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Quelques propriétés des équilibres de Nash des jeux 2× 2 à
somme nulle

Résumé : Dans ce rapport, certaines propriétés de l’ensemble des équilibres de Nash (EN) des
jeux 2 × 2 à somme nulle sont étudiés. En particulier, la cardinalité de l’ensemble des EN est
donnée en termes des entrées de la matrice du jeu. De plus, des expressions explicites pour les
stratégies d’équilibre et la valeur du jeu sont présentées. Ces résultats ne sont pas nécessairement
des connaissances nouvelles, car ils découlent de la définition de l’EN après quelques calculs.
Néanmoins, cette présentation synthétique est originale dans la littérature.

Mots-clés : jeux 2× 2 à somme nulle, jeux en forme normale, et équilibre de Nash.
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Some Properties of the NE in 2× 2 Zero-Sum Games 1

1 Zero-Sum Games in Normal Form
The notations that are used in this report are listed in the following. Given a finite set X ,
the notation 2X represents the power set of X . The notation 4 (X ) represents the set of all
probability measures that can be defined on the measurable space

(
X , 2X

)
. The set of all subsets

of 4 (X ) is denoted by 24(X ).
Consider a two-player two-action zero-sum game in normal form with payoff matrix

u=

(
u1,1 u1,2
u2,1 u2,2

)
. (1)

Let the elements of the set K , {1, 2} represent the indices of the players; and let the elements
of the set A1 = A2 , {a1, a2} represent the actions of the players. Hence, for all (i, j) ∈ {1, 2}2,
when Player 1 plays ai and Player 2 plays aj , the outcome of the game is ui,j . In the following,
such a game is represented by the tuple

G,(K,A1,A2,u) . (2)

For all k ∈ K, the strategy of Player k is a probability measure denoted by PAk
∈ 4 (Ak). At

each repetition of the game, players choose their actions by sampling their probability measures
(strategies). Let the average payoff be represented by the function u : 4 (A1) × 4 (A2) → R

such that, given the strategies PA1
and PA2

,

u (PA1
, PA2

)=
∑

(i,j)∈{1,2}2
PA1

(ai)PA2
(aj)ui,j . (3)

Player 1 chooses its strategy PA1
aiming to maximize the expected payoff u (PA1

, PA2
), whereas

Player 2 chooses the strategy PA2
to minimize it.

The set of best responses of Player 1 to a given strategy of Player 2 is determined by the
correspondence BR1 : 4 (A2) → 24(A1), such that given the strategy P for Player 2, it holds
that

BR1 (P ) = arg max
Q∈4(A1)

u(Q,P ), (4)

where the function u is defined in (3). Similarly, the set of best responses of Player 2 to a given
strategy of Player 1 is determined by the correspondence BR2 : 4 (A1) → 24(A2), such that
given the strategy Q for Player 1, it holds that

BR2 (Q) = arg min
P∈4(A2)

u(Q,P ). (5)

When both players choose their actions simultaneously, a relevant outcome of the game is
the Nash equilibrium (NE).

Definition 1.1 (Nash Equilibrium) A pair of strategies
(
P ?A1

, P ?A2

)
∈ 4 (A1)×4 (A2) forms

an NE in the game G in (2), if and only if the following conditions simultaneously hold:

(i) For all Q ∈ 4 (A1),

u
(
P ?A1

, P ?A2

)
> u

(
Q,P ?A2

)
; and (6)

(ii) For all Q ∈ 4 (A2),

u
(
P ?A1

, P ?A2

)
6 u

(
P ?A1

, Q
)
, (7)

where the function u is defined in (3).
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2 Ke Sun

1.1 Multiplicity of the Nash Equilibrium
The following lemma shows that if the game G in (2) possesses an NE in which one of the players
uses a pure strategy, while the other uses a strictly mixed strategy, then the game G possesses
infinitely many NEs.

Lemma 1.1 If a pair of strategies
(
P ?A1

, P ?A2

)
∈ 4 (A1) ×4 (A2) forms an NE in the game G

in (2), and one of the following statements holds:

1. P ?A1
(a1) ∈ {0, 1} and P ?A2

(a1) ∈ (0, 1); or

2. P ?A1
(a1) ∈ (0, 1) and P ?A2

(a1) ∈ {0, 1},

then, the game G possesses infinitely many NEs.

Proof: The proof of Lemma 1.1 is provided in Appendix A.

The following lemma shows that if the number of NEs in the game G in (2) is finite, then
an NE in which both players use pure strategies and an NE in which both players use strictly
mixed strategies cannot simultaneously exist.

Lemma 1.2 Let P ⊂ 4 (A1) × 4 (A2) be the set of NEs of the game G in (2). Assume that
|P| <∞. The following statements hold:

1. If there exists a pair of strategies
(
P ?A1

, P ?A2

)
∈ P such that for all i ∈ {1, 2}, P ?Ai

(a1) ∈
{0, 1}, then, a pair (QA1

, QA2
) ∈ 4 (A1)×4 (A2) such that for all j ∈ {1, 2}, QAj

(a1) ∈
(0, 1), satisfies (QA1

, QA2
) 6∈ P.

2. If there exists a pair of strategies
(
P ?A1

, P ?A2

)
∈ P such that for all i ∈ {1, 2}, P ?Ai

(a1) ∈
(0, 1), then, a pair (QA1

, QA2
) ∈ 4 (A1) ×4 (A2) such that for all j ∈ {1, 2}, QAj

(a1) ∈
{0, 1}, satisfies (QA1 , QA2) 6∈ P.

Proof: The proof of Lemma 1.2 is provided in Appendix B.

The following lemma shows that if there exists a finite number of NEs in the game G in (2)
and an NE in strictly mixed strategies exists, then such equilibrium is unique.

Lemma 1.3 Let P ⊂ 4 (A1)×4 (A2) be the set of NEs of the game G in (2). If |P| <∞ and
there exists a pair of strategies

(
P ?A1

, P ?A2

)
∈ P be such that for all i ∈ {1, 2},

P ?Ai
(a1) ∈ (0, 1), (8)

then, the pair
(
P ?A1

, P ?A2

)
forms the unique NE.

Proof: The proof of Lemma 1.3 is provided in Appendix C.

The following lemma shows that if there exists a finite number of NEs in the game G in (2)
and an NE in pure strategies exists, then such NE is unique.

Lemma 1.4 Let P ⊂ 4 (A1)×4 (A2) be the set of NEs of the game G in (2). If |P| <∞ and
there exists a pair of strategies

(
P ?A1

, P ?A2

)
∈ P such that for all i ∈ {1, 2},

P ?Ai
(a1) ∈ {0, 1}, (9)

then, the pair
(
P ?A1

, P ?A2

)
forms the unique NE.

Inria



Some Properties of the NE in 2× 2 Zero-Sum Games 3

Proof: The proof of Lemma 1.4 is provided in Appendix D.

The following theorem specifies the number of NEs that can be observed in a 2× 2 zero-sum
game in normal form.

Theorem 1.1 (Multiplicity of the Nash Equilibria) Let P ⊂ 4 (A1) × 4 (A2) be the set
of NEs of the game G in (2). Then either |P| = 1 or |P| = ∞. In particular, if it holds that
P = {

(
P ?A1

, P ?A2

)
}, then only one of the following statement is true:

1. for all i ∈ {1, 2}, P ?Ai
(a1) ∈ {0, 1}; or

2. for all i ∈ {1, 2}, P ?Ai
(a1) ∈ (0, 1).

Proof: The proof is provided in Appendix E.

1.2 Closed-form Expressions for the Nash Equilibrium Strategies
Before showing the closed-form expression of the NE, closed-form expressions for the best re-
sponses in (4) and (5) are presented.

Lemma 1.5 Let δ , u1,1 − u1,2 − u2,1 + u2,2. For a given PA2
∈ 4 (A2), the best response

BR1(PA2
) in (4) satisfies:

(i) if δ 6= 0, then

BR1(PA2
) =


{PA1

∈ ∆(A1) : PA1
(a1) = 0}, if δ > 0 and PA2

(a1) < p(2), or
δ < 0 and PA2(a1) > p(2)

{PA1
∈ ∆(A1) : PA1

(a1) = 1}, if δ > 0 and PA2
(a1) > p(2), or

δ < 0 and PA2
(a1) < p(2)

{PA1 ∈ ∆(A1) : PA1(a1) = β, β ∈ [0, 1]}, if PA2(a1) = p(2),

(10)

where

p(2) ,
1

δ
(u2,2 − u1,2) ; (11)

(ii) if δ = 0, then

BR1 (PA2) =

 {PA1
∈ ∆(A1) : PA1

(a1) = 0}, if u1,2 < u2,2
{PA1

∈ ∆(A1) : PA1
(a1) = 1}, if u1,2 > u2,2

{PA1
∈ ∆(A1) : PA1

(a1) = β, β ∈ [0, 1]}, if u1,2 = u2,2

. (12)

Proof: The proof of Lemma 1.5 is provided in Appendix F.
The best response of Player 2 in (5) follows directly from Lemma 1.5 by exchanging the roles

of the players, i.e. Player 1 is the column player and Player 2 is the row player, and reverting
the payoff matrix from u to −u, which is stated in the following lemma.

Lemma 1.6 Let δ , u1,1 − u1,2 − u2,1 + u2,2. For a given PA1
∈ 4 (A1), the best response

BR2(PA1) in (5) satisfies:
(i) if δ 6= 0, then

BR2(PA1
) =


{PA2 ∈ ∆(A2) : PA2(a1) = 0}, if δ > 0 and PA1(a1) > p(1), or

δ < 0 and PA1
(a1) < p(1)

{PA2
∈ ∆(A2) : PA2

(a1) = 1}, if δ > 0 and PA1
(a1) < p(1), or

δ < 0 and PA1(a1) > p(1)

{PA2
∈ ∆(A2) : PA2

(a1) = β, β ∈ [0, 1]}, if PA1
(a1) = p(1),

(13)
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4 Ke Sun

where

p(1) ,
1

δ
(u2,2 − u2,1) ; (14)

(ii) if δ = 0, then

BR2 (PA1
) =

 {PA2
∈ ∆(A2) : PA2

(a1) = 0}, if u2,1 > u2,2
{PA2

∈ ∆(A2) : PA2
(a1) = 1}, if u2,1 < u2,2

{PA2
∈ ∆(A2) : PA2

(a1) = β, β ∈ [0, 1]}, if u2,1 = u2,2

. (15)

Proof: The proof of Lemma 1.6 is provided in Appendix G.
In the case in which the zero-sum game G in (2) exhibits a unique NE, the strategies of each

player have the following closed-form expressions.

Theorem 1.2 (Unique Nash Equilibrium) Let P ⊂ 4 (A1) × 4 (A2) be the set of NEs of
the game G in (2) such that |P| = 1. Let the pair of strategies

(
P ?A1

, P ?A2

)
∈ P form an NE in G

in (2).
(i) The pair of strategies

(
P ?A1

, P ?A2

)
is the unique NE with

P ?A1
(a1) ∈ (0, 1) and P ?A2

(a1) ∈ (0, 1), (16)

if and only if, the entries in the matrix u in (1) satisfy

(u1,1 − u1,2)(u2,2 − u2,1) > 0 and (17)
(u1,1 − u2,1)(u2,2 − u1,2) > 0. (18)

Furthermore, the unique NE satisfies

P ?A1
(a1)=

u2,2 − u2,1
u1,1 − u1,2 − u2,1 + u2,2

∈ (0, 1) and (19)

P ?A2
(a1)=

u2,2 − u1,2
u1,1 − u1,2 − u2,1 + u2,2

∈ (0, 1) (20)

and

u(P ?A1
, P ?A2

) =
u1,1u2,2 − u1,2u2,1

u1,1 − u1,2 − u2,1 + u2,2
. (21)

(ii) The pair of strategies
(
P ?A1

, P ?A2

)
is the unique NE with

P ?A1
(a1) = 1 and P ?A2

(a1) = 1, (22)

if and only if, the entries in the matrix u in (1) satisfy

u1,2 > u1,1 > u2,1. (23)

Furthermore, the payoff at the NE is

u(P ?A1
, P ?A2

) = u1,1. (24)

(iii) The pair of strategies
(
P ?A1

, P ?A2

)
is the unique NE with

P ?A1
(a1) = 1 and P ?A2

(a1) = 0, (25)

Inria



Some Properties of the NE in 2× 2 Zero-Sum Games 5

if and only if, the entries in the matrix u in (1) satisfy

u1,1 > u1,2 > u2,2. (26)

Furthermore, the payoff at the NE is

u(P ?A1
, P ?A2

) = u1,2. (27)

(iv) The pair of strategies
(
P ?A1

, P ?A2

)
is the unique NE with

P ?A1
(a1) = 0 and P ?A2

(a1) = 1, (28)

if and only if, the entries in the matrix u in (1) satisfy

u2,2 > u2,1 > u1,1. (29)

Furthermore, the payoff at the NE is

u(P ?A1
, P ?A2

) = u2,1. (30)

(v) The pair of strategies
(
P ?A1

, P ?A2

)
is the unique NE with

P ?A1
(a1) = 0 and P ?A2

(a1) = 0, (31)

if and only if, the entries in the matrix u in (1) satisfy

u2,1 > u2,2 > u1,2. (32)

Furthermore, the payoff at the NE is

u(P ?A1
, P ?A2

) = u2,2. (33)

Proof: The proof of Theorem 1.2 is provided in Appendix H.

In the case in which the zero-sum game G in (2) exhibits an infinite number of NEs, the
following lemma shows the closed-form expressions for the NE strategies when there exists an
i ∈ {1, 2} such that P ?Ai

(a1) ∈ [0, 1].

Theorem 1.3 (Infinite Nash Equilibrium-I) Let P ⊂ 4 (A1)×4 (A2) be the set of NEs of
the game G in (2).
(i) The set P satisfies

P = {(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) = 1 and P2 ∈ 4 (A2)} , (34)

if and only if, the entries of the matrix u in (1) satisfy

u1,1 = u1,2 > u2,1 = u2,2 or (35)
u1,1 = u1,2 ≥ max{u2,1, u2,2} > min{u2,1, u2,2}. (36)

Furthermore, the payoff at the NEs is

u(P ?A1
, P ?A2

) = u1,1 = u1,2. (37)

RR n° 9492
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(ii) The set P satisfies

P = {(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) = 0 and P2 ∈ 4 (A2)} , (38)

if and only if, the entries of the matrix u in (1) satisfy

u2,1 = u2,2 > u1,1 = u1,2 or (39)
u2,1 = u2,2 ≥ max{u1,1, u1,2} > min{u1,1, u1,2}. (40)

Furthermore, the payoff at the NEs is

u(P ?A1
, P ?A2

) = u2,1 = u2,2. (41)

(iii) The set P satisfies

P = {(P1, P2) ∈ 4 (A1)×4 (A2) : P1 ∈ 4 (A1) and P2(a1) = 1} , (42)

if and only if, the entries of the matrix u in (1) satisfy

u1,1 = u2,1 < u1,2 = u2,2 or (43)
u1,1 = u2,1 ≤ min{u1,2, u2,2} < max{u1,2, u2,2}, (44)

Furthermore, the payoff at the NEs is

u(P ?A1
, P ?A2

) = u1,1 = u2,1. (45)

(iv) The set P satisfies

P = {(P1, P2) ∈ 4 (A1)×4 (A2) : P1 ∈ 4 (A1) and P2(a1) = 0} , (46)

if and only if, the entries of the matrix u in (1) satisfy

u1,2 = u2,2 < u1,1 = u2,1 or (47)
u1,2 = u2,2 ≤ min{u1,1, u2,1} < max{u1,1, u2,1}. (48)

Furthermore, the payoff at the NEs is

u(P ?A1
, P ?A2

) = u1,2 = u2,2. (49)

(v) The set P satisfies

P = {(P1, P2) ∈ 4 (A1)×4 (A2) : P1 ∈ 4 (A1) and P2 ∈ 4 (A2)} , (50)

if and only if, the entries of the matrix u in (1) satisfy

u1,1 = u1,2 = u2,1 = u2,2. (51)

Furthermore, the payoff at the NEs is

u(P ?A1
, P ?A2

) = u1,1 = u1,2 = u2,1 = u2,2. (52)

Proof: The proof of Theorem 1.3 is provided in Appendix I.

In the case in which the zero-sum game G in (2) exhibits an infinite number of NEs, the
following lemma shows the closed-form expressions for the NE strategies when there exists an
i ∈ {1, 2} such that P ?Ai

(a1) ∈ [0, a] or P ?Ai
(a1) ∈ [b, 1] for some a ∈ (0, 1) and b ∈ (0, 1).

Inria



Some Properties of the NE in 2× 2 Zero-Sum Games 7

Theorem 1.4 (Infinite Nash Equilibrium-II) Let P ⊂ 4 (A1) ×4 (A2) be the set of NEs
of the game G in (2).
(i) The set P satisfies

P =

{
(P1,P2)∈4(A1)×4(A2) :P1(a1) = 0 and P2(a1)∈

[
0,

u2,2−u1,2
u1,1−u1,2−u2,1 +u2,2

]}
(53)

with 0 <
u2,2−u1,2

u1,1−u1,2−u2,1+u2,2
< 1, if and only if, the entries of the matrix u in (1) satisfy

u1,1 > u2,1 = u2,2 > u1,2. (54)

Furthermore, the payoff at the NEs satisfies

u(P ?A1
, P ?A2

) = u2,1 = u2,2. (55)

(ii) The set P satisfies

P =

{
(P1,P2)∈4(A1)×4(A2) :P1(a1) = 0 and P2(a1)∈

[
u2,2−u1,2

u1,1−u1,2−u2,1 +u2,2
,1

]}
(56)

with 0 <
u2,2−u1,2

u1,1−u1,2−u2,1+u2,2
< 1, if and only if, the entries of the matrix u in (1) satisfy

u1,1 < u2,1 = u2,2 < u1,2. (57)

Furthermore, the payoff at the NEs satisfies

u(P ?A1
, P ?A2

) = u2,1 = u2,2. (58)

(iii) The set P satisfies

P =

{
(P1,P2)∈4(A1)×4(A2) :P1(a1) = 1 and P2(a1)∈

[
u2,2−u1,2

u1,1−u1,2−u2,1 +u2,2
,1

]}
(59)

with 0 <
u2,2−u1,2

u1,1−u1,2−u2,1+u2,2
< 1, if and only if, the entries of the matrix u in (1) satisfy

u2,2 > u1,2 = u1,1 > u2,1. (60)

Furthermore, the payoff at the NEs satisfies

u(P ?A1
, P ?A2

) = u1,1 = u1,2. (61)

(iv) The set P satisfies

P =

{
(P1,P2)∈4(A1)×4(A2) :P1(a1) = 1 and P2(a1)∈

[
0,

u2,2−u1,2
u1,1−u1,2−u2,1 +u2,2

]}
(62)

with 0 <
u2,2−u1,2

u1,1−u1,2−u2,1+u2,2
< 1, if and only if, the entries of the matrix u in (1) satisfy

u2,2 < u1,2 = u1,1 < u2,1. (63)

Furthermore, the payoff at the NEs satisfies

u(P ?A1
, P ?A2

) = u1,1 = u1,2. (64)
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(v) The set P satisfies

P =

{
(P1,P2)∈4(A1)×4(A2) :P1(a1)∈

[
u2,2−u2,1

u1,1−u1,2−u2,1 +u2,2
,1

]
and P2(a1) = 0

}
(65)

with 0 <
u2,2−u2,1

u1,1−u1,2−u2,1+u2,2
< 1, if and only if, the entries of the matrix u in (1) satisfy

u1,1 > u1,2 = u2,2 > u2,1. (66)

Furthermore, the payoff at the NEs satisfies

u(P ?A1
, P ?A2

) = u1,2 = u2,2. (67)

(vi) The set P satisfies

P =

{
(P1,P2)∈4(A1)×4(A2) :P1(a1)∈

[
0,

u2,2−u2,1
u1,1−u1,2−u2,1 +u2,2

]
and P2(a1) = 0

}
(68)

with 0 <
u2,2−u2,1

u1,1−u1,2−u2,1+u2,2
< 1, if and only if, the entries of the matrix u in (1) satisfy

u1,1 < u1,2 = u2,2 < u2,1. (69)

Furthermore, the payoff at the NEs satisfies

u(P ?A1
, P ?A2

) = u1,2 = u2,2. (70)

(vii) The set P satisfies

P =

{
(P1,P2)∈4(A1)×4(A2) :P1(a1)∈

[
0,

u2,2−u2,1
u1,1−u1,2−u2,1 +u2,2

]
and P2(a1) = 1

}
(71)

with 0 <
u2,2−u2,1

u1,1−u1,2−u2,1+u2,2
< 1, if and only if, the entries of the matrix u in (1) satisfy

u2,2 > u2,1 = u1,1 > u1,2. (72)

Furthermore, the payoff at the NEs satisfies

u(P ?A1
, P ?A2

) = u1,1 = u2,1. (73)

(viii) The set P satisfies

P =

{
(P1,P2)∈4(A1)×4(A2) :P1(a1)∈

[
u2,2−u2,1

u1,1−u1,2−u2,1 +u2,2
,1

]
and P2(a1) = 1

}
(74)

with 0 <
u2,2−u2,1

u1,1−u1,2−u2,1+u2,2
< 1, if and only if, the entries of the matrix u in (1) satisfy

u2,2 < u2,1 = u1,1 < u1,2. (75)

Furthermore, the payoff at the NEs satisfies

u(P ?A1
, P ?A2

) = u1,1 = u2,1. (76)

Proof: The proof of Theorem 1.4 is provided in Appendix J.
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1.3 Payoff at the Nash Equilibrium

The payoff at the NE (the value of the game) is characterized by the following theorem.

Theorem 1.5 (Value of the Game) Let the probability measures P ?A1
∈ 4 (A1) and P ?A2

∈
4 (A2) form an NE of the game G in (2). If the entries of the matrix u in (1) satisfy

(u1,1 − u1,2) (u2,2 − u2,1) > 0 and (77a)
(u1,1 − u2,1) (u2,2 − u1,2) > 0, (77b)

then, the NE of the game G in (2) is unique, with

P ?A1
(a1)=

u2,2 − u2,1
u1,1 − u1,2 − u2,1 + u2,2

∈ (0, 1) and (78a)

P ?A2
(a1)=

u2,2 − u1,2
u1,1 − u1,2 − u2,1 + u2,2

∈ (0, 1). (78b)

Moreover, the expected payoff at the NE is

u(P ?A1
, P ?A2

)=
u1,1u2,2 − u1,2u2,1

u1,1 − u1,2 − u2,1 + u2,2
. (79)

If the entries of the matrix u in (1) satisfy

(u1,1 − u1,2) (u2,2 − u2,1) 6 0 or (80a)
(u1,1 − u2,1) (u2,2 − u1,2) 6 0, (80b)

then, there exists either a unique NE or infinitely many NEs. Moreover, all NE strategies lead
to the same payoff,

u(P ?A1
, P ?A2

)=min{max{u1,1,u2,1},max{u1,2,u2,2}} (81a)
=max{min{u1,1,u1,2},min{u2,1,u2,2}}. (81b)

Proof: The proof of Theorem 1.5 is provided in Appendix K.

A key observation of the proof of Theorem 1.5 is that if the entries of the payoff matrix u
satisfy (80), the value of 2×2 zero sum game can be searched exclusively in pure strategies. The
following lemma shows that if the entries of the payoff matrix u satisfy (77), it is not true.

Lemma 1.7 If the entries of the payoff matrix u in (1) satisfy (77), then

min {max {u1,1, u2,1} ,max {u1,2, u2,2}}>
u1,1u2,2 − u1,2u2,1

u1,1 − u1,2 − u2,1 + u2,2
(82)

> max {min {u1,1, u1,2} ,min {u2,2, u2,1}} . (83)

Proof: The proof of Lemma 1.7 is provided in Appendix L.

1.4 Leadership of Player 2

In this subsection, the case in which the players do not choose the strategies simultaneously is
considered. Without loss of generality, it is assumed that Player 2 chooses the strategy first.
Player 1 observes the strategy of Player 2 and chooses a strategy to maximize the payoff. Hence,
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the payoff under this case is fully characterized by the function û : 4 (A2)→ R such that for all
P ∈ 4 (A2),

û (P )= max
Q∈4(A1)

u (Q,P ) , (84)

with the function u defined in (3).
Note that the best response of Player 1 in Lemma 1.5 is either a pure strategy or the simplex

4 (A1). Hence, it follows that

û (P )= max
Q∈{T∈4(A1):T (a1)∈{0,1}}

u(Q,P ) (85)

= max {u(Q′, P ), u(Q′′, P )} , (86)

where Q′ ∈ 4 (A1) satisfies Q′(a1) = 1 and Q′′ ∈ 4 (A1) satisfies Q′′(a1) = 0. Plugging (3) into
(85) yields

û (P ) = max {u1,1P (a1) + u1,2P (a2), u2,1P (a1) + u2,2P (a2)} . (87)

The following lemma shows a closed-form expression when the entries of the payoff matrix u
in (1) satisfy (77).

Lemma 1.8 Assume that the matrix u in (1) satisfies (77). Let P ?A1
∈ 4 (A1) and P ?A2

∈
4 (A2) form an NE in the game (u) in (2). And let δ , u1,1 − u1,2 − u2,1 + u2,2. Then for all
P ∈ 4 (A2), the function û in (84) satisfies:

û(P ) =


u2,1P (a1) + u2,2P (a2), if P (a1) < P ?A2

(a1) and δ > 0 or
P (a1) > P ?A2

(a1) and δ ≤ 0,
u1,1P (a1) + u1,2P (a2), if P (a1) > P ?A2

(a1) and δ > 0 or
P (a1) < P ?A2

(a1) and δ ≤ 0,
u(P ?A1

, P ?A2
), if P (a1) = P ?A2

(a1),

(88)

with P ?A2
(a1) in (78b).

Proof: The proof of Lemma 1.8 is provided in Appendix M.

The following lemma shows the monotonicity of û(PA2
) in (84) in the interval PA2

(a1) ∈[
0, P ?A2

(a1)
]
and PA2

(a1) ∈
[
P ?A2

(a1), 1
]
.

Lemma 1.9 Assume that the entries of the matrix u in (1) satisfy (77). For all tuples (P,Q) ∈
4 (A2)×4 (A2), if 0 ≤ P (a1) < Q(a1) ≤ P ?A2

(a1), then it holds that

û(P ) > v̂(Q). (89)

Alternatively, if P ?A2
(a1) ≤ P (a1) < Q(a1) ≤ 1, then it holds that

û(P ) < v̂(Q). (90)

Proof: The proof of Lemma 1.9 is provided in Appendix N.

The following lemma shows that the minimum value of û in (84) equals the value of the game.
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Lemma 1.10 Let the probability measures P ?A1
∈ 4 (A1) and P ?A2

∈ 4 (A2) be one of the NEs
of the game in (2). Then,

min
P∈4(A2)

û(P )=u(P ?A1
, P ?A2

), (91)

where û is in (84).

Proof: The proof of Lemma 1.10 is provided in Appendix O.
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A Proof of Lemma 1.1
The proof consists in studying the following cases.
Case I:

P ?A1
(a1) = 1− P ?A1

(a2) = 0 and (92)
P ?A2

(a1) = 1− P ?A2
(a2) = α, (93)

with α ∈ (0, 1).
Case II:

P ?A1
(a1) = 1− P ?A1

(a2) = 1 and (94)
P ?A2

(a1) = 1− P ?A2
(a2) = α, (95)

with α ∈ (0, 1).
Case III:

P ?A1
(a1) = 1− P ?A1

(a2) = α and (96)
P ?A2

(a1) = 1− P ?A2
(a2) = 0, (97)

with α ∈ (0, 1).
Case IV:

P ?A1
(a1) = 1− P ?A1

(a2) = α and (98)
P ?A2

(a1) = 1− P ?A2
(a2) = 1, (99)

with α ∈ (0, 1).
Note that in the proof, the set of all the NEs in the game G in (2) is denoted by P ⊂

4 (A1)×4 (A2).
The proof of Case I is as follows. Assume that the pair of strategies

(
P ?A1

, P ?A2

)
in (92) and

(93) forms an NE in the game G in (2). Then, from the indifference principle [1, Theorem 5.18],
it follows that Player 2 is indifferent to using either action a1 or a2. That is,

u(P ?A1
, P ?A2

) = (0, 1)u (1, 0)
T

= (0, 1)u (0, 1)
T
, (100)

which implies that

u2,1 = u2,2. (101)

Under the assumption that
(
P ?A1

, P ?A2

)
forms an NE, it follows from (6) that for all β ∈ [0, 1], it

holds that

u(P ?A1
, P ?A2

) = (0, 1)u (α, 1− α)
T ≥ (β, 1− β)u (α, 1− α)

T
, (102)

which implies that

u2,1α+ u2,2(1− α) ≥ αβu1,1 + β(1− α)u1,2 + (1− β)αu2,1 + (1− β)(1− α)u2,2. (103)

Note that taking the equality in (101) into (103) yields that

u2,1 ≥ αu1,1 + (1− α)u1,2. (104)

Inria
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The following proof proves that either

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) = 1 and P2(a1) ∈ [0, α]} ⊂ P or (105)
{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) = 1 and P2(a1) ∈ [α, 1]} ⊂ P (106)

holds, which implies that P is a set of cardinality infinite.
First, consider the case in which u1,1 ≥ u1,2. From (101), for all P ∈ ∆(A2) such that

P (a1) ∈ [0, α], and for all α′ ∈ [0, 1], it holds that

(0, 1)u
(
P (a1), 1− P (a1)

)T
= u2,1 = (0, 1)u

(
α′, 1− α′

)T
= u2,1. (107)

Furthermore, from (101) and (104), for all P ∈ ∆(A2) such that P (a1) ∈ [0, α] and all β ∈ [0, 1],

(0, 1)u
(
P (a1), 1− P (a1)

)T
= u2,1 (108)
≥ β

(
P (a1)u1,1 + (1− P (a1))u1,2

)
+ (1− β)u2,1 (109)

= P (a1)βu1,1 + β(1− P (a1))u1,2 + (1− β)P (a1)u2,1 + (1− β)(1− P (a1))u2,2 (110)

= (β, 1− β)u
(
P (a1), 1− P (a1)

)T
, (111)

where the inequality follows from the fact that if u1,1 ≥ u1,2 and P (a1) ≤ α, from (104), it holds
that

u2,1 ≥ αu1,1 + (1− α)u1,2 ≥ P (a1)u1,1 + (1− P (a1))u1,2. (112)

Hence, it holds that

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) = 0 and P2(a1) ∈ [0, α]} ⊂ P. (113)

Alternatively, consider the case in which u1,1 < u1,2. From (101), for all P ∈ ∆(A2) such
that P (a1) ∈ [α, 1], and for all α′ ∈ [0, 1], it holds that

(0, 1)u
(
P (a1), 1− P (a1)

)T
= u2,1 = (0, 1)u

(
α′, 1− α′

)T
= u2,1. (114)

Furthermore, from (101) and (104), for all P ∈ ∆(A2) such that P (a1) ∈ [α, 1] and all β ∈ [0, 1],

(0, 1)u
(
P (a1), 1− P (a1)

)T
= u2,1 (115)
≥ β

(
P (a1)u1,1 + (1− P (a1)

)
u1,2) + (1− β)u2,1 (116)

= P (a1)βu1,1 + β(1− P (a1))u1,2 + (1− β)P (a1)u2,1 + (1− β)(1− P (a1))u2,2 (117)

= (β, 1− β)u
(
P (a1), 1− P (a1)

)T
, (118)

where the inequality follows from the fact that if u1,1 < u1,2 and P (a1) ≥ α, from (104), it holds
that

u2,1 ≥ αu1,1 + (1− α)u1,2 ≥ P (a1)u1,1 + (1− P (a1))u1,2. (119)

Hence, it holds that

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) = 0 and P2(a1) ∈ [α, 1]} ⊂ P. (120)
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This completes the proof.
The proof of Case II is as follows. Assume that the pair of strategies

(
P ?A1

, P ?A2

)
in (94) and

(95) forms an NE in the game G in (2). Then from the indifference principle [1, Theorem 5.18],
it follows that Player 2 is indifferent to using either action a1 or a2. That is,

(1, 0)u (1, 0)
T

= (1, 0)u (0, 1)
T
, (121)

which implies that

u1,1 = u1,2. (122)

Under the assumption that
(
P ?A1

, P ?A2

)
forms an NE, from (6), for all β ∈ [0, 1], it holds that

(1, 0)u (α, 1− α)
T ≥ (β, 1− β)u (α, 1− α)

T
, (123)

which implies that

u1,1α+ u1,2(1− α) ≥ αβu1,1 + β(1− α)u1,2 + (1− β)αu2,1 + (1− β)(1− α)u2,2. (124)

Note that taking the equality in (122) into (124) yields that for all β ∈ [0, 1], it holds that

u1,1 ≥ αu2,1 + (1− α)u2,2. (125)

The following proof proves that either

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) = 1 and P2(a1) ∈ [0, α]} ⊂ P or (126)
{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) = 1 and P2(a1) ∈ [α, 1]} ⊂ P (127)

holds, which implies that P is a set of cardinality infinite.
First, consider the case in which u2,1 ≥ u2,2. From (101), for all P ∈ ∆(A2) such that

P (a1) ∈ [0, α], and for all α′ ∈ [0, 1], it holds that

(1, 0)u
(
P (a1), 1− P (a1)

)T
= u1,1 = (1, 0)u

(
α′, 1− α′

)T
= u1,1. (128)

Furthermore, from (122) and (125), for all P ∈ ∆(A2) such that P (a1) ∈ [0, α] and all β ∈ [0, 1],

(1, 0)u
(
P (a1), 1− P (a1)

)T
= u1,1 (129)
≥ βu1,1 + (1− β)

(
P (a1)u2,1 + (1− P (a1))u2,2

)
(130)

= P (a1)βu1,1 + β(1− P (a1))u1,2 + (1− β)P (a1)u2,1 + (1− β)(1− P (a1))u2,2 (131)

= (β, 1− β)u
(
P (a1), 1− P (a1)

)T
, (132)

where the inequality follows from the fact that if u2,1 ≥ u2,2 and P (a1) ≤ α, from (125), it holds
that

u1,1 ≥ αu2,1 + (1− α)u2,2 ≥ P (a1)u1,1 + (1− P (a1))u1,2. (133)

Hence, it holds that

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) = 1 and P2(a1) ∈ [0, α]} ⊂ P. (134)
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Alternatively, consider the case in which u2,1 < u2,2. From (122), for all P ∈ ∆(A2) such
that P (a1) ∈ [α, 1], and for all α′ ∈ [0, 1], it holds that

(1, 0)u
(
P (a1), 1− P (a1)

)T
= u1,2 = (1, 0)u

(
α′, 1− α′

)T
= u1,2. (135)

Furthermore, from (101) and (104), for all P ∈ ∆(A2) such that P (a1) ∈ [α, 1] and all β ∈ [0, 1],

(1, 0)u
(
P (a1), 1− P (a1)

)T
= u1,1 (136)
≥ βu1,1 + (1− β)

(
P (a1)u2,1 + (1− P (a1))u2,2

)
(137)

= P (a1)βu1,1 + β(1− P (a1))u1,2 + (1− β)P (a1)u2,1 + (1− β)(1− P (a1))u2,2 (138)

= (β, 1− β)u
(
P (a1), 1− P (a1)

)T
, (139)

where the inequality follows from the fact that if u2,1 < u2,2 and P (a1) ≥ α, from (125), it holds
that

u1,1 ≥ αu2,1 + (1− α)u2,2 ≥ P (a1)u2,1 + (1− P (a1))u2,2. (140)

Hence, it holds that

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) = 1 and P2(a1) ∈ [α, 1]} ⊂ P. (141)

This completes the proof.
The proof of Case III is as follows. Assume that the pair of strategies

(
P ?A1

, P ?A2

)
in (96) and

(97) forms an NE in the game G in (2). Then from the indifference principle [1, Theorem 5.18],
it follows that Player 1 is indifferent to using either action a1 or a2. That is,

(1, 0)u (0, 1)
T

= (0, 1)u (0, 1)
T
, (142)

which implies that

u1,2 = u2,2. (143)

Under the assumption that
(
P ?A1

, P ?A2

)
forms an NE, from (7), for all β ∈ [0, 1], it holds that

(α, 1− α)u(0, 1)T ≤ (α, 1− α)u(β, 1− β)T, (144)

which implies that

u1,2α+ u2,2(1− α) ≤ αβu1,1 + α(1− β)u1,2 + (1− α)βu2,1 + (1− β)(1− α)u2,2. (145)

Note that taking the equality in (143) into (145) yields that for all β ∈ [0, 1], it holds that

u2,2 ≤ αu1,1 + (1− α)u2,1. (146)

The following proof proves that either

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) ∈ [0, α] and P2(a1) = 0} ⊂ P or (147)
{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) ∈ [α, 1] and P2(a1) = 0} ⊂ P (148)

holds, which implies that P is a set of cardinality infinite.
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First, consider the case in which u2,1 ≥ u1,1. Given the fact that the equality in (143) holds,
for all P ∈ ∆(A1) such that P (a1) ∈ [0, α], and for all α′ ∈ [0, 1],

(P (a1), 1− P (a1))u
(
0, 1

)T
= u1,2 = (α′, 1− α′)u

(
0, 1

)T
= u1,2. (149)

Furthermore, from (143) and (146), for all P ∈ ∆(A1) such that P (a1) ∈ [0, α] and all β ∈ [0, 1],

(P (a1), 1− P (a1))u(0, 1)T

= u2,2 (150)
≤ (1− β)u2,2 + β

(
P (a1)u1,1 + (1− P (a1))u2,1

)
(151)

= P (a1)βu1,1 + (1− β)P (a1)u1,2 + β(1− P (a1))u2,1 + (1− β)(1− P (a1))u2,2 (152)

= (P (a1), 1− P (a1))u
(
β, 1− β

)T
, (153)

where the inequality follows from the fact that if u2,1 ≥ u1,1 and P (a1) ≤ α, from (146), it holds
that

u2,2 ≤ αu1,1 + (1− α)u2,1 ≤ P (a1)u1,1 + (1− P (a1))u1,2. (154)

Hence, it holds that

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) ∈ [0, α] and P2(a1) = 0} ⊂ P. (155)

Alternatively, consider the case in which u2,1 < u1,1. From (143), for all P ∈ ∆(A1) such
that P (a1) ∈ [α, 1], and for all α′ ∈ [0, 1], it holds that

(P (a1), 1− P (a1))u
(
0, 1

)T
= u1,2 = (α′, 1− α′)u

(
0, 1

)T
= u1,2. (156)

Furthermore, from (143) and (146), for all P ∈ ∆(A1) such that P (a1) ∈ [0, α] and all β ∈ [0, 1],

(P (a1), 1− P (a1))u(0, 1)T

= u2,2 (157)
≤ (1− β)u2,2 + β(P (a1)u1,1 + (1− P (a1))u2,1) (158)
= P (a1)βu1,1 + (1− β)P (a1)u1,2 + β(1− P (a1))u2,1 + (1− β)(1− P (a1))u2,2 (159)

= (P (a1), 1− P (a1))u
(
β, 1− β

)T
, (160)

where the inequality follows from the fact that if u2,1 < u1,1 and P (a1) ≥ α, from (146), it holds
that

u2,2 ≤ αu1,1 + (1− α)u2,1 ≤ P (a1)u1,1 + (1− P (a1))u1,2. (161)

Hence, it holds that

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) ∈ [α, 1] and P2(a1) = 0} ⊂ P. (162)

This completes the proof.
The proof of Case VI is as follows. Assume that the pair of strategies

(
P ?A1

, P ?A2

)
in (98) and

(99) forms an NE in the game G in (2). Then from the indifference principle [1, Theorem 5.18],
it follows that Player 1 is indifferent to using either action a1 or a2. That is,

(1, 0)u (1, 0)
T

= (0, 1)u (1, 0)
T
, (163)
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which implies that

u1,1 = u2,1. (164)

Under the assumption that
(
P ?A1

, P ?A2

)
forms an NE, from (7), for all β ∈ [0, 1], it holds that

(α, 1− α)u(1, 0)T ≤ (α, 1− α)u(β, 1− β)T, (165)

which implies that

u1,1α+ u2,1(1− α) ≤ αβu1,1 + α(1− β)u1,2 + (1− α)βu2,1 + (1− β)(1− α)u2,2. (166)

Note that taking the equality in (164) into (166) yields that for all β ∈ [0, 1], it holds that

u1,1 ≤ αu1,2 + (1− α)u2,2. (167)

The following proof proves that either

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) ∈ [0, α] and P2(a1) = 1} ⊂ P or (168)
{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) ∈ [α, 1] and P2(a1) = 1} ⊂ P (169)

holds, which implies that P is a set of cardinality infinite.
First, consider the case in which u1,2 ≥ u2,2. Given the fact that the equality in (164) holds,

for all P ∈ ∆(A1) such that P (a1) ∈ [0, α], and for all α′ ∈ [0, 1],

(P (a1), 1− P (a1))u
(
1, 0

)T
= u1,1 = (α′, 1− α′)u

(
1, 0

)T
= u1,1. (170)

Furthermore, from (164) and (167), for all P ∈ ∆(A1) such that P (a1) ∈ [0, α] and all β ∈ [0, 1],

(P (a1), 1− P (a1))u(1, 0)T

= u1,1 (171)
≤ βu1,1 + (1− β)

(
P (a1)u1,2 + (1− P (a1))u2,2

)
(172)

= P (a1)βu1,1 + (1− β)P (a1)u1,2 + β(1− P (a1))u2,1 + (1− β)(1− P (a1))u2,2 (173)

= (P (a1), 1− P (a1))u
(
β, 1− β

)T
, (174)

where the inequality follows from the fact that if u2,2 ≥ u1,2 and P (a1) ≤ α, from (167), it holds
that

u1,1 ≤ αu1,2 + (1− α)u2,2 ≤ P (a1)u1,2 + (1− P (a1))u2,2. (175)

Hence, it holds that

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) ∈ [0, α] and P2(a1) = 1} ⊂ P. (176)

Alternatively, consider the case in which u1,2 < u2,2. From (143), for all P ∈ ∆(A1) such
that P (a1) ∈ [α, 1], and for all α′ ∈ [0, 1], it holds that

(P (a1), 1− P (a1))u
(
1, 0

)T
= u1,1 = (α′, 1− α′)u

(
0, 1

)T
= u1,1. (177)

Furthermore, from (164) and (167), for all P ∈ ∆(A1) such that P (a1) ∈ [α, 1] and all β ∈ [0, 1],

(P (a1), 1− P (a1))u(1, 0)T

= u1,1 (178)
≤ βu1,1 + (1− β)

(
P (a1)u1,2 + (1− P (a1))u2,2

)
(179)

= P (a1)βu1,1 + (1− β)P (a1)u1,2 + β(1− P (a1))u2,1 + (1− β)(1− P (a1))u2,2 (180)

= (P (a1), 1− P (a1))u
(
β, 1− β

)T
, (181)
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where the inequality follows from the fact that if u2,2 < u1,2 and P (a1) ≥ α, from (167), it holds
that

u1,1 ≤ αu1,2 + (1− α)u2,2 ≤ P (a1)u1,2 + (1− P (a1))u2,2. (182)

Hence, it holds that

{(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) ∈ [α, 1] and P2(a1) = 1} ⊂ P. (183)

This completes the proof.
This completes the whole proof.

B Proof of Lemma 1.2
The proof of the first statement is as follows. Assume that the pair of strategies

(
P ?A1

, P ?A2

)
∈ P

satisfies

P ?A1
(a1) = 1− P ?A1

(a2) ∈ {0, 1} and P ?A2
(a1) = 1− P ?A2

(a2) ∈ {0, 1}. (184)

If there exists another pair of strategies
(
Q?A1

, Q?A2

)
∈ P satisfying

Q?A1
(a1) = 1−Q?A1

(a2) ∈ (0, 1) and Q?A2
(a1) = 1−Q?A2

(a2) ∈ (0, 1), (185)

then from [1, Corollary 4.46], it holds that the pair of strategies (P ?A1
, Q?A2

) also forms an NE.
Then, if (P ?A1

, Q?A2
) forms an NE, from Lemma 1.1, it holds that there exist infinitely many NEs,

which contradicts the assumption of the lemma.
The proof of the second statement is as follows. Assume that the pair of strategies

(
P ?A1

, P ?A2

)
∈

P satisfies

P ?A1
(a1) = 1− P ?A1

(a2) ∈ (0, 1) and P ?A2
(a1) = 1− P ?A2

(a2) ∈ (0, 1). (186)

If there exists another pair of strategies
(
Q?A1

, Q?A2

)
∈ P satisfying

Q?A1
(a1) = 1−Q?A1

(a2) ∈ {0, 1} and Q?A2
(a1) = 1−QA2

(a2) ∈ {0, 1}, (187)

then from [1, Corollary 4.46], it holds that the pair of strategies (P ?A1
, Q?A2

) also forms an NE.
Then, if (P ?A1

, Q?A2
) forms an NE, from Lemma 1.1, it holds that there exist infinitely many NEs,

which contradicts the assumption of the lemma.
This completes the proof.

C Proof of Lemma 1.3
Assume that the pair of strategies

(
P ?A1

, P ?A2

)
∈ P satisfies

P ?A1
(a1) = 1− P ?A1

(a2) ∈ (0, 1) and (188)
P ?A2

(a1) = 1− P ?A2
(a2) ∈ (0, 1). (189)

Assume also that there exists another pair of strategies
(
Q?A1

, Q?A2

)
∈ P satisfying

Q?A1
(a1) = 1−Q?A1

(a2) ∈ [0, 1] and (190)
Q?A2

(a1) = 1−Q?A2
(a2) ∈ [0, 1]. (191)
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Note that if the pair of strategies
(
Q?A1

, Q?A2

)
satisfies

Q?A1
(a1) = 1−Q?A1

(a2) ∈ {0, 1} and (192)
Q?A2

(a1) = 1−Q?A2
(a2) ∈ {0, 1}, (193)

then from Lemma 1.2, there are infinitely many NEs in the game G , which contradicts the
assumption of the lemma. Hence, the proof continues by considering the following cases.
Case I: the pair of strategies

(
Q?A1

, Q?A2

)
satisfies

Q?A1
(a1) = 1−Q?A1

(a2) ∈ {0, 1}, and (194)
Q?A2

(a1) = 1−Q?A2
(a2) ∈ (0, 1). (195)

Case II: the pair of strategies
(
Q?A1

, Q?A2

)
satisfies

Q?A1
(a1) = 1−Q?A1

(a2) ∈ (0, 1), and (196)
Q?A2

(a1) = 1−Q?A2
(a2) ∈ {0, 1}. (197)

Case III: the pair of strategies
(
Q?A1

, Q?A2

)
satisfies

Q?A1
(a1) = 1−Q?A1

(a2) ∈ (0, 1), and (198)
Q?A2

(a1) = 1−Q?A2
(a2) ∈ (0, 1). (199)

Proof of Case I: From Lemma 1.1, it holds that there are infinitely many NEs in the game G ,
which contradicts the assumption that the game G possesses a finite number of NEs.

Proof of Case II: From Lemma 1.1, it holds that there are infinitely many NEs in the game G ,
which contradicts the assumption that the game G possesses a finite number of NEs.

Proof of Case III: From the indifference principle [1, Theorem 5.18], it follows that Player 1
is indifferent to use action a1 or action a2 when Player 2 uses strategy P ?A2

. That is,

(1, 0)u
(
P ?A2

(a1), 1− P ?A2
(a1)

)T
= (0, 1)u

(
P ?A2

(a1), 1− P ?A2
(a1)

)T
. (200)

The above equality yields

u1,1P
?
A2

(a1) + u1,2
(
1− P ?A2

(a1)
)

= u2,1P
?
A2

(a1) + u2,2
(
1− P ?A2

(a1)
)
, (201)

which is equivalent to

(u1,1 − u1,2 − u2,1 + u2,2)P ?A2
(a1) = u2,2 − u1,2. (202)

Similarly, Player 1 is also indifferent to use action a1 or action a2 when Player 2 uses strategy
Q?A2

. As a result, it holds that

(u1,1 − u1,2 − u2,1 + u2,2)Q?A2
(a1) = u2,2 − u1,2. (203)

Note that the equalities in (202) and (203) are both first-order equations. Hence, there is a
unique solution in (0, 1) if u1,1 − u1,2 − u2,1 + u2,2 6= 0 and u2,2 − u1,2 6= 0, which implies that
P ?A2

(a1) = Q?A2
(a1). Alternatively, there are infinitely many solutions if u1,1−u1,2−u2,1+u2,2 = 0

and u2,2 − u1,2 = 0, which implies that all strategies QA2
∈ ∆(A2), together with P ?A1

, form an
NE. This contradicts the assumption that there is a finite number of NEs. Finally, the case in
which there are no solutions to (202) and (203) contradicts the initial assumption, as (P ?A1

, P ?A2
)

forms an NE. As a result, if the game G exhibits a finite number of NEs, it holds that P ?A2
= Q?A2

.
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For Player 2, the indifferent principle [1, Theorem 5.18] yields that(
P ?A1

(a1), 1− P ?A1
(a1)

)
u (1, 0)

T
=
(
P ?A1

(a1), 1− P ?A1
(a1)

)
u (0, 1)

T
, (204)

which is equivalent to

(u1,1 − u1,2 − u2,1 + u2,2)P ?A1
(a1) = u2,2 − u2,1. (205)

Similarly, Player 2 is also indifferent to use action a1 or action a2 when Player 1 uses strategy
QA1 . As a result, it holds that

(u1,1 − u1,2 − u2,1 + u2,2)Q?A1
(a1) = u2,2 − u2,1. (206)

Note that the equalities in (205) and (206) are both a first-order equations. Hence, there is
a unique solution in (0, 1) if u1,1 − u1,2 − u2,1 + u2,2 6= 0 and u2,2 − u2,1 6= 0, which implies that
P ?A1

(a1) = Q?A1
(a1). Alternatively, there are infinitely many solutions if u1,1−u1,2−u2,1+u2,2 = 0

and u2,2 − u2,1 = 0, which implies that all strategies QA1
∈ ∆(A1), together with P ?A2

, form
an NE. This contradicts the assumption that there is a finite number of NEs. Finally, the case
in which there are no solutions to (205) and (206) also contradicts the initial assumption, as
(P ?A1

, P ?A2
) forms an NE. As a result, if the game G exhibits a finite number of NEs, it holds that

P ?A1
= Q?A1

.
This completes the proof.

D Proof of Lemma 1.4

Note that from Lemma 1.1, if there exist a finite number of NEs in the game G , then an NE in
pure strategies and an NE in strictly mixed strategies cannot coexist. Furthermore, from Lemma
1.2, if there exist a finite number of NEs in the game G , then an NE in which one player uses
a pure strategy and the other players uses a strictly mixed strategy does not exists. Hence, the
proof is conducted by contradiction to prove that if there exist a finite number of NEs in the
game G , two NEs in pure strategies cannot coexist.

Assume that there exists another pair of strategies (Q?A1
, Q?A2

) ∈ P such that

Q?A1
(a1) = 1−Q?A1

(a2) ∈ {0, 1} and (207)
Q?A2

(a1) = 1−Q?A2
(a2) ∈ {0, 1}. (208)

Given the fact that there are at most four NEs in pure strategies in 2 × 2 games, there are(
4
2

)
= 6 scenarios in which two NEs in pure strategies exist. Hence, the proof considers the

following cases.
Case I: Strategies P ?A1

, P ?A2
, Q?A1

, and Q?A2
satisfy

P ?A1
(a2) = 1− P ?A1

(a1) = 0 and P ?A2
(a2) = 1− P ?A2

(a1) = 0, (209)
Q?A1

(a2) = 1−Q?A1
(a1) = 0 and Q?A2

(a2) = 1−Q?A2
(a1) = 1. (210)

Case II: Strategies P ?A1
, P ?A2

, Q?A1
, and Q?A2

satisfy

P ?A1
(a2) = 1− P ?A1

(a1) = 0 and P ?A2
(a2) = 1− P ?A2

(a1) = 0, (211)
Q?A1

(a2) = 1−Q?A1
(a1) = 1 and Q?A2

(a2) = 1−Q?A2
(a1) = 0. (212)
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Case III: Strategies P ?A1
, P ?A2

, Q?A1
, and Q?A2

satisfy

P ?A1
(a2) = 1− P ?A1

(a1) = 0 and P ?A2
(a2) = 1− P ?A2

(a1) = 0, (213)
Q?A1

(a2) = 1−Q?A1
(a1) = 1 and Q?A2

(a2) = 1−Q?A2
(a1) = 1. (214)

Case IV: Strategies P ?A1
, P ?A2

, Q?A1
, and Q?A2

satisfy

P ?A1
(a2) = 1− P ?A1

(a1) = 1 and P ?A2
(a2) = 1− P ?A2

(a1) = 1, (215)
Q?A1

(a2) = 1−Q?A1
(a1) = 0 and Q?A2

(a2) = 1−Q?A2
(a1) = 1. (216)

Case V: Strategies P ?A1
, P ?A2

, Q?A1
, and Q?A2

satisfy

P ?A1
(a2) = 1− P ?A1

(a1) = 1 and P ?A2
(a2) = 1− P ?A2

(a1) = 1, (217)
Q?A1

(a2) = 1−Q?A1
(a1) = 1 and Q?A2

(a2) = 1−Q?A2
(a1) = 0. (218)

Case VI: Strategies P ?A1
, P ?A2

, Q?A1
, and Q?A2

satisfy

P ?A1
(a2) = 1− P ?A1

(a1) = 1 and P ?A2
(a2) = 1− P ?A2

(a1) = 0, (219)
Q?A1

(a2) = 1−Q?A1
(a1) = 0 and Q?A2

(a2) = 1−Q?A2
(a1) = 1. (220)

The proof of Case I is as follows. If (P ?A1
, P ?A2

) forms the NE, then from Definition 1.1, it
holds that for all α ∈ [0, 1],

u(P ?A1
, P ?A2

) = u1,1 ≥ (α, 1− α)u(1, 0)T; (221)

and for all Q ∈ 4 (A2) such that Q(a1) = β,

u(P ?A1
, P ?A2

) = u1,1 ≤ (1, 0)u(β, 1− β)T. (222)

Setting α in (221) and β in (222) to zero yields

u1,2 ≥ u1,1 ≥ u2,1. (223)

Similarly, if (Q?A1
, Q?A2

) forms the NE, then from Definition 1.1, it holds that for all α ∈ [0, 1],

u(Q?A1
, Q?A2

) = u1,2 ≥ (α, 1− α)u(0, 1)T; (224)

and for all β ∈ [0, 1],

u(Q?A1
, Q?A2

) = u1,2 ≤ (1, 0)u(β, 1− β)T. (225)

Setting α in (224) to zero and β in (225) to one yields

u1,1 ≥ u1,2 ≥ u2,2. (226)

Hence, the inequalities in (223) and (226) yields

u1,1 = u1,2 ≥ u2,1 and (227)
u1,1 = u1,2 ≥ u2,2. (228)

If at most one of the inequalities in (227) and (228) holds with equality, then, for Player 1,
action a1 dominates action a2. For this case, all strategies PA2

∈ 4 (A2), together with strategy
PA1

∈ 4 (A1) such that PA1
(a1) = 1, form an NE. Then there are infinitely many NEs, which
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contradicts the assumption of the lemma. Alternatively, if both the inequalities (227) and (228)
hold with equality, all pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A2) form an NE. Then there

are infinitely many NEs, which contradicts the assumption of the lemma and completes the proof.
The proof of Case II is as follows. If (P ?A1

, P ?A2
) forms the NE, then from Definition 1.1, it

holds that for all Q ∈ 4 (A1) such that Q(a1) = α,

u(P ?A1
, P ?A2

) = u1,1 ≥ (α, 1− α)u(1, 0)T; (229)

and for all Q ∈ 4 (A2) such that Q(a1) = β,

u(P ?A1
, P ?A2

) = u1,1 ≤ (1, 0)u(β, 1− β)T. (230)

Setting α in (229) and β in (230) to zero yields

u1,2 ≥ u1,1 ≥ u2,1. (231)

Similarly, if (Q?A1
, Q?A2

) forms the NE, then from Definition 1.1, it holds that for all Q ∈ 4 (A1)
such that Q(a1) = α,

u(Q?A1
, Q?A2

) = u2,1 ≥ (α, 1− α)u(1, 0)T; (232)

and for all Q ∈ 4 (A2) such that Q(a1) = β,

u(Q?A1
, Q?A2

) = u2,1 ≤ (0, 1)u(β, 1− β)T. (233)

Setting α in (232) to one and β in (233) to zero yields

u2,2 ≥ u2,1 ≥ u1,1. (234)

Hence, the inequalities in (231) and (234) yields

u1,1 = u2,1 ≤ u1,2 and (235)
u1,1 = u2,1 ≤ u2,2. (236)

If at most one of the inequalities in (235) and (236) holds with equality, then, for Player 2,
action a1 dominates action a2. For this case, all strategies PA1

∈ 4 (A1), together with strategy
PA2

∈ 4 (A2) such that PA2
(a1) = 1, form an NE. Then there are infinitely many NEs, which

contradicts the assumption of the lemma. Alternatively, if both the inequalities (235) and (236)
hold with equality, all pair of strategies (PA1 , PA2) ∈ 4 (A1)×4 (A2) form an NE. Then there
are infinitely many NEs, which contradicts the assumption of the lemma and completes the proof.

If Case III holds, from Definition 1.1, the pair of strategies (P ?A1
, P ?A2

) forming the NE implies
that for all β ∈ [0, 1] and α ∈ [0, 1], it holds that

(1, 0)u(1, 0)T ≤ (1, 0)u(β, 1− β)T; (237)

and

(1, 0)u(1, 0)T ≥ (α, 1− α)u(1, 0)T. (238)

Setting β in (237) and α in (238) to zero yields

u2,1 ≤ u1,1 ≤ u1,2. (239)
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Similarly, from Definition 1.1, the pair of strategies (Q?A1
, Q?A2

) forming the NE implies that for
all β ∈ [0, 1] and α ∈ [0, 1], it holds that

(0, 1)u(0, 1)T ≤ (0, 1)u(β, 1− β)T; (240)

and

(0, 1)u(0, 1)T ≥ (α, 1− α)u(0, 1)T. (241)

Setting β in (240) and α in (241) to one yields

u1,2 ≤ u2,2 ≤ u2,1. (242)

Combing (239) with (242) yields that

u1,1 = u1,2 = u2,1 = u2,2. (243)

Then, for all strategies Q ∈ ∆(A1) and P ∈ ∆(A2), it holds that

(Q(a1), 1−Q(a1))u(P (a1), 1− P (a1))T = u1,1 = u1,2 = u2,1 = u2,2, (244)

which implies that there exist infinitely many NEs. This contradicts the setting that there exists
a finite number of NEs in the game G .

The proof of Case IV is as follows. If (P ?A1
, P ?A2

) forms the NE, then from Definition 1.1, it
holds that for all Q ∈ 4 (A1) such that Q(a1) = α,

u2,2 ≥ (α, 1− α)u(0, 1)T; (245)

and for all Q ∈ 4 (A2) such that Q(a1) = β,

u2,2 ≤ (0, 1)u(β, 1− β)T. (246)

Setting α in (245) and β in (246) to one yields

u2,1 ≥ u2,2 ≥ u1,2. (247)

Similarly, if (Q?A1
, Q?A2

) forms the NE, then from Definition 1.1, it holds that for all Q ∈ 4 (A1)
such that Q(a1) = α,

u1,2 ≥ (α, 1− α)u(0, 1)T; (248)

and for all Q ∈ 4 (A2) such that Q(a1) = β,

u1,2 ≤ (1, 0)u(β, 1− β)T. (249)

Setting α in (248) to zero and β in (249) to one yields

u1,1 ≥ u1,2 ≥ u2,2. (250)

Hence, the inequalities in (247) and (250) yields

u1,2 = u2,2 ≤ u2,1 and (251)
u1,2 = u2,2 ≤ u1,1. (252)
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If at most one of the inequalities in (251) and (252) holds with equality, then, for Player 2,
action a2 dominates action a1. For this case, all strategies PA1

∈ 4 (A1), together with strategy
PA2

∈ 4 (A2) such that PA2
(a1) = 0, form an NE. Then there are infinitely many NEs, which

contradicts the assumption of the lemma. Alternatively, if both the inequalities (251) and (252)
hold with equality, all pair of strategies (PA1 , PA2) ∈ 4 (A1)×4 (A2) form an NE. Then there
are infinitely many NEs, which contradicts the assumption of the lemma and completes the proof.

The proof of Case V is as follows. If (P ?A1
, P ?A2

) forms the NE, then from Definition 1.1, it
holds that for all Q ∈ 4 (A1) such that Q(a1) = α,

u2,2 ≥ (α, 1− α)u(0, 1)T; (253)

and for all Q ∈ 4 (A2) such that Q(a1) = β,

u2,2 ≤ (0, 1)u(β, 1− β)T. (254)

Setting α in (253) and β in (254) to one yields

u2,1 ≥ u2,2 ≥ u1,2. (255)

Similarly, if (Q?A1
, Q?A2

) forms the NE, then from Definition 1.1, it holds that for all Q ∈ 4 (A1)
such that Q(a1) = α,

u2,1 ≥ (α, 1− α)u(1, 0)T; (256)

and for all Q ∈ 4 (A2) such that Q(a1) = β,

u2,1 ≤ (0, 1)u(β, 1− β)T. (257)

Setting α in (256) to one and β in (257) to zero yields

u2,2 ≥ u2,1 ≥ u1,1. (258)

Hence, the inequalities in (255) and (258) yields

u2,2 = u2,1 ≥ u1,2 and (259)
u2,2 = u2,1 ≥ u1,1. (260)

If at most one of the inequalities in (259) and (260) holds with equality, then, for Player 1,
action a2 dominates action a1. For this case, all strategies PA1

∈ 4 (A1), together with strategy
PA2

∈ 4 (A2) such that PA2
(a1) = 0, form an NE. Then there are infinitely many NEs, which

contradicts the assumption of the lemma. Alternatively, if both the inequalities (259) and (260)
hold with equality, all pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A2) form an NE. Then there

are infinitely many NEs, which contradicts the assumption of the lemma and completes the proof.
If Case VI holds, from Definition 1.1, the pair of strategies (P ?A1

, P ?A2
) forming the NE implies

that for all β ∈ [0, 1] and α ∈ [0, 1], it holds that

(0, 1)u(1, 0)T ≥ (α, 1− α)u(1, 0)T; (261)

and

(0, 1)u(1, 0)T ≤ (0, 1)u(β, 1− β)T. (262)

Setting α in (261) to 1 and β in (262) to zero yields

u1,1 ≤ u2,1 ≤ u2,2. (263)
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Similarly, from Definition 1.1, the pair of strategies (Q?A1
, Q?A2

) forming the NE implies that for
all β ∈ [0, 1] and α ∈ [0, 1], it holds that

(1, 0)u(0, 1)T ≤ (1, 0)u(β, 1− β)T; (264)

and

(1, 0)u(0, 1)T ≥ (α, 1− α)u(0, 1)T. (265)

Setting β in (264) to 1 and α in (265) to zero yields

u2,2 ≤ u1,2 ≤ u1,1. (266)

Combing (263) with (266) yields that

u1,1 = u1,2 = u2,1 = u2,2. (267)

Then, for all strategies Q ∈ ∆(A1) and P ∈ ∆(A2), it holds that

(Q(a1), 1−Q(a1))u(P (a1), 1− P (a1))T = u1,1 = u1,2 = u2,1 = u2,2, (268)

which implies that there exist infinitely many NEs. This contradicts the setting that there exists
a finite number of NEs in the game G .

This completes the proof.

E Proof of Theorem 1.1
The number of NEs in the game G in (2) is either infinite or finite. First, consider the case in
which there are finite number NEs. From [1, Theorem 4.49], it holds that there exists at least
one NE, denoted by (P ?A1

, P ?A2
), in the game G . Note that from Lemma 1.1, (P ?A1

, P ?A2
) satisfies

P ?A1
(a1) ∈ {0, 1} and P ?A2

(a1) ∈ {0, 1}; or (269)
P ?A1

(a1) ∈ (0, 1) and P ?A2
(a1) ∈ (0, 1). (270)

If (P ?A1
, P ?A2

) satisfies (269), then (P ?A1
, P ?A2

) is the unique NE, see Lemma 1.3. If (P ?A1
, P ?A2

)
satisfies (270), then (P ?A1

, P ?A2
) is the unique NE, see Lemma 1.4. As a result, if the zero-sum

game G in (2) exhibits finite number of NEs, then there exist only one NE in the game G .
This completes the proof.

F Proof of Lemma 1.5
Note that for all PA1 ∈ 4 (A1) and all PA2 ∈ 4 (A2), the payoff in (3) satisfies

u(PA1 , PA2)

= u1,1PA1(a1)PA2(a1) + u1,2PA1(a1)PA2(a2) + u2,1PA1(a2)PA2(a1) + u2,2PA1(a2)PA2(a2) (271)
= u1,1PA1(a1)PA2(a1) + u1,2PA1(a1)

(
1− PA2(a1)

)
+ u2,1

(
1− PA1(a1)

)
PA2(a1)

+u2,2
(
1− PA1(a1)

)(
1− PA2(a1)

)
(272)

= (u1,1 − u1,2 − u2,1 + u2,2)PA1(a1)PA2(a1) + (u1,2 − u2,2)PA1(a1) + (u2,1 − u2,2)PA2(a1)

+u2,2. (273)
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As a result, the best response of Player 1 to a strategy PA2 ∈ 4 (A2) is given by

BR1(PA2) =

arg max
P∈4(A1)

(
(u1,1−u1,2−u2,1+u2,2)PA2(a1)+(u1,2−u2,2)

)
P (a1)+(u2,1−u2,2)PA2(a1)+u2,2. (274)

Assume that δ = u1,1 − u1,2 − u2,1 + u2,2 6= 0. Further assume that δ > 0. Hence, if
PA2

(a1) < p(2), the payoff in (274) satisfies(
(u1,1 − u1,2 − u2,1 + u2,2)PA2

(a1) + (u1,2 − u2,2)
)
P (a1) + (u2,1 − u2,2)PA2

(a1) + u2,2

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA2

(a1)− p(2)
)
P (a1) + (u2,1 − u2,2)PA2

(a1) + u2,2 (275)

≤(u2,1 − u2,2)PA2(a1) + u2,2, (276)

where the inequality holds with equality if and only if

P (a1) = 0. (277)

Hence, it holds that

BR1 (PA2
) = {P ∈ ∆(A1) : P (a1) = 0}. (278)

If PA2(a1) > p(2), the payoff in (274) satisfies(
(u1,1 − u1,2 − u2,1 + u2,2)PA2(a1) + (u1,2 − u2,2)

)
P (a1) + (u2,1 − u2,2)PA2(a1) + u2,2

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA2(a1)− p(2)

)
P (a1) + (u2,1 − u2,2)PA2(a1) + u2,2 (279)

≤(u1,1 − u1,2)PA2
(a1) + u1,2, (280)

where the inequality holds with equality if and only if

P (a1) = 1. (281)

Hence, it holds that

BR1 (PA2) = {P ∈ ∆(A1) : P (a1) = 1}. (282)

If PA2
(a1) = p(2), for all P ∈ 4 (A1), the payoff in (274) satisfies(

(u1,1 − u1,2 − u2,1 + u2,2)PA2
(a1) + (u1,2 − u2,2)

)
P (a1) + (u2,1 − u2,2)PA2

(a1) + u2,2

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA2

(a1)− p(2)
)
P (a1) + (u2,1 − u2,2)PA2

(a1) + u2,2 (283)

=(u2,1 − u2,2)PA2(a1) + u2,2, (284)

Hence, it holds that

BR1 (PA2
) = {P ∈ ∆(A1) : P (a1) = β, β ∈ [0, 1]}. (285)

Alternatively, assume that δ = u1,1 − u1,2 − u2,1 + u2,2 < 0. Hence, if PA2
(a1) > p(2), the payoff

in (274) satisfies(
(u1,1 − u1,2 − u2,1 + u2,2)PA2

(a1) + (u1,2 − u2,2)
)
P (a1) + (u2,1 − u2,2)PA2

(a1) + u2,2

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA2

(a1)− p(2)
)
P (a1) + (u2,1 − u2,2)PA2

(a1) + u2,2 (286)

≤(u2,1 − u2,2)PA2(a1) + u2,2, (287)
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where the inequality holds with equality if and only if

P (a1) = 0. (288)

Hence, it holds that

BR1 (PA2) = {P ∈ ∆(A1) : P (a1) = 0}. (289)

Hence, if PA2
(a1) < p(2), the payoff in (274) satisfies(

(u1,1 − u1,2 − u2,1 + u2,2)PA2
(a1) + (u1,2 − u2,2)

)
P (a1) + (u2,1 − u2,2)PA2

(a1) + u2,2

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA2(a1)− p(2)

)
P (a1) + (u2,1 − u2,2)PA2(a1) + u2,2 (290)

≤(u1,1 − u1,2)PA2
(a1) + u1,2, (291)

where the inequality holds with equality if and only if

P (a1) = 1. (292)

Hence, it holds that

BR1 (PA2
) = {P ∈ ∆(A1) : P (a1) = 1}. (293)

Hence, if PA2
(a1) = p(2), for all P ∈ 4 (A1), the payoff in (274) satisfies(

(u1,1 − u1,2 − u2,1 + u2,2)PA2
(a1) + (u1,2 − u2,2)

)
P (a1) + (u2,1 − u2,2)PA2

(a1) + u2,2

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA2

(a1)− p(2)
)
P (a1) + (u2,1 − u2,2)PA2

(a1) + u2,2 (294)

=(u2,1 − u2,2)PA2
(a1) + u2,2, (295)

Hence, it holds that

BR1 (PA2
) = {P ∈ ∆(A1) : P (a1) = β, β ∈ [0, 1]}. (296)

In a nutshell, if δ = u1,1 − u1,2 − u2,1 + u2,2 6= 0, it holds that

BR1(PA2) =


{PA1

∈ ∆(A1) : PA1
(a1) = 0}, if δ > 0 and PA2

(a1) < p(2), or
δ < 0 and PA2

(a1) > p(2)

{PA1 ∈ ∆(A1) : PA1(a1) = 1}, if δ > 0 and PA2(a1) > p(2), or
δ < 0 and PA2

(a1) < p(2)

{PA1
∈ ∆(A1) : PA1

(a1) = β, β ∈ [0, 1]}, if PA2
(a1) = p(2).

(297)

Then consider the case in which δ = u1,1 − u1,2 − u2,1 + u2,2 = 0. From (274), the best
response of Player 1 to a strategy PA2

∈ 4 (A2) is given by

BR1(PA2
) = arg max

P∈4(A1)
(u1,2 − u2,2)P (a1) + (u2,1 − u2,2)PA2

(a1) + u2,2. (298)

Hence, if δ = 0, the best responses BR1 (PA2) satisfies

BR1 (PA2) =

 {PA1
∈ ∆(A1) : PA1

(a1) = 0}, if u1,2 < u2,2
{PA1

∈ ∆(A1) : PA1
(a1) = 1}, if u1,2 > u2,2

{PA1
∈ ∆(A1) : PA1

(a1) = β, β ∈ [0, 1]}, if u1,2 = u2,2.
(299)

This completes the proof.
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G Proof of Lemma 1.6
Note that for all PA1

∈ 4 (A1) and all PA2
∈ 4 (A2), the payoff in (3) satisfies

u(PA1 , PA2)

= u1,1PA1(a1)PA2(a1) + u1,2PA1(a1)PA2(a2) + u2,1PA1(a2)PA2(a1) + u2,2PA1(a2)PA2(a2) (300)
= u1,1PA1(a1)PA2(a1) + u1,2PA1(a1)

(
1− PA2(a1)

)
+ u2,1

(
1− PA1(a1)

)
PA2(a1)

+u2,2
(
1− PA1(a1)

)(
1− PA2(a1)

)
(301)

= (u1,1 − u1,2 − u2,1 + u2,2)PA1(a1)PA2(a1) + (u1,2 − u2,2)PA1(a1) + (u2,1 − u2,2)PA2(a1)

+u2,2. (302)

As a result, the best response of Player 2 to a strategy PA1
∈ 4 (A1) is given by

BR2(PA1
) =

arg min
P∈4(A2)

(
(u1,1−u1,2−u2,1+u2,2)PA1

(a1)+(u2,1−u2,2)
)
P (a1)+(u1,2−u2,2)PA1

(a1)+u2,2. (303)

Assume that δ = u1,1 − u1,2 − u2,1 + u2,2 6= 0. Further assume that δ > 0. Hence, if
PA1

(a1) < p(1), the payoff in (303) satisfies(
(u1,1 − u1,2 − u2,1 + u2,2)PA1

(a1) + (u2,1 − u2,2)
)
P (a1) + (u1,2 − u2,2)PA1

(a1) + u2,2.

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA1

(a1)− p(1)
)
P (a1) + (u1,2 − u2,2)PA1

(a1) + u2,2 (304)

≤(u1,1 − u2,1)PA1
(a1) + u2,1, (305)

where the inequality holds with equality if and only if

P (a1) = 1. (306)

Hence, it holds that

BR2 (PA1) = {P ∈ ∆(A1) : P (a1) = 1}. (307)

If PA1(a1) > p(1), the payoff in (303) satisfies(
(u1,1 − u1,2 − u2,1 + u2,2)PA1

(a1) + (u2,1 − u2,2)
)
P (a1) + (u1,2 − u2,2)PA1

(a1) + u2,2.

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA1

(a1)− p(1)
)
P (a1) + (u1,2 − u2,2)PA1

(a1) + u2,2 (308)

≤(u1,2 − u2,2)PA1
(a1) + u2,2, (309)

where the inequality holds with equality if and only if

P (a1) = 0. (310)

Hence, it holds that

BR2 (PA1
) = {P ∈ ∆(A1) : P (a1) = 0}. (311)

If PA1
(a1) = p(1), for all P ∈ 4 (A2), the payoff in (303) satisfies(

(u1,1 − u1,2 − u2,1 + u2,2)PA1(a1) + (u2,1 − u2,2)
)
P (a1) + (u1,2 − u2,2)PA1(a1) + u2,2.

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA1(a1)− p(1)

)
P (a1) + (u1,2 − u2,2)PA1(a1) + u2,2 (312)

=(u1,2 − u2,2)PA1
(a1) + u2,2. (313)
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Hence, it holds that

BR2 (PA1
) = {P ∈ ∆(A1) : P (a1) = β, β ∈ [0, 1]}. (314)

Alternatively, assume that δ = u1,1 − u1,2 − u2,1 + u2,2 < 0. Hence, if PA1
(a1) > p(1), the

payoff in (303) satisfies(
(u1,1 − u1,2 − u2,1 + u2,2)PA1(a1) + (u2,1 − u2,2)

)
P (a1) + (u1,2 − u2,2)PA1(a1) + u2,2.

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA1(a1)− p(1)

)
P (a1) + (u1,2 − u2,2)PA1(a1) + u2,2 (315)

≤(u1,1 − u2,1)PA1
(a1) + u2,1, (316)

where the inequality holds with equality if and only if

P (a1) = 1. (317)

Hence, it holds that

BR2 (PA1
) = {P ∈ ∆(A1) : P (a1) = 1}. (318)

If PA1(a1) < p(1), the payoff in (303) satisfies(
(u1,1 − u1,2 − u2,1 + u2,2)PA1

(a1) + (u2,1 − u2,2)
)
P (a1) + (u1,2 − u2,2)PA1

(a1) + u2,2.

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA1(a1)− p(1)

)
P (a1) + (u1,2 − u2,2)PA1(a1) + u2,2 (319)

≤(u1,2 − u2,2)PA1
(a1) + u2,2, (320)

where the inequality holds with equality if and only if

P (a1) = 0. (321)

Hence, it holds that

BR2 (PA1
) = {P ∈ ∆(A1) : P (a1) = 0}. (322)

If PA1(a1) = p(1), for all P ∈ 4 (A2), the payoff in (303) satisfies(
(u1,1 − u1,2 − u2,1 + u2,2)PA1

(a1) + (u2,1 − u2,2)
)
P (a1) + (u1,2 − u2,2)PA1

(a1) + u2,2.

=(u1,1 − u1,2 − u2,1 + u2,2)
(
PA1(a1)− p(1)

)
P (a1) + (u1,2 − u2,2)PA1(a1) + u2,2 (323)

=(u1,2 − u2,2)PA1
(a1) + u2,2. (324)

Hence, it holds that

BR2 (PA1
) = {P ∈ ∆(A1) : P (a1) = β, β ∈ [0, 1]}. (325)

In a nutshell, if δ 6= 0, the best response BR2 (PA1
) satisfies

BR2(PA1) =


{PA2

∈ ∆(A2) : PA2
(a1) = 0}, if δ > 0 and PA1

(a1) > p(1), or
δ < 0 and PA1

(a1) < p(1)

{PA2 ∈ ∆(A2) : PA2(a1) = 1}, if δ > 0 and PA1(a1) < p(1), or
δ < 0 and PA1

(a1) > p(1)

{PA2
∈ ∆(A2) : PA2

(a1) = β, β ∈ [0, 1]}, if PA1
(a1) = p(1).

(326)
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Then, consider the case in which δ = u1,1 − u1,2 − u2,1 + u2,2 = 0. From (303), the best
response of Player 2 to a strategy PA1

∈ 4 (A1) satisfies

BR2(PA1
) = arg min

P∈4(A2)
(u2,1 − u2,2)P (a1) + (u1,2 − u2,2)PA1

(a1) + u2,2. (327)

Hence, if δ = 0, the best responses BR2 (PA1
) satisfies

BR2 (PA1) =

 {PA2 ∈ ∆(A2) : PA2(a1) = 0}, if u2,1 > u2,2
{PA2

∈ ∆(A2) : PA2
(a1) = 1}, if u2,1 < u2,2

{PA2
∈ ∆(A2) : PA2

(a1) = β, β ∈ [0, 1]}, if u2,1 = u2,2.
(328)

This completes the proof.

H Proof of Theorem 1.2
The proof is divided into two parts. The first part provides conditions on the entries of the
matrix u in (1) such that

(
P ?A1

, P ?A2

)
is the unique NE and satisfies

P ?A1
(a1) ∈ (0, 1) and P ?A2

(a1) ∈ (0, 1). (329)

The second part provides conditions on the entries of the matrix u in (1) such that
(
P ?A1

, P ?A2

)
is the unique NE and satisfies

P ?A1
(a1) ∈ {0, 1} and P ?A2

(a1) ∈ {0, 1}. (330)

The first part is as follows. First, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 6= 0. If
the pair of strategies

(
P ?A1

, P ?A2

)
∈ 4 (A1) ×4 (A2) forms an NE in the game G , then it holds

that

P ?A1
∈ BR1(P ?A2

) and P ?A2
∈ BR2(P ?A1

). (331)

Moreover, if

P ?A1
(a1) = 1− P ?A1

(a2) ∈ (0, 1) and P ?A2
(a1) = 1− P ?A2

(a2) ∈ (0, 1) , (332)

then from Lemma 1.5, Lemma 1.6, and (331), it follows that p(1) in (14) and p(2) in (11) satisfy

P ?A1
(a1) = p(1) =

u2,2 − u2,1
u1,1 − u1,2 − u2,1 + u2,2

∈ (0, 1) and (333)

P ?A2
(a1) = p(2) =

u2,2 − u1,2
u1,1 − u1,2 − u2,1 + u2,2

∈ (0, 1). (334)

Note that 1 >
u2,2−u1,2

u1,1−u1,2−u2,1+u2,2
> 0 is equivalent to either

u2,2 − u1,2 > 0, u1,1 − u1,2 − u2,1 + u2,2 > 0, and u1,1 − u1,2 − u2,1 + u2,2 > u2,2 − u1,2; (335)

or

u2,2 − u1,2 < 0, u1,1 − u1,2 − u2,1 + u2,2 < 0, and u1,1 − u1,2 − u2,1 + u2,2 < u2,2 − u1,2. (336)

In (335), inequalities u2,2 − u1,2 > 0 and u1,1 − u1,2 − u2,1 + u2,2 > u2,2 − u1,2 guarantee that
u1,1 − u1,2 − u2,1 + u2,2 > 0. As a result, the condition in (335) can be simplified to

u2,2 − u1,2 > 0 and u1,1 − u2,1 > 0. (337)
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In (336), inequalities u2,2 − u1,2 < 0 and u1,1 − u1,2 − u2,1 + u2,2 < u2,2 − u1,2 guarantee that
u1,1 − u1,2 − u2,1 + u2,2 < 0. So the second condition in (336) can be simplified as

u2,2 − u1,2 < 0 and u1,1 − u2,1 < 0. (338)

Furthermore, 1 >
u2,2−u2,1

u1,1−u1,2−u2,1+u2,2
> 0 is equivalent to either

u2,2 − u2,1 > 0, u1,1 − u1,2 − u2,1 + u2,2 > 0, and u1,1 − u1,2 − u2,1 + u2,2 > u2,2 − u2,1; (339)

or

u2,2 − u2,1 < 0, u1,1 − u1,2 − u2,1 + u2,2 < 0, and u1,1 − u1,2 − u2,1 + u2,2 < u2,2 − u2,1. (340)

In (339), inequalities u2,2 − u2,1 > 0 and u1,1 − u1,2 − u2,1 + u2,2 > u2,2 − u2,1 guarantee that
u1,1 − u1,2 − u2,1 + u2,2 > 0. As a result, the first condition in (339) can be simplified to

u2,2 − u2,1 > 0 and u1,1 − u1,2 > 0. (341)

In (340), inequalities u2,2 − u2,1 < 0 and u1,1 − u1,2 − u2,1 + u2,2 < u2,2 − u2,1 guarantee that
u1,1 − u1,2 − u2,1 + u2,2 < 0. So the second condition in (340) can be simplified to

u2,2 − u2,1 < 0 and u1,1 − u1,2 < 0. (342)

Now, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 = 0. From Lemma 1.5, Lemma 1.6
and (332), if (331) holds, then it follows that

u1,2 = u2,1 = u2,2. (343)

Given the fact that u1,1 − u1,2 − u2,1 + u2,2 = 0, it holds that

u1,1 = u1,2 = u2,1 = u2,2. (344)

Hence, from Lemma 1.5 and Lemma 1.6, all pairs of strategies (P1, P2) ∈ 4 (A1)×4 (A2) satisfy
(331). Hence, there is nothing to prove for this case, as there is no unique NE.

This proves that if there exists a unique NE satisfying (16), one of the conditions in (337),
(338), (341) and (342) holds.

The converse is as follows. If the inequalities in (342) and (341) hold, p(1) ∈ (0, 1). If the
inequalities in (337) and (338) hold, p(2) ∈ (0, 1). Hence, from Lemma 1.5 and Lemma 1.6, the
pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A1) such that

PA1(a1) = p(1) ∈ (0, 1) and PA2(a1) = p(2) ∈ (0, 1) (345)

satisfies (331). Given the fact that |P| = 1, then from Lemma 1.3 and from Theorem 1.1, the
pair of strategies (PA1

, PA2
) forms the unique NE.

Combining the conditions in (337), (338), (341) and (342) yields the conclusion that there
exists a unique NE satisfies (332) if and only if (u11−u1,2)(u2,2−u2,1) > 0 and (u1,1−u2,1)(u2,2−
u1,2) > 0.

Furthermore, it holds that

u(P ?A1
, P ?A2

)

= P ?A1
(a1)P ?A2

(a1)u1,1 + P ?A1
(a1)P ?A2

(a2)u1,2 + P ?A1
(a2)P ?A2

(a1)u2,1 + P ?A1
(a2)P ?A2

(a2)u2,2 (346)
=
(
(u1,1−u1,2−u2,1 +u2,2)P ?A2

(a1)+(u1,2−u2,2)
)
P ?A1

(a1)+(u2,1−u2,2)P ?A2
(a1)+u2,2 (347)

=
u1,1u2,2 − u1,2u2,1

u1,1 − u1,2 − u2,1 + u2,2
, (348)
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which completes the proof.
The second part is as follows. Given the fact that there exists at most four NEs satisfying

(330), the following proof considers the following cases.
Case I: the NE (P ?A1

, P ?A2
) satisfies

P ?A1
(a1) = 1− P ?A1

(a2) = 1 and P ?A2
(a1) = 1− P ?A2

(a2) = 1. (349)

Case II: the NE (P ?A1
, P ?A2

) satisfies

P ?A1
(a1) = 1− P ?A1

(a2) = 1, and P ?A2
(a1) = 1− P ?A2

(a2) = 0. (350)

Case III: the NE (P ?A1
, P ?A2

) satisfies

P ?A1
(a1) = 1− P ?A1

(a2) = 0, and P ?A2
(a1) = 1− P ?A2

(a2) = 1. (351)

Case IV: the NE (P ?A1
, P ?A2

) satisfies

P ?A1
(a1) = 1− P ?A1

(a2) = 0, and P ?A2
(a1) = 1− P ?A2

(a2) = 0. (352)

The proof of Case I is as follows. If
(
P ?A1

, P ?A2

)
is the unique NE, from Definition 1.1, for all

α ∈ [0, 1) and β ∈ [0, 1), it holds that

u(P ?A1
, P ?A2

) = (1, 0)u(1, 0)T = u1,1 > (α, 1− α)u(1, 0)T = αu1,1 + (1− α)u2,1 and (353)
u(P ?A1

, P ?A2
) = (1, 0)u(1, 0)T = u1,1 < (1, 0)u(β, 1− β)T = βu1,1 + (1− β)u1,2. (354)

The strict inequality follows from the assumption that the NE in unique. Note that the inequal-
ities in (353) and (354) are equivalent to

u1,1 > u2,1 and u1,2 > u1,1, (355)

respectively. As a result, the inequalities in (353) and (354) are satisfied when

u1,2 > u1,1 > u2,1, (356)

which is the condition in (23).
The converse is as follows. First, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 > 0.

Under the assumption that u1,1 − u1,2 − u2,1 + u2,2 > 0, if the inequalities in (356) hold, then it
holds that

u1,1 − u1,2 < 0 and u2,2 − u2,1 > 0, (357)

which, from (14), implies that p(1) > 1. Furthermore, if the inequalities in (356) hold, then it
holds that

u1,1 − u2,1 > 0. (358)

Under the assumption that u1,1 − u1,2 − u2,1 + u2,2 > 0, if u2,2 − u1,2 ≤ 0, then from (11), it
holds that that p(2) ≤ 0. And if u2,2−u1,2 > 0, from (11), it holds that that p(2) ∈ (0, 1). Hence,
in either case, it holds that p(2) < 1. Then from Lemma 1.5 and Lemma 1.6, if p(1) > 1 and
p(2) < 1, the pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A1) such that

PA1
(a1) = 1 and PA2

(a1) = 1 (359)

Inria



Some Properties of the NE in 2× 2 Zero-Sum Games 33

satisfies

PA1 ∈ BR1(PA2) and PA2 ∈ BR2(PA1). (360)

Given the fact that |P| = 1, then from Lemma 1.3 and from Theorem 1.1, the pair of strategies
(PA1 , PA2) forms the unique NE.

Then, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 < 0. Under the assumption that
u1,1 − u1,2 − u2,1 + u2,2 < 0, if the inequalities in (356) hold, then it holds that

u1,1 − u2,1 > 0 and u2,2 − u1,2 < 0, (361)

which, from (11), implies that p(2) > 1. Furthermore, if the inequalities in (356) hold, then it
holds that

u1,1 − u1,2 < 0. (362)

Under the assumption that u1,1 − u1,2 − u2,1 + u2,2 < 0, if u2,2 − u2,1 ≤ 0, then from (14), it
holds that that p(1) ≤ 0. And if u2,2 − u2,1 > 0, from (11), it holds that that p(1) < 0. Hence,
in either case, it holds that p(1) ≤ 0. Then from Lemma 1.5 and Lemma 1.6, if p(2) > 1 and
p(1) ≤ 0, the pair of strategies (PA1 , PA2) ∈ 4 (A1)×4 (A1) such that

PA1(a1) = 1 and PA2(a1) = 1 (363)

satisfies

PA1
∈ BR1(PA2

) and PA2
∈ BR2(PA1

). (364)

Given the fact that |P| = 1, then from Lemma 1.3 and from Theorem 1.1, the pair of strategies
(PA1

, PA2
) forms the unique NE.

Finally, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 = 0. Under the assumption that
u1,1 − u1,2 − u2,1 + u2,2 = 0, it follows that

u2,2 = u1,2 + u2,1 − u1,1. (365)

If the inequalities in (356) and the equality in (365) hold,

u1,2 > u2,2 and u2,2 > u2,1. (366)

Hence, from Lemma 1.5 and Lemma 1.6, the pair of strategies (PA1 , PA2) ∈ 4 (A1) × 4 (A1)
such that

PA1(a1) = 1 and PA2(a1) = 1 (367)

satisfies

PA1
∈ BR1(PA2

) and PA2
∈ BR2(PA1

) (368)

and forms the unique NE. This completes the converse part.
Furthermore, the NE satisfying (349) implies that

u(P ?A1
, P ?A2

) = u1,1, (369)

which completes the proof.
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The proof of Case II is as follows. If
(
P ?A1

, P ?A2

)
is the unique NE, from Definition 1.1, for all

α ∈ [0, 1) and β ∈ (0, 1], it holds that

u(P ?A1
, P ?A2

) = (1, 0)u(0, 1)T = u1,2 > (α, 1− α)u(0, 1)T = αu1,2 + (1− α)u2,2 and (370)
u(P ?A1

, P ?A2
) = (1, 0)u(0, 1)T = u1,2 < (1, 0)u(β, 1− β)T = βu1,1 + (1− β)u1,2. (371)

The strict inequality follows from the assumption that the NE in unique. Note that the inequal-
ities in (370) and (371) are equivalent to

u1,2 > u2,2 and u1,1 > u1,2, (372)

respectively. As a result, the inequalities in (370) and (371) are satisfied when

u1,1 > u1,2 > u2,2, (373)

which is the condition in (26).
The converse is as follows. First, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 > 0.

Under the assumption that u1,1 − u1,2 − u2,1 + u2,2 > 0, if the inequalities in (373) hold, then it
holds that

u2,2 − u1,2 < 0 and u1,1 − u2,1 > 0, (374)

which, from (11), implies that p(2) < 0. Furthermore, if the inequalities in (373) hold, then it
holds that

u1,1 − u1,2 > 0. (375)

Under the assumption that u1,1 − u1,2 − u2,1 + u2,2 > 0, if u2,2 − u2,1 > 0, then from (11), it
holds that that p(1) ∈ (0, 1). And if u2,2−u1,2 ≤ 0, from (11), it holds that that p(1) ≤ 0. Hence,
in either case, it holds that p(1) < 1. Then from Lemma 1.5 and Lemma 1.6, if p(2) < 0 and
p(1) < 1, the pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A1) such that

PA1(a1) = 1 and PA2(a1) = 0 (376)

satisfies

PA1
∈ BR1(PA2

) and PA2
∈ BR2(PA1

). (377)

Given the fact that |P| = 1, then from Lemma 1.3 and from Theorem 1.1, the pair of strategies
(PA1

, PA2
) forms the unique NE.

Then, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 < 0. Under the assumption that
u1,1 − u1,2 − u2,1 + u2,2 < 0, if the inequalities in (373) hold, then it holds that

u1,1 − u1,2 > 0 and u2,2 − u2,1 < 0, (378)

which, from (14), implies that p(1) > 1. Furthermore, if the inequalities in (373) hold, then it
holds that

u2,2 − u1,2 < 0. (379)

Under the assumption that u1,1 − u1,2 − u2,1 + u2,2 < 0, if u1,1 − u2,1 ≤ 0, then from (11), it
holds that that 0 < p(2) ≤ 1. And if u1,1 − u2,1 > 0, from (11), it holds that that p(2) > 1.
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Hence, in either case, it holds that p(2) > 1. Then from Lemma 1.5 and Lemma 1.6, if p(1) > 1
and p(2) > 0, the pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A1) such that

PA1
(a1) = 1 and PA2

(a1) = 0 (380)

satisfies

PA1
∈ BR1(PA2

) and PA2
∈ BR2(PA1

). (381)

Given the fact that |P| = 1, then from Lemma 1.3 and from Theorem 1.1, the pair of strategies
(PA1 , PA2) forms the unique NE.

Finally, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 = 0. Under the assumption that
u1,1 − u1,2 − u2,1 + u2,2 = 0, it follows that

u2,1 = u1,1 − u1,2 + u2,2. (382)

If the inequalities in (373) and the equality in (382) hold,

u2,1 > u2,2 and u1,2 > u2,2. (383)

Hence, from Lemma 1.5 and Lemma 1.6, the pair of strategies (PA1 , PA2) ∈ 4 (A1) × 4 (A1)
such that

PA1
(a1) = 1 and PA2

(a1) = 0 (384)

satisfies

PA1
∈ BR1(PA2

) and PA2
∈ BR2(PA1

) (385)

and forms the unique NE. This completes the converse part.
Furthermore, the NE satisfying (350) implies that

u(P ?A1
, P ?A2

) = u1,2, (386)

which completes the proof.
The proof of Case III is as follows. If

(
P ?A1

, P ?A2

)
is the unique NE, from Definition 1.1, for

all α ∈ (0, 1] and β ∈ [0, 1), it holds that

u(P ?A1
, P ?A2

) = (0, 1)u(1, 0)T = u2,1 > (α, 1− α)u(1, 0)T = αu1,1 + (1− α)u2,1 and (387)
u(P ?A1

, P ?A2
) = (0, 1)u(1, 0)T = u2,1 < (0, 1)u(β, 1− β)T = βu2,1 + (1− β)u2,2. (388)

The strict inequality follows from the assumption that the NE in unique. Note that the inequal-
ities in (387) and (388) are equivalent to

u2,1 > u1,1 and u2,2 > u2,1, (389)

respectively. As a result, the inequalities in (387) and (388) are satisfied when

u2,2 > u2,1 > u1,1, (390)

which is the condition in (29).
The converse is as follows. First, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 > 0.

Under the assumption that u1,1 − u1,2 − u2,1 + u2,2 > 0, if the inequalities in (390) hold, then it
holds that

u2,2 − u2,1 > 0 and u1,1 − u2,1 < 0, (391)
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which, from (14), implies that p(1) > 1. Furthermore, if the inequalities in (390) hold, then it
holds that

u1,1 − u2,1 < 0. (392)

Under the assumption that u1,1 − u1,2 − u2,1 + u2,2 > 0, it holds that u2,2 − u1,2 > 0, which,
from (11), it holds that that p(2) > 1. Then from Lemma 1.5 and Lemma 1.6, if p(1) > 1 and
p(2) > 1, the pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A1) such that

PA1(a1) = 0 and PA2(a1) = 1 (393)

satisfies

PA1 ∈ BR1(PA2) and PA2 ∈ BR2(PA1). (394)

Given the fact that |P| = 1, then from Lemma 1.3 and from Theorem 1.1, the pair of strategies
(PA1

, PA2
) forms the unique NE.

Then, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 < 0. Under the assumption that
u1,1 − u1,2 − u2,1 + u2,2 < 0, if the inequalities in (390) hold, then it holds that

u2,2 − u2,1 > 0 and u1,1 − u1,2 < 0, (395)

which, from (14), implies that p(1) < 0. Furthermore, if the inequalities in (390) hold, then it
holds that

u1,1 − u2,1 < 0. (396)

Under the assumption that u1,1 − u1,2 − u2,1 + u2,2 < 0, if u2,2 − u1,2 < 0, then from (11), it
holds that that 0 < p(2) < 1. And if u2,2 − u1,2 ≥ 0, from (11), it holds that that p(2) ≤ 0.
Hence, in either case, it holds that p(2) < 1. Then from Lemma 1.5 and Lemma 1.6, if p(1) > 1
and p(2) < 1, the pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A1) such that

PA1
(a1) = 0 and PA2

(a1) = 1 (397)

satisfies

PA1
∈ BR1(PA2

) and PA2
∈ BR2(PA1

). (398)

Given the fact that |P| = 1, then from Lemma 1.3 and from Theorem 1.1, the pair of strategies
(PA1

, PA2
) forms the unique NE.

Finally, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 = 0. Under the assumption that
u1,1 − u1,2 − u2,1 + u2,2 = 0, it follows that

u1,2 = u1,1 − u2,1 + u2,2. (399)

If the inequalities in (407) and the equality in (399) hold,

u2,1 < u2,2 and u1,2 < u2,2. (400)

Then from Lemma (1.5) and Lemma (1.6), the pair of strategies (PA1
, PA2

) ∈ 4 (A1)×4 (A1)
such that

PA1(a1) = 0 and PA2(a1) = 1 (401)
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satisfies

PA1
∈ BR1(PA2

) and PA2
∈ BR2(PA1

) (402)

and forms the unique NE. This completes the converse part.
Furthermore, the NE satisfying (351) implies that

u(P ?A1
, P ?A2

) = u2,1, (403)

which completes the proof.
The proof of Case IV is as follows. If

(
P ?A1

, P ?A2

)
is the unique NE, from Definition 1.1, for

all α ∈ (0, 1] and β ∈ (0, 1], it holds that

u(P ?A1
, P ?A2

) = (0, 1)u(0, 1)T = u2,2 > (α, 1− α)u(0, 1)T = αu1,2 + (1− α)u2,2 and (404)
u(P ?A1

, P ?A2
) = (0, 1)u(0, 1)T = u2,2 < (0, 1)u(β, 1− β)T = βu2,1 + (1− β)u2,2, (405)

The strict inequality follows from the assumption that the NE in unique. Note that the inequal-
ities in (404) and (405) are equivalent to

u2,2 > u1,2 and u2,1 > u2,2, (406)

respectively. As a result, the inequalities in (404) and (405) are satisfied when

u2,1 > u2,2 > u1,2, (407)

which is the condition in (32).
The converse is as follows. First, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 > 0.

Under the assumption that u1,1 − u1,2 − u2,1 + u2,2 > 0, if the inequalities in (407) hold, then it
holds that

u2,2 − u2,1 < 0 and u1,1 − u1,2 > 0, (408)

which, from (14), implies that p(1) < 0. Furthermore, if the inequalities in (407) hold, then it
holds that

u2,2 − u1,2 > 0. (409)

Under the assumption that u1,1−u1,2−u2,1 +u2,2 > 0, if u1,1−u2,1 ≥ 0, from (11), it holds that
p(2) ≥ 1. If u1,1 − u2,1 < 0, from (11), it holds that p(2) > 1. Hence, in either case, it holds that
p(2) ≥ 1. Then from Lemma 1.5 and Lemma 1.6, if p(1) < 0 and p(2) ≥ 1, the pair of strategies
(PA1 , PA2) ∈ 4 (A1)×4 (A1) such that

PA1
(a1) = 0 and PA2

(a1) = 0 (410)

satisfies

PA1 ∈ BR1(PA2) and PA2 ∈ BR2(PA1). (411)

Given the fact that |P| = 1, then from Lemma 1.3 and from Theorem 1.1, the pair of strategies
(PA1 , PA2) forms the unique NE.

Then, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 < 0. Under the assumption that
u1,1 − u1,2 − u2,1 + u2,2 < 0, if the inequalities in (407) hold, then it holds that

u2,2 − u1,2 > 0 and u1,1 − u2,1 < 0, (412)

RR n° 9492



38 Ke Sun

which, from (11), implies that p(2) < 0. Furthermore, if the inequalities in (407) hold, then it
holds that

u2,2 − u2,1 < 0. (413)

Under the assumption that u1,1 − u1,2 − u2,1 + u2,2 < 0, if u1,1 − u1,2 ≤ 0, from (14), it holds
that 0 < p(1) ≤ 1. If u1,1 − u1,2 > 0, from (14), it holds that p(1) > 1. Hence, in either case, it
holds that p(1) > 0. Then from Lemma 1.5 and Lemma 1.6, if p(2) < 0 and p(1) > 0, the pair of
strategies (PA1 , PA2) ∈ 4 (A1)×4 (A1) such that

PA1(a1) = 0 and PA2(a1) = 0 (414)

satisfies

PA1
∈ BR1(P ?A2

) and PA2
∈ BR2(P ?A1

). (415)

Given the fact that |P| = 1, then from Lemma 1.3 and from Theorem 1.1, the pair of strategies
(PA1

, PA2
) forms the unique NE.

Finally, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 = 0. Under the assumption that
u1,1 − u1,2 − u2,1 + u2,2 = 0, it follows that

u1,2 = u1,1 − u2,1 + u2,2. (416)

If the inequalities in (407) and the equality in (416) hold,

u1,2 < u2,2 and u2,1 > u2,2. (417)

Then from Lemma 1.5 and Lemma 1.6, the pair of strategies (PA1
, PA2

) ∈ 4 (A1)×4 (A1) such
that

PA1
(a1) = 0 and PA2

(a1) = 0 (418)

satisfies

PA1
∈ BR1(PA2

) and PA2
∈ BR2(PA1

) (419)

and forms the unique NE. This completes the converse part.
Furthermore, the NE satisfying (352) implies that

u(P ?A1
, P ?A2

) = u2,2, (420)

which completes the proof.
This completes the whole proof.

I Proof of Theorem 1.3
The proof is divided into two parts. The first part considers the case in which

P = {(P1, P2) ∈ 4 (A1)×4 (A2) : P1 ∈ 4 (A1) and P2 ∈ 4 (A2)} . (421)

The second part considers the case in which

P = {(P1, P2) ∈ 4 (A1)×4 (A2) : P1(a1) ∈ {0, 1} and P2 ∈ 4 (A2)} or (422)
P = {(P1, P2) ∈ 4 (A1)×4 (A2) : P1 ∈ 4 (A1) and P2(a1) ∈ {0, 1}} . (423)
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The first part is as follows. If the pair of strategies (P ?A1
, P ?A2

) ∈ 4 (A1)×4 (A2) satisfies

P ?A1
(a1) = 1− P ?A1

(a2) = α and P ?A2
(a1) = 1− P ?A2

(a2) = β (424)

with α ∈ [0, 1] and β ∈ [0, 1]. From Definition 1.1, it holds that for all strategies QA1 ∈ ∆(A1),
with QA1(a1) = α′ ∈ [0, 1], the following inequality holds:

u(P ?A1
, P ?A2

) = (α, 1− α)u(β, 1− β)T ≥ (α′, 1− α′)u(β, 1− β)T = (QA1
, P ?A2

), (425)

which is equivalent to

αβu1,1 + α(1− β)u1,2 + (1− α)βu2,1 + (1− α)(1− β)u2,2

≥ α′βu1,1 + α′(1− β)u1,2 + (1− α′)βu2,1 + (1− α′)(1− β)u2,2. (426)

The above inequality can be simplified as

(α− α′)βu1,1 + (α− α′)(1− β)u1,2 + (α′ − α)βu2,1 + (α′ − α)(1− β)u2,2 ≥ 0, (427)

which is equivalent to

0≤ (α− α′)β(u1,1 − u2,1) + (α− α′)(1− β)(u1,2 − u2,2) (428)
= (α− α′)

(
β(u1,1 − u2,1) + (1− β)(u1,2 − u2,2)

)
(429)

As a result, the above inequality holds for all α′ ∈ [0, 1], α ∈ [0, 1], and β ∈ [0, 1], if and only if
it holds that

u1,1 = u2,1 and u1,2 = u2,2. (430)

Similarly, from Definition 1.1, it holds that for all strategies Q?A2
∈ ∆(A2) with QA2

(a1) =
β′ ∈ [0, 1], the following inequality holds:

u(P ?A1
, P ?A2

) = (α, 1− α)u(β, 1− β)T ≤ (α, 1− α)u(β′, 1− β′)T = u(P ?A1
, QA2), (431)

which is equivalent to

αβu1,1 + α(1− β)u1,2 + (1− α)βu2,1 + (1− α)(1− β)u2,2

≤ αβ′u1,1 + α(1− β′)u1,2 + (1− α)β′u2,1 + (1− α)(1− β′)u2,2. (432)

The above inequality can be simplified as

(β − β′)αu1,1 + (β′ − β)αu1,2 + (1− α)(β − β′)u2,1 + (β′ − β)(1− α)u2,2 ≤ 0, (433)

which is equivalent to

0≥ (β − β′)α(u1,1 − u1,2) + (1− α)(β − β′)(u2,1 − u2,2) (434)
= (β − β′)

(
α(u1,1 − u1,2) + (1− α)(u2,1 − u2,2)

)
(435)

As a result, the above inequality holds for all α ∈ [0, 1], β ∈ [0, 1], and β′ ∈ [0, 1], if and only if
it holds that

u1,1 = u1,2 and u2,1 = u2,2. (436)

Combining the inequalities in (430) and (436) yields

u1,1 = u1,2 = u2,1 = u2,2, (437)
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which is the condition in (51).
The converse follows trivially from the fact that if the equalities in (437) holds then it holds

all pairs of strategies (PA1
, PA2

) ∈ 4 (A1)×4 (A2) are NEs.
This completes the first part of the proof.
The second part is as follows. Given the fact the game G in (2) is a 2× 2 game, there are at

most four cases when the strategy of only one of the players is pure. The four cases are:
Case I: the pair of strategies (P ?A1

, P ?A2
) satisfies

P ?A1
(a1) = 1− P ?A1

(a2) = 1 and P ?A2
(a1) = 1− P ?A2

(a2) = β (438)

with β ∈ [0, 1].
Case II: the pair of strategies (P ?A1

, P ?A2
) satisfies

P ?A1
(a1) = 1− P ?A1

(a2) = 0 and P ?A2
(a1) = 1− P ?A2

(a2) = β (439)

with β ∈ [0, 1].
Case III: the pair of strategies (P ?A1

, P ?A2
) satisfies

P ?A1
(a1) = 1− P ?A1

(a2) = α and P ?A2
(a1) = 1− P ?A2

(a2) = 1 (440)

with α ∈ [0, 1].
Case IV: the pair of strategies (P ?A1

, P ?A2
) satisfies

P ?A1
(a1) = 1− P ?A1

(a2) = α and P ?A2
(a1) = 1− P ?A2

(a2) = 0 (441)

with α ∈ [0, 1].
The proof of Case I is as follows. If the pair of strategies (P ?A1

, P ?A2
) satisfies (438), from

Definition 1.1, for all strategies P ′A2
∈ ∆(A2) such that P ′A2

(a1) = β′, with β′ ∈ [0, 1], it holds
that

u(P ?A1
, P ?A2

) = (1, 0)u(β, 1− β)T=βu1,1 +(1−β)u1,2

≤β′u1,1 +(1−β′)u1,2 = (1,0)u(β′,1−β′)T =u(P ?A1
,P ′A2

), (442)

which implies that, for all β′ ∈ [0, 1], it holds that

(β′ − β)u1,1 ≥ (β′ − β)u1,2. (443)

The inequality in (443) can be written as

(β′ − β)(u1,1 − u1,2) ≥ 0. (444)

As a result, the above inequality holds if

u1,1 = u1,2. (445)

Moreover, for all strategies P ′A1
∈ ∆(A1) such that P ′A1

(a1) = α′, with α′ ∈ [0, 1], it holds
that

u(P ?A1
, P ?A2

) = (1, 0)u(β, 1− β)T ≥ (α′, 1− α′)u(β, 1− β)T = u(P ′A1
, P ?A2

), (446)

which is equivalent to

u1,1β + u1,2(1− β) ≥ α′βu1,1 + α′(1− β)u1,2 + (1− α′)βu2,1 + (1− α′)(1− β)u2,2. (447)
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From (445), the above inequality is simplified to

u1,1 = u1,2 ≥ α′u1,1 + (1− α′)βu2,1 + (1− α′)(1− β)u2,2, (448)

which is equivalent to

u1,1 = u1,2 ≥ βu2,1 + (1− β)u2,2. (449)

If u2,1 = u2,2, then for all β ∈ [0, 1], the inequality in (449) implies that

u1,1 = u1,2 ≥ u2,1 = u2,2. (450)

However, if the inequality in (450) holds with equality, i.e. u1,1 = u1,2 = u2,1 = u2,2, then all
strategies P ′′A1

∈ ∆(A1), together with P ?A2
in (438), form an NE, see (437). This contradicts

the assumption that P ?A1
(a1) = 1. As a result, the inequality in (450) is considered with strict

inequality. That is,

u1,1 = u1,2 > u2,1 = u2,2. (451)

If u2,1 6= u2,2, for all β ∈ [0, 1], the inequality in (449) implies that

u1,1 = u1,2 ≥ max{u2,1, u2,2} > min{u2,1, u2,2}. (452)

Combining the inequalities in (451) and (452) yields the conditions in (35) and (36).
The converse is as follows. If the conditions in (35) hold, for all PA2 ∈ 4 (A2) with PA2(a1) =

β ∈ [0, 1], it holds that

(1, 0)u(β, 1− β)T > (0, 1)u(β, 1− β)T, (453)

which implies that, for Player 1, the action a2 is dominated by action a1. Furthermore, if the
conditions in (36) hold, for all PA2 ∈ 4 (A2) with PA2(a1) = β ∈ [0, 1], it holds that

(1, 0)u(β, 1− β)T ≥ (0, 1)u(β, 1− β)T; (454)

and for all PA2
∈ 4 (A2) with PA2

(a1) = β ∈ (0, 1), it holds that

(1, 0)u(β, 1− β)T > (0, 1)u(β, 1− β)T. (455)

Hence, if the conditions in (36) hold, for Player 1, the action a2 is dominated by action a1. As
a result, it holds that P ?A1

(a1) = 1. Given the fact that P ?A1
(a1) = 1, if either the conditions in

(35) or the conditions in (36) hold, Player 2 is indifferent between action a1 and action a2. This
implies that

P ?A2
(a1) = β, (456)

with β ∈ [0, 1], which completes the proof of the converse part.
This completes the proof of Case I.
The proof of Case II is as follows. If the pair of strategies (P ?A1

, P ?A2
) satisfies (439), from

Definition 1.1, for all strategies P ′A2
∈ ∆(A2) such that P ′A2

(a1) = β′, with β′ ∈ [0, 1], it holds
that

u(P ?A1
, P ?A2

) = (0, 1)u(β, 1− β)T= βu2,1 + (1− β)u2,2

≤β′u2,1 +(1−β′)u2,2 = (0,1)u(β′,1−β′)T =u(P ?A1
,P ′A2

), (457)
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which implies that, for all β′ ∈ [0, 1], it holds that

(β′ − β)u2,1 ≥ (β′ − β)u2,2. (458)

The inequality in (458) can be written as

(β′ − β)(u2,1 − u2,2) ≥ 0. (459)

As a result, the above inequality holds if it holds that

u2,1 = u2,2. (460)

Moreover, for all strategies P ′A1
∈ ∆(A1) such that P ′A1

(a1) = α′, with α′ ∈ [0, 1], it holds
that

u(P ?A1
, P ?A2

) = (0, 1)u(β, 1− β)T ≥ (α′, 1− α′)u(β, 1− β)T = u(P ′A1
, P ?A2

), (461)

which is equivalent to

u2,1β + u2,2(1− β) ≥ α′βu1,1 + α′(1− β)u1,2 + (1− α′)βu2,1 + (1− α′)(1− β)u2,2. (462)

From (460), the above inequality is simplified to

u2,1 = u2,2 ≥ α′βu1,1 + α′(1− β)u1,2 + (1− α′)u2,2, (463)

which is equivalent to

u2,1 = u2,2 ≥ βu1,1 + (1− β)u1,2. (464)

If u1,1 = u1,2, then for all β ∈ [0, 1], the inequality in (464) implies that

u2,1 = u2,2 ≥ u1,1 = u1,2. (465)

However, if the inequality in (465) holds with equality, i.e. u1,1 = u1,2 = u2,1 = u2,2, then all
strategies P ′′A1

∈ ∆(A1), together with P ?A2
in (439), form an NE, see (437). This contradicts

the assumption that P ?A1
(a1) = 0. As a result, the inequality in (465) is considered with strict

inequality. That is,

u2,1 = u2,2 > u1,1 = u1,2. (466)

If u1,1 6= u1,2, for all β ∈ [0, 1], the inequality in (464) implies that

u2,1 = u2,2 ≥ max{u1,1, u1,2} > min{u1,1, u1,2}. (467)

Combining the inequalities in (466) and (467) yields the conditions in (39) and (40).
The converse is as follows. If the conditions in (39) hold, for all PA2

∈ 4 (A2) with PA2
(a1) =

β ∈ [0, 1], it holds that

(0, 1)u(β, 1− β)T > (1, 0)u(β, 1− β)T, (468)

which implies that, for Player 1, the action a1 is dominated by action a2. Furthermore, if the
conditions in (40) hold, for all PA2

∈ 4 (A2) with PA2
(a1) = β ∈ [0, 1], it holds that

(0, 1)u(β, 1− β)T ≥ (1, 0)u(β, 1− β)T; (469)
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and for all PA2 ∈ 4 (A2) with PA2(a1) = β ∈ (0, 1), it holds that

(0, 1)u(β, 1− β)T > (1, 0)u(β, 1− β)T. (470)

Hence, if the conditions in (40) hold, for Player 1, the action a1 is dominated by action a2. As
a result, it holds that P ?A1

(a1) = 0. Given the fact that P ?A1
(a1) = 0, if either the conditions in

(39) or the conditions in (40) hold, Player 2 is indifferent between action a1 and action a2. This
implies that

P ?A2
(a1) = β, (471)

with β ∈ [0, 1], which completes the proof of the converse part.
This completes the proof of Case II.
The proof of Case III is as follows. If the pair of strategies (P ?A1

, P ?A2
) satisfies (440), From

Definition 1.1, for all strategies P ′A1
∈ ∆(A1) such that P ′A1

(a1) = α′, with α′ ∈ [0, 1], it holds
that

u(P ?A1
, P ?A2

) = (α, 1− α)u(1, 0)T= αu1,1 + (1− α)u2,1

≥α′u1,1 +(1−α′)u2,1 = (α′,1−α′)u(1,0)T =u(P ′A1
,P ?A2

), (472)

which implies that, for all α′ ∈ [0, 1], it holds that

(α− α′)u1,1 ≥ (α− α′)u2,1. (473)

The inequality in (473) can be written as

(α− α′)(u1,1 − u2,1) ≥ 0. (474)

As a result, the above inequality holds if it holds that

u1,1 = u2,1. (475)

Moreover, for all strategies P ′A2
∈ ∆(A2) such that P ′A2

(a1) = β′, with β′ ∈ [0, 1], it holds
that

u(P ?A1
, P ?A2

) = (α, 1− α)u(1, 0)T ≤ (α, 1− α)u(β′, 1− β′)T = u(P ?A1
, P ′A2

), (476)

which is equivalent to

u1,1α+ u2,1(1− α) ≤ αβ′u1,1 + α(1− β′)u1,2 + (1− α)β′u2,1 + (1− α)(1− β′)u2,2. (477)

From (475), the above inequality is simplified to

u1,1 = u2,1 ≤ β′u2,1 + α(1− β′)u1,2 + (1− α)(1− β′)u2,2, (478)

which is equivalent to

u1,1 = u2,1 ≤ αu1,2 + (1− α)u2,2. (479)

If u1,2 = u2,2, then for all α ∈ [0, 1], the inequality in (479) implies that

u1,1 = u2,1 ≤ u1,2 = u2,2. (480)

However, if the inequality in (480) holds with equality, i.e. u1,1 = u1,2 = u2,1 = u2,2, all
strategies P ′′A2

∈ ∆(A2), together with P ?A1
in (440), form an NE, see (437). This contradicts
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the assumption that P ?A2
(a1) = 1. As a result, the inequality in (480) is considered with strict

inequality. That is,

u1,1 = u2,1 < u1,2 = u2,2. (481)

If u1,2 6= u2,2, for all α ∈ [0, 1], the inequality in (479) implies that

u1,1 = u2,1 ≤ min{u1,2, u2,2} < max{u1,2, u2,2}. (482)

Combining the inequalities in (481) and (482) yields the conditions in (43) and (44).
The converse is as follows. If the conditions in (43) hold, for all PA1 ∈ 4 (A1) with PA1(a1) =

α ∈ [0, 1], it holds that

(α, 1− α)u(1, 0)T < (α, 1− α)u(0, 1)T, (483)

which implies that, for Player 2, the action a2 is dominated by action a1. Furthermore, if the
conditions in (44) hold, for all PA1 ∈ 4 (A1) with PA1(a1) = α ∈ [0, 1], it holds that

(α, 1− α)u(1, 0)T ≤ (α, 1− α)u(0, 1)T; (484)

and for all PA1 ∈ 4 (A1) with PA1(a1) = α ∈ [0, 1], it holds that

(α, 1− α)u(1, 0)T < (α, 1− α)u(0, 1)T. (485)

Hence, if the conditions in (40) hold, for Player 2, the action a2 is dominated by action a1. As
a result, it holds that P ?A2

(a1) = 1. Given the fact that P ?A2
(a1) = 1, if either the conditions in

(43) or the conditions in (44) hold, Player 1 is indifferent between action a1 and action a2. This
implies that

P ?A1
(a1) = β, (486)

with β ∈ [0, 1], which completes the proof of the converse part.
This completes the proof of Case III.
The proof of Case IV is as follows. If the pair of strategies (P ?A1

, P ?A2
) satisfies (441), from

Definition 1.1, for all strategies P ′A1
∈ ∆(A1) such that P ′A1

(a1) = α′, with α′ ∈ [0, 1], it holds
that

u(P ?A1
, P ?A2

) = (α, 1− α)u(0, 1)T= αu1,2 + (1− α)u2,2

≥α′u1,2 +(1−α′)u2,2 = (α′,1−α′)u(0,1)T =u(P ′A1
,P ?A2

), (487)

which implies that, for all α′ ∈ [0, 1], it holds that

(α− α′)u1,2 ≥ (α− α′)u2,2 (488)

The inequality in (488) can be written as

(α− α′)(u1,2 − u2,2) ≥ 0. (489)

As a result, the above inequality holds if it holds that

u1,2 = u2,2. (490)

Moreover, for all strategies P ′A2
∈ ∆(A2) such that P ′A2

(a1) = β′, with β′ ∈ [0, 1], it holds
that

u(P ?A1
, P ?A2

) = (α, 1− α)u(0, 1)T ≤ (α, 1− α)u(β′, 1− β′)T = u(P ?A1
, P ′A2

), (491)
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which is equivalent to

u1,2α+ u2,2(1− α) ≤ αβ′u1,1 + α(1− β′)u1,2 + (1− α)β′u2,1 + (1− α)(1− β′)u2,2. (492)

From (490), the above inequality is simplified to

u1,2 = u2,2 ≤ (1− β′)u2,2 + αβ′u1,1 + (1− α)β′u2,1 (493)

which is equivalent to

u1,2 = u2,2 ≤ αu1,1 + (1− α)u2,1. (494)

If u1,1 = u2,1, then for all α ∈ [0, 1], the inequality in (494) implies that

u1,2 = u2,2 ≤ u1,1 = u2,1. (495)

However, if the inequality in (495) holds with equality, i.e. u1,1 = u1,2 = u2,1 = u2,2, all
strategies P ′′A2

∈ ∆(A2), together with P ?A1
in (441), form an NE, see (441). This contradicts

the assumption that P ?A2
(a1) = 0. As a result, the inequality in (495) is considered with strict

inequality. That is,

u1,2 = u2,2 < u1,1 = u2,1. (496)

If u1,1 6= u2,1, for all α ∈ [0, 1], the inequality in (494) implies that

u1,2 = u2,2 ≤ min{u1,1, u2,1} < max{u1,1, u2,1}. (497)

Combining the inequalities in (496) and (497) yields the conditions in (47) and (48).
The converse is as follows. If the conditions in (47) hold, for all PA1

∈ 4 (A1) with PA1
(a1) =

α ∈ [0, 1], it holds that

(α, 1− α)u(0, 1)T < (α, 1− α)u(1, 0)T, (498)

which implies that, for Player 2, the action a1 is dominated by action a2. Furthermore, if the
conditions in (48) hold, for all PA1

∈ 4 (A1) with PA1
(a1) = α ∈ [0, 1], it holds that

(α, 1− α)u(0, 1)T ≤ (α, 1− α)u(1, 0)T; (499)

and for all PA1
∈ 4 (A1) with PA1

(a1) = α ∈ [0, 1], it holds that

(α, 1− α)u(0, 1)T < (α, 1− α)u(1, 0)T. (500)

Hence, if the conditions in (48) hold, for Player 2, the action a1 is dominated by action a2. As
a result, it holds that P ?A2

(a1) = 0. Given the fact that P ?A2
(a1) = 0, if either the conditions in

(51) or the conditions in (48) hold, Player 1 is indifferent between action a1 and action a2. This
implies that

P ?A1
(a1) = β, (501)

with β ∈ [0, 1], which completes the proof of the converse part.
This completes the proof of Case IV.
This completes the whole proof.
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J Proof of Theorem 1.4
The proof of Case I is as follows. Note that the set P satisfying (53) implies that u1,1 − u1,2 −
u2,1 + u2,2 6= 0. To that end, only the case in which u1,1 − u1,2 − u2,1 + u2,2 6= 0 is considered
in the following proof. Given the fact that 0 <

u2,2−u1,2

u1,1−u1,2−u2,1+u2,2
< 1, it holds that p(2) in (11)

satisfies

1 > p(2) > 0. (502)

Let a pair of strategies (P ?A1
, P ?A2

) ∈ 4 (A1) × 4 (A2) be such that (P ?A1
, P ?A2

) ∈ P. Then, it
follows that

P ?A2
∈ BR2(P ?A1

). (503)

Given the fact that P satisfies (53), from Lemma 1.6 and (503), it follows that p(1) in (14) satisfies

p(1) = 0. (504)

Note that, from Lemma 1.5, only when u1,1−u1,2−u2,1 +u2,2 > 0, the best response BR1(P ?A2
)

satisfies

BR1(P ?A2
) = {PA1 ∈ 4 (A1) : PA1(a1) = 0} (505)

for all P ?A2
(a1) ∈

[
0,

u2,2−u1,2

u1,1−u1,2−u2,1+u2,2

]
. As a result, only the case in which u1,1 − u1,2 − u2,1 +

u2,2 > 0 needs to be considered. Hence, if u1,1 − u1,2 − u2,1 + u2,2 > 0, the equality in (504) and
the inequality in (502) implies that

u2,2 = u2,1, u1,1 > u2,1, and u2,2 > u1,2, (506)

which proves the condition in (54). Note that the condition in (54) guarantees that u1,1−u1,2−
u2,1 + u2,2 > 0. Hence, there is no need to include u1,1 − u1,2 − u2,1 + u2,2 > 0 as a condition.

The converse is as follows. If (54) holds, then it holds that u1,1 − u1,2 − u2,1 + u2,2 > 0, the
equality in (504) holds, and the inequalities (502) hold. Hence, from Lemma 1.5 and Lemma 1.6,
for a pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A2), if PA1

(a1) > 0, it holds that

BR2(PA1
) = {PA2

∈ 4 (A2) : PA2
(a1) = 0} and (507)

BR1 (BR2(PA1
)) = {PA1

∈ 4 (A1) : PA1
(a1) = 0}. (508)

As a result, for all (P ?A1
, P ?A2

) ∈ P, it holds that

P ?A1
(a1) = 0, (509)

which, from Lemma 1.5, implies that

P ?A2
(a1) ∈

[
0,

u2,2 − u1,2
u1,1 − u1,2 − u2,1 + u2,2

]
. (510)

This completes the proof.
Furthermore, it holds that

u(P ?A1
, P ?A2

) = u2,2 = u2,1, (511)

which follows from the fact that P ?A1
(a1) = 0, P ?A2

(a1) can be equal to zero and u2,2 = u2,1. This
completes the proof.
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The proof of Case II is as follows. Note that the set P satisfying (56) implies that u1,1−u1,2−
u2,1 + u2,2 6= 0. To that end, only the case in which u1,1 − u1,2 − u2,1 + u2,2 6= 0 is considered
in the following proof. Given the fact that 0 <

u2,2−u1,2

u1,1−u1,2−u2,1+u2,2
< 1, it holds that p(2) in (11)

satisfies

1 > p(2) > 0. (512)

Let a pair of strategies (P ?A1
, P ?A2

) ∈ 4 (A1) × 4 (A2) be such that (P ?A1
, P ?A2

) ∈ P. Then, it
follows that

P ?A2
∈ BR2(P ?A1

). (513)

Given the fact that P satisfies (56), from Lemma 1.6 and (513), it follows that p(1) in (14) satisfies

p(1) = 0. (514)

Note that, from Lemma 1.5, only when u1,1−u1,2−u2,1 +u2,2 < 0, the best response BR1(P ?A2
)

satisfies

BR1(P ?A2
) = {PA1

∈ 4 (A1) : PA1
(a1) = 0} (515)

for all P ?A2
(a1) ∈

[
u2,2−u1,2

u1,1−u1,2−u2,1+u2,2
, 1
]
. As a result, only the case in which u1,1 − u1,2 − u2,1 +

u2,2 < 0 needs to be considered. Hence, if u1,1 − u1,2 − u2,1 + u2,2 < 0, the equality in (514) and
the inequality in (512) hold if the entries of the payoff matrix u satisfy

u2,2 = u2,1, u1,1 < u2,1, and u2,2 < u1,2, (516)

which proves the condition in (57). Note that the condition in (57) guarantees that u1,1−u1,2−
u2,1 + u2,2 < 0. Hence, there is no need to include u1,1 − u1,2 − u2,1 + u2,2 < 0 as a condition.

The converse is as follows. If (57) holds, then it holds that u1,1 − u1,2 − u2,1 + u2,2 < 0, the
equality in (514) holds, and the inequalities (512) hold. Hence, from Lemma 1.5 and Lemma 1.6,
for a pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A2), if PA1

(a1) > 0, it holds that

BR2(PA1) = {PA2 ∈ 4 (A2) : PA2(a1) = 1} and (517)
BR1 (BR2(PA1)) = {PA1 ∈ 4 (A1) : PA1(a1) = 0}. (518)

As a result, for all (P ?A1
, P ?A2

) ∈ P, it holds that

P ?A1
(a1) = 0, (519)

which, from Lemma 1.5, implies that

P ?A2
(a1) ∈

[
u2,2 − u1,2

u1,1 − u1,2 − u2,1 + u2,2
, 1

]
. (520)

This completes the proof.
Furthermore, it holds that

u(P ?A1
, P ?A2

) = u2,2 = u2,1, (521)

which follows from the fact that P ?A1
(a1) = 0, P ?A2

(a1) can be equal to one and u2,2 = u2,1. This
completes the proof.
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The proof of Case III is as follows. Note that the set P satisfying (59) implies that u1,1 −
u1,2−u2,1+u2,2 6= 0. To that end, only the case in which u1,1−u1,2−u2,1+u2,2 6= 0 is considered
in the following proof. Given the fact that 0 <

u2,2−u1,2

u1,1−u1,2−u2,1+u2,2
< 1, it holds that p(2) in (11)

satisfies

1 > p(2) > 0. (522)

Let a pair of strategies (P ?A1
, P ?A2

) ∈ 4 (A1) × 4 (A2) be such that (P ?A1
, P ?A2

) ∈ P. Then, it
follows that

P ?A2
∈ BR2(P ?A1

). (523)

Given the fact that P satisfies (53), from Lemma 1.6 and (523), it follows that p(1) in (14) satisfies

p(1) = 1. (524)

Note that, from Lemma 1.5, only when u1,1−u1,2−u2,1 +u2,2 > 0, the best response BR1(P ?A2
)

satisfies

BR1(P ?A2
) = {PA1

∈ 4 (A1) : PA1
(a1) = 1} (525)

for all P ?A2
(a1) ∈

[
u2,2−u1,2

u1,1−u1,2−u2,1+u2,2
, 1
]
. As a result, only the case in which u1,1 − u1,2 − u2,1 +

u2,2 > 0 needs to be considered. Hence, if u1,1 − u1,2 − u2,1 + u2,2 > 0, the equality in (524) and
the inequality in (522) hold if the entries of the payoff matrix u satisfy

u1,1 = u1,2, u1,1 > u2,1, and u2,2 > u1,2, (526)

which proves the condition in (60). Note that the condition in (60) guarantees that u1,1−u1,2−
u2,1 + u2,2 > 0. Hence, there is no need to include u1,1 − u1,2 − u2,1 + u2,2 > 0 as a condition.

The converse is as follows. If (60) holds, then it holds that u1,1 − u1,2 − u2,1 + u2,2 > 0, the
equality in (524) holds, and the inequalities (522) hold. Hence, from Lemma 1.5 and Lemma 1.6,
for a pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A2), if PA1

(a1) < 1, it holds that

BR2(PA1) = {PA2 ∈ 4 (A2) : PA2(a1) = 1} and (527)
BR1 (BR2(PA1)) = {PA1 ∈ 4 (A1) : PA1(a1) = 1}. (528)

As a result, for all (P ?A1
, P ?A2

) ∈ P, it holds that

P ?A1
(a1) = 1, (529)

which, from Lemma 1.5, implies that

P ?A2
(a1) ∈

[
u2,2 − u1,2

u1,1 − u1,2 − u2,1 + u2,2
, 1

]
. (530)

This completes the proof.
Furthermore, it holds that

u(P ?A1
, P ?A2

) = u1,1 = u1,2, (531)

which follows from the fact that P ?A1
(a1) = 1, P ?A2

(a1) can be equal to one and u1,1 = u1,2. This
completes the proof.
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The proof of Case IV is as follows. Note that the set P satisfying (62) implies that u1,1 −
u1,2−u2,1+u2,2 6= 0. To that end, only the case in which u1,1−u1,2−u2,1+u2,2 6= 0 is considered
in the following proof. Given the fact that 0 <

u2,2−u1,2

u1,1−u1,2−u2,1+u2,2
< 1, it holds that p(2) in (11)

satisfies

1 > p(2) > 0. (532)

Let a pair of strategies (P ?A1
, P ?A2

) ∈ 4 (A1) × 4 (A2) be such that (P ?A1
, P ?A2

) ∈ P. Then, it
follows that

P ?A2
∈ BR2(P ?A1

). (533)

Given the fact that P satisfies (53), from Lemma 1.6 and (523), it follows that p(1) in (14) satisfies

p(1) = 1. (534)

Note that, from Lemma 1.5, only when u1,1−u1,2−u2,1 +u2,2 < 0, the best response BR1(P ?A2
)

satisfies

BR1(P ?A2
) = {PA1

∈ 4 (A1) : PA1
(a1) = 1} (535)

for all P ?A2
(a1) ∈

[
0,

u2,2−u1,2

u1,1−u1,2−u2,1+u2,2

]
. As a result, only the case in which u1,1 − u1,2 − u2,1 +

u2,2 < 0 needs to be considered. Hence, if u1,1 − u1,2 − u2,1 + u2,2 < 0, the equality in (534) and
the inequality in (532) hold if the entries of the payoff matrix u satisfy

u1,1 = u1,2, u1,1 < u2,1, and u2,2 < u1,2. (536)

which proves the condition in (63). Note that if the inequalities in (63) hold, then it holds that
u1,1 − u1,2 − u2,1 + u2,2 < 0. Hence, there is no need to include u1,1 − u1,2 − u2,1 + u2,2 < 0 as a
condition.

The converse is as follows. If (63) holds, then it holds that u1,1 − u1,2 − u2,1 + u2,2 < 0, the
equality in (534) holds, and the inequalities (532) hold. Hence, from Lemma 1.5 and Lemma 1.6,
for a pair of strategies (PA1 , PA2) ∈ 4 (A1)×4 (A2), if PA1(a1) < 1, it holds that

BR2(PA1) = {PA2 ∈ 4 (A2) : PA2(a1) = 0} and (537)
BR1 (BR2(PA1)) = {PA1 ∈ 4 (A1) : PA1(a1) = 1}. (538)

As a result, for all (P ?A1
, P ?A2

) ∈ P, it holds that

P ?A1
(a1) = 1, (539)

which, from Lemma 1.5, implies that

P ?A2
(a1) ∈

[
0,

u2,2 − u1,2
u1,1 − u1,2 − u2,1 + u2,2

]
. (540)

This completes the proof.
Furthermore, it holds that

u(P ?A1
, P ?A2

) = u1,1 = u1,2, (541)

which follows from the fact that P ?A1
(a1) = 1, P ?A2

(a1) can be equal to zero and u1,1 = u1,2. This
completes the proof.
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The proof of Case V is as follows. Note that the set P satisfying (65) implies that u1,1−u1,2−
u2,1 + u2,2 6= 0. To that end, only the case in which u1,1 − u1,2 − u2,1 + u2,2 6= 0 is considered
in the following proof. Given the fact that 0 <

u2,2−u2,1

u1,1−u1,2−u2,1+u2,2
< 1, it holds that p(1) in (14)

satisfies

1 > p(1) > 0. (542)

Let a pair of strategies (P ?A1
, P ?A2

) ∈ 4 (A1) × 4 (A2) be such that (P ?A1
, P ?A2

) ∈ P. Then, it
follows that

P ?A1
∈ BR1(P ?A2

). (543)

Given the fact that P satisfies (65), from Lemma 1.5 and (543), it follows that p(2) in (11) satisfies

p(2) = 0, (544)

Note that, from Lemma 1.5, only when u1,1−u1,2−u2,1 +u2,2 > 0, the best response BR1(P ?A2
)

satisfies

BR1(P ?A2
) = {PA1

∈ 4 (A1) : PA1
(a1) = 0} (545)

for all P ?A2
(a1) ∈

[
u2,2−u2,1

u1,1−u1,2−u2,1+u2,2
, 1
]
. As a result, only the case in which u1,1 − u1,2 − u2,1 +

u2,2 > 0 needs to be considered. Hence, if u1,1 − u1,2 − u2,1 + u2,2 > 0, the equality in (544) and
the inequality in (542) hold if the entries of the payoff matrix u satisfy

u2,2 = u1,2, u2,2 > u2,1, and u1,1 > u1,2., (546)

which proves the condition in (66). Note that if the inequalities in (66) hold, then it holds that
u1,1 − u1,2 − u2,1 + u2,2 > 0. Hence, there is no need to include u1,1 − u1,2 − u2,1 + u2,2 > 0 as a
condition.

The converse is as follows. If (66) holds, then it holds that u1,1 − u1,2 − u2,1 + u2,2 > 0, the
equality in (544) holds, and the inequalities (542) hold. Hence, from Lemma 1.5 and Lemma 1.6,
for a pair of strategies (PA1 , PA2) ∈ 4 (A1)×4 (A2), if PA2(a1) > 0, it holds that

BR1(PA2) = {PA1 ∈ 4 (A1) : PA1(a1) = 1} and (547)
BR2 (BR1(PA1)) = {PA2 ∈ 4 (A2) : PA2(a1) = 0}. (548)

As a result, for all (P ?A1
, P ?A2

) ∈ P, it holds that

P ?A2
(a1) = 0, (549)

which, from Lemma 1.6, implies that

P ?A1
(a1) ∈

[
u2,2 − u2,1

u1,1 − u1,2 − u2,1 + u2,2
, 1

]
. (550)

This completes the proof.
Furthermore, it holds that

u(P ?A1
, P ?A2

) = u1,2 = u2,2, (551)

which follows from the fact that P ?A2
(a1) = 0, P ?A2

(a1) can be equal to one and u1,2 = u2,2. This
completes the proof.
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The proof of Case VI is as follows. Note that the set P satisfying (68) implies that u1,1 −
u1,2−u2,1+u2,2 6= 0. To that end, only the case in which u1,1−u1,2−u2,1+u2,2 6= 0 is considered
in the following proof. Given the fact that 0 <

u2,2−u2,1

u1,1−u1,2−u2,1+u2,2
< 1, it holds that p(1) in (14)

satisfies

1 > p(1) > 0. (552)

Let a pair of strategies (P ?A1
, P ?A2

) ∈ 4 (A1) × 4 (A2) be such that (P ?A1
, P ?A2

) ∈ P. Then, it
follows that

P ?A1
∈ BR1(P ?A2

). (553)

Given the fact that P satisfies (68), from Lemma 1.5 and (553), it follows that p(2) in (11) satisfies

p(2) = 0, (554)

Note that, from Lemma 1.5, only when u1,1−u1,2−u2,1 +u2,2 < 0, the best response BR1(P ?A2
)

satisfies

BR1(P ?A2
) = {PA1

∈ 4 (A1) : PA1
(a1) = 0} (555)

for all P ?A2
(a1) ∈

[
0,

u2,2−u2,1

u1,1−u1,2−u2,1+u2,2

]
. As a result, only the case in which u1,1 − u1,2 − u2,1 +

u2,2 < 0 needs to be considered. Hence, if u1,1 − u1,2 − u2,1 + u2,2 < 0, the equality in (554) and
the inequality in (552) hold if the entries of the payoff matrix u satisfy

u2,2 = u1,2, u2,2 > u2,1, and u1,1 > u1,2., (556)

which proves the condition in (66). Note that if the inequalities in (66) hold, then it holds that
u1,1 − u1,2 − u2,1 + u2,2 < 0. Hence, there is no need to include u1,1 − u1,2 − u2,1 + u2,2 < 0 as a
condition.

The converse is as follows. If (66) holds, then it holds that u1,1 − u1,2 − u2,1 + u2,2 < 0, the
equality in (554) holds, and the inequalities (552) hold. Hence, from Lemma 1.5 and Lemma 1.6,
for a pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A2), if PA2

(a1) > 0, it holds that

BR1(PA2) = {PA1 ∈ 4 (A1) : PA1(a1) = 0} and (557)
BR2 (BR1(PA1)) = {PA2 ∈ 4 (A2) : PA2(a1) = 0}. (558)

As a result, for all (P ?A1
, P ?A2

) ∈ P, it holds that

P ?A2
(a1) = 0, (559)

which, from Lemma 1.6, implies that

P ?A1
(a1) ∈

[
0,

u2,2 − u2,1
u1,1 − u1,2 − u2,1 + u2,2

]
. (560)

This completes the proof.
The proof of Case VII is as follows. Note that the set P satisfying (71) implies that u1,1 −

u1,2−u2,1+u2,2 6= 0. To that end, only the case in which u1,1−u1,2−u2,1+u2,2 6= 0 is considered
in the following proof. Given the fact that 0 <

u2,2−u2,1

u1,1−u1,2−u2,1+u2,2
< 1, it holds that p(1) in (14)

satisfies

1 > p(1) > 0. (561)
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Let a pair of strategies (P ?A1
, P ?A2

) ∈ 4 (A1) × 4 (A2) be such that (P ?A1
, P ?A2

) ∈ P. Then, it
follows that

P ?A1
∈ BR1(P ?A2

). (562)

Given the fact that P satisfies (71), from Lemma 1.5 and (562), it follows that p(2) in (11) satisfies

p(2) = 1. (563)

Note that, from Lemma 1.5, only when u1,1−u1,2−u2,1 +u2,2 > 0, the best response BR1(P ?A2
)

satisfies

BR1(P ?A2
) = {PA1

∈ 4 (A1) : PA1
(a1) = 1} (564)

for all P ?A2
(a1) ∈

[
0,

u2,2−u2,1

u1,1−u1,2−u2,1+u2,2

]
. As a result, only the case in which u1,1 − u1,2 − u2,1 +

u2,2 > 0 needs to be considered. Hence, if u1,1 − u1,2 − u2,1 + u2,2 > 0, the equality in (563) and
the inequality in (561) hold if the entries of the payoff matrix u satisfy

u1,1 = u2,1, u2,2 > u2,1, and u1,1 > u1,2., (565)

which proves the condition in (48). Note that if the inequalities in (48) hold, then it holds that
u1,1 − u1,2 − u2,1 + u2,2 > 0. Hence, there is no need to include u1,1 − u1,2 − u2,1 + u2,2 > 0 as a
condition.

The converse is as follows. If (48) holds, then it holds that u1,1 − u1,2 − u2,1 + u2,2 > 0, the
equality in (563) holds, and the inequalities (561) hold. Hence, from Lemma 1.5 and Lemma 1.6,
for a pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A2), if PA2

(a1) < 1, it holds that

BR1(PA2
) = {PA1

∈ 4 (A1) : PA1
(a1) = 0} and (566)

BR2 (BR1(PA1
)) = {PA2

∈ 4 (A2) : PA2
(a1) = 1}. (567)

As a result, for all (P ?A1
, P ?A2

) ∈ P, it holds that

P ?A2
(a1) = 1, (568)

which, from Lemma 1.6, implies that

P ?A1
(a1) ∈

[
0,

u2,2 − u2,1
u1,1 − u1,2 − u2,1 + u2,2

]
. (569)

This completes the proof.
The proof of Case VIII is as follows. Note that the set P satisfying (74) implies that u1,1 −

u1,2−u2,1+u2,2 6= 0. To that end, only the case in which u1,1−u1,2−u2,1+u2,2 6= 0 is considered
in the following proof. Given the fact that 0 <

u2,2−u2,1

u1,1−u1,2−u2,1+u2,2
< 1, it holds that p(1) in (14)

satisfies

1 > p(1) > 0. (570)

Let a pair of strategies (P ?A1
, P ?A2

) ∈ 4 (A1) × 4 (A2) be such that (P ?A1
, P ?A2

) ∈ P. Then, it
follows that

P ?A1
∈ BR1(P ?A2

). (571)
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Given the fact that P satisfies (74), from Lemma 1.5 and (571), it follows that p(2) in (11) satisfies

p(2) = 1. (572)

Note that, from Lemma 1.5, only when u1,1−u1,2−u2,1 +u2,2 < 0, the best response BR1(P ?A2
)

satisfies

BR1(P ?A2
) = {PA1

∈ 4 (A1) : PA1
(a1) = 1} (573)

for all P ?A2
(a1) ∈

[
u2,2−u2,1

u1,1−u1,2−u2,1+u2,2
, 1
]
. As a result, only the case in which u1,1 − u1,2 − u2,1 +

u2,2 < 0 needs to be considered. Hence, if u1,1 − u1,2 − u2,1 + u2,2 < 0, the equality in (572) and
the inequality in (570) hold if the entries of the payoff matrix u satisfy

u1,1 = u2,1, u2,2 > u2,1, and u1,1 > u1,2., (574)

which proves the condition in (75). Note that if the inequalities in (75) hold, then it holds that
u1,1 − u1,2 − u2,1 + u2,2 < 0. Hence, there is no need to include u1,1 − u1,2 − u2,1 + u2,2 < 0 as a
condition.

The converse is as follows. If (75) holds, then it holds that u1,1 − u1,2 − u2,1 + u2,2 < 0, the
equality in (572) holds, and the inequalities (570) hold. Hence, from Lemma 1.5 and Lemma 1.6,
for a pair of strategies (PA1

, PA2
) ∈ 4 (A1)×4 (A2), if PA2

(a1) < 1, it holds that

BR1(PA2
) = {PA1

∈ 4 (A1) : PA1
(a1) = 1} and (575)

BR2 (BR1(PA1
)) = {PA2

∈ 4 (A2) : PA2
(a1) = 1}. (576)

As a result, for all (P ?A1
, P ?A2

) ∈ P, it holds that

P ?A2
(a1) = 1, (577)

which, from Lemma 1.6, implies that

P ?A1
(a1) ∈

[
u2,2 − u2,1

u1,1 − u1,2 − u2,1 + u2,2
, 1

]
. (578)

This completes the proof.
Furthermore, it holds that

u(P ?A1
, P ?A2

) = u1,1 = u2,1, (579)

which follows from the fact that P ?A2
(a1) = 1, P ?A2

(a1) can be equal to one, and u1,1 = u2,1. This
completes the proof.

This completes the whole proof.

K Proof of Theorem 1.5
Note that Theorem 1.2, Theorem 1.3, and Theorem 1.4 cover all the cases of the NEs in 2 × 2
zero sum games. Hence, the proof is separated into 2 parts. The first part proves that if the
entries in the payoff matrix u satisfy (77), then the NE is unique and is formed by (78a) and
(78a). The second part proves that if the entries in the payoff matrix u satisfy (80), then the
value of the game satisfies (81a) and (81b).

The first part follows from Theorem 1.2 (case (i)).
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The second part is as follows. Note that the conditions in (77) and (80) form a partition of
R2×2. If the conditions in (77) hold, then from Theorem 1.2, there is a unique NE in strictly
mixed strategies. Alternatively, from Theorem 1.1, if the entries of the payoff matrix u satisfy
(80), then there is a unique NE in pure strategies or infinitely many NEs.

Note that from Theorem 1.2, Theorem 1.3, and Theorem 1.4, if the entries of the payoff
matrix u satisfy (80), the set of NE(s) always include a pair of strategies (P1, P2) ∈ 4 (A1 ×A2)
such that

P1(a1) ∈ {0, 1} and P2(a1) ∈ {0, 1}. (580)

Given the fact that all the NEs yield the same payoff, if the entries of the payoff matrix u satisfy
(80), the value of the game can be searched exclusively in pure strategies.

For the game in which both players only use pure strategies, the maxmin value of the game [1,
Section 4.12] equals to

max
α∈{0,1}

min
β∈{0,1}

u1,1αβ + u1,2α(1− β) + u2,1(1− α)β + u2,2(1− α)(1− β), (581)

which can be rewritten as

max
α∈{0,1}

min
β∈{0,1}

(
u1,1β + u1,2(1− β)

)
α+

(
u2,1β + u2,2(1− β)

)
(1− α). (582)

Note that the maxmin value in (582) can be further expressed as

max
{

min
β∈{0,1}

u1,1β + u1,2(1− β), min
β∈{0,1}

u2,1β + u2,2(1− β)
}
, (583)

which follows from the fact that α ∈ {0, 1}. Given the fact that β only can be either zero or one,
the maximum value in (583) also equals to

max
{

min
{
u1,1, u1,2

}
,min

{
u2,1, u2,2

}}
. (584)

Similarly, for the game in which both players only use pure strategies, the minmax value of
the game [1, Section 4.12] equals to

min
β∈{0,1}

max
α∈{0,1}

u1,1αβ + u1,2α(1− β) + u2,1(1− α)β + u2,2(1− α)(1− β), (585)

which can be rewritten as

min
β∈{0,1}

max
α∈{0,1}

(
u1,1β + u1,2(1− β)

)
α+

(
u2,1β + u2,2(1− β)

)
(1− α). (586)

Note that the maxmin value in (586) can be further expressed as

min
{

max
α∈{0,1}

u1,1α+ u2,1(1− α), max
α∈{0,1}

u1,2α+ u2,2(1− α)
}
, (587)

which follows from the fact that β ∈ {0, 1}. Given the fact that α only can be either zero or one,
the minmax value in (587) also equals to

min
{

max
{
u1,1, u2,1

}
,min

{
u1,2, u2,2

}}
. (588)

In a 2× 2 zero sum game, the maximin value equals the minmax value, which also equals the
value of the game [1, Section 4.12]. As a result, it holds that

u(P ?A1
, P ?A2

)=min{max{u1,1,u2,1},max{u1,2,u2,2}} (589)
=max{min{u1,1,u1,2},min{u2,1,u2,2}}, (590)

which completes the proof.
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L Proof of Lemma 1.7

Note that

u1,1u2,2 − u1,2u2,1
u1,1 − u1,2 − u2,1 + u2,2

=
u1,1u2,2 − u1,1u2,1 + u1,1u2,1 − u1,2u2,1

u1,1 − u1,2 − u2,1 + u2,2
(591)

=
u1,1 (u2,2 − u2,1) + u2,1 (u1,1 − u1,2)

u1,1 − u1,2 − u2,1 + u2,2
(592)

= u1,1P
?
A1

(a1) + u2,1P
?
A1

(a2) (593)
< max {u1,1, u2,1} , (594)

where (593) follows from Theorem 1.2; the strictly inequality in (594) follows from the fact that
P ?A1

(a1) ∈ (0, 1).
Similarly, it holds that

u1,1u2,2 − u1,2u2,1
u1,1 − u1,2 − u2,1 + u2,2

=
u1,1u2,2 − u1,2u2,2 + u1,2u2,2 − u1,2u2,1

u1,1 − u1,2 − u2,1 + u2,2
(595)

=
u2,2 (u1,1 − u1,2) + u1,2 (u2,2 − u2,1)

u1,1 − u1,2 − u2,1 + u2,2
(596)

= u2,2P
?
A1

(a2) + u1,2P
?
A1

(a1) (597)
< max {u1,2, u2,2} , (598)

where (597) follows from Theorem 1.2; the strictly inequality in (598) follows from the fact that
P ?A1

(a1) ∈ (0, 1).
As a result, it holds that

u1,1u2,2 − u1,2u2,1
u1,1 − u1,2 − u2,1 + u2,2

< min {max {u1,1, u2,1} ,max {u1,2, u2,2}} (599)

Note that

u1,1u2,2 − u1,2u2,1
u1,1 − u1,2 − u2,1 + u2,2

=
u1,1u2,2 − u1,1u1,2 + u1,1u1,2 − u1,2u2,1

u1,1 − u1,2 − u2,1 + u2,2
(600)

=
u1,1 (u2,2 − u1,2) + u1,2 (u1,1 − u2,1)

u1,1 − u1,2 − u2,1 + u2,2
(601)

= u1,1P
?
A2

(a1) + u1,2P
?
A2

(a2) (602)
> min {u1,1, u1,2} , (603)

where (602) follows from Theorem 1.2; the strictly inequality in (603) follows from the fact that
P ?A2

(a1) ∈ (0, 1). Similarly, it holds that

u1,1u2,2 − u1,2u2,1
u1,1 − u1,2 − u2,1 + u2,2

=
u1,1u2,2 − u2,1u2,2 + u2,1u2,2 − u1,2u2,1

u1,1 − u1,2 − u2,1 + u2,2
(604)

=
u2,2 (u1,1 − u2,1) + u2,1 (u2,2 − u1,2)

u1,1 − u1,2 − u2,1 + u2,2
(605)

= u2,2P
?
A2

(a2) + u2,1P
?
A2

(a1) (606)
> min {u2,2, u2,1} , (607)

where (606) follows from Theorem 1.2; the strictly inequality in (607) follows from the fact that
P ?A2

(a1) ∈ (0, 1).
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As a result, it holds that

u1,1u2,2 − u1,2u2,1
u1,1 − u1,2 − u2,1 + u2,2

> max {min {u1,1, u1,2} ,min {u2,2, u2,1}} , (608)

which completes the proof.

M Proof of Lemma 1.8
Note that if the entries of the payoff matrix u in (1) satisfy (77), from Theorem 1.2, it holds that

p(2) = P ?A2
(a1) =

u2,2 − u1,2
u1,1 − u1,2 − u2,1 + u2,2

∈ (0, 1), (609)

where p(2) is in (11), and the pair of strategies (P ?A1
, P ?A2

) forms the unique NE.
If given a strategy P ∈ 4 (A2), it holds that arg maxV ∈4(A1) u (V, P ) = {Q ∈ ∆(A1) :

Q(a1) = 0}, then, from (3), it follows that

û(P ) = u2,1P (a1) + u2,2P (a2). (610)

If given a P ∈ 4 (A2), it holds that arg maxV ∈4(A1) u (V, P ) = {Q ∈ ∆(A1) : Q(a1) = 1}, then,
from (3), it follows that

û(P ) = u1,1P (a1) + u1,2P (a2). (611)

If P = P ?A2
, from Lemma 1.5, it holds that arg maxV ∈4(A1) u (V, P ) = {Q ∈ ∆(A1) : Q(a1) =

β, β ∈ [0, 1]}, then, from (3) and (275), it follows that

û(P ?A2
)

= max
Q∈4(A1)

(u1,1−u1,2−u2,1 +u2,2)
(
P ?A2

(a1)−P ?A2
(a1)

)
Q(a1)+(u2,1−u2,2)P ?A2

(a1)+u2,2 (612)

= u2,1P
?
A2

(a1) + u2,2P
?
A2

(a2). (613)

Plugging (78b) into (613) yields

u2,1P
?
A2

(a1) + u2,2P
?
A2

(a2) =(u2,1 − u2,2)P ?A2
(a1) + u2,2 (614)

= (u2,1 − u2,2)
u2,2 − u1,2

u1,1 − u1,2 − u2,1 + u2,2
+ u2,2 (615)

=
(u2,1 − u2,2)(u2,2 − u1,2) + u2,2(u1,1 − u1,2 − u2,1 + u2,2)

u1,1 − u1,2 − u2,1 + u2,2
(616)

=
u1,1u2,2 − u1,2u2,1

u1,1 − u1,2 − u2,1 + u2,2
. (617)

Note that plugging (78b) into into (611) also yields

u1,1P
?
A2

(a1) + u1,2P
?
A2

(a2) =(u1,1 − u1,2)P ?A2
(a1) + u1,2 (618)

= (u1,1 − u1,2)
u2,2 − u1,2

u1,1 − u1,2 − u2,1 + u2,2
+ u1,2 (619)

=
(u1,1 − u1,2)(u2,2 − u1,2) + u1,2(u1,1 − u1,2 − u2,1 + u2,2)

u1,1 − u1,2 − u2,1 + u2,2
(620)

=
u1,1u2,2 − u1,2u2,1

u1,1 − u1,2 − u2,1 + u2,2
, (621)
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which, with (617), implies that the function û satisfies

û(P ?A2
) = u2,1P

?
A2

(a1) + u2,2P
?
A2

(a2) = u1,1P
?
A2

(a1) + u1,2P
?
A2

(a2). (622)

In a nutshell, from Lemma 1.5, under the assumption of the lemma, for all P ∈ 4 (A2), it holds
that

û(P ) =


u2,1P (a1) + u2,2P (a2), if P (a1) < P ?A2

(a1) and u1,1 − u1,2 − u2,1 + u2,2 > 0 or
P (a1) > P ?A2

(a1) and u1,1 − u1,2 − u2,1 + u2,2 < 0,
u1,1P (a1) + u1,2P (a2), if P (a1) > P ?A2

(a1) and u1,1 − u1,2 − u2,1 + u2,2 > 0 or
P (a1) < P ?A2

(a1) and u1,1 − u1,2 − u2,1 + u2,2 < 0,
u(P ?A1

, P ?A2
), if P (a1) = P ?A2

(a1).

(623)

The proof is completed by noticing that if the matrix u in (1) satisfies (77), it holds that
u1,1 − u1,2 − u2,1 + u2,2 6= 0.

N Proof of Lemma 1.9
Two cases are considered. First, the case in which u1,1 − u1,2 − u2,1 + u2,2 > 0; Second, the case
in which u1,1 − u1,2 − u2,1 + u2,2 ≤ 0.

Consider the case in which u1,1 − u1,2 − u2,1 + u2,2 > 0. From Theorem 1.5, if the entries of
the matrix u in (1) satisfy (77), then one of the following conditions holds:

u1,1 − u1,2 > 0 and u2,1 − u2,2 < 0, or (624)
u1,1 − u1,2 < 0 and u2,1 − u2,2 > 0. (625)

Nonetheless, only the first condition yields u1,1− u1,2− u2,1 + u2,2 > 0. Hence, from Lemma 1.8
and (624), if 0 ≤ P (a1) < Q(a1) ≤ P ?A2

(a1), then it holds that

û(P ) > û(Q); (626)

and if P ?A2
(a1) ≤ P (a1) < Q(a1) ≤ 1, then it holds that

û(P ) < û(Q). (627)

Alternatively, consider the case in which u1,1 − u1,2 − u2,1 + u2,2 ≤ 0. From Theorem 1.5, if
the entries of the matrix u in (1) satisfy (77), then one of the following conditions holds:

u1,1 − u1,2 > 0 and u2,1 − u2,2 < 0, or (628)
u1,1 − u1,2 < 0 and u2,1 − u2,2 > 0. (629)

Nonetheless, only the second condition yields u1,1−u1,2−u2,1 +u2,2 ≤ 0. Hence, from Theorem
1.5 and (629), if 0 ≤ P (a1) < Q(a1) ≤ P ?A2

(a1), then it holds that

û(P ) > û(Q); (630)

and if P ?A2
(a1) ≤ P (a1) < Q(a1) ≤ 1, then it holds that

û(P ) < û(Q). (631)

This completes the proof.
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O Proof of Lemma 1.10
The proof follows from the fact that

u(P ?A1
, P ?A2

) = min
P∈4(A2)

max
Q∈4(A1)

u(Q,P ) = min
P∈4(A2)

û(P ). (632)

This completes the proof.
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