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1. Introduction

Varus angular deformity in the lower limb results in
deviating the mechanical tibiofemoral axis from its
normal situation. The presence of this deformation
leads to putting excessive pressure on the medial
compartment and could cause uni-compartmental
osteoarthritis. Medial open-wedge high tibial
osteotomy (OWHTO) is a surgical procedure that aims
to reduce the pressure of the medial compartment and
improve joint function by correcting the tibial
deformation. However, finding the required correction
for each patient is challenging as indicated in the
follow-up studies (Hernigou et al. 1987). To overcome
this challenge, biomechanical numerical simulations
have been used, aiming to find the optimal correction
needed to achieve the desired contact force balance
between the knee compartments (Zheng et al. 2017;
Martay et al. 2018). However, our previously
performed systematic review indicated that the
existing biomechanical studies tend to oversimplify the
problem by neglecting the impact of OWHTO on the
ligaments and tendons around the knee (Elyasi et al.
2021). Meanwhile, the review of clinical and cadaveric
studies clarified that multiple complications could be
related to the alteration of the soft tissue insertions after
wedge opening (Elyasi et al. 2021). Therefore, the
objective of the current study is to highlight the
importance of realistically modelling the connective
tissues impacted by OWHTO and to investigate
possible impacts on the cartilage stress distribution and
therefore on simulation-based decision making. We
propose to study the role of the superficial Medial
Collateral Ligament (sSMCL) that is one of the most
impacted soft tissues during OWHTO.

2. Methods

MRI and CT scan images of a healthy subject were
used to reconstruct the bones and soft tissue geometries
through manual segmentation in Amira software. A
model of the tibiofemoral joint was generated in the
Artisynth combined Finite Element (FE)-multibody
platform (Lloyd et al. 2012). Virtual OWHTO was
performed to develop a new model from the same
subject after a 10° wedge opening. For that, an oblique

cut was simulated on the tibia using a plane
perpendicular to the tibial frontal plane. The cut passed
through the lateral and medial cortex, respectively 16
mm and 37 mm distal to the tibial plateaus.

The models included the femoral and tibial cartilages
and menisci all modeled with FE components and
meshed with hexahedral dominant elements as
demonstrated in Figure 1. The cartilages were
modelled with isotropic linear elastic material having
Young’s modulus of 15MPa and a Poisson ratio of 0.45
(Yang et al. 2010). The menisci were modelled with a
transversely isotropic linear elastic material having
Young’s modulus of 20 MPa and the Poisson ratio of
0.2 in the radial and axial directions and Young’s
modulus of 120 MPa and the Poisson ratio of 0.3 in the
circumferential direction (Yang et al. 2010; Martay et
al. 2018). To represent the connective tissues, anterior
and posterior cruciate ligaments, MCL with a deep and
superficial layer, lateral collateral ligament, and the
knee anterolateral ligament, were modeled with
bundles of nonlinear springs (Blankevoort and Huiskes
1991). The definitions and properties of the bundles
were defined based on the literature (Pandy et al. 1997;
Xu et al. 2015; Helito et al. 2016) , while the number
of strands in each bundle was chosen based on the area
of their attachment sites.

The femur was fully constrained and the knee flexion
angle was fixed at 25.2°. An axial force of 667 N was
applied along the tibiofemoral mechanical axis
corresponding to the walking force of the subject at
14% gait cycle measured through gait analysis. To
investigate the importance of providing a realistic
model of the sMCL in biomechanical models that
address OWHTO alignment problem, three different
approaches were tested towards it. Following the
wedge opening, the superficial bundles of MCL were
modelled in three different ways: 1) Their length and
tension were affected by wedge opening, 2) Their
length and tension were not affected by wedge
opening, 3) The sMCL was released after wedge
opening.

Figure 1, The model of the tibiofemoral joint used to
investigate the effect of SMCL modelling approach on
cartilage stress distribution after wedge opening

3. Results and discussion

Maximal principal stress distribution on the medial and
lateral tibial cartilages in OWHTO models with
various approaches towards sMCL are presented in
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Figure 2. The results indicate that the approach taken
towards modelling the sMCL after OWHTO can
significantly impact the stress distribution on the
tibiofemoral compartments.

The surgical procedure of OWHTO involves an
oblique osteotomy from the medial side starting just
above the level of the tibial tubercle. As a result, when
the sSMCL is conserved, its insertion would be lower
than the osteotomy cut and thus wedge opening would
result in increasing its length and tension. This
corresponds to the left image in Figure 2, and the
simulation shows that the medial -cartilage is
noticeably under higher compression compared to the
lateral cartilage (maximum principal stress medial: -
2.29, lateral: 1.40 MPa). This means that the objective
of OWHTO surgery is not achieved even after 10°
wedge opening in this case. The stress in the medial
cartilage is reduced to 48% of this value simply by
making the assumption that the sMCL is not affected
by surgery (middle image in Figure 2). Finally,
releasing the SMCL (right image in Figure 2) resulted
in reducing the medial stress to 34% of its value when
conserving the sMCL. However, in that case, the
lateral side experiences the highest stress values
among the three models.

We acknowledge the limitation of the study, which is
using literature based parameters for the ligament
properties rather than using parameters tuned for the
subject.
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Figure 2, Maximum principal stress distribution on
the tibial cartilages after 10° wedge opening. The
maximum values for the medial and lateral
compartment are indicated for each model.

4. Conclusions

The current study clarified that the approach taken
towards modelling the sMCL after wedge opening can
have a significant impact on the stress balance between
compartments. As a result, a clear approach towards
the sMCL attachment/release in models of the
OWHTO has to be defined to be able to propose
relevant simulation-based decisions and make
suggestions about the optimal correction for each
patient.
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