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Two-species Ohkawa filter

Impact of azimuthal forcing on the Brillouin limit in a collisional
two-species Ohkawa filter

T. Nicolas1, a)

CPHT, Ecole Polytechnique, CNRS, 91128 Palaiseau, France

(Dated: 26 February 2024)

This paper investigates the physics of plasma separation in a two species rotating collisional Ohkawa filter, when the
source of rotation is an orbital angular momentum carrying wave. The electric field is treated self-consistently with ion
and electron radial motion. The injection of angular momentum causes radial currents leading to charge penetration and
electric field build up. The electric field varies until an equilibrium with the friction forces is reached. Both collisions
with neutrals and Coulomb collisions are considered. In the case where the electric field is driven by the resonant
wave, there is no collisional breakdown of the Brillouin limit1, on the contrary the maximum achievable electric field
decreases when the collision frequency is increased. When two species are present, one that undergoes the wave forcing
while the second does not interact with the wave, we find the following: the first species is confined, while the second
species can be expelled or confined depending on the charge to mass ratio and the collisionalities. Assuming equal
charge numbers, if the second species is the heavy one, it is always expelled, which is a standard result. When the
second species is the light one, it can also be expelled in the common case where neutral collisions dominate over
Coulomb collisions, which constitutes a new result.

I. INTRODUCTION

Plasma separation, or plasma mass filtering, is the process
by which two initially mixed species are divided into two dif-
ferent streams within a plasma, thus separating them. The
potential applications include recycling of alloys (e.g. rare
earth metals) into pure elements2, or efficient treatment of nu-
clear waste3–9. Regarding the latter, the promise of plasma
separation is that of efficiently isolating the small quantity of
very dangerous actinide waste from the rest of the low activity
waste (structural waste as well as the other products of fission,
e.g. lanthanides). The advantage over currently used chemi-
cal techniques is that the separation is done in one single pass
in the plasma device, without further contamination of fluid
effluents3. Another merit of plasma separation is that it takes
advantage of a significant difference in mass, where chemical
separation is made difficult by chemical similarities between
actinides and lanthanides10.

Although no plasma separation process is routinely used as
of today, it has long been known that plasmas may be tai-
lored for such a purpose11. The particles in the plasma are
charged, so that they may have different motion according to
their mass over charge ratio in a given electromagnetic con-
figuration. The essential difference with a mere spectrometer,
which makes plasmas interesting for industrial, rather than di-
agnostic, uses, is that plasmas are usually close to quasineu-
trality. This allows to circumvent the insurmountable energy
cost that would otherwise be associated with the charge sepa-
ration, and in principle permits high flux operation at an eco-
nomical cost, which is required to make industrial applica-
tions viable.

Several different concepts exist for plasma separation
(see Ref12 for a recent review), owing to the diversity of
imaginable electromagnetic configurations, only limited by
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Maxwell’s equations. In this paper, we shall discuss the
Ohkawa filter configuration13,14, in which a radial electric
field within an axially magnetized plasma column can cause
radial ejection of charged particles, or not, depending on their
mass/charge ratio. The central concept behind the Ohkawa
filter is the Brillouin limit, a term that originally pertained to
non-neutral plasmas15–17. A rotating magnetic plasma with
charge and mass (q,m) can be radially confined only if the
electric field E does not exceed the Brillouin limit, |E/r| <
qB2

0/(4m), where r is the radial coordinate of the plasma col-
umn and B0 the homogeneous static magnetic field. Since
the Brillouin limit depends on the mass to charge ratio, we
can have in principle one population confined while the other
would be radially ejected.

Experimentally, it is possible to build up electric field in a
cylindrical plasma column using sets of differentially biased
circular electrodes at the ends of the cylinder18. The advan-
tage is that one can have in principle a lot of flexibility for
external control, by simply modifying the bias. The problem
is that there is no guarantee that the potential will propagate
along the magnetic field lines to the plasma19. Another im-
portant historical problem with the electrodes is that of the
critical ionization velocity20. There is, however, another way
of generating the electric field, that does not suffer from the
aforementioned two problems. It is based on the injection of
angular momentum by a wave onto ions21,22. From a wave-
particle interaction point of view, the resonant hamiltonian in-
teraction between the wave and the particle results in a radial
displacement of the ion, creating charge separation23. From a
fluid point of view, the azimuthal momentum input on the ions
results in radial flows. The associated divergent currents are
the source of the charge separation, and an equilibrium estab-
lishes when the inertial, electric, Lorentz and friction forces
balance. An advantage of the wave method above the one us-
ing electrodes is that the interaction between the walls and the
outflow of separated material is reduced22. However, there
are also significant physical differences in the behaviour of
the plasma with respect to the Brillouin limit. The purpose of
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the present paper is to highlight these differences.
When the electric field is generated through electrodes, one

can assume the electric field to be an external control pa-
rameter. Of course, since the radial electric field has a non-
vanishing divergence, a plasma is necessary in between the
electrodes. But to a certain extent, one can consider to fix the
electric field arbitrarily by merely turning the knob of the po-
tentiometer. In this context, it has been shown that friction
with the neutrals cause a breakdown of the Brillouin limit1.
The transition between the regime where the plasma is con-
fined and that where it is expelled (the Brillouin limit) be-
comes smooth. When the electric field instead results from the
radial balance between inertial, electric and Lorentz forces,
under the azimuthal forcing introduced by the wave coupling
to the plasma, the results obtained in ref.1 no longer hold. On
the contrary, we show that the maximum achievable electric
field decreases when the collision frequency is increased. An-
other important difference is that the expelled species does not
have to be the heavy one. Instead, depending on the collision-
ality, it can be the light one. We show that basically, when
friction with neutrals dominates over Coulombian friction (a
common situation19), the confined species is the one that un-
dergoes the forcing, while the other is expelled.

The paper is organized as follows. The framework for the
present theoretical study is introduced in section II. The be-
haviour of the Brillouin limit in a collisional plasma forced
azimuthally is explained in section III. In section IV, we fo-
cus on the interpretation of the collisional modification of the
Brillouin limit in the present context, as compared to that of
refs.1,24. We consider the behaviour of a trace passive impu-
rity in a plasma where the dominant species is azimuthally
forced in section V, and then the behaviour of the plasma
when the two species have comparable abundance in sec-
tion VI. We discuss and summarize the results respectively
in sections VII and VIII.

II. THEORETICAL FRAMEWORK

A. Notations

We use the usual cylindrical unit vector basis (r̂, θ̂, ẑ). The
plasma is immersed in a static homogeneous axial magnetic
field B = B0ẑ. We do not consider its modifications, which
is justified if the ion skin depth is larger than the radius a of
the plasma column25. In the numerical applications, a nor-
malization is employed. The radius a serves to normalize the
distances. The time and frequencies are normalized using the
proton cyclotron frequency ωcp ≡ eB0/mp. The velocities are
naturally normalized to aωcp. We will assume for the electric
field a form E = rE0/ar̂, and we will describe it using the fre-
quency ΩE = E0/(aB0). ΩE can be positive (electric field di-
rected outward) or negative (directed inward), but in the case
of the Ohkawa filter, which relies on the Brillouin limit, the
relevant sign is the positive one, as will soon be clear. Other
separation schemes rely on an electric field pointing inward,
see for instance refs.26,27. The ion (charge numbers Zi and Ai)
and electron cyclotron frequencies are denoted respectively

ωci =
Zi
Ai

ωcp and ωce =
mp
me

ωcp. Note the sign convention,
ωce > 0. The angular frequency of species i is denoted Ωi.
Finally, we introduce the notation

Ω
(i)
E,Bri =

Zi

4Ai
ωcp =

ωci

4
, (1)

which is the Brillouin limit for a species with charge and mass
numbers Zi and Ai.

B. The Brillouin limit

The Brillouin limit1,16,28 appears when one is interested in
the rigid rotor solution of the ion momentum balance equation
in a collisionless plasma without pressure gradient:

vi ·∇vi =
q
m
(E+vi×B) (2)

If one assumes rigid rotor, then the velocity is written vi =
υr(r)r̂+ rΩiθ̂, with Ωi independent of r. Projecting along r̂
and θ̂ yields,

υrυ
′
r− rΩ

2
i = rωci (ΩE +Ωi) (3)

(2Ωi +ωci)υr = 0, (4)

where prime denotes radial derivation. Unless Ωi = −ωci/2,
the solution must have vanishing radial flow, and equation (3)
then gives the relation between ΩE and Ωi. The solutions are

Ωi

ωci
=−1

2

(
1±
√

1−4
ΩE

ωci

)
, (5)

which develops, for small ΩE , into the so-called slow mode
at Ωi ∼ −ΩE , and fast mode, at Ωi ∼ −ωci +ΩE . If ΩE is
larger than ωci/4, formally, a solution to (3)-(4) still exists
if we allow for υr 6= 0. Assuming the radial velocity to be
of the form υr = rγi (we will see in section II C under what
conditions this assumption is justified), then the system (3)-
(4) reads

Ω
2
i − γ

2
i +ωci (ΩE +Ωi) = 0 (6)

(2Ωi +ωci)γi = 0. (7)

The solution for ΩE > ωci/4 is:

Ωi

ωci
=−1

2
(8)

γi

ωci
=±1

2

√
−1+4

ΩE

ωci
. (9)

However, there is a problem with this solution. Since the
radial velocity of the ions no longer vanishes, there is an in-
flow or outflow of ions, which modifies the electric field. For
instance in the case of the plus sign (outflow), ions are de-
pleted, leaving place to only electrons, and the sign of the
electric field can not even remain positive (pointing outwards).
The Brillouin limit raises many questions in the context of the
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Ohkawa filter. If the principle is to expel radially the heavy
fraction of a two-species plasma by overcoming the Brillouin
limit, but the Brillouin limit cannot be overcome, what re-
mains of the Ohkawa filter? Is there actually a way to charge
the plasma at ΩE > ωci/4, and how does the plasma behave
when there are two species? Incidentally, how is the electric
field generated in the first place? The purpose of the following
sections is to give clear answers to these interrogations, in the
context where the source of angular momentum is an orbital
angular momentum carrying wave coupled to the plasma.

C. Wave forcing and ion momentum equation

The most important assumption of this paper is to never
separate the electric field from the source that causes it. Since
we will consider collisional friction, there cannot be a solu-
tion with finite rotation unless we explicitly take into account
the external source of momentum and energy. We will as-
sume this source to be a wave resonant with an ion species.
The resonance is at a frequency related to the cyclotron reso-
nance, although the specific resonance condition also depends
on the axial wave number and the electric drift rotation fre-
quency21. We will introduce another ion species, not affected
by the wave. We will refer to the former as the forced species,
and to the latter as the passive species. Throughout this work,
the “first species” will always be the forced one, denoted by
an index 1, while the “second species” will be the passive one,
denoted by an index 2. Each quantum of a wave with spa-
tiotemporal dependence exp(i(kz+ lθ −ωt)) carries energy
h̄ω , linear momentum h̄kẑ and angular momentum h̄lẑ. If it
can be coupled resonantly to the ions, then the resonant ions
are displaced radially. The associated radial current is called
quasilinear current, because the theory that describes the res-
onant absorption of the wave is quasilinear theory. However,
if one assumes the absorbed power is known, it is legitimate
to model the interaction in a fluid model with a force acting
on the ions, because the momentum content of the wave per
unit energy is fixed by its frequency and wave numbers. The
value of the force density is F = kP/ω , where P is the power
density absorbed, ω the wave frequency and k its wave vec-
tor. This approach is all the more legitimate because we are
interested in the component of the force that is in the perpen-
dicular direction. In the parallel direction, there is also a net
transfer of momentum equal to h̄kz times the number of quanta
absorbed per unit time (F‖ = k‖P/ω), but this momentum is
passed to the bulk ions on a collisional time scale only. In the
perpendicular direction, the momentum is passed to the bulk
ions almost instantaneously, on the cyclotron timescale 29,30

(see also appendix A). In this paper, we neglect the force in
the parallel direction.

The modeling of the plasma wave interaction in terms of a
fluid force needs to be thoroughly justified, in particular be-
cause it is different from what was done in previous works.
For instance, in ref.1, the effect of the wave is completely ab-
sent from the fluid equations. The latter are used to derive
the collisional fluxes, essentially the nonlinear current induc-
ing the charge relaxation, and then it is merely said that the

generator compensates by replenishing the charge: “The col-
lisional depletion of ρ through j is continuously compensated
by the power supply driving these electrodes, or through wave
induced charge separation, in order to ensure steady state ro-
tation.” But the fluid model used in this reference, which does
not explicitly include the effect of the wave, cannot lead to
a steady state. It is easy to understand why: there is a colli-
sional term of angular momentum loss (the neutrals at rest),
but the equations don’t contain any term to compensate for
this loss. It is, indeed, the wave induced current (or current
driven through the electrodes in the case of electrode driving),
but it does not appear in the equations. As a result, the steady
state that is obtained is inconsistent. Another way to put it
is that there is no evolution equation for the electric field. In
contrast, the present approach takes into account explicitly not
only the resonant current induced by the wave, but also the
polarization currents that are essential to set the bulk plasma
into motion. However, the treatment of the wave resonant in-
teraction inducing a force density F = kP/ω , is not new. A
similar line of thought is adopted in refs.29,30, in the context of
toroidal rotation in tokamaks as a side effect of current drive
with lower hybrid wave. Since the momentum of E×B mo-
tion is carried mainly by the ions, while the resonant particles
are electrons in this context, they don’t include the force in
the ion fluid equation, and rather interpret it as a force on the
electric field. Nonetheless, the present approach is clearly in-
spired from these references. In appendix A, we give more
technical justifications in a slab configuration (which allows
to neglect inertial effects) equivalent to a capacitor where the
dielectric is a magnetized plasma.

The question of the characterization of the wave, the condi-
tions for its propagation and resonant deposition on the ions,
which pertain to quasilinear theory, are beyond the scope of
this paper. See refs23,31 for some insight in this important
matter. We will simply assume that at t = 0 in a magnetized
plasma column initially at rest, the ions are set into azimuthal
motion by a force representing the action of this wave. We
will assume that power deposition can be tailored so as to fol-
low a law P(r)∼ r4, where P(r) represents the total power
per unit axial length deposited within a surface delimited by
the radius r. Put differently, the local power per unit volume
deposited by the wave must be proportional to the square of
the radius. Setting aside the potential practical difficulty, this
has the immense advantage that the complicated set of partial
differential equations can be reduced to ordinary differential
equations (ODEs) in that case. To see why, consider a shell
of infinitesimal thickness dr, with mass per unit axial length
dm = 2πρrdr, ρ being the mass density of the plasma. In this
shell, a number dṄ of wave quanta per unit time are absorbed
by the ions, with h̄ω

∫ r
0 dṄ = P(r). Writing the angular ve-

locity as rΩ(r), where a priori Ω depends on r, the angular
momentum theorem (considering the wave forcing as the only
force) writes

2πr3
Ω̇ρdr = h̄ldṄ. (10)

Therefore, Ω̇ is independent of r if dṄ ∼ r3dr, meaning
P(r) ∼ r4. We neglect the transfer of linear momentum, as
well as the wave heating. We assume a homogeneous density
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for all species in the plasma column, and take into account
the friction between charged species, and with neutrals at rest
having density n0. The ion momentum equation is therefore
modeled as

(∂tv1 +v1 ·∇v1) =
Z1e
m1

(E+v1×B)+
Fwave

m1n1

−∑
s 6=1

ν1s (v1−vs)−ν10v1, (11)

where νss′ ,s ≥ 1 is a Coulomb collision frequency, νs0,s ≥ 1
is a frictional collision frequency with the neutrals and Fwave
represents the wave-induced torque:

Fwave =
1

2πr2
dP

dr
l
ω
θ̂ ∝ rθ̂ (12)

Because of the radial variation of Fwave, we can assume the
azimuthal velocities to be of the form υθ = rΩ, where Ω

does not depend on r. Because of the rigid body rotation
allowed by the choice of power deposition, the assumption
that E = E0r/ar̂, corresponding to ΩE also independent of
r, is legitimate as well. Since such an electric field can only
arise from the divergence of radial currents, this means that
the divergence of these currents also does not depend on r.
Indeed ∇ ·E = 2E0/a. This means that the radial velocities
can legitimately also be taken of the form υr = rγ , where γ

does not depend on r. The assumptions that Fwave ∼ rθ̂ and
v = r(γ r̂+Ωθ̂) are what allows to transform the PDEs into
ODEs.

In projection along r̂ and θ̂, equation (11) yields the set of
equations:

γ̇1 = Ω
2
1− γ

2
1 +ωc1 (ΩE +Ω1)−∑

s 6=1
ν1s (γ1− γs)−νi0γ1

(13)

Ω̇1 =−(2Ω1 +ωc1)γ1 +ω
2
cpF−∑

s 6=1
ν1s (Ω1−Ωs)−νi0Ω1,

(14)

where

F =
1

2πρ1r3ω2
cp

dP

dr
l
ω

< 0 (15)

We choose the forcing to be negative because this is what is
required to induce rotation in the −θ̂ direction, which corre-
sponds to a positive electric field (the Brillouin limit arises
only with outward electric field). The second species has the
same evolution equation, with index 2 instead of 1 and the
forcing F removed.

D. Electron dynamics

Electrons have a similar evolution equation, except for the
signs and the forcing term. The electron momentum equations

are:

γ̇e = Ω
2
e− γ

2
e −ωce (ΩE +Ωe)−∑

s 6=e
νes (γe− γs)−νe0γe

(16)

Ω̇e =−(2Ωe−ωce)γe−∑
s 6=e

νes (Ωe−Ωs)−νe0Ωe. (17)

At the lowest order in me/mp, we find the electron velocity to
be given by

Ωe =−ΩE (18)

γe = ∑
s6=e

νes

ωce
(Ωe−Ωs)+

νe0

ωce
Ωe. (19)

Recall that in general νei/νie ∼mp/me, so that νes/ωce can be
considered of order 0 in the electron to ion mass ratio. Equa-
tion (18) indicates that for electrons, the small inertia means
the centrifugal and Coriolis forces play a minor role, and the
electrons simply rotate at the electric drift frequency. Equa-
tion (19) expresses the fact that when the electron forces are
balanced, the azimuthal magnetic force associated with the
radial electron flux is balanced by the friction with the other
species.

E. Electric field and density dynamics

To close the system, we need the equation of evolution
of the electric field, ε0∇ ·E = ρ , where ρ = nee(n1Z1/ne +
n2Z2/ne − 1). Note that on the left hand side, ε0 shows
up, rather than ε0ε⊥. Indeed, the currents associated with
the radial velocities γ1, γ2, γe, are the total currents, tak-
ing into account the polarization currents. To see this, it
is sufficient to take the cross product of equation (11) with
B. At lowest order (neglecting friction) the velocity is v1 =
E×B/B2

0 +Fwave×B/(Z1n1eB2
0), and at the next order, the

polarization velocity A1mp/(Z1eB2
0)∂tE appears. We define

a dimensionless parameter akin to the electric susceptibility,
χ⊥ ≡ nemp/(ε0B2

0), and parameterize the ion densities with
ζ ≡ n1Z1/ne and η ≡ n2Z2/ne. At t = 0, before the forcing
is switched on, we will assume the electric field vanishes, and
hence, ζ + η − 1 = 0. The electric field drift frequency is,
therefore, given by

ΩE

ωcp
=

χ⊥
2

(ζ +η−1) (20)

Numerically, χ⊥, given by

χ⊥ = 1.9×104 ne
[
1020 m−3

]
B2

0 [1T2]
, (21)

is large in the plasmas we are considering. However, the fol-
lowing results are very insensitive to its precise value, as long
as it is large. When we simulate the dynamical system, the
rate of change of momenta is set by the values of F and the
friction, but this dynamics is modulated by oscillations at a
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frequency roughly proportional to χ
1/2
⊥ . Therefore, it can be-

come expensive numerically, even though we are dealing with
ODEs. We will take χ⊥ = 100 in the following, which ensures
that most of the wave angular momentum is transferred to the
plasma motion, with only a small fraction absorbed by the DC
field (see appendix A).

To understand the electric field dynamics, we only need to
write the density dynamics. Since we assume all the species to
have homogeneous densities initially, the continuity equations
for any species is simply ∂tns = −ns∇ · vs = −2nsγs. This
yields the evolution equations of η and ζ :

ζ̇ =−2(γ1− γe)ζ (22)
η̇ =−2(γ2− γe)η (23)

It may be expedient to have an evolution equation of ΩE ,
so that one can easily identify the conditions for stationary
field. Obviously, the stationarity condition for E should be
that the total radial current vanishes. Indeed, by taking the
time derivative of equation (20) and using equations (22)-(23)
(and taking into account the variation of χ⊥), one finds

Ω̇E =−χ⊥ωcp (γ1ζ + γ2η− γe) , (24)

where the terms in brackets represents the current.
As a final remark regarding the density dynamics, our de-

scription hides the fact that an equilibrium solution such that
γe 6= 0 or γs 6= 0 necessarily has a varying density, and in that
sense is not an equilibrium. If for instance we have γ2 > 0, and
the second species is the one we wish to expel, there is no par-
ticular conceptual problem, unless that species is the dominant
one. If the equilibrium is such that for example, γe = γ1 < 0,
a situation that will show up in section III, this means that
there is an exponentially increasing (with rate 2|γe|) global
plasma density. We can still regard the solution as an equi-
librium if the final radial velocities have γτeq� 1, where τeq
is the time scale of establishment of the equilibrium. In any
case, this should not be a big source of worry, as in practice
there are sinks and sources of particles, which we have not ex-
plicitly taken into account. We are completely neglecting the
motion of the plasma in the ẑ direction, but in a real situation
where large flows of the order of Γ = 1 g.s−1 are expected,
the plasma flows at high velocity along the cylinder, with a
plasma source at the entrance of the cylinder and a sink at the
exit, and if necessary to collect the unconfined species, on the
walls of the cylinder. These questions are beyond the scope
of the present paper, but we shall not ignore them completely,
because they restrict the validity of some of the conclusions
of the present study.

F. Collision frequencies

To be complete, there remains only to describe our choices
for the collision frequencies. The collisions play an important
role in this problem, since the electric field drives rotation at
the electric drift frequency, but friction with neutrals and be-
tween the charged species will damp this motion. A radial
current appears, that leads to electric field depletion. Here

we only desire to get the correct scalings of mass and charge,
without setting the highest importance to the exact value of the
friction. We neglect all other transport mechanisms. The eas-
iest choice is to use the friction frequencies for Maxwellians
with velocity shifts small compared to the thermal velocity.
The friction force that a Maxwellian population of species 1
undergoes when streaming past a Maxwellian population 2
with velocity slip (v1−v2) is given by

R12 =−
n1n2Z2

1Z2
2e4Λ

3(2π)3/2
ε2

0 T 3/2

√
m1m2

m1 +m2
(v1−v2)

=−m1n1ν12 (v1−v2) , (25)

which defines the collision frequencies ν12 and ν21 for arbi-
trary mass ratio.

For the collisions with neutrals, we use the frequency32

νs0 = n0σ0

√
2Ts
ms

, where n0 is the density of neutrals, and σ0

is a cross section, taken to be σ0 = 5×10−19m2.
We assume the plasma to be isothermal at temperature T

and define the basic frequencies

ν =
nee4Λ

3(2π)3/2ε2
0 m1/2

p T 3/2

√
me

mp
(26)

ν0 = n0σ0

√
2T
mp

(27)

In our numerical studies, ν and ν0 will be adjusted indepen-
dently, which corresponds to adjusting the temperature and
the neutral density. This means that the actual value of σ0
does not matter, since any difference (even large) with respect
to the value reported in ref.32 can be absorbed in n0.

We can now define our friction frequencies for our system:

ν12 = η
Z2

1Z2√
(me/mp)A1 (1+A1/A2)

ν (28)

ν21 = ζ
Z2

2Z1√
(me/mp)A2 (1+A2/A1)

ν (29)

me

mp
νe1 = ζ Z1ν ,

me

mp
νe2 = ηZ2ν (30)

νse =
Z2

s

As
ν (31)

νs0 =
1√
As

ν0, νe0 =

√
mp

me
ν0 (32)

where the s subscript designates any of the two ion species and
the smallness of me/mp was used. Note that the electron ion
friction is in accordance with kinetic theory in a magnetized
plasma, which finds exactly equation (30) in the perpendicular
direction, contrary to the direction parallel to B, where it is
reduced by a factor 0.51.

The system of 7 equations, (13), (14) for both species (with-
out the forcing F for the second species), (20), (22) and (23),
with Ωe and γe given by equations (18) and (19) and the colli-
sion frequencies by (28)-(32), constitutes the closed system of
nonlinear ODEs that we shall study in the following sections.
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Note that when there is, say, an outflux of electrons, γe > 0,
the electron density decreases, so that in principle, we should
adjust the collision frequencies. This problem leads to a
breakdown of our model in the case where the friction be-
tween charged species, ν , becomes large (see section III B).
We shall ignore this problem as this is beyond the scope of
this paper and barely limits the validity of our conclusions.
Indeed, in most cases, the electron radial velocities will re-
main small (but not negligible because they contribute to the
establishment of the electric field).

Finally, note that one can transform the above equations
into their normalized versions, suitable for numerical analy-
sis, by merely setting ωcp = 1 everywhere. Occasionally in
the text, and in all numerical applications, we shall use dimen-
sionless quantities, denoted by bars, for instance ν = ν/ωcp,
ν0 = ν0/ωcp.

III. THE BRILLOUIN LIMIT IN A FORCED COLLISIONAL
ONE-SPECIES PLASMA

In this section, we consider only one species (η = 0) with
forcing F . We will study the equilibrium of the dynamical
system depending on the strength of the forcing.

A. Friction with neutrals only

First, we investigate the case where we retain only the fric-
tion with neutrals (ν = 0). The dynamical system becomes

γ̇1 = Ω
2
1− γ

2
1 +ωc1 (Ω1 +ΩE)−ν10γ1 (33)

Ω̇1 =−(2Ω1 +ωc1)γ1 +ω
2
cpF−ν10Ω1 (34)

ζ̇ =−2(γ1− γe)ζ , (35)

with, from equations (18), (19) and (20):

ΩE =
χ⊥
2

ωcp (ζ −1) (36)

γe =−
νe0

ωce
ΩE =−

√
me

mp

ν0

ωcp
ΩE (37)

We assume the forcing F to be of the order of ν10/ωcp,
which results in Ω1 being of order ωcp. With ζ =
O(1), the density equation shows that at equilibrium γ1 ∼
(me/mp)νe0(ΩE/ωcp)� ν10 since ΩE/ωcp = O(1). So we
can treat γ1 as a small quantity, which means from equation
(34) that at equilibrium

Ω1

ωcp
' F

ν10/ωcp
. (38)

The meaning of this equation could not be more clear. Since
there is injection of momentum at a rate F , but also dissipa-
tion on neutrals at rest, the equilibrium is simply a balance
between the two. More momentum injection means propor-
tionally more rotation. Importantly enough, this is indepen-
dent of the concept of Brillouin limit. It is important to recall
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Ω1/ωcp
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ΩE =ωcp/4

ν0 =0. 01

ν0 =5

ν0 =10

FIG. 1. ΩE as a function of Ω1 in the case A1 = Z1 = 1, for ν0 =
10−2 (blue solid line), ν0 = 5 (blue dashed line) and ν0 = 10 (blue
dash-dotted line). The black thin horizontal dotted line represents the
classical Brillouin limit.

that the Brillouin limit is not a limit in rotation of the ions,
but in the electric field that the plasma can sustain! Now the
electric field is given by equation (33), where we neglect γ1:

Ω
2
1 +ωc1 (Ω1 +ΩE) = 0 (39)

This equation is no different than equation (3) with υr = 0,
and the solution is the same. The meaning of the Brillouin
limit becomes perfectly clear. As said in the introduction, the
electric field establishes as a result of the radial flow caused by
the Lorentz force associated with poloidal rotation. The latter
arises because of the poloidal forcing. When the forcing is
increased, the electric field also increases, until it reaches the
Brillouin limit. Increasing the forcing further raises the rota-
tion velocity of the ions, which enter the fast mode regime. If
the forcing increases even more, the electric field vanishes and
then changes sign, while the ion rotation exceeds the cyclotron
frequency. We have to warn, however, that several physical
phenomena, e.g. possible modification of the wave-plasma
coupling, may prevent entering this fast rotation regime.

If we do not assume ν0 � ωcp, we can use equations (33)
and (35) to derive the relation between ΩE and Ω1:

me

mp
ν

2
0Ω

2
E −

(
ωc1 +

√
me

mpA1
ν

2
0ωcp

)
ΩE −

(
Ω

2
1 +ωc1Ω1

)
= 0,

(40)

where ν0 ≡ ν0/ωcp. The physically relevant solution for ΩE
has the minus sign in front of the square root (the other solu-
tion has the unphysical property that limν0→0 ΩE = ∞):

ΩE

ωc1
=

1+
√

meA1
mpZ2

1
ν

2
0−
√(

1+
√

meA1
mpZ2

1
ν

2
0

)2
+4 meA2

1
mpZ2

1
ν

2
0

(
Ω

2
1 +

Z1
A1

Ω1

)
2(me/mp)ν

2
0

,

(41)
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where Ω1 ≡ Ω1/ωcp. This expression reduces to (39) for
ν0 � ωcp. The relation (41) is plotted in figure 1 for ν0 =
0.01, ν0 = 5 and ν0 = 10, with A1 = Z1 = 1. The position of
the point along the curves of figure 1 is formally set by the so-
lution of equation (34). Independently of the value of ν0, the
maximum of ΩE is reached for Ω1 = −ωc1/2. The resulting
dependence between the maximum of ΩE and ν0 is plotted in
figure 2.
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FIG. 2. Dependence of the Brillouin limit on the collision frequency
with the neutrals ν0, for A1 = Z1 = 1

Not only do we not observe a breakdown of the Brillouin
limit because of collisions, but in the strongly collisional (or
weakly magnetized) regime where ν0 becomes larger than the
ion cyclotron frequency, the maximum value of ΩE that can
be reached by forcing the plasma rotation decreases as ν

−2
0 .

B. Coulomb collisions

Now let us consider the case where there are no neutrals,
but we take into account the Coulomb collisions between the
charged species. With only one species, we only have the
electron ion collisions. Using Ωe =−ΩE and the expressions
of the collision frequencies as a function of ν , the dynamical
system becomes

γ̇1 = Ω
2
1− γ

2
1 +ωc1 (Ω1 +ΩE)−

Z2
1

A1
ν (γ1− γe) (42)

Ω̇1 =−(2Ω1 +ωc1)γ1 +ω
2
cpF− Z2

1
A1

ν (Ω1 +ΩE) (43)

ζ̇ =−2(γ1− γe)ζ , (44)

with, from equations (18), (19) and (20):

ΩE =
χ⊥
2

ωcp (ζ −1) (45)

γe =
νe1

ωce
(Ωe−Ω1) =−ζ Z1

ν

ωcp
(ΩE +Ω1) (46)

Some conclusions from the previous subsection still hold, but
there are some differences, because contrary to neutrals, elec-
trons are also set into motion by the electric field, so that the
slip between the two frictional species is smaller. For small
friction, the previous argument about the smallness of γ1 re-
mains valid, and we recover equation (39). The relation be-
tween Ω1 and F is, however, strongly modified. Using the no-
tation Ξ≡Ω1 +ΩE , equation (42) where we neglect γ2

1 reads

Ξ =− Ω2
1

ωc1
. (47)

Note that the radial friction term disappears because at equi-
librium γ1 = γe according to equation (44). Also, by replacing
γ1 with γe from equation (46) in equation (43), we find after
multiplying by ω2

cp/(A1ν):

[(2Ω1 +ωc1)ζ −ωc1]ωc1Ξ = ω
3
cp

∣∣∣∣ F
A1ν/ωcp

∣∣∣∣ . (48)

Using that ζ −1 = 2(ΩE/ωcp)/χ⊥� 1, we find that

Ω1

ωcp
'−

∣∣∣∣ F
2A1ν

∣∣∣∣1/3

, (49)

where ν ≡ ν/ωcp. Compared to the friction with neutrals, the
scaling of Ω1 with F/ν is smaller, as expected. This result
holds only for ν � ωcp, because we have neglected the γ2

1
term from equation (42) . When ν � ωcp, the only relevant
parameter is the ratio |F/ν |, so the only result of having larger
friction is that one has to proportionally increase the friction
in order to reach the same level of rotation and electric field.

We will only briefly consider the case ν > ωcp. It is not
really relevant for the plasmas we are interested in. Indeed

ν

ωcp
' 1.8×10−3 ne

[
1019m−3

]
B0 [1T]T 3/2 [1eV]

, (50)

where we have used the value Λ = 11, assumes rather small
values in practice. Retaining γ1 = γe in the radial equation
gives Ω1 as a function of ΩE :

ΩE

ωcp
=

1−
√

1+4A2
1ν

2
Ω2

1/ω2
cp

2Z1A1ν
2 − Ω1

ωcp
, (51)

where the minus sign in front of the square root comes from
the requirement that ΩE vanish when Ω1 = 0. It can be easily
seen that the case ν > ωcp makes the whole device unusable.
The radial velocity can be obtained in the limit ν → ∞ by
plugging the solution (51) into (46) and using γ1 = γe, which
results in

γ1 = ζ |Ω1| ' |Ω1|, (52)

since ζ ' 1. This means the plasma is radially expelled in the
time scale of one angular rotation. Therefore, it is required,
for the Ohkawa filter to work, to keep the Coulomb collision
frequency smaller than the ion cyclotron time. There is no
such requirement regarding the neutral collision frequency.
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FIG. 3. Relation ΩE = f (Ω1) from equation (55) for Z1 = A1 = 1,
with ν0 = 0 (black solid line), ν0 = 0.01 (dashed line), ν0 = 0.1
(dash-dotted line) and ν0 = 2 (solid line).

IV. THE INTERPRETATION OF THE BRILLOUIN LIMIT
WITH COLLISIONS

The two previous subsections have shown that the relation
between ΩE and Ω1, equation (39), leading to the Brillouin
limit of ΩE = ωc1/4, remains valid when collisions are taken
into account. When it has to be corrected for, in the regime
of large collisions with neutrals, it leads to a strong decrease
of the Brillouin limit, rather than a disappearance of that limit
(recall figure 2). How can we reconcile this with ref1, which
proves the breakdown of the Brillouin limit in presence of
collisions with neutrals? In section II B, we first analyzed a
collisionless plasma and found the Brillouin limit. When we
introduced the collisions, we insisted that it is necessary to
explicitly take into account the forcing term of the plasma,
because the electric field is generated indirectly by the radial
motion induced by the inertial, Lorentz and friction forces in
presence of the azimuthal forcing. If we fail to do so, there
is an inconsistency, because we assume there is an electric
field at equilibrium, while it should naturally fade away un-
der the action of dissipation. On the contrary, in ref1, if one
assumes the electric field is generated by biased electrodes,
one can treat ΩE as an external parameter (in fact, the electric
field arises from the electron motion in the z direction, toward
or coming from the electrodes). Then, one can consider only
equations (33)-(34) without (35) (which gives the electric field
dynamics in our case), and without the azimuthal forcing:

Ω
2
1− γ

2
1 +ωc1 (Ω1 +ΩE)−ν10γ1 = 0 (53)

− (2Ω1 +ωc1)γ1−ν10Ω1 = 0. (54)

Now one is merely interested whether there is a solution for
Ω1 for any value of ΩE . Instead of equating γ1 and γe, as
required by the electric field equilibrium, one takes γ1 from
equation (54) and plugs it into equation (53). Reformulating
the problem with the variable α = −(2Ω1 +ωc1)/ν10 (inci-
dentally, this variable has a physical meaning since 2Ω1+ωc1

FIG. 4. Radial velocity solution of equation (55) as a function of Ω1,
for Z1 = A1 = 1, with ν0 = 0 (black solid line), ν0 = 0.01 (dashed
line), ν0 = 0.1 (dash-dotted line), ν0 = 2 (solid line). The high-
lighted zone is where the electric field is below the Brillouin limit.

is the effective cyclotron frequency in the rotating frame33),
one obtains a second order equation for α2:

α
4 +α

2
[

1−
ω2

c1

ν2
10

(
1−4

ΩE

ωc1

)]
−

ω2
c1

ν2
10

= 0 (55)

This is precisely equation (12) from Ref.28, if Z1 = A1 = 1 and
with the substitutions

ν10

ωcp
−→ νi

Ωi
(56)

ΩE

ωcp
−→− φ ′

rB0Ωi
. (57)

The relation (55) in the A1 = Z1 = 1 case is plotted in Fig 3
for ν0 = 0, ν0 = 0.01, ν0 = 0.1 and ν0 = 2. It is this relation
that is interpreted as a breakdown of the Brillouin limit (in
the case where the electric field is generated by biased elec-
trodes), because it has a solution α2 > 0 for any value of ΩE .
In our case however, this would be inconsistent if there is only
one species in the plasma, because of the azimuthal forcing.
In our case, figure 3 ought to be replaced with figure 1. We
want to emphasize, however, that the solutions of (55) are per-
fectly acceptable if the considered ion species plays no part in
the establishment of the electric field. In other words, if we
consider a trace impurity.

There is, however, another important consequence of equa-
tion (55). Each solution for α , which gives Ω1, also comes
with a radial velocity γ1 = Ω1/α . The solutions are plotted
in figure 4. We have highlighted the zone where ΩE is less
than the Brillouin limit. It is clearly seen that the sign of the
radial velocity depends on whether the solution is in the fast
or the slow mode. The slow mode is on the right of the figure,
and the radial velocities are positive, even when ΩE < Ω

(1)
E,Bri.

This means that a trace species can be expelled radially even
if the electric field is below that species’ Brillouin limit.
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V. DYNAMICS OF A TRACE IMPURITY WITH RESPECT
TO THE BRILLOUIN LIMIT

A. Collisions with neutrals

We have already argued in the previous section that if we
are considering a trace impurity, the equations (53) and (54),
or (55), apply (with index 1 replaced by index 2). The elec-
tric field is set by the dynamics of the first species, while
it becomes sufficient to read on Figs. 3 and 4 the values of
Ω2 and γ2. An important comment is in order, though. In
the absence of electric field, the impurity naturally starts at
rest with Ω2 = 0 on the right of the figures, and we see
that when ΩE is increased (let’s say, the forcing of the first
species is increased), Ω2 increases but cannot cross the line
Ω2 =−ωc2/2. In other words, it can never reach the fast mode
where Ω2 <−ωc2/2. Hence, the left part of figures 3 and 4 is
basically irrelevant. An important consequence is that when
we consider only the collisions with the neutrals, γ2 is always
positive (ejection), whether it is a heavy impurity or a light
impurity. We will come back to this point.

B. Coulomb collisions

We will now study the dynamics of a trace impurity when
Coulomb collisions are the only source of friction. The results
are different whether we consider an impurity that is heavier
or lighter than the first (forced) species.

1. Heavy impurity

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

|F/ν|
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Ω
2
/ω

cp

ν=1. 0e− 05

ν=1. 0e− 04

ν=1. 0e− 03

ν=5. 0e− 03

FIG. 5. Relation between |F/ν | and Ω2 when A1 = Z1 = Z2 = 1 and
A2 = 2, for ν = 10−5 (black solid line), ν = 10−4 (solid blue line),
ν = 10−3 (dashed blue line), and ν = 5× 10−3 (dash-dotted blue
line). Recall that F < 0.

The equations now involve a coupling between the two
species through friction, other than through the sole electric
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FIG. 6. Relation between Ω2 and ΩE when A1 = Z1 = Z2 = 1 and
A2 = 2, for ν = 10−5 (black solid line), ν = 10−4 (solid blue line),
ν = 10−3 (dashed blue line), and ν = 5× 10−3 (dash-dotted blue
line).
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FIG. 7. Relation between Ω2 and γ2 when A1 = Z1 = Z2 = 1 and
A2 = 2, for ν = 10−5 (black solid line), ν = 10−4 (solid blue line),
ν = 10−3 (dashed blue line), and ν = 5× 10−3 (dash-dotted blue
line).

field as was the case for collisions with neutrals. We assume
there is a forced ion (numbered 1) with a trace impurity (num-
bered 2). We will produce figures equivalent to 3 and 4 for the
second species. We have already seen how to compute Ω1 and
ΩE as a function of F/ν for ν � ωcp (equation (49)). Then
we can solve for Ω2 and γ2 numerically. Since the second trace
species is heavier than the first, it has Ω

(2)
E,Bri < Ω

(1)
E,Bri, and we

will be able to force the system at ΩE > Ω
(2)
E,Bri. We simply

take A1 = Z1 = 1 and A2 = 2, Z2 = 1, then Ω
(1)
E,Bri = 1/4ωcp,

while Ω
(2)
E,Bri = 1/8ωcp.

The results can be seen in figures 5, 6 and 7. There are
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similarities as well as differences with the case of neutral col-
lisions, figures 3 and 4. Fig 5 shows that in the limit ν → 0
(but F/ν remaining finite), there is a wide range of values for
the forcing where Ω2 is locked at Ω2 = −ωc2/2. Recall that
the forcing determines Ω1, and ΩE , through the balance be-
tween inertial, Lorentz and electron-ion friction forces. Thus,
the domain where Ω2 =−ωc2/2 is the domain where the forc-
ing is such that ΩE > Ω

(2)
E,Bri. For these values of the forc-

ing, γ2 is positive, otherwise it vanishes. When ν becomes fi-
nite, this sharp behaviour is smoothed, as we have seen in the
case of collisions with neutrals. But the difference with fig-
ures 3 and 4 is that the solutions are asymmetric with respect
to Ω2 = −ωc2/2, and that γ2 never becomes negative. Math-
ematically, there is another solution to the nonlinear system,
that is the exact symmetric of the physical one with respect to
the axis Ω =−ωc2/2. More precisely, it is symmetric for Ω2
and antisymmetric for γ2, so that γ2 < 0 for that solution. It
is unphysical because it has Ω2 decreasing when F increases,
with limF→0 Ω2 =−ωc2/2.

An important difference, also to be noted, is that now the
fast mode of the second species, where |Ω2| > ωc2/2, be-
comes accessible, contrary to the case of neutral collisions
(see section V A).

2. Light impurity
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FIG. 8. Relation between |F/ν | and Ω2 when Z1 = Z2 = 1, A1 = 5
and A2 = 4, for ν = 10−5 (black solid line), ν = 10−4 (solid blue
line), ν = 2×10−3 (dashed blue line), and ν = 5×10−3 (dash-dotted
blue line). Recall that F < 0.

We can do the same exercise when the second species is
lighter than the first. The results change in significant ways,
as can be seen in Figs. 8, 9 and 10, where A1 = 5, A2 = 4,
and Z1 = Z2 = 1. The electric field can only be forced up to
ΩE =Ω

(1)
E,Bri <Ω

(2)
E,Bri. For small ν , as we increase the forcing,

there is a jump in the poloidal frequency Ω2. This is easily un-
derstood because the relation Ω2

2 +ωc2(Ω2 +ΩE) ≈ 0 holds
and friction with the first species drives Ω2 while at the same
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FIG. 9. Relation between Ω2 and ΩE when Z1 = Z2 = 1, A1 = 5 and
A2 = 4, for ν = 10−5 (black solid line), ν = 10−4 (solid blue line),
ν = 2×10−3 (dashed blue line), and ν = 5×10−3 (dash-dotted blue
line).
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FIG. 10. Relation between Ω2 and γ2 when Z1 = Z2 = 1, A1 = 5 and
A2 = 4, for ν = 10−5 (black solid line), ν = 10−4 (solid blue line),
ν = 2×10−3 (dashed blue line), and ν = 5×10−3 (dash-dotted blue
line).

time ΩE cannot surpass (or even reach) Ω
(2)
E,Bri. The usual re-

lation between Ω2 and ΩE explains the parabola branches in
figure 9, and the existence of a jump for a certain value of the
forcing is readily understood. Another important difference is
that now γ2 is always negative.

Note that the results we have just discussed apply strictly
speaking only to the case of a trace impurity. Here, the be-
haviour of the first species is determined by the forcing and
the friction with the electrons, while that of the second species
is determined by the friction with electrons and with the first
ion species.
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C. Exploration of the (ν ,ν0) parameter space

So far, we have only considered the case of either only
friction with neutrals, or only Coulomb collisions. When
both ν and ν0 are nonzero, it is all the more necessary to
carry out numerical parameter studies because of the intrica-
cies of the nonlinear system. We can first sum up what we
have already seen so far. When the trace impurity is heavier
than the dominant species, whether due to neutral or Coulom-
bian collisions, it has γ2 > 0. Therefore, we can assume it
will always have γ2 > 0 whatever the values of ν and ν0.
When the trace impurity is lighter however, collisions with
the neutrals lead to γ2 > 0, while Coulombian collisions lead
to γ2 < 0. Therefore, we expect the presence of a boundary in
the (ν ,ν0) space between a region dominated by neutral col-
lisions where γ2 > 0 and a region dominated by Coulombian
collisions where γ2 < 0.

We draw the reader’s attention on another point. We have
seen in section III that for collisions with neutrals, at equilib-
rium γ1 = γe ∝ −ΩE < 0 whereas in the case of Coulombian
collisions, γ1 = γe ∝ −(ΩE +Ω1) > 0. The question, then, is
not only to know if γ2 is positive, but aso if γ2 > γ1.

In both cases of heavy and light trace impurity, our algo-
rithm is as follows. First we fix A1, Z1 and A2, Z2. Then, for
each couple of values for (ν ,ν0), we vary the forcing F . For
each value of the forcing we find numerically the equilibrium
solution of the system. Since the second species is a trace, the
problem is simplified. First we can find γ1, Ω1 and ΩE . Then,
plugging these values in the equations for the second species,
we find γ2 and Ω2. The only subtlety is that there are two
solutions for γ2, Ω2, and we have to make sure to obtain the
physical one, such that dΩ2/dF > 0. This allows to find the
value of F so that the electric field is maximum. We can then
plot the values of γ1 and γ2 for this value of the forcing. Indeed
we assume that the most favorable situation, the one where the
second species is most likely to have large radial velocities, is
when the electric field is maximum, in accordance with the
basic physics of the Brillouin limit.

1. Heavy impurity

The results for a simple case where the forced species is hy-
drogen and the second species is deuterium is shown in Fig 11.
It is seen that depending whether ν or ν0 dominates, γ1 is posi-
tive or negative. However, γ2−γ1 is always positive (ejection),
as anticipated, and its values are an order of magnitude higher
than γ1. This is a very favorable case for separation, it means
the heavy impurity will be easily ejected radially, compared
to the first forced species, which is either confined, or ejected
along with the electrons on much slower time scales.

2. Light impurity

The results of the case where the first species is 4He and the
second is 3He, with Z1 = Z2 = 1, is shown in Fig 12. Again,
it confirms our physical intuition formulated at the beginning

FIG. 11. Dependence of γ1 (a) and γ2−γ1 (b) in the (ν ,ν0) parameter
space with Z1 = Z2 = 1, A1 = 1, A2 = 2, when the first species is
forced so that ΩE = Ω

(1)
E,Bri.

of this section, namely, that γ2− γ1 is positive when the neu-
trals dominate the friction, and negative when the Coulombian
collisions dominate.

D. Conclusion on the case of trace impurity

As far as we could tell from our numerical experiments,
the qualitative patterns observed in Figs. 11 and 12 is quite
general. The parameter that matters is whether the second im-
purity, that which does not undergo direct azimuthal forcing,
is heavier (figure 11) or lighter (figure 12).

This is an important new result of this work. Indeed, con-
ventional wisdom of the Ohkawa filter suggests that the ra-
dially ejected species is always the heavy one. Our results
challenge this idea. When the friction with neutrals dominates
over the Coulombian collisions, a situation that is common for
this type of plasma19, a light impurity can be expelled radially.
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FIG. 12. Dependence of γ1 (a) and γ2−γ1 (b) in the (ν ,ν0) parameter
space with Z1 = Z2 = 1, A1 = 4, A2 = 3, when the first species is
forced so that ΩE = Ω

(1)
E,Bri.

This remains true even if the two species have masses that are
close to each other, e.g. isotopes of heavy elements.

Note that even when γ1 > 0, the latter remains an order of
magnitude lower than γ2. This confirms the potential for iso-
topic separation. This conclusion relies crucially on the hy-
pothesis that only one of the two species (the one that is sup-
posed to be confined) undergoes the azimuthal forcing which
is the source of the electric field. Note that increasing ν0, the
friction with neutrals, while keeping ν low, tends to have a
beneficial impact on the separation capability. However, one
should keep in mind that this leads to an increase of F , and
therefore to an increase of the power consumption of the de-
vice. At the same time, since the separation time scale be-
comes shorter, higher fluxes might be achieved to compensate.
It is not obvious that the favorable parameters for extraction
could be easily achieved. Increasing friction with the neutrals
can be done by increasing their density, while decreasing ν

can be done by raising the temperature. However, the two

are contradictory, or at least, counter-intuitive, since increas-
ing the temperature shifts the ionization equilibrium of Saha
law toward less neutrals. A more thorough investigation con-
sidering the time scales of ionization, injection and particle
residence time in the device would be needed to conclude.
However, the considerations of ion production mechanisms
are well beyond the scope of the present work.

VI. FINITE CONCENTRATION

There remains to examine the important case of finite con-
centration. In general, the interesting samples to separate may
have two species with comparable abundances, or even a large
number of species. We will consider only the two species
case and examine a last mathematical possibility offered by
the model.

When the plasma consists of two species with comparable
densities and different charge to mass ratios, there are now
two values for the Brillouin limit, Ω

(1)
E,Bri 6= Ω

(2)
E,Bri, and it is

difficult to have the correct intuition about how the plasma is
going to react to the forcing. Once again, we distinguish the
cases of heavy and light impurity.

A. Heavy second species

We still assume that the first species is forced, while the
second is not. Let us consider first the case when the second
species is heavy, with Ω

(1)
E,Bri > Ω

(2)
E,Bri. If the radial veloci-

ties start off as in the case of a trace heavy impurity, that is
with γ2 positive and |γ2| > |γ1| whatever the sign of γ1, the
outflow of the second species leads to a rapid decrease of its
density, leaving place to only the first ion species and the elec-
trons. We are then back to the situation of a trace species.
The situation, then, is essentially non stationary, and it does
not make sense to fix η and ζ (parameterizing the initial re-
spective abundances of the two species) and ask what are the
stationary electric field and frequencies for these values of η

and ζ , given a forcing F as well as the friction frequencies
ν and ν0. Indeed, η and ζ will necessarily vary, and in fact
η will go exponentially to zero. Unfortunately, we have not
come up with a better way than to actually simulate the evolu-
tion of the system for a range of parameters and examine the
final state. This is unfortunate because the numerical time re-
quired to reach a steady state increases roughly inversely pro-
portionally to the collision frequency. We explore again the
parameter space, with the following algorithm. For a given
choice of A1, A2, Z1 and Z2, we fix ν and ν0 and choose the
forcing such that ΩE would be equal to Ω

(1)
E,Bri if the second

species was a trace impurity. Finally, we choose initial values
for η0 ≡ η(t = 0) between 0 and 1 (and ζ0 = 1−η0) and we
let the coupled system evolve according to the full dynamical
equations and wait until a stationary state is reached. When
we do the exercise for A1 = 1 and A2 = 2 (this is figure 11 for
the case of trace impurity), testing the values η0=0, 0.2, 0.4,
0.6 and 0.8, we obtain that for all the possible initial values
without exception, the final state has η → 0.
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FIG. 13. Dependence of ΩE with the forcing for A1 = 4, A2 = 3,
Z1 = Z2 = 1, ν = 3× 10−3 and ν0 = 3× 10−2. The solid line rep-
resents the solution of (60)-(61). For |F | < 1.3×10−3 (dash-dotted
line), the solution of the system yields negative values for η . The
equilibrium solution then actually has η = 0 and is numerically ob-
tained by simulating the dynamical evolution until stationary state is
reached. The case η = 0 corresponds to the previously studied case
of trace impurity, and the solution no longer respects the constraint
(58).

The conclusion is that at least in the case of A1 = 1 and
A2 = 2, there is no difference between the finite concentration
case and the trace impurity case. The result is that the sec-
ond species is radially ejected. Of course, we cannot prove
that this holds for arbitrary masses such that A2 > A1, but the
model provides a way to check relatively rapidly whether this
is true or not, for any particular case one might be interested
in.

B. Light second species

The case of the light species is, again, more interesting. We
have seen in the trace impurity case that although γ2 > 0 when

neutral friction dominates, the opposite holds, γ2 < 0, when
Coulombian friction dominates. In the latter case, the negativ-
ity of γ2 means an exponential increase of the density. If we
are speaking of a trace impurity, this makes no sense: where
would the required matter come from? However, this hints at
a last mathematical possibility, which we have not explored
yet. What if there was a stationary state with η and ζ both
non zero?

If we seek such a stationary state η 6= 0, then we are bound
to have

γ1 = γ2 = γe (58)

with

γe =−
[

νζ Z1 (Ω1 +ΩE)+νηZ2 (Ω2 +ΩE)+ν0

√
me

mp
ΩE

]
,

(59)
where ΩE is a function of ζ and η via (20). We see that in-
deed Ω̇E from Equation (24) vanishes when (58) holds. Equa-
tion (24) may have a different stationary equilibrium for some
value of ζ and η , but then equations (22)-(23) would lead to a
change of densities, and the stationary solution for ΩE would
not be preserved. We then have, with equations (13)-(14) for
the two species (without the forcing for the second one), a sys-
tem of four equations for the four remaining unknowns Ω1,
Ω2, η and ζ . In principle, we can look for a stationary point
for these variables. According to equation (58), all species are
confined or expelled with the same radial velocities, which
is not good for separation. The question, then, is that of the
existence and stability properties of that fixed point, from a
dynamical system point of view.

Let us examine the fixed point given by the condition (58).
In the general case where ν and ν0 are both nonzero, since at
equilibrium the radial Coulombian friction terms vanish be-
cause of (58), the system reads

Ω
2
1− γ

2
e +ωc1 (Ω1 +ΩE)−

1√
A1

ν0γe = 0 (60)

− (2Ω1 +ωc1)γe +ω
2
cpF−ν12 (Ω1−Ω2)−

Z2
1

A1
ν (Ω1 +ΩE)−

1√
A1

ν0Ω1 = 0 (61)

Ω
2
2− γ

2
e +ωc2 (Ω2 +ΩE)−

1√
A2

ν0γe = 0 (62)

− (2Ω2 +ωc2)γe−ν21 (Ω2−Ω1)−
Z2

2
A2

ν (Ω2 +ΩE)−
1√
A2

ν0Ω2 = 0 (63)

with γe given by (59) and ΩE given by (20). The solutions of (60)-(63) are not restricted, mathematically, to ζ ,η > 0, al-
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though this is a physical requirement. Therefore, we consider
there is no physical solution satisfying (58) when the solu-
tion of (60)-(63) is such that η or ζ is negative. It is difficult
to prove the existence or non existence of relevant solutions in
the general case. But we can still say an important thing on the
solutions. As we have repeatedly seen, the equilibrium in the
radial direction is dominated by the equilibrium between in-
ertial, Lorentz and electric forces, Ω2

j +ωc j(Ω j +ΩE) = 0 for
any ion species j, which allows to define the Brillouin limit. If
ΩE ever overcomes the Brillouin limit, the other component of
the inertial forces, γ2

j , is bound to come into play and assume a
large value, corresponding to the radial ejection of the species.
Therefore, a stationary state such that Ω

(1)
E,Bri < ΩE < Ω

(2)
E,Bri

would require γ1 large but γ2 small. Since the equilibrium we
are considering has γ j = γe∀ j, by reductio ad absurdum, we
can conclude that ΩE can approach Ω

(1)
E,Bri (which is the mini-

mum of the two limits since we assume the second species is
lighter) but never exceed it. This is illustrated by figure 13.
Therefore, the equilibria we are considering here never have
large radial ejection velocities, although friction can lead to
γe > 0 as we have seen.

We can do an exercise similar to figure 12 where we look
for a solution of the type (58) in the (ν ,ν0) parameter space,
assuming the same rule for F as before (we take for F the
value that would make ΩE maximum if the second species
were a trace). For some values of (ν ,ν0) we find physically
acceptable solutions where both η and ζ are positive, but for
others either ζ or η is negative. The boundary between the
two regions coincides precisely with the isocontour γ2− γ1 =
0, visible in figure 12 (we do not show the result as the figure
would not bring any new information). This coincidence can
be understood using the following argument. Let us fix ν ,
ν0 and F and examine the dynamical picture, starting from
nonzero values for η and ζ and ΩE = 0 at t = 0. By linearizing
the system, it can be proven that for early times, we have γ2 >
0 and γ1 < 0, so the first species is confined and the second
is expelled. First, assume that ν and ν0 are such that in the
trace case γ2− γ1 < 0. As the second species is expelled, its
density exponentially decreases until it becomes a trace, but
by assumption when it has become a trace, γ2−γ1 < 0 and we
are now in the opposite situation where the expelled species
is the first one. This hints at the possibility of an equilibrium
point with η 6= 0. On the contrary, when in the trace case
γ2− γ1 > 0, there is nothing to stop the ejection process of
the second species and its density can decrease exponentially
until it becomes zero.

Therefore, the solutions conforming to (58) can be found
only in the zone where γ2−γ1 < 0 of the trace case. Referring
to figure 12, this is the bottom-right part of the γ2− γ1 figure,
colored in blue.

VII. DISCUSSION AND CAVEATS

The results of this paper can be reformulated in practical
terms, if one is interested in the physical parameters of an
actual experiments. First one should have the plasma suffi-
ciently magnetized such that the Coulomb collision frequency

is small, ν < ωcp. This sets a minimum value to the magnetic
field, or to the plasma temperature, or a maximum value to the
electron density. Then, if one wants to collect along the stream
a light species, and eject the other heavy one, it is sufficient to
tune the wave to be resonant with the light species, which will
be confined, while the heavy species will be expelled radially.
If one wants to collect along the stream the heavy species and
eject radially the light one, it is also possible, but it requires
that the collisions be dominated by collisions with neutrals,
that is ν � ν0. Increasing ν0 can be done by increasing the
neutral density, for instance by decreasing the temperature,
but then the question is whether these neutrals are from the
stream one wishes to separate. If the neutral fraction is very
large, then the device loses its purpose. Also, if the neutral
density is so large that collisions significantly impede rotation
and electric field build up, the electrical consumption of the
device will increase. It is beyond the scope of this paper to
discuss these problems in more details.

We also have to discuss the limits of the present study. Our
results come with important caveats, that have been already
mentioned or have transpired throughout the exposition.

First of all, we never make explicit the coupling between
the wave and the plasma. Actually, before even considering
the resonant wave-particle interaction, the wave propagation
should be considered, as several interesting effects due to both
the rotation and the magnetic field occur. In fact, it appears
that the dispersion relation of an orbital angular momentum
carrying wave in a rotating magnetized plasma is not known.
It is known that in a rotating magnetized plasma, there is, in
addition to the Faraday birefringence that causes a rotation of
the polarization plane, a mechanical optical effect, where rota-
tion also contributes to the rotation of the polarization plane34.
However, the dispersion relation is known formally only when
the wave number k, Ω and B0 are aligned. For oblique prop-
agation, including the case of wave angular momentum, there
are additional terms in the wave equation, that are not straight-
forward to treat analytically because of the tensorial nature of
the susceptibility in a magnetized plasma. Therefore, it is a
relevant question whether e.g. the conditions of resonance at
Ω1 = 0 would be preserved when Ω1 takes on values of the
order of the ion cyclotron frequency. Translated in more prac-
tical terms, would F depend on Ω1?

We regard the problem of the shaping of power deposition
as less pressing. If power deposition is very different from
our assumption that P(r) ∝ r4, this may introduce shear and
shaping of the electric field, but not necessarily invalidate our
results. More studies would be required to conclude, but we
would lose the immense advantage of dealing with ODEs.

As mentioned in section II A, we have not considered the
influence of the potentially large poloidal currents associated
with the ion-electron slip. This slip is of order 1 in our nor-
malization. Using Ampère’s theorem on a section of cylinder
of length L and using υθ ∝ r, integrating up to the cylinder
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radius r, we find a δB perturbation of the order of

δB
B0

= µ0
a2

2
nee

ωcp

B0
(ζ Z1Ω1−Ωe) (64)

=
1
2

nee2

ε0mp

a2

c2 (ζ Z1Ω1−Ωe) (65)

(assuming a one species plasma to simplify). Obviously, this
perturbation can become large unless a is less than the skin
depth c/ωpi. This is a quite severe restriction on the range of
plasma parameters than can be achieved. The question of how
the dynamics would be affected if this perturbation was taken
into account is left for future work. Note that some insight to
this issue is provided by ref.25

Another limitation of this work, also pertaining to the 0-
D nature of the model, has already been discussed. We have
completely neglected the boundary conditions, both in the z
direction and at the cylinder walls in r = a. The neglect of
boundary conditions in the z direction is relatively natural
since it amounts to assume a long cylinder, but the issue of
the radial boundary conditions is more problematic. As a re-
sult of not considering these boundary conditions, there is no
limitation on the variations of density that can be achieved by
the model. It is as if there were perfect reservoirs or sinks
in r = a, or, alternatively, as if a were in effect infinite. We
have been careful in this paper not to get carried away when
the model’s behaviour was clearly caused by taping in these
reservoirs. For instance, when a trace impurity is sucked until
it constitutes the main plasma component, while the initially
dominant species is expelled, we consider this conclusion to
be problematic. We believe, however, that we have been care-
ful enough with this problem that the main conclusions of the
paper, summarized in section VIII, still hold. More advanced
models should take this problem explicitly into account, by
considering global conservation of the number of particles.

VIII. SUMMARY

We can now summarize the results of this paper.

• The most important contribution of this paper is the re-
alization that when the source of the electric field is az-
imuthal forcing, the Brillouin limit with collisions can-
not be understood independently of the forcing. When
this is accounted for, we find there is no breakdown of
the Brillouin limit due to collisions (section IV), con-
trary to the case where the source of the electric field
is biased electrodes1. This essential difference between
the two different ways to generate the electric field ap-
pears to have been overlooked in the previous literature
on the Ohkawa filter.

• In the case of a one species plasma, the Brillouin limit
decreases for large values of the friction with neutrals,
and is not affected by Coulombian friction unless the
collision frequency reaches irrelevant values for the
plasmas we consider (sections III A and III B).

• When we consider trace impurities, assuming the forc-
ing to be such that ΩE = Ω

(1)
E,Bri, we find that

(i) The trace impurity is always expelled when it is
heavier (section V C 1).

(ii) The trace impurity can be expelled when it is
lighter if the friction is dominated by neutrals,
which, by the way, is likely (section V C 2).

• When the plasma consists of two species with compara-
ble abundances, with the same assumption on the forc-
ing, we again have two cases:

(i) If the passive species is the heavy one, it is always
expelled (section VI A).

(ii) If the passive species is the light one, the dynami-
cal system can exhibit a fixed point with η and ζ

both non-zero, and γ1 = γ2 = γe, if the friction is
dominated by Coulomb collisions. Otherwise, it
is expelled (section VI B).

• The main limits of the present results are as follows:

(i) The radius of the plasma must be smaller than the
ion skin depth to justify neglect of the magnetic
field perturbation.

(ii) The coulping between the wave and the plasma
requires specific studies.

(iii) The boundary conditions, that is, sources and
sinks, are not investigated in any detail.
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Appendix A: Justification for the force term

We will analyze the configuration represented in figure 14.
The plasma is infinite in the x̂ direction (and possibly in the
ignorable ẑ direction as well). The plasma is bounded in the
ŷ direction, in y = ±a. There is resonant interaction between
a wave with wave vector k⊥ = k⊥x̂ and the plasma. We will
adopt two different points of view on the effect of this wave on
the plasma. The two points of view reach the same conclusion:
the momentum of the wave is entirely converted to plasma and
dc field momentum, with proportions respectively χ⊥/ε⊥ and
1/ε⊥.

In the following, momentum refers to the kinetic part only,
p=mv, rather than to the canonical momentum p=mv+qA.
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FIG. 14. Configuration with wave induced electric field

1. Particle point of view

Let’s assume that during a time ∆t, each particle of a mi-
nority resonant population with density nr absorbs momentum
∆p=∆px̂, with ∆p ∝ h̄k⊥> 0. The total momentum absorbed
per unit time and unit volume, that is, the density of momen-
tum transfer between the wave and the plasma, is

F = nr
∆p
∆t

. (A1)

The gyrocenter of the resonant particles is displaced by a
quantity

∆y =− ∆p
qB0

, (A2)

which derives simply from the expression of the Larmor ra-
dius. This corresponds to a current of free charges jr = jrŷ,
where

jr = nrq
∆y
∆t

=−nr
∆p

B0∆t
(A3)

This current of free charges accumulates positive charges
on the right, y=−a, while depleting charges in y= a. Surface
charges appear at the left and right boundaries, given by ∆σ =
jr∆t. However, the plasma is a dielectric with susceptibility
χ⊥=mn/ε0B2, and dielectric constant ε⊥= 1+χ⊥. Although
in the plasmas we’re interested in, χ⊥� 1, we will not use this

assumption and maintain the distinction between ε⊥ and χ⊥.
Otherwise we might lose track of some momentum. Since
the plasma is a dielectric, the free charge current jr is largely
compensated by a bulk polarization current in the opposite
direction. The electric field increase is therefore given by

ε0ε⊥∆E =− jr∆tŷ

= nr
∆p
B0

ŷ (A4)

The associated cross-field motion is

∆vE =
∆E
B0

x̂. (A5)

The momentum density of the electromagnetic field is
given by Pfield = ε0E× B. Here, we do not bother with
the Abraham-Minkowski controversy, which debates whether
the relevant electromagnetic momentum in matter is D×B
(Minkowski) or E×H/c2 (Abraham). After all, the quanti-
ties D and H are but useful auxiliary quantities, which allow
to hide the polarization charge and magnetization currents. If
we write all the currents explicitly, we are authorized to stick
with the usual expressions for field quantities. Therefore, in
the final situation, the field momentum increase per unit vol-
ume is

∆Pfield = ε0∆EB0x̂

=
nr∆p
ε⊥

x̂, (A6)

while the increase of mechanical momentum is

∆Pmech = mn∆vE

=
χ⊥
ε⊥

nr∆px̂ (A7)

And we find that

∆(Pfield +Pmech) = nr∆px̂ (A8)

The momentum transferred by the wave goes to the plasma
and the dc field in proportions respectively χ⊥/ε⊥ and 1/ε⊥.
Incidentally, note that D×B gives the sum of the field and
matter contributions.

2. Fluid point of view

Now let’s have a look at the fluid point of view. We only
need two equations. The electron dynamics is useless because
of their small inertia. To study the ion motion under the influ-
ence of the wave, let us start from the kinetic equation taking
into account the quasilinear wave-induced velocity diffusion,
and neglecting collisions, as well as spatial gradients:

∂t f +
q
m
(E+v×B) ·∂v f = ∂v ·

{
¯̄D ·∂v f

}
(A9)
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By integrating on velocity space after multiplying by mv,
and using constant density, we find the equation of motion of
the ions:

∂tv =
q
m
(E+v×B)+

F
mn

, (A10)

where F is the wave-induced forcing, defined by

F = m
∫
v∂v ·

{
¯̄D ·∂v f

}
d3v =−m

∫
d3v ¯̄D ·∂v f (A11)

By conservation of momentum, we know that F should be
equal to the momentum lost by the wave, hence F is also given
by equation (A1):

F = nr
∆p
∆t

x̂ (A12)

The dynamics of the electric field E = Eŷ is given by the
same equation as in section A 1 with the total current j = nqv:

ε0∂tE =−nqυy (A13)

Since there is no spatial dependence except for the charge
accumulation at the y boundaries, we can transform the sys-
tem into a system of coupled ODEs, ignoring the z direction.
Writing υE = E/B0, the system reads

υ̇x = ωcυy +ωcF (A14)
υ̇y =−ωcυx +ωcυE (A15)

υ̇E =− nm
ε0B2

0
ωcυy =−χ⊥ωcυy. (A16)

where F = |F|/(nqB0) represents the wave forcing. We could
already stop here. Indeed, the total momentum (neglecting the
qA contribution) rate of change is

∂t {Pfield +Pmech}= mnυ̇x + ε0ĖB0

= mn(υ̇x + υ̇E/χ⊥)

= ωcF , (A17)

and we know the proportions (the same as in section A 1, re-
spectively χ⊥/ε⊥ and 1/ε⊥), because the υx motion is nothing
but the E×B motion. But let’s compute the analytical solu-
tion to see in details what happens. After normalizing time to
ω−1

c , and defining X = (υx,υy,υE)
>, the system reads

Ẋ = AX +B (A18)

with

A =

 0 1 0
−1 0 1
0 −χ⊥ 0

 , B =

 F
0
0

 (A19)

The solution satisfying X(t = 0) = 0 is given by

X(t) = M(t)B, M(t) =

(
∞

∑
n=1

An−1tn

n!

)
(A20)

We can easily find the analytical solution by noting the fol-
lowing property of the matrix A:

A2k = (−1)k−1
ε

k−1
⊥ A2 (A21)

A2k−1 = (−1)k−1
ε

k−1
⊥ A, (A22)

with

A2 =

 −1 0 1
0 −ε⊥ 0

χ⊥ 0 −χ⊥

 (A23)

The matrix M(t) is then given by

M(t) = t1+
A

(i
√

ε⊥)2

∞

∑
k=1

(it
√

ε⊥)
2k

(2k)!
+

A2

(i
√

ε⊥)3

∞

∑
k=1

(it
√

ε⊥)
2k+1

(2k+1)!
(A24)

We recognize in the two sums truncated developments of sine
and cosine, which yields finally:

υx(t) = F

(
χ⊥
ε⊥

ωct +
1

ε
3/2
⊥

sin
(

ε
1/2
⊥ ωct

))
(A25)

υy(t) =
F

ε⊥

(
cos
(

ε
1/2
⊥ ωct

)
−1
)

(A26)

υE(t) = F

(
χ⊥
ε⊥

ωct−
χ⊥

ε
3/2
⊥

sin
(

ε
1/2
⊥ ωct

))
(A27)

In other words, up to the oscillating terms, that become
small anyway when χ⊥ → ∞, we have exactly the same dy-
namics as in section A 1, and the same conclusion. Indeed,
in a time ∆t, the combination plasma + dc field receives the
momentum

mn(υx(∆t)+υE(∆t)/χ⊥) = mnFωc∆t = nr∆p (A28)

The momentum of the wave is transferred to the plasma and
the dc field in proportions respectively χ⊥/ε⊥ and 1/ε⊥.

3. Splitting between resonant and bulk

One might object that a fluid approach is bound to fail be-
cause the population that undergoes wave forcing, the reso-
nant particles, makes up such a small fraction of the plasma.
In this section, we split the ions between a resonant part, with
density nr = αn, and a bulk part, with density nb = (1−α)n.
Only the resonant part sees the forcing F. Note that the distri-
bution of the resonant particles is anything but a Maxwellian
in the z direction, but can be close to a Maxwellian (insofar
as the bulk also is) in the xOy plane, because there is no cor-
relation between having a certain velocity (close to the phase
velocity of the wave in the z direction) and the velocity in the
xOy plane. Hence, we can make sense of treating the resonant
part as a fluid in the xOy plane.

We show that the dynamics of the electric field (hence, of
the bulk motion) is completely independent of α . Therefore,
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there is no reason to split resonant ions and bulk ions, and
the approach where F = k⊥P/ω is seen as a fluid force is
valid. This crucially relies on the fact we are examining the
perpendicular direction.

One would like to solve the following coupled equations
(the convective term is still absent because of the geometry of
the slab system and the direction of the flows):

nrm∂tvr = nrq(E+vr×B)+F (A29)
nbm∂tvb = nbq(E+vb×B) (A30)

ε0∂tE =−(nr +nb)q
(

nr

nr +nb
vr,y +

nb

nr +nb
vb,y

)
=−nq

(
αvr,y +(1−α)vb,y

)
, (A31)

where we have defined α ≡ nr/(nr + nb). As before, we
normalize the system, in particular time with ωci, defining
χ⊥ = (nr + nb)m/(ε0B2), vE = E/B, and F = |F|/(nqB0).
We obtain the 5th order system

v̇x = vy +
F

α
(A32)

v̇y = vE − vx (A33)
ẇx = wy (A34)
ẇy = vE −wx (A35)
v̇E =−χ⊥ (αvy +(1−α)wy) , (A36)

where the v variables stand for the resonant part, and the w
variables for the bulk.

The important result is that the dynamics of the electric field
and of the transverse current (in the y direction) do not depend
on α: whatever the value of α > 0, we obtain the same elec-
tric field evolution, and the same mean displacement of the
ions in the y direction (representing the radial direction of a
cylindrical system). We can prove it as follows. By taking the
time derivative of (A36), one obtains

v̈E +χ⊥vE = χ⊥ (αvx +(1−α)wx) (A37)

By taking it one more time and using the notation Y ≡ v̇E ,
one obtains

Ÿ +χ⊥Y = χ⊥

(
α

[
vy +

F

α

]
+(1−α)wy

)
, (A38)

which, using ε⊥= 1+χ⊥ and, one more time, equation (A36),
simplifies into

Ÿ + ε⊥Y = χ⊥F . (A39)

The parameter α has disappeared from the equation. The evo-
lution of E, therefore, is independent of α , with the condition
that the 3 initial conditions of this third order system also be
independent of α . Rewriting the system Ẋ = AX +B, with
X = (vx,vy,wx,wy,vE)

ᵀ, B = (F/α,0,0,0,0)ᵀ, and

A =


0 1 0 0 0
−1 0 0 0 1
0 0 0 1 0
0 0 −1 0 1
0 −αχ⊥ 0 −(1−α)χ⊥ 0

 , (A40)

the solution is

X(t) =

[
∞

∑
n=1

An−1tn

n!

]
B

= Bt +AB
t2

2
+O(t3) (A41)

Therefore, the initial conditions for vE are vE(0) = 0, v̇E(0) =
0 and v̈E(0) = 0, also independent of α . Since the total y-
current of this species is simply given by the time derivative
of vE , this current also is independent of α . QED.

With these initial conditions, we can actually easily solve
for vE . From equation (A39), we have the solution

Y (t) =
χ⊥
ε⊥

F [1− cos(
√

ε⊥t)] , (A42)

which, naturally, gives for vE the very same solution as equa-
tion (A27).

The conclusion is that there is no point in splitting the fluid
between resonant and non-resonant part to treat the wave forc-
ing, whether in terms of electric field dynamics or in terms of
net displacement in the y (“radial”) direction. Of course, vr
and vb are different. In particular, when the wave has momen-
tum in the +x̂ direction, the resonant ions are displaced on
average to the −ŷ direction, while the bulk ions are displaced
to the +ŷ direction. But when one is doing a separation ex-
periment, one is not interested to know whether the collected
ions are the resonant ones or not. One is only interested in the
species of the ion.
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