalent to
ug1 = Uz,2 > Pury + (1 — B)u 2. (464)

If w11 = w12, then for all § € [0, 1], the inequality in implies that

U1 = U2 = ULl = UL2. (465)

However, if the inequality in holds with equality, i.e. w11 = w12 = u2,1 = usz2, then all
strategies P € A(A;), together with Pj in , form an NE, see (437)). This contradicts
the assumption that Pj (a1) = 0. As a result, the inequality in is considered with strict
inequality. That is,

U2,1 = Ug2 > U] = UL 2. (466)
If w11 # uy2, for all 8 € [0, 1], the inequality in (464) implies that
U211 = U2 > max{ul’l,uLg} > min{ul’hul’g}. (467)
Combining the inequalities in (466 and (467) yields the conditions in and ([40).
The converse is as follows. If the conditions in hold, for all P, € A (Ag) with Pa,(a1) =
B € [0,1], it holds that

(0, D)w(B,1-5)" > (1,0)u(8, 1~ B)", (468)

which implies that, for Player 1, the action a; is dominated by action as. Furthermore, if the
conditions in hold, for all Py, € A (Asz) with Pa,(a1) = 8 € [0, 1], it holds that

(0, Du(B,1—8)" > (1,00u(B,1 - B); (469)
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and for all Py, € A (Az) with Pa,(a1) = 8 € (0,1), it holds that

(0, Du(B, 1= B)T > (1,0)u(B,1-5)". (470)

Hence, if the conditions in hold, for Player 1, the action a; is dominated by action as. As
a result, it holds that P} (a1) = 0. Given the fact that P} (a1) = 0, if either the conditions in
or the conditions in (40) hold, Player 2 is indifferent between action a; and action ay. This
implies that

Pj,(a1) = B, (471)

with 8 € [0, 1], which completes the proof of the converse part.

This completes the proof of Case II.

The proof of Case III is as follows. If the pair of strategies (P;;l , lez) satisfies , From
Definition for all strategies P}, € A(A;) such that P} (a1) = o/, with o/ € [0, 1], it holds
that

uw(P},, P},) = (a,1 — a)u(l, O)T: aur 1+ (1 —a)ug s
> a/ul,l + (1 _O/)UQ,I = (O/71 _O/)Q(LO)T ZU(PAI aPzg)a (472)

which implies that, for all o/ € [0, 1], it holds that
(@ —aurg > (@ —a)uz,. (473)
The inequality in can be written as
(@ —a)(u1,1 —ug,1) > 0. (474)
As a result, the above inequality holds if it holds that
U1l = Uz21. (475)

Moreover, for all strategies P}, € A(Asz) such that P} (a1) = 8’, with 8’ € [0,1], it holds
that

u(Py, Ph,) = (0,1 — )u(L0)T < (a1 - au(,1 - )T = u(Pi, Ph).  (476)

which is equivalent to
u gt ugi(l—a) <afuig+al—urs+ (1 —a)fusy+ (1 —a)(l— B )uzs. (477)

From , the above inequality is simplified to

u,1 =ug1 < fugy +a(l—Burs + (1 —a)(1 = 3)usg,e, (478)

which is equivalent to
ur1 =ug1 < aurg + (1 —a)ugs. (479)

If u1,2 = ug 2, then for all o € [0, 1], the inequality in implies that

U1 = ug1 < U2 = Ug 2. (480)
However, if the inequality in holds with equality, i.e. w11 = w12 = u21 = uz2, all

strategies Py, € A(Ayz), together with P3 in (440), form an NE, see (437). This contradicts
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the assumption that P} (a1) = 1. As a result, the inequality in (480) is considered with strict
inequality. That is,

U1 =U2;1 < U2 = U2 2. (481)
If uq 2 # ug 9, for all @ € [0, 1], the inequality in (479) implies that
u1,1 = ug1 < min{us o, ug 2} < max{u 2, uz2}. (482)

Combining the inequalities in (481]) and (482) yields the conditions in and (44)).
The converse is as follows. If the conditions in hold, for all P4, € A (A;) with P4, (a1) =
a € [0,1], it holds that

(0,1 —a)u(1,0)" < (o, 1 —a)u(0,1)7, (483)

which implies that, for Player 2, the action ay is dominated by action a;. Furthermore, if the
conditions in hold, for all P4, € A (A;) with Pa, (a1) = « € [0,1], it holds that

(,1 —a)u(1,0)" < (a,1—a)u(0,1)7; (484)
and for all Py, € A (A;) with Py, (a1) = a € [0,1], it holds that
(,1 —a)u(1,0)" < (a,1 —a)u(0,1)T. (485)

Hence, if the conditions in hold, for Player 2, the action as is dominated by action a;. As
a result, it holds that P} (a;) = 1. Given the fact that P} (a1) = 1, if either the conditions in
or the conditions in hold, Player 1 is indifferent between action a; and action as. This
implies that

Pj, (a1) = B, (486)

with 5 € [0, 1], which completes the proof of the converse part.

This completes the proof of Case III.

The proof of Case IV is as follows. If the pair of strategies (P} , P},) satisfies (441)), from
Definition for all strategies P} € A(A;) such that P} (a1) = o/, with o/ € [0, 1], it holds
that

w(Ph,, Px,) = (a,1—a)u(0,1)T=aui s + (1 — a)us»
>a'uip+(1—ausp = (a/,1—a)u(0,1)" =u(P),,P4,), (487)

which implies that, for all o/ € [0, 1], it holds that
(a—a)uro > (@ —a)uzs (488)
The inequality in can be written as
(a—a')(ur2 —uz2) > 0. (489)
As a result, the above inequality holds if it holds that
Ur,2 = U22. (490)

Moreover, for all strategies P) € A(Az) such that P} (a1) = f', with g’ € [0, 1], it holds
that

u(leaPZQ) = (Ol, 1- O‘)H(O7 1)T S (aa 1- O‘)ﬂ(/glv 1- B/)T = U(PZNP;&g)a (491)
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which is equivalent to

up g+ uga(l —a) <aflurg+a(l = urg+ (1 —a)Bfugy + (1 —a)(l — B )uzz. (492)
From , the above inequality is simplified to

U2 =uz o < (1— B ugo+afuig+ (1 —a)fus;s (493)

which is equivalent to
ure =uga < auy + (1 —a)ugs. (494)

If w11 = ua 1, then for all a € [0, 1], the inequality in implies that

Ute = U2 < U1 = U2 (495)
However, if the inequality in holds with equality, i.e. w11 = w12 = U211 = uzye, all
strategies P, € A(Ayz), together with P3 in , form an NE, see . This contradicts

the assumption that P} (a;) = 0. As a result, the inequality in (495) is considered with strict
inequality. That is,

U2 = U22 < U1 = U21- (496)
If ug 1 # ug,1, for all @ € [0, 1], the inequality in (494) implies that
U2 = U222 < min{u171,u271} < maX{uLl,uz,l}. (497)
Combining the inequalities in (496 and (497) yields the conditions in and ([48).
The converse is as follows. If the conditions in hold, for all P4, € A (A;) with Py, (ay) =
a € [0,1], it holds that
(av 1- O‘)H(Oa 1)T < (av 1- O‘)ﬂ(lv O)Tﬂ (498)

which implies that, for Player 2, the action a; is dominated by action as. Furthermore, if the
conditions in hold, for all Ps, € A (Ay) with Py, (a1) = a € [0, 1], it holds that

(, 1= a)u(0,1)" < (a,1 - a)u(1,0)"; (499)
and for all Py, € A (A;y) with Py, (a1) = a € [0, 1], it holds that
(,1 —a)u(0,1)7 < (a,1 —a)u(1,0)T. (500)

Hence, if the conditions in hold, for Player 2, the action a; is dominated by action ay. As
a result, it holds that P} (a1) = 0. Given the fact that P} (a1) = 0, if either the conditions in
or the conditions in hold, Player 1 is indifferent between action a; and action as. This
implies that

Py, (1) = B, (501)

with 8 € [0, 1], which completes the proof of the converse part.
This completes the proof of Case IV.
This completes the whole proof.
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J Proof of Theorem [1.4

The proof of Case I is as follows. Note that the set P satisfying implies that ui1 —u12 —
uz,1 + uz2 # 0. To that end, only the case in which u; 1 —u12 — u21 + u22 # 0 is considered
in the following proof. Given the fact that 0 < 22" 11,2 < 1, it holds that p( in

. U1 —UL,2— U2, 1T U2, 2
satisfies

1>p? >o0. (502)

Let a pair of strategies (P} ,PJ,) € A (A1) x A(Az) be such that (P} ,Pi,) € P. Then, it
follows that

P}, € BRa(P3,). (503)
Given the fact that P satisfies , from Lemmal(l.6{and (503)), it follows that p(!) in satisfies
p =o0. (504)

Note that, from Lemma only when w1 — 1,2 — u2,1 +u2,2 > 0, the best response BRl(PIflz)
satisfies

BRI(P,ZQ) = {PA1 [SIAN (.A1) : PA1 (al) = 0} (505)
for all P} (a1) € [O, ulyl_Z?:z:Z;?_mw}. As a result, only the case in which w11 —u12 —u21 +

ug,2 > 0 needs to be considered. Hence, if u1 1 — w12 — w21 + u2,2 > 0, the equality in (504) and
the inequality in (502 implies that

U = U1, U1,1 > U2,1, and Uz > uj 2, (506)

which proves the condition in . Note that the condition in guarantees that u; 1 — w12 —
ug,1 +uz,2 > 0. Hence, there is no need to include w1 — u1,2 — u2,1 +uz2 > 0 as a condition.

The converse is as follows. If holds, then it holds that u; 1 — u1,2 — u2,1 + uz,2 > 0, the
equality in holds, and the inequalities hold. Hence, from Lemma[L.5|and Lemma
for a pair of strategies (Pa,, Pa,) € A (A1) x A (Ag), if Pa,(a1) > 0, it holds that

P

BRy(P4,) = {Pa, € A (Az) : Pa,(a1) =0} and (507)
BRy (BRa(Pa,)) = {Pa, € A(A1) : Pa,(a1) = 0} (508)

As a result, for all (P} , P ) € P, it holds that
P} (a1) =0, (509)
which, from Lemma [T.5] implies that

U22 — UL2
)
U1 — U2 — U1+ U2

P} (a1) € |0 (510)

This completes the proof.
Furthermore, it holds that

u(Pj‘l,lez) = U232 = U271, (511)
which follows from the fact that P3 (a1) =0, Pj, (a1) can be equal to zero and ug 2 = ug 1. This

completes the proof.
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The proof of Case II is as follows. Note that the set P satisfying implies that ug 1 —u1,2—
u21 + uz2 # 0. To that end, only the case in which u; 1 —ui 2 —u21 + ug 2 # 0 is considered
. . . U2 2—UL, . 2) -
in thf(ie following proof. Given the fact that 0 < ul‘l_uf;_u;f_‘_um < 1, it holds that p in
satisfies

1>p@ >o. (512)

Let a pair of strategies (P}, Pi,) € A (A1) x A (Az) be such that (P}, P4,) € P. Then, it
follows that

P}, € BRy(PY.). (513)
Given the fact that P satisfies , from Lemma(l.6|and (513)), it follows that p(*) in satisfies
pM =o0. (514)

Note that, from Lemma only when uy 1 —u1,2 —u2,1 +u2,2 < 0, the best response BRl(Pzz)
satisfies

BR1(P},) = {Pa, € A(A1) : Pa,(ar) =0} (515)
for all P}, (a1) € |:’U«1,1*Z?:2:Z;?+U2,2 , 1}. As a result, only the case in which uy 1 —u12 —u21 +

ug22 < 0 needs to be considered. Hence, if u; 1 —uj 2 —u21 +ug2 < 0, the equality in (514)) and
the inequality in (512 hold if the entries of the payoff matrix w satisfy

Ug o = U1, U1,1 < U1, and us o < Up 2, (516)

which proves the condition in . Note that the condition in guarantees that uy,1 —u1 2 —
Ug,1 + u2,2 < 0. Hence, there is no need to include w11 — u1,2 — u2,1 + u2,2 < 0 as a condition.
The converse is as follows. If holds, then it holds that w11 — w12 — u21 + u22 <0, the

equality in (514) holds, and the inequalities (512)) hold. Hence, from Lemma and Lemma
for a pair of strategies (Pa,, Pa,) € A (A1) x A (Az), if Pa,(a1) > 0, it holds that

BRQ(PAI) = {PA2 ISAN (Az) : PA2(G1) = 1} and (517)
BRl (BRQ(PAl)) = {PAl € A (Al) : F’A1 ((11) = 0} (518)

As a result, for all (P} , P3,) € P, it holds that
P}, (a1) =0, (519)
which, from Lemma [[.5] implies that

U2 —U1,2
b
U1l — UL — U1+ U2

P (a1) € 1. (520)

This completes the proof.
Furthermore, it holds that

w(Ph,, P3,) = u22 = u2a, (521)

which follows from the fact that P (a1) =0, Pj,(a1) can be equal to one and uz o = ug 1. This
completes the proof.
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The proof of Case III is as follows. Note that the set P satisfying implies that u; 1 —
u1,2—U21+uz22 # 0. To that end, only the case in which w11 —u1 2 —u2,1+us22 # 0 is considered
in thf? following proof. Given the fact that 0 < ul’l_ﬁ:i:g;f_mm < 1, it holds that p( in
satisfies

1>p@ >0. (522)

Let a pair of strategies (P}, Pj,) € A (A1) x A (Az) be such that (P}, Pi,) € P. Then, it
follows that

P}, € BRy(P%,). (523)
Given the fact that P satisfies , from Lemma|l1.6{and (523)), it follows that p(!) in satisfies
pM =1 (524)

Note that, from Lemma only when uy,1 — 1,2 —u2,1 +u2,2 > 0, the best response BR; (Pf*lz)
satisfies

BRy(P},) = {Pa, € A(A) : Pa,(a1) = 1) (525)
for all P} (a1) € [UI,PZ?E:Z;LUM , 1}. As a result, only the case in which w11 —u1 2 —u21 +

ug22 > 0 needs to be considered. Hence, if u; 1 —u1 2 —ug1 +ug2 > 0, the equality in (524]) and
the inequality in (522)) hold if the entries of the payoff matrix w satisfy

U1 =U12, U1 > U1, and uzo > uq 2, (526)

which proves the condition in . Note that the condition in guarantees that uy ;1 —uy 2 —
u2,1 + u2,2 > 0. Hence, there is no need to include w11 — u1,2 — u2,1 + u2,2 > 0 as a condition.
The converse is as follows. If holds, then it holds that u; 1 — u1,2 — u2,1 + uz,2 > 0, the

equality in (524)) holds, and the inequalities (522)) hold. Hence, from Lemma and Lemma
for a pair of strategies (Pa,, Pa,) € A (A1) x A (Az), if Pa,(a1) < 1, it holds that

BR2(PA1) = {PA2 € A(Az) : PA2(a1) = 1} and (527)
BRl (BRQ(PAl)) = {PAl S A (./41) : PAl (al) = 1} (528)

As a result, for all (P} , P3,) € P, it holds that
P, (a1) =1, (529)
which, from Lemma [I.5] implies that

U2 — U2
b
U1l — UL — U1+ U2

P (a1) € 1] . (530)

This completes the proof.
Furthermore, it holds that

w(Ph,, Px,) = w11 = u1 2, (531)

which follows from the fact that P} (a1) =1, P}, (a1) can be equal to one and u; 1 = u; 2. This
completes the proof.
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The proof of Case IV is as follows. Note that the set P satisfying implies that u;; —
u1,2—U21+uz2 # 0. To that end, only the case in which 1,1 —u1,2 —u2,1 +u22 # 0 is considered
in thf(ie following proof. Given the fact that 0 < ul‘l_Z?z:Z;ﬁ_‘_um < 1, it holds that p in
satisfies

1>p® >0. (532)

Let a pair of strategies (P} ,Pj1,) € A (A1) x A(Az) be such that (P} ,Pi,) € P. Then, it
follows that

P}, € BRy(P5,). (533)
Given the fact that P satisfies (53, from Lemmal[l.6|and (523), it follows that p(") in satisfies
pM =1 (534)

Note that, from Lemma only when uq 1 —uj,2 —u2,1 +uz2 < 0, the best response BRl(ij)
satisfies

BRi(P},) = {Pa, € A(A1) : Pa,(a1) =1} (535)
for all P} (a1) € [O, ul,l—Z?z:Z;f+uz,2}' As a result, only the case in which uy 1 —u1,2 —u21 +

u22 < 0 needs to be considered. Hence, if u; 1 —uj 2 —u21 +ug22 < 0, the equality in (534)) and
the inequality in (532)) hold if the entries of the payoff matrix u satisfy

Uyl = U2, U1l < uz1, and ug2 < Ug 2. (536)

which proves the condition in . Note that if the inequalities in hold, then it holds that
U111 — Ur,2 — Ug,1 + U2 < 0. Hence, there is no need to include u; 1 — w190 —u21 +u22 <0 asa
condition.

The converse is as follows. If holds, then it holds that ui ;1 — u1,2 — u2,1 + uz,2 <0, the

equality in (534) holds, and the inequalities (532)) hold. Hence, from Lemma and Lemma
for a pair of strategies (Pa,, Pa,) € A (A1) x A (Ag), if Pa,(a1) < 1, it holds that

BRs(P4,) = {Pa, € A(As) : Pay(a1) =0} and (537)
BRy (BRa(Pa,)) = {Pa, € A (A1) : Pa,(a1) = 1} (538)

As a result, for all (P} , P, ) € P, it holds that
P (a1) =1, (539)
which, from Lemma [T.5] implies that

U2 — U1,2
b
U1 — UL — U1+ U2

P}, (a1) € 10 (540)

This completes the proof.
Furthermore, it holds that

u(Pj3,, Pi,) = u11 = u1z, (541)

which follows from the fact that Pj (a1) =1, Pj,(a1) can be equal to zero and u; 1 = u; 2. This
completes the proof.
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The proof of Case V is as follows. Note that the set P satisfying implies that uy 1 —u12—
u2,1 + uz2 # 0. To that end, only the case in which u; 1 —ui 2 —u21 + us 2 # 0 is considered
. . . U2, 2—U2, . 1) -
in thf? following proof. Given the fact that 0 < ul’l_uf;_uz);u“ < 1, it holds that p(*) in
satisfies

1>pM >0. (542)

Let a pair of strategies (P} ,Pj,) € A (A1) x A(Ag) be such that (P} ,Pji,) € P. Then, it
follows that

P}, € BRy(P3,). (543)
Given the fact that P satisfies , from Lemma/|l.5{and (543)), it follows that p(® in satisfies
p® =0, (544)

Note that, from Lemma only when ;1 —u1,2 —u2,1 +u2,2 > 0, the best response BRl(P:12)
satisfies

BRi(P},) = {Pa, € A(A1) : Pa,(a1) =0} (545)
for all P} (a1) € [UI,I_Z?E:ZZ:;W’Q , 1]. As a result, only the case in which w11 —u1,2 —u21 +

ug22 > 0 needs to be considered. Hence, if u; 1 —uj 2 —u21 +ug2 > 0, the equality in (544]) and
the inequality in (542)) hold if the entries of the payoff matrix u satisfy

U2 = U192, U222 > U1, and uy 1 > Uy 2., (546)

which proves the condition in . Note that if the inequalities in hold, then it holds that
U1,1 — U1,2 — U2,1 + U2 > 0. Hence, there is no need to include uy 1 —u1,2 —u2,1 +uz2 >0 as a
condition.

The converse is as follows. If holds, then it holds that u; 1 — u1,2 — u2,1 + uz,2 > 0, the
equality in holds, and the inequalities hold. Hence, from Lemma and Lemma
for a pair of strategies (Pa,, Pa,) € A (A1) X A (Ag), if Pa,(a1) > 0, it holds that

BR1(Pa,) = {Pa, € A(A1) : Pa,(a1) =1} and (547)
BRs (BRl(PAl)) = {PA2 cA (AQ) : PA2 (al) = O} (548)

As a result, for all (P} ,Pj,) € P, it holds that
P}, (a1) =0, (549)

which, from Lemma [T.6] implies that

Ug,2 — U2, 1
P (ay) € : : 1|. 550
A (@) U — U2 — Uz + Uz’ (550)

This completes the proof.
Furthermore, it holds that

u(P}3,, Pi,) = u12 = uzp2, (551)

which follows from the fact that P (a1) =0, P}, (a1) can be equal to one and u; o = ug 2. This
completes the proof.
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The proof of Case VI is as follows. Note that the set P satisfying implies that u;; —
u1,2—U21+uz2 # 0. To that end, only the case in which 1,1 —u1,2 —u2,1 +u22 # 0 is considered
in thf(ie following proof. Given the fact that 0 < ul‘l_Zf’;:Zii_‘_um < 1, it holds that p(*) in
satisfies

1>pM >o. (552)

Let a pair of strategies (P} ,P1,) € A (A1) x A(Az) be such that (Py ,P1,) € P. Then, it
follows that

P}, € BRi(P},). (553)
Given the fact that P satisfies , from Lemmal(l.5{and (553), it follows that p(») in satisfies
p? =0, (554)

Note that, from Lemma only when uq 1 —uj,2 —u2,1 +uz2 < 0, the best response BRl(PL)
satisfies

BR1(P},) = {Pa, € A(A1) : Pa,(ar) =0} (555)
for all P (a1) € [0, ul,ﬁz?zizijJruz,z}' As a result, only the case in which uy 1 —uy 2 —u21 +

ug,2 < 0 needs to be considered. Hence, if u11 — w12 — w21 + u2,2 < 0, the equality in (554) and
the inequality in (552)) hold if the entries of the payoff matrix w satisfy

U2 = Up2, U2 > U1, and uy 1 > Uy 2., (556)

which proves the condition in . Note that if the inequalities in hold, then it holds that
U110 — Ur,2 — U1 + U2 < 0. Hence, there is no need to include u; 1 — w19 —u21 +u22 <0 asa
condition.

The converse is as follows. If holds, then it holds that w11 — u1,2 — u21 + u22 <0, the
equality in holds, and the inequalities hold. Hence, from Lemma and Lemma
for a pair of strategies (Pa,, Pa,) € A (A1) x A (Az), if Pa,(a1) > 0, it holds that

BR1(P4,) = {Pa, € A (A1) : Pa,(a1) =0} and (557)
BRs (BRy(Pa,)) = {Pa, € A (A2) : Pa,(a1) = 0} (558)

As a result, for all (P} , P3,) € P, it holds that
Pj,(a1) =0, (559)
which, from Lemma [1.6] implies that

U292 — U2 1
b
U1l — UL — U1 + U2

P} (a1) € |0 (560)
This completes the proof.

The proof of Case VII is as follows. Note that the set P satisfying implies that uy 1 —
uy,2—ug,1+uszz2 # 0. To that end, only the case in which u; 1 —uj 2 —ug 1 +us22 # 0 is considered
in thf?1 following proof. Given the fact that 0 < u1,1fzizizzj+u2,z < 1, it holds that p) in
satisfies

1>pM >0. (561)
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Let a pair of strategies (P}, Pj,) € A (A1) x A(Az) be such that (P}, Pi,) € P. Then, it
follows that

P}3, € BRi(P3,). (562)
Given the fact that P satisfies , from Lemmal(l.5{and (562)), it follows that p(>) in satisfies
p?® =1 (563)

Note that, from Lemma only when ;1 —u1,2 —u2,1 +u2,2 > 0, the best response BRl(PZ2)
satisfies

BRi(P},) = {Pa, € A(A1) : Pa,(a1) =1} (564)
for all Py, (a1) € [07 ul’lfﬁ?;:gi:;u“}. As a result, only the case in which w1 —ui 2 —u21 +

ug22 > 0 needs to be considered. Hence, if u; 1 —uy 2 —ug21 +ug2 > 0, the equality in (563]) and
the inequality in (561 hold if the entries of the payoff matrix w satisfy

U1 = U2,1, U2 > U2 1, and UL,1 > U1,2-, (565)

which proves the condition in . Note that if the inequalities in hold, then it holds that
U1,1 — U1,2 —U2,1 +uz2 > 0. Hence, there is no need to include u; 1 —u12 —u2,1 +uz2 >0 as a
condition.

The converse is as follows. If holds, then it holds that u; 1 —u1,2 — u2,1 + uz2 > 0, the
equality in holds, and the inequalities hold. Hence, from Lemma[L.5|and Lemma [L.6]
for a pair of strategies (Pa,, Pa,) € A (A1) X A (Ag), if Pa,(a1) < 1, it holds that

BRl(PAz) = {PA1 SVAN (Al) : PA1 (0,1) = 0} and (566)
BR» (BRl(PAl)) = {PA2 e N (.Ag) : PA2 (al) = 1} (567)

As a result, for all (P} , Pj3,) € P, it holds that
Pj,(a1) =1, (568)
which, from Lemma [1.6] implies that

U2,2 — U2,1
U1 — U2 — U1 + U2 2

P}, (a1) € |0, (569)

This completes the proof.

The proof of Case VIII is as follows. Note that the set P satisfying implies that u;; —
u1,2—u2,1+uz2 # 0. To that end, only the case in which u; 1 —u1,2 —u21+u22 # 0 is considered
. . . U2 2—U2 1 . 1) ;
1nt‘Fh§ following proof. Given the fact that 0 < PR PR RS 1, it holds that p™) in
satisfies

1>pM >o0. (570)

Let a pair of strategies (P}, Pj,) € A (A1) x A (Az) be such that (P}, Pji,) € P. Then, it
follows that

P4, € BRy(P}). (571)
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Given the fact that P satisfies (74), from Lemmal[L.5)and (571), it follows that p in (11)) satisfies
p? =1 (572)

Note that, from Lemma only when uq 1 —uj,2 —ug2,1 +uz2 < 0, the best response BRl(PL)
satisfies

BR1(P},) = {Pa, € A(A1) : Pa,(ar) =1} (573)
for all Py (a1) € [UI,PZ?E:Z;%U“ , 1}. As a result, only the case in which uy 1 —u12 —u21 +

ug22 < 0 needs to be considered. Hence, if u; 1 —uj o —u21 +ug2 < 0, the equality in (572]) and
the inequality in (570) hold if the entries of the payoff matrix w satisfy

U1 = U2,1, U2 > Ug1, and uig > ug 2., (574)

which proves the condition in . Note that if the inequalities in hold, then it holds that
U1, — Ur,2 — U2,1 + U2 < 0. Hence, there is no need to include u; 1 — w12 — u21 +uz22 <0 as a
condition.

The converse is as follows. If holds, then it holds that w11 — u1,2 — u2,1 + u22 <0, the

equality in (572)) holds, and the inequalities (570 hold. Hence, from Lemma and Lemma
for a pair of strategies (Pa,, Pa,) € & (A1) X A (Az), if Pa,(a1) < 1, it holds that

BR1<PA2) = {PA1 ISAN (.A1> : PA1 (al) = 1} and (575)
BRs (BR1(Pa,)) = {Pa, € A (As) : Pa,(ar) = 1}. (576)

As a result, for all (P} , P ) € P, it holds that
Pi,(a1) =1, (577)
which, from Lemma [1.6] implies that

U292 — U2 1
b
U1 — U2 — U1+ U2

P (a1) € i (578)

This completes the proof.
Furthermore, it holds that

u(Pj3,, Pi,) = u11 = uz;, (579)

which follows from the fact that P (a1) =1, Pj,(a1) can be equal to one, and u; 1 = ug ;. This
completes the proof.
This completes the whole proof.

K Proof of Theorem [1.5]

Note that Theorem [I.2] Theorem [I.3] and Theorem [T.4] cover all the cases of the NEs in 2 x 2
zero sum games. Hence, the proof is separated into 2 parts. The first part proves that if the
entries in the payoff matrix u satisfy , then the NE is unique and is formed by and
(78al). The second part proves that if the entries in the payoff matrix u satisfy , then the

value of the game satisfies (81a]) and (81b]).
m (case (i)).

The first part follows from Theore
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The second part is as follows. Note that the conditions in and form a partition of
R2*2, If the conditions in hold, then from Theorem there is a unique NE in strictly
mixed strategies. Alternatively, from Theorem [I.T} if the entries of the payoff matrix w satisfy
, then there is a unique NE in pure strategies or infinitely many NEs.

Note that from Theorem Theorem and Theorem if the entries of the payoff
matrix w satisfy (80), the set of NE(s) always include a pair of strategies (Pi, P2) € A (A; x As)
such that

Pl(al) S {0, 1} and Pg(al) S {O, ].} (580)

Given the fact that all the NEs yield the same payoff, if the entries of the payoff matrix u satisfy
, the value of the game can be searched exclusively in pure strategies.

For the game in which both players only use pure strategies, the maxmin value of the game |1,
Section 4.12] equals to

i + 1-8)+ 1—a)8+ 1—a)(1-p), 581
ag%ﬁ}ﬁgé§l}ul,1aﬂ ug 20(1 = B) +uz1(1 —a)B +uga(l —a)(l - B) (581)

which can be rewritten as

arer%?cl} ﬁg%r,l1}(ul’1ﬁ +u2(l— 6))04 + (u2,15 +ug2(l— ﬁ))(l — ). (582)

Note that the maxmin value in (582)) can be further expressed as

max { ﬁg{lin uy168 +u2(1 = B), ng)nl} U1 + ug2(l — ﬁ)}, (583)

s )

which follows from the fact that o € {0,1}. Given the fact that 5 only can be either zero or one,
the maximum value in (583]) also equals to

max{min {ul’l,ulﬁg},min {u2’1,u212}}. (584)

Similarly, for the game in which both players only use pure strategies, the minmax value of
the game |1, Section 4.12] equals to

i 1-— 1-— 1-— 1-— 585
ﬁg{l%){ll} ag}{%ﬁ} ur o +uppa(l = B) +uz (1 —a)B 4+ uz2(1 —a)(1 - f), (585)

which can be rewritten as

Bé%r}” arer}{%?(l}(umﬁ +ug2(l— ﬁ))a + (u2,15 +ug (1 — B))(l —a). (586)

Note that the maxmin value in (586]) can be further expressed as

min{ max uj 1o+ ug1(l — ), max uj oo+ ug2(l— a)}, (587)
a6{071} aE{O,l}

which follows from the fact that 8 € {0,1}. Given the fact that « only can be either zero or one,
the minmax value in (587)) also equals to

min{max {um,uz,l},min {uu,uz,g}}. (588)

In a 2 x 2 zero sum game, the maximin value equals the minmax value, which also equals the
value of the game |1, Section 4.12]. As a result, it holds that

U(le s Pzz ):min{max{uLl yU2,1 },maX{ul,g ,U2,2 }} (589)

=max{min{u 1,u1,2},min{us 1,u2.2}}, (590)

which completes the proof.
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L. Proof of Lemma 1.7

Note that
U1,1U2,2 — UL,2U2,1 _ Up1U2,2 — UL 1U2,1 + UL 1USLT — UL 2U2 1 (591)
U] — U2 — U1 + U2 2 U] —UL2 — U2,1 + U2
_ W (ug,2 —u21) +ugq (U110 —u12) (592)
U1 — UL — U1 + U2
= u11 P}, (a1) +u21 P}, (az) (593)
< max{ui1,u21}, (594)

where (593)) follows from Theorem the strictly inequality in (594)) follows from the fact that
P3 (a1) € (0,1).
Similarly, it holds that

Up,1U2,2 — UL,2U2,1 _ Up,1U2,2 — UL 2U2. 2 + UL 2U22 — UL 2U2 1 (595)
U1 — UL — U1+ U2 U1 — UL — U2+ U2
_ Y22 (ur1,1 —u12) +ur2 (22 —ug1) (596)
U1 — UL — U1 + U2
= up 2P} (az) +u1 2P} (a1) (597)
< max{u12,u22}, (598)

where (597) follows from Theorem the strictly inequality in (598)) follows from the fact that
P3 (a1) € (0,1).
As a result, it holds that

U1,1U2,2 — UL, 2U2,1

< mi 599
U1 — U2 — U1 + U2 min {max {u1,1, uz,1}, max {u1,2,uz,2}} (599)
Note that

U122 — Ui2U21 Uil — U1,1UL2 + Uy U2 — Ul 2U21 (600)

U1 —UL2 — U1+ U2 Uil — Uig — U1 + U
_ wna (ug2 —wr2) g (Uay —uga) (601)

U1 — UL — U1+ U2

= u11 P}, (a1) + w1 2P}, (az) (602)
> min {us 1, u12}, (603)

where (602)) follows from Theorem the strictly inequality in (603]) follows from the fact that
P3,(a1) € (0,1). Similarly, it holds that

U1,1U2,2 —Ui2U21  _ Ui1l2 — Uz1U22 + U21Uz2 — U1,2U21 (604)
U1 — UL — U2,1 F+ U2 U] —UL2 — U2,1 T U2
_ U2 (w11 —ug,1) +uz1 (u2,2 — ui2) (605)
U1 — UL — U1+ U2
= u2,2P22 (ag) + ’LL2’1P22 (al) (606)
> min {ug 2, u2.1}, (607)

where follows from Theorem the strictly inequality in (607 follows from the fact that
P,Zz (al) € (Oa 1)
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As a result, it holds that

Uy,1U2,2 — UL,2U2,1
U] — U2 — U2,1 + U2

> max {min {u1 1, w12}, min {uz 2, us1}}, (608)

which completes the proof.

M Proof of Lemma 1.8

Note that if the entries of the payoff matrix w in satisfy , from Theorem it holds that

U2 — UL,2
U1 — UL — U1+ U2

P =P} (a1) = € (0,1), (609)

where p(® is in , and the pair of strategies (P , P},) forms the unique NE.
If given a strategy P € A (Az), it holds that argmaxyecaa,)u(V,P) = {Q € A(A) :
Q(a1) = 0}, then, from , it follows that

ﬁ(P) = u2,1P(a1> + UQ)QP(G/Q). (610)

If given a P € A (Az), it holds that argmaxyea(a,)u(V,P) ={Q € A(A1) : Q(ar) = 1}, then,
from , it follows that

ﬁ(P) = U171P(a1) + ’U,LQP((J,Q). (611)

If P = Pj,, from Lemma it holds that argmaxyeaayu(V,P) = {Q € A(A1) : Qa1) =
B, B € ]0,1]}, then, from (3) and (275), it follows that
a(Pj,)

= Qeng%}jt )(U1,1 —u12 —ug1 +uz2) (P, (a1) — P4, (a1)) Q(a1) + (ug,1 —ua,2) P, (a1) +uz 2 (612)
1

= u2,1 P4, (a1) + up,2 P4, (a2). (613)
Plugging ([78b)) into (613]) yields
uz,1 P}, (a1) +u2 o Pj, (as) =(uz,1 — ua2)Ph,(a1) + ug 2 (614)
U2 — U12

= (u2,1 — u2,2) + u22 (615)

U] —UL2 — U1 T U22
(u2,1 —ug2)(u22 —uy,2) + U 2(u1,1 — w12 — Uz + Uz 2)

= (616)

U1 —UL2 — U1 T U22
__ UWaalap — iU (617)

U1 — UL2 — U1+ U2 2
Note that plugging ([78b)) into into (611]) also yields
7.L171P22 (al) + U172P:‘2 (ag) :(uLl — ’U,LQ)P:‘2 (al) + u1 2 (618)
U2 2 — UL,2

= (u1,1 —u12 : : + U129 619
(s, )U1,1 — Uy — U1+ U2 (619)
. (Ul,l —u12)(ug2 — ul,z) + U1,2(U1,1 — U2 — U1+ u2,2) (620)

U1 — UL2 — U2,1 + U22
_ U1,1U2,2 — U1,2U2,1 (621)

)
U1 — UL — U2+ U2
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which, with (617]), implies that the function @ satisfies
’[L(Pzz) = 'U,Q,lpzz (&1) + U2,2PZ2 ((12) = U1,1PIZ2 (al) + U172PZ2 (ag). (622)

In a nutshell, from Lemma under the assumption of the lemma, for all P € A (Az), it holds
that

uz1P(a1) + uz 2 P(az), if P(a1) < P}, (a1) and uy;1 —uy 2 —ugy +ug2 >0 or
P(ay) > Pz, (a1) and u11 —ur2 —uz1 +u22 <0,
’[L(P) = U171P(a1) + 'U,LQP(G,Q), if P(al) > PA2 ((11) and U1l — UL — U + U2 > 0 or (623)
(al) < PA (a1) and U1 —UL2 — U2 + U292 < 0,
u(le,PXQ), if P(a1) = P, 2(al).

The proof is completed by noticing that if the matrix w in satisfies , it holds that
Uy — U2 —Ug1 +uz2 # 0.

N Proof of Lemma [1.9

Two cases are considered. First, the case in which u; 1 — 1,2 — u2,1 + u2,2 > 0; Second, the case
inwhichull—ulg—uzl—Fqu <0.

Consider the case in which w7 — 41,2 —u2,1 + u2,2 > 0. From Theorem [1.5] if the entries of
the matrix w in (1) satisfy (77 ., then one of the followmg conditions holds:

uig —ui2 >0 and wug; —us2 <0, or (624)
U —ur2 < 0 and U1 — U2,2 > 0. (625)

Nonetheless, only the first condition yields uj 1 —u12 — ug1 + uz,2 > 0. Hence, from Lemma
and (624)), if 0 < P(a1) < Q(a1) < P3, (a1), then it holds that

a(P) > u(Q); (626)
and if P} (a1) < P(a1) < Q(a1) <1, then it holds that
a(P) < u(Q). (627)

Alternatively, consider the case in which w1 — u1,2 — u21 + ug,2 < 0. From Theorem @ if
the entries of the matrix w in (1| satisfy (77| . then one of the followmg conditions holds:

Ui,1 — U2 >0 and U2,1 — U22 < O, or (628)
U —ul2 < 0 and U1 — U2,2 > 0. (629)

Nonetheless, only the second condition yields uq 1 — 1,2 —u2,1 +u2,2 < 0. Hence, from Theorem
and (629), if 0 < P(a1) < Q(a1) < Pj,(a1), then it holds that

a(P) > u(Q); (630)
and if P} (a1) < P(a1) < Q(a;) < 1, then it holds that
a(P) < u(Q). (631)

This completes the proof.
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O Proof of Lemma

The proof follows from the fact that

P% P%)= mi P)= min a(P). 632
u(Pj,, P1,) penil&)@eﬂa}il)“(@ ) PGHAH(I}%)U( ) (632)

This completes the proof.
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