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SUMMARY

Recently, we have developed a localized adaptive waveform inversion
method (LAWI) to tackle the cycle-skipping issue in velocity recon-
struction by waveform inversion. In LAWI, the Gabor deconvolution is
applied to compute a local matching filter, whose centroid time is used
for measuring the instantaneous time shift between observed and cal-
culated data. Different from AWI that is based on a stationary convo-
lutional model, LAWI can take the non-stationarity nature of seismic
data into account, therefore performs better in handling realistic cycle
skipping problem. Numerical tests show that, compared with AWI,
the application of LAWI seems to require a higher signal-to-noise ra-
tio (SNR) of observed data. To make LAWI work for low-SNR data, a
delta-type regularization is developed to deal with the noise problems
inherent in the Gabor deconvolution. Despite a slight resolution loss
and a “layer-stripping principle break” induced by this new regulariza-
tion illustrated numerically, we present how this method can be useful
to invert for low-SNR data on the Chevron benchmark dataset.

INTRODUCTION

Full-waveform inversion (FWI) is a powerful tool to build high-resolution
velocity models (Lailly, 1983; Tarantola, 1984). The successful field
data applications (Sirgue et al., 2010; Huang et al., 2021) makes it
more and more attractive for academia and industry. However, ve-
locity reconstruction by FWI is a highly non-linear inverse problem
(Virieux and Operto, 2009; Virieux et al., 2017). When initial mod-
els are not accurate enough, FWI would fail to generate geologically
meaningful velocity models. Studies indicate that enhancing travel-
time information in misfit design can mitigate the non-linearity and
relax the accuracy requirement of the initial model (Luo and Schuster,
1991; Woodward, 1992).

Measuring time shift between observed and calculated data is a dif-
ficult and long-standing task in exploration seismology. In the early
work of wave-equation traveltime tomography (Luo and Schuster, 1991),
time shift is taken as the time lag that maximizes the cross-correlation
function. The adjoint source derivation relies on the assumption that
observed and calculated data only differ by a time shift (the same am-
plitude). Inspired by the differential semblance optimization for mi-
gration velocity analysis (Symes and Carazzone, 1991), van Leeuwen
and Mulder (2010) propose a penalization-based cross-correlation ob-
jective function in the data domain, whose adjoint source derivation
does not need the pure time shift assumption. Following, Luo and
Sava (2011) suggest using deconvolution instead of cross-correlation
to handle realistic oscillatory signals, as deconvolution operation can
make the matching filter more focused and lead it confined to zero lag
with model update.

Warner and Guasch (2016) design a normalized form of penalization-
based deconvolution misfit (AWI). With the normalization, the am-
plitude influence of the matching filter can be reduced and the mis-
fit in AWI can be understood as an estimation of the centroid time
of the matching filter (Yong et al., 2021). With this interpretation,
Yong et al. (2021) propose a non-stationary extension of AWI through
a time-frequency analysis of signals using a Gabor transform. This
makes it possible to capture instantaneous time-shift for locally co-
herent events. Numerical tests show that the localized manipulation
is more suitable for non-stationary data processing, and encouraging
results on Chevron 2014 benchmark data have been obtained (Yong
et al., 2022).

However, when we attempt to apply LAWI approach to field data, we
find that, compared to AWI, LAWI seems to require a higher data
quality. This has also been noticed in the test with low-SNR 0-3 Hz

Chevron benchmark. From numerical tests, we deduce that this issue
is related to the computation of the Gabor deconvolution with noisy
data. In this work, we shall analyze this issue from a point view of reg-
ularization of the Gabor deconvolution. An alternative regularization
is proposed for the Gabor deconvolution, which is based on the fact
that the local matching filter is confined to delta function with model
update in LAWI. Two main features of this regularization are studied
through simple signal analysis and numerical inversion results. With
this regularization, we are able to apply LAWI in the low-SNR 0-3 Hz
frequency band of the Chevron benchmark.

THEORY

Localized adaptive waveform inversion

With one-trace observed data d(t) and predicted data p(t), a local
matching filter ŵ(t,ω) used in LAWI, can be defined by a non-stationary
convolutional model in the time-frequency domain (Yong et al., 2021):

ŵ(t,ω)d̂(t,ω) = p̂(t,ω), (1)

where d̂(t,ω) and p̂(t,ω) are the time-frequency spectra of observed
and predicted data. The Gabor transform (Strang and Nguyen, 1996;
Fichtner et al., 2008) is applied to obtain the time-frequency spectrum,
and the Gabor transform pair can be given by

f̂ (t,ω) = G[ f ](t,ω) =
1√
2π

∫
R

f (ξ )h†
σ (ξ − t)e−iωξ dξ , (2)

f (t) = G−1[ f̂ ](t) =
1√
2π

∫
R2

f̂ (ξ ,ω)hσ (t−ξ )eiωt dξ dω. (3)

hσ (t) = (πσ2)−
1
4 e
−t2

2σ2 denotes the window function, in which σ con-
trols the radius.

With the time-varying local matching filter ŵ(t,ω) in the frequency
domain, we can obtain its time-domain form w(t,τ) through

w(t,τ) = F−1
τ [ŵ(t,ω)] , (4)

where F−1
τ denotes the inverse Fourier transform for the variable τ .

The instantaneous centroid time shift can be estimated by

T (t) =

∫
R |τ|w

2(t,τ)dτ∫
R w2(t,τ)dτ

. (5)

Integrating all instantaneous time shift under L2 norm, we can define
the misfit function of LAWI as

JLAWI =
1
2

∫
R

T 2(t)dt. (6)

Let us mention that the Gabor deconvolution itself is ill-posed for
noisy data (Margrave et al., 2011). In practice, Tikhonov regulariza-
tion is usually utilized to stabilize the solution. We shall discuss the
importance of prior information in the regularization.

Regularization for Gabor deconvolution

The local matching filter, defined by the Gabor deconvolution (1), is
commonly computed by

ŵz(t,ω) =
d̂†(t,ω)p̂(t,ω)

d̂†(t,ω)d̂(t,ω)+ ε
, (7)

where ε is a small positive number to prevent division by zero. From a
point of view of regularization, the local matching filter, calculated by
the equation (7), is the optimal solution of the regularized least-squares
problem:

min
ŵ(t,ω)

1
2

∫
Ω

∣∣p̂(t,ω)− d̂(t,ω)ŵ(t,ω)
∣∣2 + ε |ŵ(t,ω)|2 dω. (8)
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Obviously, ε denotes the regularization parameter and the assumed
prior information here is that the local matching filter ŵ(t,ω) should
have a weak amplitude spectrum.

This commonly used regularization is designed for numerical stability.
In practice, the regularization parameter ε selection depends on the
SNR of observed data: low SNR data could require large ε . Note that,
the local matching filter is supposed to converge into delta function
with iteration in LAWI. However, this regularization attempts to make
it approach zero, which constitutes a certain inconsistency between the
expected convergence of the filter and the applied regularization.

Since the local matching filter is confined to delta function with model
update, thus we have

p(t)→ d(t), ŵ(t,ω)→ 1. (9)

To incorporate this property, we can consider another form of the reg-
ularization problem:

min
ŵ(t,ω)

1
2

∫
Ω

∣∣p̂(t,ω)− d̂(t,ω)ŵ(t,ω)
∣∣2 + ε |ŵ(t,ω)−1|2 dω. (10)

Now the solution of the regularized Gabor deconvolution problem can
be written as

ŵd(t,ω) =
d̂†(t,ω)p̂(t,ω)+ ε

d̂†(t,ω)d̂(t,ω)+ ε
. (11)

We name this regularization delta-type regularization to make it dis-
tinct from the conventional zero-type regularization.

For two implementations of Gabor deconvolution, the adjoint sources
share the same expression:

r = 2G−1

[
Fτ

[
T (t)(|τ|−T (t))w(t,τ)∫

R w2(t,τ)dτ

]
d̂(t,ω)

d̂(t,ω)d̂†(t,ω)+ ε

]
. (12)

Note that the adjoint source changes with the local matching filter.

TWO FEATURES OF DELTA-TYPE REGULARIZATION

Resolution loss

We start with one-event signal experiment to show how resolution
could be downgraded with the delta-type regularization. Figure 1 (a)
presents two 5 Hz Ricker wavelets with a 0.5 s time shift. The esti-
mated instantaneous time shifts by two implementations of Gabor de-
convolution are shown in Figure 1 (b), and both estimations are close
to the true value (0.5 s). Comparing two local matching filters (Figure
1 (c-d)), we can find the difference that the delta-type regularization
generates non-zero signals along the zero-lag axis, result from the in-
jected prior information of delta function.

These non-zero energies could cause a slight resolution loss of inver-
sion results. Let us illustrate it through comparing the objective func-
tion variation with respect to amplitude scaling and time shift, in which
the relation between observed and calculated data is defined by

dobs(t) = Adcal(t + τ). (13)

From Figure 2, one can notice that the objective function with the
delta-type regularization becomes flat when approaching the global
minimum, which makes inversion more difficult to converge to a high-
resolution result. Besides, it can be seen that both misfit functions
are nearly agnostic to amplitude scaling and mainly sensitive to time
shifts, which reveals that LAWI focuses on interpreting the kinematic
information.

Layer-stripping principle break

The classical zero-type regularization has one property: only mak-
ing use of events in observed seismogram that are locally coherent to
the events occurring in predicted data. The new regularization would
change this property. Let us illustrate it with a case where observed
data contains two events while only one event presents in the predicted
data, as shown in Figure 3 (a). The adjoint sources presented in Figure
3 (e) clearly show that the delta-type regularization accounts for all
events in the observed data.
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Figure 1: Single event study: observed and calculated data (a), the
estimated time shift (b), the local matching filters w(t,τ) with zero-
type regularization (c) and delta-type regularization (d), and the adjoint
sources (e).
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Figure 2: Objective functions with time shift and amplitude scaling:
zero-type regularization (a) and delta-type regularization (b).
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Figure 3: Layer-stripping principle break: the observed and calculated
data (a), the estimated time shift (b), the local matching filter |w(t,τ)|
with zero-type regularization (c) and delta-type regularization (d), and
the adjoint sources (e).

From the mathematical formula, we know that, with the zero-type reg-
ularization, the local matching would be zero when predicted data is
zero, no matter whether observed data is zero or not. Consequently, the
zero-type regularization can not take the second event in the observed
data into account. While the local matching filter, calculated by the
delta-type regularization, has energy diffusively distributed around the
horizontal coordinate of 3.25 s. This leads a non-physical time-shift
estimation shown in Figure 3 (b). Due to the non-physical time shift,
LAWI would bring the information of the second event in the observed
data to the adjoint source (Figure 3 (e)) even though there is no locally
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coherent events in the predicted data.

In seismic exploration, the observed data usually contains direct, div-
ing and reflected waves. When inversion starts from a smooth velocity
model, the calculated data may only contain direct and diving waves.
Thus the number of events in calculated data and observed data can
not be matched. LAWI with the zero-type regularization focuses on
the time shifts between diving and direct waves only, which might not
provide sufficient information to match the observed reflections to the
predicted data. When a significant part of the energy in the observed
data is related to reflections, line-search issues can raise for LAWI with
the zero-type regularization.

Let us recall that waveform inversion is based on small perturbation
assumption (Tarantola, 1984). Thus, compared to direct projecting
all information contained in observed data onto gradient, it could be
more suitable if the gradient is constructed by only accounting for the
events in the predicted data and gently including more information in
observed data, especially when facing the cycle-skipping issue. This
is the philosophy behind the layer-stripping strategy, which is effec-
tive to mitigate the cycle-skipping issue and widely used in practice
(Wang and Rao, 2009; Pladys et al., 2022). The zero-type regulariza-
tion naturally follows this principle. Although breaking this principle
is beneficial to avoid the line-search issue, we recommend the zero-
type regularization when it is applicable (high SNR data). In fact,
a proper data-weighting function can be applied to fix the compared
events, which allows the objective function of LAWI with the zero-
type regularization decreasing with model update, even starting with a
linear gradient velocity model. Please keep in mind that our motiva-
tion to develop the delta-type regularization is to make LAWI applica-
ble for low SNR data. Besides, when the multi-scale strategy (Bunks
et al., 1995) is adopted in LAWI, the data-weighting function becomes
not mandatory, more discussions can be found in Yong et al. (2022).

2D VALHALL EXAMPLE

In this section, we use the 2D Valhall synthetics data to further illus-
trate the previous identified two features of LAWI. Figure 4 presents
the true and initial velocity models. The density model, used to gen-
erate observed data, is calculated by Gardner’s relation. The source
function is a 5 Hz Ricker wavelet after a 2 Hz low-cut filter. The ini-
tial model is made by using the sfsmooth command in the open-source
Madagascar software: repeatedly (15 times) applying a triangle filter
with a radius of 250 m to the true model. The standard FWI suf-
fers from cycle-skipping issue with this initial model. A fixed-spread
acquisition is used, with 32 equally spaced sources and 352 equally
spaced receivers with interval of 25 m placed on the surface. The
`-BFGS method (` = 5) is applied for model update (Métivier and
Brossier, 2016). The maximum iteration is set as 50.

The observed data is presented in Figure 5 (a). Here, we would con-
sider two cases that inversion starts with different density models: the
true density model and a homogeneous density model. The two corre-
sponding calculated data are shown in Figure 5 (b-c). When a homo-
geneous density model is used, the calculated data only contains direct
waves and one reflection. From the adjoint sources shown in Figure 6,
one can see that LAWI with the zero-type regularization only account
for the events occurring in the predicted data. While LAWI with the
delta-type regularization can bring all information in observed data to
the gradient. Since AWI takes the whole information of each trace into
account, it is also able to interpret all reflections in the observed data.

Figure 7 (a,c,e) display the inversion results starting with the true den-
sity model. One can see that AWI fails to reconstruct the low-velocity
gas layers. LAWI with zero-type regularization is able to get rid of
local minima and can converge to the true velocity model. The result
provided by LAWI with delta-type regularization has a slightly lower
resolution, consistent with the analysis above. When inversion be-
gins with a homogeneous density model, AWI evolves towards local
minima, leading to a spurious model (Figure 7 (b)). LAWI with the
zero-type regularization would meet the line-search failure. As a re-
sult, the inversion gets struck and the model cannot be updated (Figure
7 (d)). Meanwhile, the delta-type regularization can take all reflections
into account at the beginning of inversion, and it does not suffer from

cycle-skipping issue. A comparable result can be produced by LAWI
with delta-type regularization no matter true density or homogeneous
density model is used.
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Figure 4: 2D Valhall models: true velocity (a) and initial velocity (b).
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Figure 5: The observed data (a) generated with the true velocity and
density model and the calculated data using the initial velocity model
with the true density (b) and with homogeneous density model (c).
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Figure 6: The adjoint sources: true density model (a,c,and e), homo-
geneous density model (b,d, and f). AWI with the zero type regular-
ization (a-b), LAWI with the zero type regularization (c-d), and LAWI
with the delta type regularization (e-f).
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Figure 7: Inversion results with (left) and without (right) true den-
sity model: AWI (a-b), LAWI with zero-type regularization (c-d), and
LAWI with delta-type regularization (e-f).

APPLICATION TO LOW-SNR DATA

Figure 8 (a) displays the Chevron benchmark in the 0-3 Hz frequency
band. The weak-amplitude reflected waves are not usable due to strong
noise, and only diving and direct waves are available in the low-frequency
band. The predicted data, generated by the initial model (Figure 9 (a)),
is shown in Figure 8 (b). The two adjoint sources of LAWI at the first
iteration, corresponding to two kinds of regularization, are presented
in Figure 8 (c-d). It can be observed again that, with the zero-type reg-
ularization, LAWI only accounts for the information around available
predicted data, while the delta-type regularization can take all infor-
mation in the observed data into account.

Figure 9 shows the inversion evolution of LAWI using the zero-type
regularization for Gabor deconvolution. From Figure 9 (d), we see that
inversion meets over-updating issue. Although the computation of ad-
joint source with the zero-type regularization is numerically stable, the
final inversion result goes to a wrong direction. With the new imple-
mentation of Gabor deconvolution, the solution can go into a correct
direction (Figure 10 (a)). As a comparison, we also give the result by
AWI with the zero-type regularization, shown in Figure 10 (b). One
may question: AWI adopts the zero-type regularization for deconvolu-
tion, but why can it generate a stable result in this low SNR data?

Let us mention that, in this test, the value of ε is selected as the aver-
age of the power spectrum of the observed data scaled by 1% for these
three methods. Note that ε is not time-varying in the Gabor deconvo-
lution, thus the regularization term in the misfit function (8) makes a
large contribution for small-amplitude signal. Differently, in AWI, the
whole information of each trace is taken into consideration together,
which makes the stationary deconvolution less affected by the regular-
ization term. It is necessary to point out that, with the increase of SNR,
inversion becomes more robust and LAWI with the zero-type regular-
ization can converge to a correct solution. In fact, it works well for 0-4
Hz Chevron benchmark data (Yong et al., 2022).

One may consider using a time-varying ε for the Gabor deconvolution
to mitigate the inconsistency issue. However, it is quite difficult to set
universal rules to determine time-varying ε , making inversion as stable
as the delta-type regularization from our numerical experience.

CONCLUSION

Generally, the prior knowledge plays a significant role in regulariza-
tion applications. A new regularization is proposed for Gabor decon-
volution to stabilize LAWI for low-SNR data. The success of the new
regularization relies on the fact that the matching filter should con-
verge towards delta function with model update in LAWI. Compared
with the classical zero-type regularization, the developed delta-type
regularization will cause a slight resolution loss. Besides, the new reg-
ularization would break the layer-stripping principle, which somehow
extends the application domains of LAWI. Overall, the two regulariza-
tions can be used for field data processing in a hybrid way: we shall
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Figure 8: Chevron benchmark data in 0-3 Hz frequency band: ob-
served data (a), predicted data (b), and the adjoint sources of LAWI
with zero-type regularization (c) and delta-type regularization (d).
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Figure 9: LAWI using zero-type regularization: initial model (a), re-
constructed models after the 1st iteration (b), 2nd iteration (c), 3rd
iteration (d).
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Figure 10: Reconstructed models by LAWI using delta-type regular-
ization (a) and AWI using zero-type regularization (b) after the 15th
iteration. The resolution loss is not obvious due to the limited low-
frequency band.

recommend the delta-type regularization for low SNR data or at the
early stage of inversion when reflection events are absent in the pre-
dicted data. With the increase of SNR and model update, the zero-type
regularization becomes preferable.
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