
HAL Id: hal-03852573
https://hal.science/hal-03852573

Submitted on 15 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3-D multicomponent full waveform inversion for
shallow-seismic target: Ettlingen Line case study

Theodosius M Irnaka, Romain Brossier, Ludovic Métivier, Thomas Bohlen,
Yudi Pan

To cite this version:
Theodosius M Irnaka, Romain Brossier, Ludovic Métivier, Thomas Bohlen, Yudi Pan. 3-D multi-
component full waveform inversion for shallow-seismic target: Ettlingen Line case study. Geophysical
Journal International, 2022, 229 (2), pp.1017-1040. �10.1093/gji/ggab512�. �hal-03852573�

https://hal.science/hal-03852573
https://hal.archives-ouvertes.fr


Geophys. J. Int. (2022) 229, 1017–1040 https://doi.org/10.1093/gji/ggab512
Advance Access publication 2021 December 17
GJI Marine Geosciences and Applied Geophysics

3-D multicomponent full waveform inversion for shallow-seismic
target: Ettlingen Line case study

T.M. Irnaka ,1,2,* R. Brossier,1 L. Métivier,3 T. Bohlen4 and Y. Pan 4
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S U M M A R Y
In this work, we investigate methodological development and application of viscoelastic full
waveform inversion to a multicomponent source and receiver data set at the near-surface scale.
The target is located in Germany and lies in an ancient war trench from the War of the Spanish
Succession that was buried at approximately 1 m depth. We present the pre-processing of the
data, including a matching filter correction to compensate for different source and receiver
coupling conditions during the acquisition, as well as a dedicated multistep workflow for
the reconstruction of both P-wave and S-wave velocities. Our implementation is based on
viscoelastic modelling using a spectral element discretization to accurately account for the wave
propagation complexity in this shallow region. We illustrate the inversion stability by starting
from different initial models, either based on dispersion curve analysis or homogeneous models
consistent with first arrivals. We recover similar results in both cases. We also illustrate the
importance of accounting for the attenuation by comparing elastic and viscoelastic results. The
3-D results make it possible to recover and locate the trench precisely in terms of interpretation.
They also exhibit another trench structure, in a direction forming an angle at 45◦ with the
direction of the targeted trench. This new structure had been previously interpreted as an
artifact in former 2-D inversion results. The archaeological interpretation of this new structure
is still a matter of discussion.

Key words: Waveform inversion; Body waves; Surface waves and free oscillations; Wave
propagation.

1 I N T RO D U C T I O N

Accurate and efficient seismic imaging techniques are crucial for near surface applications. Geotechnical applications (Kramer 1996; Stokoe
et al. 2000), ground characterization (Foti et al. 2003; Roberts & Asten 2004; Chapman et al. 2006), infrastructure planning (Stewart et al.
1997; Martı́nez & Mendoza 2011; Pegah & Liu 2016), subsurface feature detection (Cardarelli et al. 2010), agriculture (Allred et al. 2008;
Weil et al. 2012), archaeological studies (Wynn 1986; Vafidis et al. 2003; Signanini & Torrese 2004) and shallow-seismic hazard assessment
(Göktürkler et al. 2008; Samyn et al. 2012) are instances of applications which focus on shallow targets from a few metres to several tens of
metres deep.

Conventional methods for this type of application encompass seismic refraction (Palmer 1980), first arrival traveltime tomography (FATT,
Aki et al. 1974) and multichannel analysis of surface waves (MASW, Park et al. 1999). All these methods suffer from several limitations.
The seismic refraction technique uses a very crude assumption by assuming a layered subsurface, with homogeneous layers, and the velocity
in each layer increases with depth. Interpreting first arrivals using Snell’s law aims to infer the velocity of each layer. FATT, which only
considers the first arrival signal (from P or S wave), is only sensitive to the direct and diving waves. In the context of shallow-seismic,
FATT is limited because the maximum offset for such application is often too short to sample the subsurface at sufficient depth. In addition,
FATT requires picking of P or S waves, and the resolution depends on the distribution of the ray path. MASW focuses on the surface waves

∗ISTerre, France

C© The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1017

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/2/1017/6468749 by Ludovic M

etivier on 15 N
ovem

ber 2022

http://orcid.org/0000-0002-0040-5142
http://orcid.org/0000-0002-5324-8064
mailto:marwan.irnaka@ugm.ac.id


1018 T.M. Irnaka et al.

Figure 1. Rheinstetten is located at the southwest part of Germany, close to the border of France. Red circle indicates the location of the seismic acquisition.

instead of interpreting body waves. It takes advantage of the dispersive behavior of the surface waves. MASW is generally limited to the
reconstruction of VS, based on the assumption of a local 1-D model, and relies on a pre-processing stage which transfers the seismic data to
the frequency–velocity domain that makes possible to pick the phase or group velocity.

Another seismic imaging method called full waveform inversion (FWI, Tarantola 1984; Virieux & Operto 2009) has started to gain
popularity for shallow-seismic applications. FWI has already been successfully applied to many crustal-scale targets (Sirgue et al. 2010;
Etienne et al. 2012; Prieux et al. 2013; Vigh et al. 2014; Górszczyk et al. 2017; He et al. 2019; Trinh et al. 2019a), as well as in seismology for
lithospheric scale study (Tape et al. 2010; Beller et al. 2018; Lu et al. 2018) or regional and global tomography (Fichtner et al. 2008; Modrak
& Tromp 2016). FWI is based on the iterative minimization of the difference between the observed data and the calculated data through the
solution of wave propagation equations. Thus, it aims at interpreting the whole signal, contrary to the previously mentioned seismic imaging
methods.

The interest for FWI comes from its high-resolution power up to half of the wavelength, the fact that it does not rely on prior assumptions
regarding subsurface geometry/configuration, and the possibility of estimating 3-D quantitative subsurface models. Conventional difficulties
for FWI applications are related to the design of sufficiently accurate initial subsurface models, and the risk of converging to local minima
(also referred to as cycle skipping issue in the FWI community as discussed in Virieux & Operto 2009), as well as the need for a sufficiently
accurate modelling engine to take into account the complexity of wave propagation and the consequently higher computational cost of the
whole procedure.

Even if the lack of low frequency may not be so strong for shallow targets, the application of 3-D FWI in the near-surface context usually
suffers from two specific difficulties. The first is related to the seismic acquisition, the targets are often sparsely covered due to a limited
number of available sources and receivers. 2-D profiles are often used rather than full 3-D acquisition. The signal-to-noise ratio (SNR) is
often poor due to weak seismic sources (sledgehammer, small vibroseis), the sources generally lack repeatability, and variable receiver-soil
coupling effects can be observed. The second difficulty is due to the high complexity of near-surface elastic wave propagation, where highly
dispersive surface waves dominate the recorded signal, and attenuation effects can be strong. Despite these difficulties, several 2-D FWI
studies in shallow-seismic have been performed on synthetic and field data (Bretaudeau et al. 2013; Köhn et al. 2016, 2019; Wittkamp
et al. 2018; Lamert & Friederich 2019; Wang et al. 2019). The extension to the 3-D case has also been proven to be feasible (Fathi et al.
2016; Nguyen & Tran 2018; Smith et al. 2019). One of the most recent examples, Smith et al. (2019) performed 3-D elastic FWI for tunnel
detection on synthetic and field data. They use the SPECFEM package as the waveform modelling tool (Peter et al. 2011) and SeisFlows as
the inversion engine (Modrak et al. 2018). They use multicomponent geophones with vertical force sources. Their initial models are obtained
from traveltime tomography for VP and MASW for VS. Up to 20 Hz, they can reconstruct a 3-D model of the underground tunnel using field
data. They also emphasize the use of horizontal source components to improve the deep reconstruction in their synthetic test.

Our study focuses on a specific 3-D data set that has been acquired to investigate a very shallow target, the Ettlingen Line, Germany
(Figs 1 and 2). This target is a defensive trench which was firstly built in 1707 during the War of the Spanish Succession (Lang et al. 1907).
The expected investigation depth reaches only 6 m. Compared with more conventional acquisitions for this target type, we have the advantage
of a rather dense coverage, implying a total number of 36 source and 888 receiver positions, for a maximum offset of 41 m. In addition, the
acquisition uses 3-component (3C) receivers and 3C sources. In this context, the recorded seismic signal mainly contains surface waves.

Contrary to crustal exploration case-studies, the frequency content of the data is sufficiently low to avoid the cycle skipping issues, as
only one to two seismic wavelengths propagates across the target at the lowest available frequency, relaxing the constraint of accurate starting
model requirement. Therefore, we show how we can perform FWI from homogeneous VP and VS initial models. Starting from such simple
models considerably reduces the complexity of the FWI workflow, which conventionally relies on a substantial pre-processing step to build
reasonable accurate initial velocity models, using tomography or MASW techniques. Another difficulty is in accurately inverting the surface
waves to extract the information about VP and VS. We show how, based on an accurate spectral element modelling and multisteps inversion
strategies, we can set up an efficient multiparameter inversion workflow, making it possible to retrieve high-resolution 3-D models for both
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3-D FWI for Ettlingen Line 1019

Figure 2. Basemap of the acquisition at Rheinstetten. Red solid line represents the existing location of the trench, red dashed line represents the possible
buried location of the trench line, and the white rectangle represents seismic acquisition location.

Figure 3. The original shape of the trench (a) and the current shape of buried trench (b) redrawn from Lang et al. (1907). In general, the current shape is
smoother due to erosion. The wood palisade wall also do not exist anymore. Our target is the buried trench in which we do not know anymore the boundary
and the geometry of the original trench.

parameters. The obtained results reveal a detailed 3-D structure of the Ettlingen Line, compatible with the results obtained in previous studies.
The reconstructed models also exhibit a new low-velocity trench, which was previously considered to be an artifact in a 2-D FWI inversion
(Wittkamp et al. 2018), and which was not visible on a previous MASW inversion. The 3-D coherency of this new trench makes it a very
plausible structure that was previously overlooked on this site. We also discuss the inversion stability regarding the integration of attenuation
in the numerical modelling engine through different numerical experiments.

2 DATA A C Q U I S I T I O N A N D P R E - P RO C E S S I N G

2.1 Presentation of the Ettlingen Line near Rheinstetten

The target of this study is a historical defensive trench located in Rheinstetten, Germany. The military forces that fought for the Habsburg
emperor Joseph I built it up during the War of the Spanish Succession in 1707 (Lang et al. 1907). It had been leveled to ground in the
area of our investigation (Fig. 3). The trench is surrounded by Pleistocene fluviatile sediment deposits from the Rhine River, west of the
trench. Several experiments had been performed in this area to uncover the geometry of the buried trench. Wegscheider (2017) revealed the
trench 2-D shape by performing a ground penetrating radar (GPR) investigation. Wittkamp et al. (2018) estimated a 2-D VS model using 2-D
elastic FWI focused on Love and Rayleigh waves. Pan et al. (2018) performed a detailed 3-D MASW, producing a 3-D VS cube. From these
studies, the Ettlingen Line emerged as an inverted triangular trench with a lower velocity than the surrounding area (consistent with a weaker
consolidation of the subsurface in the trench due to the excavation prior to backfill). The width of the trench is approximately 6 m, while the
depth is about 3 m.
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1020 T.M. Irnaka et al.

Figure 4. The Galperin source used in 9C seismic acquisition (a), and its schematic explaining the three principal orthogonal direction of the source (b)
(Häusler et al. 2018).

Table 1. Cartesian point source weights to represent a directional
point source.

Source direction FZFZFZ FXFXFX FYFYFY

UUU Fcosθ Fsinθ 0
VVV Fcosθ −Fsinθcosφ −Fsinθsinφ

WWW Fcosθ −Fsinθcosφ Fsinθsinφ

2.2 Acquisition

The seismic data acquisition was organized by GPI Karlsruhe Institute of Technology (KIT), in collaboration with GFZ Potsdam, ETH Zurich
and Univ. Grenoble Alpes (UGA) in April 2017. A 3-D seismic acquisition with 3C Galperin sources and 3C receivers was performed,
resulting in a 9C seismic data (Pan, 2021).

A Galperin source is a multicomponent source designed for shallow-seismic applications (Häusler et al. 2018). In practice, the Galperin
source acts as the base plate and needs to be used together with a sledgehammer. It has three different source directions (U, V and W), which
are not aligned with the Cartesian coordinate axis. An illustration of this particular type of source is given in Fig. 4(a). It is built from iron and
filled with wood inside. The wood inside the Galperin source helps to reduce the reverberation during seismic acquisition. The orientation
of each source direction is depicted in Fig. 4(b). The source directions (U, V and W) form 120◦ angles with each other, with respect to the
horizontal plane. Furthermore, all source directions form an angle θ of 54.74◦ with the vertical axis (Z). Source directions V and W form
an angle φ of 30◦ with the Y-axis. The force distribution along Cartesian coordinates is given in Table 1, assuming a point force F on each
source direction.

The 3C geophones record seismic vibrations along the vertical and horizontal components parallel to the Cartesian Z, X and Y axis.
Two different types of receivers with the same eigenfrequency of 4.5 Hz have been used. For each source location and direction, three seismic
stacks have been performed. The total recording time is T = 1 s with a sampling frequency of 4 kHz.

We have performed two sequential seismic acquisitions: each with different receiver geometries. Both acquisitions used 36 3C Galperin
sources at the same positions. They are indicated by black circles in Fig. 5. The sources have been installed following a staggered pattern
resulting in a minimum source distance of about 5.66 m. The first acquisition used a coarse repartition of receivers with 2 m inline and 4 m
crossline spacing, giving 128 3C geophone positions in total (Fig. 5a). The second used a dense repartition of receivers, with 1 m inline
and crossline spacing, giving 888 3C geophone positions in total (Fig. 5b). Because of the limited number of available equipment (160 3C
geophones), the dense acquisition has been divided into six acquisition subsets (color-coded on Fig. 5b) acquired over 5 d in total, repeating
all source locations for each subset.

2.3 Data evaluation

The noise level is estimated by comparing the windows where we can separate signal and noise. Signal windows are taken from far offset
data (>25 m) with two windows. Noise windows are taken from ambient noise data at the same trace before the seismic wave first arrival.
The length of the windows is 40 and 100 ms for noise and signal, respectively. SNR is then calculated as follows:

SNRd B = 10 log10

(
Ssignal

Snoise

)2

, (1)

where S is the spectral amplitude of the given window and SNRdB is the signal-to-noise ratio given in dB.
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3-D FWI for Ettlingen Line 1021

Figure 5. Coarse grid acquisition (a) and dense grid acquisition (b). Triangles represent receiver locations, whereas circles represent source locations. Different
receiver colour shows different acquisition time; 1st day = blue, 2nd day = orange, 3rd day = green, 4th day = red, 5th day = purple and brown.

Fig. 6(a) presents the distribution of signal (orange line ± standard deviation) and the ambient noise (blue line ± standard deviation).
We can see high SNR from 15 Hz (green line) to 145 Hz (red line). In practice, we define 3 Hz (orange line) as the lowest bound of the signal,
which will be used for inversion.

2.4 Data correction using matching filter

Splitting the acquisition into six patches for the dense acquisition requires source repetition at the same location. The acquisition separation
raises difficulties in source repeatability because of potential differences in source–ground coupling, trigger time, and surface condition. The
latter is particularly problematic for an acquisition spread over 5 d with rain occurring at night. We illustrate this issue in Figs 7 and 8 where
the vertical red lines represent subset boundaries. Fig. 7(a) shows rough seismic data before any correction. Half of the seismic data (the
left part) has been acquired on April 28th, 2017, whereas the other half (the right part) has been acquired on May 2nd, 2017. Both subsets
generally have the same amplitude level, but there is a visible kinematic offset or phase change. Another example of such kind of mismatch
can be seen in Fig. 8(a), where a crossline section of the data shows amplitude differences from one subset to another.

In practice, those observations of phase and amplitude mismatch between the six subsets of data prevent prevents us from directly
combining them in a full single single data set. One option could have been to consider the six subsets of data independently, hence increasing
the total computational cost of the inversion by a factor of 6. To avoid this additional cost, we choose to correct the data before inversion, thanks
to the common receiver locations between the coarse and the dense acquisition geometries. Taking advantage of having several common
receiver locations between the coarse and the 6 subset of dense grid acquisitions, we can compute a matching filter aiming at transforming
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1022 T.M. Irnaka et al.

Figure 6. Signal (orange) and noise (blue) spectrum together with its standard deviation of Ettlingen Line 9C seismic data (a). SNRdB of the seismic data (b).
The good signal (SNRdB > 27) ranging from 15 Hz (green line) to 145 Hz (red line). We started our FWI from 3 Hz (orange line) based on the strong coherent
signal. They grey hatches represents unreliable SNR estimation.

Figure 7. Seismic data before data correction (a) shows traveltime shift between acquisition subsets, and after data correction (b) where the data is more
consistent.

Figure 8. Seismic data before data correction (a), and after data correction (b). This seismic line is taken from the first crossline on the first source location on
UZ component. Red vertical lines represent acquisition subset separation. Consistency improvements can be seen on the corrected data.

our dense grid data to match the coarse grid data. The matching filter technique relies in the solution of a linear deconvolution problem,
similar to the source–time function estimation in FWI proposed by Pratt (1999) and elastic correction towards acoustic data by Agudo et al.
(2018). The detailed formulation of the matching filter technique used for the data correction is shown in Appendix A. The main idea lies in
correcting dense grid data di, sc, s, j, sr(t) to match the coarse grid data ci, sc, j, sr(t) through the convolution with an optimal filter fi, sc, s(t)

ci,sc, j,sr (t) = di,sc,s, j,sr (t) ∗ fi,sc,s(t), (2)

where ∗ is the temporal convolution operator, i is the source location index from 1 to Ns, sc is the source component index with sc ∈ {U,
V, W}, j is the receiver location index from 1 to Nr, sr is the receiver component index with sr ∈ {X, Y, Z}, and s is the acquisition patch
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3-D FWI for Ettlingen Line 1023

index from 1 to Na. In these notations, Na is the number of acquisition patches, Ns is the number of source locations and Nr is the number of
receiver locations.

This matching filter approach corrects both time and amplitude discrepancies. Fig. 7(b) shows a time shift correction from the matching
filter, Fig. 8(b) shows an amplitude correction between each patch of acquisition. Although this strategy improves the data consistency, we
also observe that it increases the noise level, especially on the data with lower SNR. However, the noise before the first arrival can be muted
during the inversion.

After this correction, we can gather the six subsets of data in a full consistent data set and therefore avoid any computational overhead
during the inversion.

Now that we have introduced the target, the acquisition details, and the pre-processing strategy, we present an overview of the applied
methodology to invert the Ettlingen data.

3 F W I M E T H O D O L O G Y

The modelling and inversion tool this study is based on follows the development and implementation of Trinh et al. (2019b). We present in
the following a short version of this theory and implementation, before discussing more in details about the specific points required in this
shallow-target study.

3.1 Modelling of elastic and viscoelastic waves with spectral elements

The general viscoelastic wave equations are

ρ∂t t ui = ∂ jσi j + fi ,

σi j = Mi jkl ∗t εkl + Ti j , (3)

where ρ is the density, u is the displacement field, σ and ε are the second order stress and strain tensors, f is the external force, and T is the
external stress. The effect of the attenuation is denoted by a relaxation rate Mijkl, and symbol ∗t represents a convolution operator in time
domain between the fourth order tensor and second order tensor. We follow Einstein convention (summation over repeated indices) for these
equations.

In a purely elastic wave propagation we have Mijkl(x, t) = cijkl(x)δ(t), and eq. (3) simplifies into

ρ∂t t ui = ∂ jσi j + fi ,

σi j = ci jklεkl + Ti j , (4)

where cijkl is the elastic (unrelaxed) stiffness-coefficient.
In our application, isotropic medium are considered, leading to only two independent parameters in the cijkl tensor (for instance the

Lamé parameters, or P-wave and S-wave velocities). Two quality factor QP and QS are used for P and S body waves when viscous media are
considered. We approximate this attenuation by classically introducing a set of L standard linear solid (SLS) mechanisms, adding ordinary
differential equations (ODE) and the memory variables ψ s; ij in eq. (3) resulting in

ρ∂t t ui = ∂ jσi j + fi ,

σi j = ci jklεkl − cR
i jkl

L∑
s=1

ψs;i j + Ti j ,

∂tψs;i j + ωsψs;i j = ωs ysεkl , (5)

where the scalar ys is the dimensionless anelastic coefficient (Yang et al. 2016b).
Eq. (5) is discretized and solved using a finite element method, so-called spectral element method (SEM, Patera 1984). The SEM

relies on weak formulation of the second-order wave equation. The seismic wavefield discretization is based on Lagrange interpolants, and
the integration over elements is based on Gauss–Lobatto–Legendre (GLL) integration points. The medium is discretized using hexahedral
elements. After discretization, the elastic wave equation can be represented as

M∂t t u = −Ku + F, (6)

where M and K are the mass and stiffness matrices, and F is the source term. In SEM, M is diagonal by construction, which makes it possible
to use an explicit time discretization scheme efficiently. The second-order Newmark time integration method is used in our implementation.
The computationally demanding step is the product between the displacement vector and the stiffness matrix (Ku, Komatitsch et al. 2000;
Trinh et al. 2019b). This product can be calculated efficiently using a matrix-free implementation based on the factorization

K = DwCD, (7)
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1024 T.M. Irnaka et al.

where D stands for the spatial derivatives of a vector in the Cartesian space, Dw is the spatial derivative weighted by GLL weights (Deville
et al. 2002; Trinh et al. 2019b) and C the discrete stiffness tensor (making use of the Voigt notation to reduce the fourth-order tensor to a
second-order tensor).

When considering the viscoelastic second-order wave equation, the SEM discrete formulation can be written as

M∂t t u = −Ku + DwC R
L∑

s=1

ψs + F,

∂tψs + wsψs = ws ysε.

(8)

where CR is a relaxed discrete stiffness tensor which involves the quality factor coefficients QP and QS. See Trinh et al. (2019b) for more
details.

3.2 Inverse problem

FWI is formulated as a minimization problem, which uses a least-squares misfit function f(m) for m measuring the discrepancy between the
calculated data dcal(m) and the observed data dobs as

f (m) = 1

2
‖dcal(m) − dobs‖2 . (9)

This inversion minimizes f(m) by updating the model parameters m, which gather the density ρ and any combination of the stiffness tensor
coefficients Cij. The calculated data dcal(m) is obtained through the solution of the viscoelastic equations (8) and the extraction of the wavefield
values at the receiver locations. The inversion is conventionally solved using Newton-based methods, which starts from an initial model m0

and iteratively update m as

mk+1 = mk + αk�mk , (10)

where k is the iteration number, αk is the step length obtained using a line search method (Nocedal & Wright 2006) and �mk is the
model parameter update. The quasi-Newton limited-memory Broyden–Fletcher–Goldfarb–Shanno (l-BFGS) approach is used in this study
to compute �mk.

An adjoint-state method is used to compute the gradient ∇f(m) (Plessix 2006), leading to a zero-lag cross-correlation between the adjoint
displacement field l(m) (solution of the adjoint viscoelastic wave equations) and the incident acceleration field ü(m) plus an additional term
related to the memory variables ψ s as

∇ f (m) = ∂χ (m)

∂m
=

〈
l(m),

∂C

∂Ci j
ü(m)

〉
−

〈
l(m),

L∑
s=1

∂C R

∂Ci j
ψs

〉
. (11)

For purely elastic media, the second term of the right-hand side of course vanishes.
The gradient with respect to any parameter p, function of the density and the stiffness matrix coefficients Cij can be determined following

the chain-rule as

∂ f (m)

∂p
=

6∑
I=1

6∑
J=1

∂ f

∂Ci j

∂Ci j

∂p
+ ∂ f

∂ρ

∂ρ

∂p
, (12)

In our implementation, the incident wavefield is first stored on disk at the Nyquist sampling frequency while it is computed. It is then
read from disk to build the gradient while computing the adjoint field. This strategy, which takes benefit from high-speed disks, appears
to be the best compromise for our application compared to various flavors of check-pointing strategies that requires some recomputations
(Griewank & Walther 2000; Symes 2007; Anderson et al. 2012; Komatitsch et al. 2016; Yang et al. 2016a).

The inversion generally requires regularization strategies in practice. Our implementation relies on a gradient smoothing through
anisotropic Bessel filter (Trinh et al. 2017) implemented directly with a SEM formulation.

3.3 Multiparameter inversion strategy

Inverting shallow-seismic data with limited offset comes with inherent challenges. Even in a simple model, the surface wave can exhibit a
complex waveform due to its dispersive behavior. The surface wave dispersion implies the medium properties at different depths depending on
the data frequency content. Low-frequency surface wave has a deeper penetration depth and brings low wavenumber content. High-frequency
surface wave brings higher-resolution information, however, at a shallower depth. This complex behavior can quickly drive the inversion
towards local minima (cycle skipping at a higher frequency). To avoid this problem, we follow a standard multiscale approach, where the
inversion is carried out from the lowest frequency band to the broader frequency band (Bunks et al. 1995). The multiscale approach is a safer
strategy compared to layer-stripping strategy. The layer-stripping strategy by Liu & Peter (2019) requires a careful combination between the
offset and the frequency.
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3-D FWI for Ettlingen Line 1025

In this shallow-seismic imaging context, the frequency range of a typical 4.5 Hz geophone is sufficiently low to avoid cycle-skipping.
Considering a rough approximation of the target with an homogeneous model (VP = 260 m s−1 and VS = 150 m s−1) and the lowest available
frequency at 4.5 Hz, only one half P-wavelength and one S-wavelength propagate across the the whole target. With such rich low-frequency
content, with respect to the target, the multiscale approach is sufficient to avoid any cycle skipping issues throughout the inversion (which is
much different from exploration scale targets). However, this strategy does not solve the problem of the unbalanced sensitivity between VP

and VS on the surface wave dominated data. On the exploration scale, with a sufficiently large offset, one can perform a dynamic windowing
strategy, in which the body and the surface waves can be separated (He et al. 2019; Trinh et al. 2019a). This approach is not feasible for
our case study due to the strong response of surface wave and a direct multiparameter inversion is not ideal because it would led to an
under-constrained VP inversion.

For this reason, we design a specific two steps strategy. In the first step, we invert only for VS, however, updating also for VP by strictly
enforcing an assumed linear relationship between VP and VS. This first step is denoted as the parameter binding strategy in the following.
In the second step, we perform a true multiparameter inversion, updating simultaneously both VP and VS, while incorporating non-linear
constraints to bound not only VP and VS values, but also the ratio of VP over VS.

More in details, the parameter binding strategy assumes the linear relationship

VP (x, y, z) = γ (x, y, z)VS(x, y, z) (13)

If we consider that we invert for VP and VS we can denote the FWI misfit function f(m) as f(VP, VS). The parameter binding strategy
consists in considering

g(VS) = f (γ VS, VS) (14)

as our misfit function, depending only on VS.
The gradient of g(VS) can thus be written as

∇g(VS) = γ ∂VP f (VP , VS) + ∂VS f (VP , VS). (15)

We see that it can be directly computed from the gradient of f with respect to VP and VS. Implementing this strategy makes it possible to
perform FWI that simultaneously updates VP and VS based on the scaling parameter γ .

This parameter binding strategy makes it possible to perform stable FWI in shallow-seismic case, but the relation between VP and VS

(γ ) remains fixed during the inversion. With the limited knowledge of the true γ , FWI with parameter binding can lead to an incorrect model
update. The second step of multiparameter inversion is used to mitigate this issue. To stabilize this multiparameter inversion, we apply bound
constraints on VP, VS and VP/VS. The bound for each of these quantities parameters can be deduced from the prior geological knowledge of
the area. Enforcing these bounds amounts to define a set of non-linear constraints, as is done in Peters & Herrmann (2017) and Trinh et al.
(2019a).

The non-linear constraints inversion is formulated as a minimization of the misfit function f(m) over a restricted model space � which
simultaneously satisfies:

(i) Bounds constraint C1: VP and VS should vary within a pre-defined range

C1 = {VP , VS,

VPmin ≤ VP ≤ VPmax and

VSmin ≤ VS ≤ VSmax }, (16)

(ii) Ratio constraint C2: The value of VP/VS should vary within a pre-defined range

C2 = {VP , VS, r1 ≤ VP/VS ≤ r2}, (17)

where VP , VS ∈ C1 ∩ C2.
In terms of the non-linear constraint, the projected parameter of VP and VS can be determined by solving the following equation

minVP ,VS f (VP , VS) = (VP − VP )2

V 2
P

+ (VS − VS)2

V 2
S

,

subject to r1 ≤ VP/VS ≤ r2, (18)

where VP and VS is the updated VP and VS value given by the optimization for each iteration, VP and VS represent a projected value with
respect to the r1 and r2 boundary.

Trinh (2018) uses the Dykstra’s algorithm to solve this non-linear model constraint (Boyle & Dykstra 1986). This approach is used
in our experiment to obtain a reasonable multiparameter inversion for the shallow-seismic application. Appendix B contains more detailed
information regarding the non-linear model constraint and the Dykstra’s algorithm.

This non-linear constraint strategy is crucial because the VS gradient is still strong, even after the first inversion with parameter binding
strategy. Another reason is the limitation of VP information inside the data itself (weak early body wave arrivals are recorded). Although VP

can be recovered from the surface wave, as Irnaka et al. (2018) had demonstrated it on a synthetic case, with the influence of the noise level
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1026 T.M. Irnaka et al.

Figure 9. Seismic section on the first source location with U source direction. This seismic section is used to estimate the VP for the homogeneous initial
model. Red dashed line represents the direct P-wave arrival from the estimated homogeneous model.

and the accuracy of the acquisition, the information about VP from the gradient remains weak compared to the information about VS. Another
source of VP update is the body wave or P wave, which can be seen on the data. This body wave feature is masked by the strong surface wave
at low frequency, and this information is difficult to retrieve. At higher frequency, the body waves are well separated from the surface wave
(see Fig. 9). Without proper estimation of the VP at the low frequency, the multiparameter inversion has difficulty in estimating the correct VP

at the higher frequency cycles.
Our approach tries to find a balance between FWI with parameter binding and FWI with multiple model constraints. We want to ensure

that we would get the update of both parameters VP, VS and VP/VS for each cycle. The new value of VP/VS is used as the input parameter for
the next frequency band of FWI with parameter binding. It is essential to note that for both FWI steps, we only use top window muting to
reduce the matching filter artifacts before the first arrival. With this approach, we take all available information of both VP and VS from each
frequency band.

3.4 Implementation: SEM46 code

The methodology that we have described has been implemented in the SEM46 package. This is a 3-D viscoelastic full waveform modelling
and inversion tool based on the spectral element method and the SEISCOPE optimization toolbox (Métivier & Brossier 2016) written in
Fortran (Trinh et al. 2019b). SEM46 is based on a simple Cartesian-based mesh design, well suited for efficient parallel computing. The
specific multiparameter inversion strategy described previously has been implemented for this study based on the SEM46 package.

4 F W I A P P L I C AT I O N T O T H E E T T L I N G E N L I N E

We use a hierarchical approach based on frequency continuation, and for each frequency band, the two steps approach based on parameter
binding, then non-linear model constraints are applied (Fig. 11).

4.1 Initial model building

The Ettlingen Line has a simple geology and flat topography. Our goal is to have a simple but consistent starting homogeneous velocity model.
To design it, we pick the first P-wave arrival at the longest offset on inline seismic section (Fig. 9). From this arrival, we estimate a

homogeneous VP model directly, resulting in a value of 345 m s–1. We estimate the other elastic parameters (VS and density ρ) using a fixed
Poisson’s ratio ν = 0.25 and the Gardner relationship

ρ = 0.31V 0.25
P , (19)

resulting in VS = 199 m s−1 and ρ = 1336 kg m−3. This fixed Poisson’s ratio of ν = 0.25 might be a bit low for shallow sediment, but as will
be shown in the following, this does not affect the inversion result reliability. For the density, even if Gardner relationship is established for
sedimentary rocks, we do not reconstruct the density in our scheme and the constant value remains fixed along the process. It is worth noting
that in the case of constant density, the value of density only affects the amplitude of the seismic signal, which is corrected by the source–time
function inversion.

An initial attenuation model is obtained based on the previous experiment of Gao et al. (2020) on the same target, who have implemented
multimode surface waves Q estimation (Gao et al. 2018). The QS model is 12 for the first 1 m depth. Then it linearly increases up to 80 until
5 m depth and remains constant from this depth. A constant ratio of 1.5 is chosen to estimate QP from QS based on Hauksson & Shearer
(2006). Even if this ratio has been obtained from a crustal scale study, it remains consistent with the amplitude decay trend of the P wave in the
data. In Fig. 10, we show a scatter plot of the P-wave amplitude versus offset (after geometrical spreading correction and a narrow bandpass
filter between 50 and 80 Hz), obtained from our data, with the theoretical amplitude decay given a constant QP model based on Kjartansson
(1979) model (using a constant VP of 170 m s−1 at 65 Hz). This figure clearly shows that a QP value between 10 and 20 is required to match
observations, validating our choice of QP model derived from QS.
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3-D FWI for Ettlingen Line 1027

Figure 10. Normalized amplitude of P wave with respect to the offset drawn as the scatter plot on a narrow band-passed data centred at 65 Hz. The line plots
represents theoretical amplitude decay given a constant QP model based on Kjartansson (1979) at 65 Hz. A geometrical spreading correction is applied prior
to normalization.

During FWI, only VP and VS are reconstructed; the density ρ, QP and QS models has been considered as passive parameters. These
passive parameters are used for the modelling, but their values are not updated.

4.2 Source wavelet estimation

We assume to have directional point sources (U,V,W) with known and fixed source direction for each location (Table 1). We assume to
have equivalent source energy and fixed source location. Note that we kept the original direction of the Galperin source (U,V,W) in the
whole workflow to avoid the additional step of source-component rotation that would require a specific inversion problem. To estimate the
source–time functions, we follow a strategy with three steps: raw source–time function estimation for each source location and direction
using a standard deconvolution operation (Pratt 1999), amplitude normalization to equalize the amplitude contribution of each source, and
spatial weighting average to reduce the local effect and overestimation of the source. The technical details of the source estimation are given
in Appendix C. These steps produce a single-source–time functions for each location and direction of the source, making a total of 108 source
signals.

4.3 Multiscale strategy with two steps inversion

The lowest frequency band we start with is 3–15 Hz. We increase the frequency band by 10 Hz increments at each FWI stage. In total, we
perform six FWI stages. The highest frequency band in this experiment is thus 3–65 Hz. This upper frequency limit is associated to the
computational cost of the forward problem, which scales to the power 4 of frequency. This increase of computational demand with frequency
limited our ability to go to higher frequencies given our available computing resources.

For each frequency band, we apply the multiparameter inversion strategy described in the previous section (Fig. 11). The first step is an
inversion with parameter binding, and the second step is non-linear model constraint multiparameter inversion. We specify the initial γ as
a fixed value of 1.732 (which corresponds to the constant Poisson’s ratio ν = 0.25). The parameter γ , which constraints VP with respect to
VS with the relation of VP/VS, is updated each time the non-linear model constraints multiparameter inversion is carried out. The lower and
upper boundary values we use are 100 and 2000 m s−1 for VP, 50 and 800 m s−1 for VS, respectively. The lower and upper boundary values
for the ratio between VP and VS are 1.633 and 10, respectively. A short offset data muting up to 1.5 m offset is applied to remove signal with
clipped amplitude. An additional top window muting is used to remove a strong noise on some part of the data, which might be increased by
the matching filter correction.

In terms of numerical optimization parameters, we set the maximum line search trials to 20, and the number of stored gradients for
l-BFGS to 10. The Bessel filter-based gradient smoothing uses coherent lengths of 0.1λ, 0.7λ and 0.7λ in vertical, inline, and crossline
direction, respectively, where λ is the local wavelength computed from the local velocity and dominant frequency. The non-linear l-BFGS
is preconditioned with a diagonal matrix whose entries are the depth to the power of two, in order to mimic the inverse Hessian operator
effects.

4.4 Model reconstruction

Fig. 12 shows the evolution of the reconstructed models. We present VS on the top row, VP on the middle row, and Poisson’s ratio ν on the
bottom row. The Poisson’s ratio is calculated from the reconstructed VP and VS. The columns represent the updated model throughout the
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1028 T.M. Irnaka et al.

Figure 11. The proposed FWI Workflow for shallow-seismic application. We test this workflow with 9C data on Ettlingen Line case.

Figure 12. Reconstructed parameters (VS at the top row, VP at the middle row, and ν at the bottom row) at 1 m depth section. Each column is associated with
a specific FWI stage (initial model on the 1st column, 3–25 Hz band on the 2nd column, 3–45 Hz band on the 3rd column, 3–65 Hz band on the 4th column).
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3-D FWI for Ettlingen Line 1029

Figure 13. A horizontal slice of reconstructed VS (a) and Poisson’s ratio ν (b) at 1 m depth shows clear presence of the Ettlingen Line trench as well as a
trench-like structure with north–south direction (top panel). Vertical slice of reconstructed VS perpendicular (middle panel) and parallel (bottom panel) with
the direction of Ettlingen Line.

different FWI stages, starting from the initial model on the left, 3–25 Hz band on the 2nd column, 3–45 Hz band on the 3rd column, and the
final 3–65 Hz band on the 4th column. All 3-D views are presented with a 1 m depth section. The locations of the sources are indicated as red
points on the initial models.

We observe a gradual reconstruction of the Ettlingen line structure through the frequency continuation strategy. On lower frequency
bands (up to 25 Hz), the updates are mainly dominated by the background velocity update, which corresponds to a vertical velocity gradient.
This vertical velocity gradient can be observed in the final vertical section, as shown in Fig. 13.

The Ettlingen Line, which corresponds to the low VS and VP velocity zone appearing at 1 m depth, oriented along the diagonal of the
model, starts to be visible at 45 Hz. We also observe the appearance of a second low-velocity zone aligned with the crossline direction at this
frequency at the eastern part of the model.

As expected, the Poisson’s ratio is constant at the beginning of the inversion, while the multiparameter workflow we design allows us
to relax the linear relationship initially imposed between VP and VS. Higher values of the Poisson’s ratio (close to 0.4) along the two trench
structures are consistent with their interpretation as less consolidated zones.

In overall, the update is rather weak at very shallow depth (Fig. 13). This observation can be associated with the smoothing
and pre-conditioner effect. The current pre-conditioner choice might not be strong enough to drive a significant model update in this
region.

4.5 Quality control: data fit

The inversion use the original UVW source component without any data rotation. In order to analyse the data fit, we do not perform any
additional data rotation that would introduce another inverse problem with its own bias. In Fig. 14(a), we present a comparison between
the 9C observed data (grey traces) and the 9C synthetic data calculated in the initial model (red traces) on the last frequency band (3–
65 Hz). Both data are recorded using the source at the location inline 0 m and crossline 16 m for all nine components. The displayed
seismic data is the seismic data with inline direction. The source orientations are represented in the row (U,V,W), and the receiver
components are represented in columns (Z,X,Y). We perform a trace by trace normalization in order to better see the fit at a longer
offset.

In this figure, we see clearly that the strong surface wave dominates the waveform. Although the homogeneous model produces a simple
waveform propagation, we still observe a good surface wave matching and no evidence of cycle skipping. This good match is an indication
that starting from a homogeneous model is feasible in this context.

In Fig. 14(b), we perform the same comparison, however, the synthetic is calculated using the final reconstructed VP and VS models. We
can observe a significant improvement in the data fit in all components. The vertical components (first column), in which the waveforms are
the least complex, have a better match than the horizontal components. In this seismic section, the Ettlingen Line is located approximately
between traces number 10 and 20. Between those traces, we can observe that the FWI can reconstruct the small perturbartions in the recorded
data. Starting from a homogeneous model, we observe the possibility to obtain a satisfactory data fit.
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1030 T.M. Irnaka et al.

Figure 14. Comparison between 9C observed data (grey) and 9C calculated data (red) in (a) the initial model (b) the reconstructed model in inline direction
at y = 16 m. The source is location at x = 0 and y = 16. A trace by trace normalization is used to plot the data. The larger overlap between red and grey in the
final model shows a better data match.

5 D I S C U S S I O N A N D I N T E R P R E TAT I O N

5.1 Model interpretation

Several experiments at the Ettlingen Line have been performed with different approaches and methods. A 3-D GPR experiment has been
performed by Wegscheider (2017), and 2-D elastic FWI from 2-D seismic data has been led by Wittkamp et al. (2018). A 3-D MASW has
also been performed by Pan et al. (2018) using the same data.

Fig. 15 shows a comparison between these results. In Fig. 15(a), an overlay between the GPR results and the 2-D VS model obtained
by Wittkamp et al. (2018) is presented. GPR measurement shows an inverted triangle shape in the middle of the section, interpreted as the
Ettlingen Line. The 2-D FWI was carried out using joint inversion from both Rayleigh and Love waves up until 130 Hz. The low-velocity
anomaly represents the remnant of the Ettlingen Line in the middle of the model. The sharp boundary and shallow model reconstruction
can be seen thanks to the higher frequency inversion. In Fig. 15(b), the corresponding 2-D slice extracted from the 3-D MASW VS model
is presented. In Fig. 15(c), we present the corresponding slice of the VS model that have been reconstructed through 3-D multiparameter
viscoelastic FWI.

Although we do not recover the high resolution coming from both GPR and high-frequency surface waves from Wittkamp et al. (2018),
we can still locate the VS anomaly at a similar location. This result is also in agreement with the MASW result, with, in our case, a significantly
higher resolution, as expected. It is important to be noted that the previous 2-D FWI experiment presents a sharper results due to the higher
frequency content which is considered compared to our experiment.

However, our approach added value relies on the fact that we estimate 3-D models, both for VP and VS. Both our reconstructed VP and
VS show a distinct presence of the low-velocity anomaly. Analysing the model from the final frequency band, we can infer the geometry of
the trench. It has a consistent northwest–southeast direction, with a width of around 5 and 2 m depth.

Interestingly, we can also observe an additional low-velocity anomaly of an orientation parallel to the crossline direction, with a similar
trench-like structure. It is shallower than The Ettlingen Line, around 1.5 m deep, with 2–3 m width. This low-velocity anomaly is visible
on the previous 2-D FWI (Fig. 15a) at a distance of around 30–35 m. However, given the location of the structure close to the edge of the
acquisition, it had previously been interpreted as a probable artifact. Our 3-D reconstruction shows that this low-velocity zone has a consistent
structure along the north-south direction, making it more likely to be an actual feature of subsurface structure. We do not know what the
historical significance of this eastern trench-like structure is.

On the MASW result, the indication of this trench-like structure is much weaker due to the lower resolution of the 3-D estimation.
However, its presence can be guessed from the smearing of the low-velocity anomaly in the southeast part of the model (Fig. 16a).

Our multiparameter reconstruction also makes it possible to better describe the physical properties of the target. In geotechnics, VS is
often used as a proxy of the soil compactness of the medium. Given the similar type of soil material in this experiment, lower VS means a
lower compaction degree. Thanks to our multiparameter inversion, we can also calculate the value of the Poisson’s ratio ν from the relation
between the reconstructed VP and VS. The Poisson’s ratio can give an estimation of water saturation tendency beside the compaction level.
Within the trenches, we can see a variation in Poisson’s ratio. Assuming similar material was used to level the trench, the higher Poisson’s
ratio might correlate with higher water saturation. It can be observed at the northwest part of the Ettlingen Line (Fig. 12 l). The variation
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3-D FWI for Ettlingen Line 1031

Figure 15. Vertical section of 3-D GPR and 2-D elastic joint inversion of Love and Rayleigh wave result taken from Wegscheider (2017) and Wittkamp et al.
(2018) (a), 3-D MASW by Pan et al. (2018) (c) and 3-D elastic FWI starting from homogeneous model (c). The colour-scale on (a) is unscaled, blue means
lower velocity and yellow means higher velocity.

Figure 16. 3-D VS from previous MASW study by Pan et al. (2018) (left-hand panel) and this study starting from homogeneous initial model (right-hand
panel). Red line represents the location of the GPR line on Fig. 15.

in Poisson’s ratio can also be interpreted as denoting the presence of fine heterogeneities inside the trench. The second eastern trench-like
structure does not show similar Poisson’s ratio variations, which indicates a probably more similar soil material within the trench.

In Fig. 13, we present horizontal and vertical sections of the 3-D model of the Ettlingen Line. The figures on the left (Fig. 13a) represent
VS, and the figures on the right (Fig. 13b) represent ν. These figures give a better view of the geometry of the trenches. The Ettlingen Line
has a width ranging from 4 to 6 m, and a depth ranging from 2 to 2.5 m. This geometry is in accordance with the current existing Ettlingen
Line section and illustration in Lang et al. (1907). The shape of this trench is also comparable to the trench during the First World War (Lynn
2013; Bull 2014).The VS profile of the inline vertical section gives information that the Ettlingen Line structure is continuous throughout the
model. The VS of the Ettlingen is lower than the surrounding, below 140 m s–1. The other trench-like structure is also continuous on the final
reconstructed VS. Comparing to the Ettlingen Line, the structure is not as straight and the width is narrower and shallower. It is around 2.5
and 1.5 m for width and depth, respectively. The VS on the other trench-like structure is slightly higher than the one inside the Ettlingen Line.

Fig. 13(b) shows the final reconstructed Poisson’s ratio at 65 Hz. In addition, higher Poisson’s ratio at the trenches’ location due to the
different materials, compactness, or water saturation level, we observe an interesting behavior at a depth of 4–5 m. There is a Poisson’s ratio
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1032 T.M. Irnaka et al.

Figure 17. Horizontal slice of the inversion result at 1 m depth for both VP (top row) and VS (bottom row) use different initial models. Left slices represent
final velocity model at 65 Hz starting from homogeneous model; whereas right slices represent final velocity model at 65 Hz starting from MASW VS model.

contrast at this depth, from low to high value. This feature probably depicts a possible higher water saturation or even the ground-water level
in the area, which was mentioned by Pan et al. (2018) at around 7.5 m depth.

5.2 Is it reasonable to start from a homogeneous model?

Initial model building is one of the key aspects of ensuring the FWI efficiency and can be a highly time-consuming step of the FWI workflow.
We used an initial homogeneous model, computed from very crude assumptions, advocating that the usable frequency content of the signal
compared to the target’s size was preventing in this case from any cycle skipping effects.

We perform an additional experiment to validate this assumption, where we use the 3-D VS MASW model from (Pan et al. 2018) as an
initial model. We cut the model below 7 m depth, where a strong interface exists from the MASW result. Then we extrapolate the velocity
value from the depth of 6.5 m. A fixed Poisson’s ratio of 0.25 is used to estimate the VP. As we used previously, the same Gardner relationship
is taken to estimate the density from the initial model.

We then apply the same workflow we used using the homogeneous initial model. The reconstructed VP and VS from both starting models
are presented in Fig. 17. The difference between both reconstructed model can be estimated by calculating the average difference values
between two models divided by the average value of the mean model. We obtain 7 per cent differences between both models, which confirms
the fact that considering this type of target, with a sufficiently good quality data, a complex initial model building relying on tomography or
analysis of surface wave dispersion is not needed. This observation is important for future near-surface FWI studies as it simplifies the FWI
workflow greatly.

5.3 Elastic or viscoelastic FWI?

In Figs 18 and 19, we present the reconstructed VS and VP velocities using both elastic (a and c) and viscoelastic modelling (b and d) on two
different frequency bands (65 Hz at the top and 45 Hz at the bottom), starting from the homogeneous initial model. The inversion on the
highest frequency band (65 Hz) generates significantly different models close to the surface.
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3-D FWI for Ettlingen Line 1033

Figure 18. Horizontal slice of VS from the FWI at 1 m depth for FWI with elastic medium (left-hand column) and viscoelastic medium (right-hand column).
Top row images are the reconstructed VS at 65 Hz, whereas 45 Hz for the bottom row images.

We present several seismograms comparing the synthetic data obtained using elastic and viscoelastic FWI with the observed data
(Fig. 20). The amplitudes are normalized based on the maximum amplitude of each seismic section longest offset. We can see that the
waveforms predicted from the two models are quite similar, showing that inversions converged towards equivalent model from the data fit
side.

While sharing a similar background model, the elastic FWI result display some additional smaller-scale features. Contrary, the viscoelastic
results exhibit a smoother and more spatially consistent aspect, with slightly higher velocity values. We also note that the divergence between
elastic and viscoelastic FWI results appear only on the largest frequency band. Results obtained at 45 Hz are reasonably similar.

The similarity of the data fit, combined with small scale feature appearing in elastic inversion only at higher frequencies and well known
intrinsic attenuation effect of shallow subsurface make us prefer parsimonious viscoelastic results and therefore suspect that small-scales
feature of elastic inversion would be rather artifact, as already been shown in various FWI application at different scales (for instance in
Kamath et al. 2020).

5.4 Other limitations and prospects

This study demonstrates the 3-D FWI application on the Ettlingen Line using 9C seismic data. However, there are several limitations related
to the two-step strategy, initial model, source–time function, data coverage, and modelling approach. It is essential to discuss these limitations
better to understand the advantages and disadvantages of our approach.

The two steps FWI (parameter binding and non-linear model constraint) are able to reconstruct VP and VS but leads to an increase in the
relative computational cost related to the two FWI. The reconstruction of VP itself is rather limited due to the stronger influence of VS in the
surface wave and the lack of P-wave information in the data.

The source–time function is one of the keys in obtaining a good model reconstruction during FWI. Our experiment assumes a known and
fixed direction of the source–time function (Table 1). We have minimized the local dependency of the source–time function by performing
normalization and the spatial weighting, but with better source estimation, we have potential to improve the result.
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1034 T.M. Irnaka et al.

Figure 19. Horizontal slice of VP from the FWI at 1 m depth for FWI with elastic medium (left-hand column) and viscoelastic medium (right-hand column).
Top row images are the reconstructed VP at 65 Hz, whereas 45 Hz for the bottom row images.

Figure 20. Synthetic data using elastic and viscoelastic medium compared with the observed data. The trace is normalized based on the maximum absolute
amplitude of the longest offset data. The seismograms with the amplitude which overlapped with the neighboring seismogram are clipped.

Good coverage of sources and receivers also plays an essential factor in the accurate model reconstruction. The receiver spacing (1 m),
which is way less than the target (∼5 m) width, ensures the information redundancy in terms of data, therefore enhancing the signal and
helping the inversion. The availability of 9C data can also contribute towards the improvement of the model reconstruction. A more detailed
study regarding multicomponent data and source and receiver setup is currently ongoing.

6 C O N C LU S I O N S

We demonstrate an application of 3-D FWI for shallow-seismic scale. The target is the Ettlingen Line, an ancient war-trench built during the
War of The Spanish Succession in 1707.
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3-D FWI for Ettlingen Line 1035

With a limited number of equipment, we perform a 3-D dense acquisition patch by patch. Our objective is to interpret the data set as a
whole, as if all the data subsets would have been recorded at the same time. This data correction can be performed using matching filter. This
process decreases the potential computational cost (up to a factor 6 in our case) since the data can be treated as a single 3-D dense acquisition.

The FWI follows a multiscale approach with two specific strategies for each frequency band (the parameter binding and the non-linear
model constraints). The inversion is performed up to 65 Hz with two initial models (homogeneous and MASW) and modelling approaches
(elastic and viscoelastic). The result shows that we can start from a homogeneous initial model, thanks to sufficient low-frequency data. On
the aspect of the modelling approach, both elastic and viscoelastic approaches are comparable up to 45 Hz. At higher frequency, we observe
differences between both approaches, where the elastic modelling produces some additional small scale features. We hypothesize that these
additional features in elastic FWI are artifacts due to the inappropriate physical model assumption, thus advocating for the use of viscoelastic
FWI.

Utilizing FWI for a shallow seismic scale with a limited offset requires a proper strategy. In shallow seismic scale, the seismic data
has generally sufficient low-frequency content with respect to the scale of investigation. This fact enables to use less accurate initial model,
compared to what is required at the crustal scale for example. The dominant imprint of the surface waves can be mitigated by using a proper
hierarchical strategy. A first step focusing on VS reconstruction is performed, without involving VP which would be underconstrained. Then,
the two-parameters can be reconstructed simultaneously once the surface wave is well predicted by the updated VS. This strategy requires
however two inversions for each frequency scale, which lead to more computational cost. The reliability of the strategy that we proposed is
assessed by considering two different physical model assumptions and two different initial models, and also discussed with respect to previous
geophysical investigations in the same area.

From the archaeological point of view, our 3-D FWI results have reconstructed a high-resolution (up to 65 Hz) historical trench. The
shape and geometry of the Ettlingen Line can be recovered. The width of the Ettlingen Line is around 5 m, and the depth is around 2 m. We
are also able to reconstruct another trench-like structure, which was not detected previously. This structure width is around 3 m, and the depth
is around 1.5 m.

With the successful application of FWI using 9C seismic data in the Ettlingen Line, we would like to expand our study to analyse
the interest in using multicomponent data and each component contribution. Studying multicomponent data might allow us to better design
strategies for acquisition, data processing and the FWI at such a scale.
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Geophys., 65(2), 84–96.
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A P P E N D I X A : DATA C O R R E C T I O N U S I N G M AT C H I N G F I LT E R

The 3-D seismic acquisition in the Ettlingen Line was performed using two different acquisition grids, the coarse and dense grid acquisition.
The dense grid acquisition was performed part by part due to limited number of equipment. This type of acquisition raises some difficulties
related to the potential differences in source-ground coupling, trigger time and surface condition. Our recorded data shows that this type of
acquisition introduces discrepancies in terms of the amplitude and phase between receivers from different acquisition subsets. This discrepancy
can be mitigated by taking advantage of the coarse grid acquisition that share acquisition locations with dense grid and the matching filter
technique. In our experiment, some receivers locations are common between both acquisition grids. A matching filter fi, sc, s(t) can be computed
such that the dense grid data di, sc, s, j, sr(t) is matched to the coarse grid data reference ci, sc, j, sr(t)

ci,sc, j,sr (t) = di,sc,s, j,sr (t) ∗ fi,sc,s(t), (A1)

where ∗ is the temporal convolution operator, i = is source location index from 1 to Ns, sc = is source component index with sc ∈ {U, V, W},
j = is the receiver location index from 1 to Nr, sr = is receiver component index with sr ∈ {X, Y, Z} and s is the acquisition patch index from
1 to Na. With such frame, one matching filter is expected per source location, source component and per acquisition patch. The computation
of this filter relies on the solution of the following linear inverse deconvolution problem

C( fi,sc,s(t)) =
∑
j,sr

1

2

∥∥ci,sc, j,sr (t) − fi,sc,s(t) ∗ di,sc,s, j,sr (t)
∥∥2

, (A2)

where C( fi,sc,s(t)) is the least-squares misfit function to be minimized. Writing the equation in the frequency domain gives

C( fi,sc,s(ω)) =
∑
j,sr

1

2

∥∥∥ci,sc, j,sr (ω) − f̂i,sc,s(ω)d̂i,sc,s, j,sr (ω)
∥∥∥2

. (A3)

The optimal solution of the matching filter minimizing eq. (A3) can be determined by zeroing its gradient, giving

∂C( fi,sc,s(ω))

∂ f̂i,sc,s(ω)
=

∑
j,sr

−d̂i,sc,s, j,sr (ω)(ci,sc, j,sr (ω)

− f̂i,sc,s(ω)d̂i,sc,s, j,sr (ω)) = 0.

(A4)
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The matching filter can be calculated by rearranging eq. (A4) into

f̂i,sc,s(ω) =
∑

j,sr d̂i,sc,s, j,sr (ω)ĉi,sc, j,sr (ω)∑
j,sr d̂i,sc,s, j,sr (ω)d̂i,sc,s, j,sr (ω) + ε

, (A5)

where ε is the stabilization factor for the matching filter. Finally, the corrected dense acquisition data di jp can be calculated through the
convolution of the rough dense grid data di jt and the filter

di jp = di jt ∗ fi,sc,s(t). (A6)

A P P E N D I X B : N O N - L I N E A R M O D E L C O N S T R A I N T S F W I

The objective of our experiment is to reconstruct simultaneously VP and VS. Parameter binding strategy which is proposed as the first step
will only reconstruct VS. While VS is updated, it depends on the hard-constrained VP/VS value. On the second step, we have a multiparameter
inversion (VP and VS). In addition to the hard-bound constraints of VP and VS, we also impose another non-linear constraint on the relationship
between VP and VS. This constraint limit the VP/VS value over a specific interval. In the case of non-linear constraint, we would like to solve
the following minimization problem

minVP ,VS f (VP ,VS) = (VP − VP )2

V 2
P

+ (VS − VS)2

V 2
S

,

subject to r1 ≤ VP/VS ≤ r2,

(B1)

where VP and VS are the updated VP and VS value given by the optimization for each iteration, VP and VS represent a projected value with
respect to the r1 and r2 boundary. eq. (B1) demonstrates that the projected value of VP and VS must be within the given interval, and the
value of VP and VS must be as close as possible with respect to the VP and VS . In order to determine the VP and VS, there exists an analytical
solution when VP/VS > r2

VP = r2VS and VS = VS VP (r2VS + VP )

(r2VS)2 + VP
2

, (B2)

and when VP/VS < r1

VP = r1VS and VS = VS VP (r1VS + VP )

(r1VS)2 + VP
2

. (B3)

Following Trinh (2018), both constraints C1 and C2 (bound constraints, ratio constraints) can be solved using Dykstra’s algorithm (Boyle
& Dykstra 1986).

A P P E N D I X C : S O U RC E E S T I M AT I O N

In shallow-seismic data where the source is manually performed by the sledgehammer, there are several potential problems affecting the
source–time function. The problems include a potential unbalance in the relative source energies and the risk to incorporate subsurface-
related contribution into the source wavelet. Those problems could lead to both unbalance contribution of each source and insensitive
inversion.

From this status, our source–time function estimation procedure is the following, for each source location and orientation:

(i) Raw source estimation si, sc(t) following Pratt (1999) approach. We assume that the data di, sc, j, sr for source location index i, source
component sc, receiver location index j and receiver component sr, can be written as the convolution between gi, sc, s, j, sr(t) the Green
function for the same set of source and receiver for an impulse Dirac delta function and si, sc(t) the source–time function di, sc, s, j, sr(t) =
gi, sc, s, j, sr(t)∗si, sc(t).
The unknown source–time function can be estimated in the frequency-domain by solving the linear inverse problem, whose misfit function is
given by

C(si,sc(ω)) =
∑
j,sr

1

2

∥∥dobsi,sc, j,sr (ω) − gcali,sc, j,sr (ω) × si,sc(ω)
∥∥2

. (C1)

Zeroing the derivative of C(si,sc(ω)) with respect to si, sc(ω) gives

si,sc(ω) =
∑

j,sr gcali,sc, j,sr (ω) × dobsi,sc, j,sr (ω)∑
j,sr gcali,sc, j,sr (ω) × gcali,sc, j,sr (ω) + ε

, (C2)

where a is the complex conjugate of a, and ε is a small value for stabilization of the deconvolution.
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Table A1. Computational cost for 3-D FWI using elastic medium approximation.

No. FWI Niter Time/∇ Seq. time Memory Storage NCPU Elap. time

1 15 Hz VS 1 3.67 7.33 7559 7197 108 0.07

2 15 Hz VS and VP 5 3.67 32.99 7559 7191 108 0.31

3 25 Hz VS 5 23.99 143.96 18 530 45 996 432 0.33

4 25 Hz VS and VP 17 23.47 610.23 18 530 45 996 432 1.41

5 35 Hz VS 9 58.98 766.70 30 472 118 541 648 1.18

6 35 Hz VS and VP 9 59.11 591.08 30 472 118 541 648 0.91

7 45 Hz VS 15 144.45 2311.14 47193 283 256 972 2.38

8 45 Hz VS and VP 15 139.28 4874.95 47 193 283 256 972 5.02

9 55 Hz VS 33 342.10 11973.38 75 037 702 491 1296 9.24

10 55 Hz VS and VP 25 337.99 10139.69 75 037 702 491 1296 7.82

11 65 Hz VS 28 473.52 13731.96 88 232 851 449 3456 3.97

12 65 Hz VS and VP 12 460.32 23936.43 88 232 851 449 3456 6.93

Note. The unit time is in hours. The total sequential CPU time (seq. time) is 69 119 hr for all frequency bands on Irene
KNL HPC (TGCC) to calculate from the homogeneous initial model. The memory and storage unit is in megabytes (MB),
and the indicated frequency is the highest frequency band starting from 3 Hz. The elapsed time (elap. time) is the time
needed to perform the FWI in parallel. Time/∇ indicated the time (in hours) needed to calculate a single gradient of misfit
function.

After estimating each frequency-domain component of si, sc(ω), the time domain si, sc(t) version is obtained by inverse Fourier
transform.
(ii) Amplitude normalization, which aims to equalize the energy contribution on each source. We calculate the scaling factor ci, sc for each
source–time function si, sc(t) as

ci,sc = n∑
t s2

i,sc(t)
(C3)

where n is an arbitrary constant, and the denominator represent the energy of the source–time function. Each source–time function is then
corrected by s̃i,sc(t) = si,sc(t) × ci,sc and the observed data dobsi,sc is also corrected by the same factor consistently.
(iii) Spatial weighting average, which aims to reduce dissimilarities between neighbouring sources. For each source s̃i,sc(t), a Gaussian-
weighted average from the neighbourood is computed to preserve some characteristics of each source while maintaining some similarities
properties in space. In our application, a standard deviation of 6 m is chosen for the Gaussian weights.

A P P E N D I X D : C O M P U TAT I O NA L C O S T

The calculation of this FWI experiment is performed using Irene KNL. It is a high performance computer (HPC) managed by TGCC in
France. Irene KNL is based on Intel KNL processor with Knightlanding architecture which use Many Integrated Core (MIC) architecture
(Sodani et al. 2016). For each node, it has 68 cores, with 1.4 GHz CPU clock and 1.4GB RAM for each core. In practice, due to the limited
memory of Irene KNL, we store the wavefield on a very high bandwidth disk (60 GB s–1). The bandwidth is shared amongst the users therefore
the Input/Output performance differ from time to time and affect the computational time.

The computational time needed to perform the whole set of FWI is 69 119 and 41 415 sequential hours for elastic and viscoelastic FWI,
respectively (Table A1 and Table A2). Both tables represent the FWI which are started from the homogeneous initial model. The sequential
hour represents the computational time needed to calculate a task only using a single processor, disregarding its memory requirement. VS

FWI represents FWI with parameter binding, whereas VS and VP represents FWI with non-linear model constraints. The CPU time which
is required to estimate a single gradient increase with the increase of the degree of freedom, time step, and frequency band. The number of
element and the time step can be seen in Table A3 for elastic case and Table A4 for viscoelastic case. The global CPU time, on the other hand,
is highly influenced by the total number of the gradient as well as the time needed to perform the communication between the processor and
the disk. Since we stored the resampled wavefield directly on the disk, the performance of the I/O also depends on the global I/O load on the
whole HPC cluster.

The total CPU time is more expensive for shallow-seismic applications compared with other methodologies (FATT, MASW). Never-
theless, when we look at the table, for the elastic FWI case almost 87 per cent of the total computational hours were spent on the last two
frequency bands. It means, with 9338 sequential hours, 47 GB of RAM, and 283 GB of fast storage for homogeneous initial model, we can
already compute FWI up to 45 Hz and obtain resolution beyond FATT and MASW. It is currently not cheap for a personal workstation, but it
is still feasible to be done and with the added benefit of the reconstruction of VP.
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Table A2. Computational cost for 3-D FWI using viscoelastic medium approximation.

No. FWI Niter Time/∇ Seq. time Memory Storage NCPU Elap. time

1 15 Hz VS 1 7.81 15.63 9273 50 382 108 0.14

2 15 Hz VS and VP 4 7.83 62.62 9273 50 382 108 0.58

3 25 Hz VS 23 25.83 697.51 15 254 137 909 864 0.81

4 25 Hz VS and VP 6 26.33 158.00 15 254 137 909 864 0.18

5 35 Hz VS 23 109.27 2731.66 27 672 494 284 1296 2.11

6 35 Hz VS and VP 10 92.30 2769.14 27 672 494 284 1296 2.14

7 45 Hz VS 10 285.66 2856.57 42 878 1140 998 1296 2.20

8 45 Hz VS and VP 11 327.20 3926.42 42 878 1140 998 1296 3.03

9 55 Hz VS 14 424.94 7224.00 64 184 2355 901 2592 2.79

10 55 Hz VS and VP 1 537.10 537.10 64 184 2355 901 2592 0.21

11 65 Hz VS 2 812.20 19492.88 81 566 3497 627 3240 6.02

12 65 Hz VS and VP 1 944.43 944.43 81 566 3497 627 3240 0.29

Note The unit time is in hours. The total sequential CPU time (seq. time) is 41 415 hr for all frequency bands on Irene
KNL HPC (TGCC) to calculate from the homogeneous initial model. The memory and storage unit is in megabytes (MB),
and the indicated frequency is the highest frequency band starting from 3 Hz. The elapsed time (elap. time) is the time
needed to perform the FWI in parallel. Time/∇ indicated the time (in hours) needed to calculate a single gradient of misfit
function.

Table A3. Seismic wavefield simulation information for 3-D FWI using
elastic medium approximation.

No. FWI NZ NX NY Time step NT

1 15 Hz 5 11 10 4.39039e-04 1120

3 25 Hz 7 18 15 1.49172e-04 3320

5 35 Hz 10 22 20 1.01776e-04 4880

7 45 Hz 11 29 26 6.94629e-05 7160

9 55 Hz 12 38 34 4.59136e-05 10 880

11 65 Hz 13 43 38 4.99168e-05 10 000

Note. NZ, NX and NY is the number of element for each Z, X and Y direction,
respectively. The sponge boundary elements are not included. Time steps
are indicated in second. NT is the number of time step.

Table A4. Seismic wavefield simulation information for 3-D FWI using
viscoelastic medium approximation.

No FWI NZ NX NY Time step NT

1 15 Hz 5 11 10 4.39039e-04 1120

3 25 Hz 6 15 13 2.62543e-04 1880

5 35 Hz 8 19 17 1.22664e-04 4040

7 45 Hz 9 25 23 8.64095e-05 5760

9 55 Hz 12 38 34 4.59136e-05 10 880

11 65 Hz 11 31 28 6.71441e-05 7440

Note. NZ, NX and NY is the number of element for each Z, X and Y
direction, respectively. The sponge boundary elements are not included.
Time steps are indicated in second. NT is the number of time step.
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