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Lecture outline

• Why should we care about chemical kinetics?

• Lifetime in the atmosphere

• The nature of the rate coefficient, k
• What is it?

• The gas-kinetic limit

• The Arrhenius equation

• Methods for measuring k

• Dependence of k on T and P

• The problem with parameter-space



Kinetic parameters of the atmosphere

• Photolysis:
• O3 + hv → O(1D) + O2

• Thermal decomposition:
• CH3C(O)OONO2 → CH3C(O)OO + NO2

• Radical–molecule:
• OH + isoprene → products

• Radical–radical:
• RO2 + RO2 → RO + RO + O2

• Termolecular reactions:
• OH + SO2 + M → → H2SO4 + M

• Equilibria:
• NO2 + NO3 ⇌ N2O5

• Phase transfer:
• Gas-phase → aerosol-phase

• Heterogeneous reactions:
• 2NO2 + H2O + surface → HONO + HNO3

• … + more 

Carte du jour



Why we study chemical kinetics

• So, the atmosphere has lots of 
different chemical reactions that can 
happen

• Many of these reactions are in 
competition with each other

• Normally, the faster the rate of 
reaction, the more important it is

• That is, the more competitive it is



Types of competition

• For a simple compound like methane, we 
could ask:                                                
which oxidant is most important?

• For more complex compounds, we could 
ask:                                                         
which reactive sites are more important?

• For compounds of a difference size, we 
could ask:                                               
which mechanism is most important?

H

H
H

H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H

H

H
H

RO2 + RO2 → RO + RO + O2

RO2 + RO2 → ROOR



Atmospheric lifetime

• Atmospheric 
chemists often use 
the lifetime with 
respect to OH as a 
general measure 
of lifetime:

𝜏 =
1

𝑘[OH]



• Lifetime is a major control on 
the distance over which 
pollution can be transported

• The pollution from one 
country could affect the air 
quality of another

• Furthermore, for certain 
chemicals, vertical transport 
(and persistence) becomes 
important (e.g. CFCs, HCFCs)

troposphere

stratosphere

ozone layer

Transport to neighbouring 

cities / countries

Very slow transport to the stratosphere

Why is the lifetime so important?

For example:

For example:



The total atmospheric lifetime

• Reaction with OH is generally important for destroying pollution

• But there are many other processes that can be important

• Therefore, it is more useful to consider the lifetime as follows:

• Also, depending on the location in the atmosphere, individual 
processes may dominate, e.g. photolysis is faster in the stratosphere, 
but hydrolysis is very slow, so we can express lifetime as follows: 
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Either way, it all depends on k (or J)

𝜏 =
1

𝑘[OH]
𝜏O3

=
1

𝑘[O3]
etcetera …

𝜏oxidant =
1

𝑘oxidant[oxidant]

similarly … 𝜏photolysis =
1

𝐽



The rate coefficient, k
• Simple atmospheric chemical reactions are first-order, A → B                              

(e.g. unimolecular, photolysis):

• Many atmospheric reactions are bi-molecular and second-order, A + B → C              
(e.g. OH addition): 

• Kinetics prefer to work under pseudo-first-order conditions, where:
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The rate coefficient, k

• But what is k?

• k is a parameter that describes efficiency

• If k is big, the reaction process is efficient

• If k is small, the reaction process is inefficient

• If k is 100% efficient, then every collision between molecule A and 
molecule B results in a reaction

• This is known as the “gas kinetic limit” or “collision limit”



The gas kinetic limit
• Begin by considering how fast a gas molecule can move

• Let’s consider something simple like N2 at room temperature:

• Next, consider how far a molecule travels before it hits another molecule (mean free 
path):

• Now we can calculate how many collisions are happening:

• And, if you divide by the number density of 1 atmosphere of gas at room temperature:

ҧ𝑣 =
8𝑘𝐵𝑇

𝜋𝑚
=

8 × 1.38 × 10−23(𝑚2𝑘𝑔 𝑠−2𝐾−1) × 298(𝐾)

3.14…× 4.65 × 10−26(𝑘𝑔)
= 474.7 𝑚 𝑠−1

𝜆 =
𝑅𝑇

2𝜋𝑑2𝑁𝐴𝑃
=

8.314(𝑚3 ∙ 𝑃𝑎 ∙ 𝐾−1 ∙ 𝑚𝑜𝑙−1) × 298(𝐾)

2𝜋(3.64 × 10−10)2(𝑚2) × 6.02 × 1023 (1 𝑚𝑜𝑙) × 101325(𝑃𝑎)
= 6.898 × 10−8 𝑚

𝑍 =
ҧ𝑣

𝜆
=

474.7(𝑚 𝑠−1)

6.898 × 10−8(𝑚)
= 6.88 × 109 𝑠−1

𝑘 =
𝑍

𝑛
=

6.88 × 109(𝑠−1)

2.46 × 1019(𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑐𝑚−3)
= 2.79 × 10−10 𝑐𝑚3𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1𝑠−1



What controls the size of k?

• Some reactions are highly efficient, i.e. ≈ gas kinetic limit (e.g. 
reactions with chlorine and alkenes, k = 10-10)

• Others are a lot less efficient (e.g. alkene ozonolysis, k = 10-22)

• So, some reactions are a trillion times more efficient than others!

• Where does this inefficiency come from?

• There are several possibilities…



The Arrhenius equation

• Many reactions have an activation energy

• This emparts a temperature dependence:

k(T) = Zexp(–Ea/RT)

• Other (steric) factors are also important:

k(T) = Zρexp(–Ea/RT)

• Leading to the familiar Arrhenius equation:

k(T) = Aexp(–Ea/RT)

reactants

products

Reaction coordinate
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Svante Arrhenius
(1889)



How do we measure kinetic parameters?

Let’s consider a bi-molecular reaction (A + B → C), we generally need 
three different things:

A. An environment where A and B can react together (a reactor)
• Appropriate temperature/ pressure, absence of secondary chemistry

B. An analytical tool to measure (at least one of) A, B or C
• Needs to be sensitive enough, and rapid enough

C. A measurement of time
• A way of exposing A to B for a known amount of time

−
𝑑[𝐴]

𝑑𝑡
= 𝑘𝑜𝑏𝑠[𝐴]

−
𝑑[𝐴]

𝑑𝑡
= 𝑘𝑜𝑏𝑠[𝐴]



Laser
Induced
Fluorescence

PMT

308 nm
fluorescence

Bandpass filter 
and collection 
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Detection of 
reactant with 
FTIR

• Temperature range: 
220–373 K

• Pressure range:      
30–600 Torr

• Bath gases:              
He, Ar, N2, O2

• OH precursors:  
H2O2, HNO3

• On-line 
measurement of 
[SO2]

• Supporting RR 
measurements     
(N2, Ar, O2, Air)



Laser
Induced
Fluorescence

PMT

ln
[OH]𝑡
[OH]0

= ln
𝑆𝑡
𝑆0

= − 𝑘 reactant + 𝑘𝑑 𝑡 = −𝑘′𝑡

kd
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What is CRDS???

Photo

diode
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CR2I2+ hv → CR2I + I
CR2I + O2 → CR2OO + I
CR2I + O2 + M → ICR2OO + M
where R = H or CH3

Convenient chemistry

T range: 240–340 K
P range: 5–200 Torr
Ring-down time: <6 µs
Reaction time: ~10 ms
[CI]0: ~2 × 1012 (molec. cm-3)  
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𝑑𝑁

𝑑𝑡
= −2𝑘𝑜𝑏𝑠𝑁

2 − 𝑘𝑝𝑁

𝑁(𝑡) =
𝑘2𝑁(𝑡0)

𝑘𝑝𝑒
𝑘𝑝𝑡 − 2𝑘𝑜𝑏𝑠𝑁 𝑡0 + 2𝑘𝑜𝑏𝑠𝑁 𝑡0 𝑒𝑘𝑝𝑡

𝛥κ 𝑡 =
𝑘𝑝

𝑘𝑝
𝛥κ 𝑡0

𝑒𝑘𝑝𝑡 − 𝑘′
2𝐿
𝑐𝑑

+ 𝑘′
2𝐿
𝑐𝑑

𝑒𝑘𝑝𝑡

Fit function:



Relative rate kinetics

More reactive compound

Less reactive compound

• Another approach is to use 
the relative rate approach

• Here we introduce two 
compounds that are allowed 
to react simultaneously:

A + OH → product
B + OH → product

• So, if we know the reactivity 
of B (for example), then we 
can deduce that of A



Relative rate kinetics

𝑙𝑛
[𝐴]0
[𝐴]𝑡

− 𝑘𝑑𝑡 =
𝑘𝐴
𝑘𝐵

𝑙𝑛
𝐵0
𝐵𝑡

− 𝑘𝑑𝑡

• This is done with the relative 
rate approach:

• This can be very precise and 
effective, but it is limited by 
the accuracy of the reference

kA/kB



T-dependence of k

• Many reactions are temperature 
dependent

• And over a small temperature range, 
they may obey the Arrhenius 
equation

• But over larger ranges, we observe 
curvature

• And this curvature can be described 
by the modified Arrhenius equation

• This is referred to as non-Arrhenius 
behaviour

k(T) = Aexp(–Ea/RT)

k(T) = A(T/300)nexp(–Ea/RT)



Non-Arrhenius behaviour

• Several reasons for this:

• Multiple (i) reactions sites, 
each with their own 
different T-dependence

• Since the total reaction 
rate is the sum of each: 

+



Non-Arrhenius behaviour

• A typical atmospheric emission 
such as cis-3-hexenol 
possesses several reaction 
sites

• These sites react through 
several mechanisms, which 
respond differently to 
temperature changes

• Some sites have a positive T-
dep, some sites have a 
negative T-dep, some sites 
have positive and negative T-
dep

• Wait… negative T-dep?

H abstraction

OH addition

vdW-mediated 
H abstraction



Negative temperature-dependence of k

• Remember what I 
said earlier?

• Well, it is true, but 
it isn’t the whole 
truth…
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Negative temperature-dependence of k

• We see negative temperature 
dependence for many 
atmospheric reactions

• Atmospheric chemistry 
transforms reduced molecules 
into oxygenated molecules

• This is an opportunity for van 
der Waals complexes to form

• In fact, non-Arrhenius behaviour 
is not exceptional, it is common Almost all atmospheric degradation 

products are oxygenated



Non-Arrhenius behaviour

OH + n-butanol

Zhou et al. (2011) identified 8 reaction channels in a 
reaction that possesses 5 reaction sites

McGillen et al. (2013) used 3 reaction channels to 
describe a reaction that possesses 2 reaction sites



Pressure-dependence of k

• There are several very important reactions in the atmosphere that 
exhibit pressure dependence

• Pressure dependence in atmospheric reactions (mostly) involves 
energy transfer with the N2 and O2

• These are referred to as M, a third body that doesn’t participate 
direction in a reaction:

For example: SO2 + OH ⇌ [HOSO2]* + M → HOSO2 + M →→ H2SO4

• This is a competition: can [HOSO2]* collide with M before it falls 
apart?

• Therefore, this reaction dependends on [M] (∝ pressure)



kinetics in the fall-off regime

(stabilization channel)
[HSO3]* + M → HOSO2 + M

(dissociation channel)
[HSO3]* → OH + SO2

• Where atmospheric 
pressure dependence is 
important, reactions are 
usually in the fall-off region

• At some point, k cannot get 
any larger, it has reached its 
high-pressure limit (k∞)

• The onset of k∞ can vary 
widely <mBar – 100s of Bar

• This depends of the stability 
of the intermediate



P- and T-dependence in OH + SO2



Pressure dependence in ozonolysis

• Ozonolysis is a unique 
chemical system with a large 
number of local minima on the 
PES

• There is a cascade of 
intermediate species, which 
are losing energy by colliding 
with M

• It becomes a race to the 
bottom of the potential energy 
surface



Estimating k

• I have talked a lot about 
measuring k so far

• But measuring k is often very 
difficult and time-consuming

• Yet there are many reactions 
rates that we would like to 
know

• This is generally done by 
parameterizing aspects of 
molecules that control reactivity

• These are the structure-activity 
relationships (SARs) 500,000

Area-proportional Venn diagram: number of 
products formed from two atmospheric 
chemicals vs those that have been studied

Studied 
chemicals

1,346

Source: McGillen et al. (2020)



Structure-activity relationships (SARs)

• There are many types of SARs that can be used

• The most popular approach is the group-additivity 
method

• This method makes use of the idea that the 
observed k is the summation of all reaction 
channels:

• This has the advantage of providing estimates for 
product branching ratios

• This is ideal for chemical models, where we want 
to know the lifetime of a chemical, but also the 
secondary pollutants that are formed

Example calculation from: Kwok and Atkinson (1995)



Structure-activity relationship principles

• Fundamentally, these are parameterizations, so, regardless of the 
approach, the idea is to describe the process of interest in a simplified way

• For SARs, this is linked to the molecular structure

• But the molecular property that is chosen for parameterization will change 
depending on the reaction mechanism

• For example, for the hydrogen abstraction reaction: RH + OH → H2O + R,    
a description of the strength of the R–H bond may be best

• On the other hand, for OH addition reactions:                              
R1(R2)C=C(R3)R4 + OH → R1(R2)(OH)C=C(R3)R4, a description of the electron 
density of the C=C bond may be the best approach



Structure-activity relationship performance

• High quality measurements 
may determine k within ~5%

• SARs tend to be accurate to 
within a factor of 2

• There is no replacement for 
high-quality laboratory data, 
but models need to contain 
reasonable information

Source: Carter (2020)



Databases to find kinetic data

NIST Chemical Kinetics Database:

https://kinetics.nist.gov/kinetics/

IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation:

https://iupac-aeris.ipsl.fr/

NASA/ JPL data evaluation:

https://jpldataeval.jpl.nasa.gov/

Database for the kinetics of the gas-phase atmospheric reactions of organic compounds:

https://data.eurochamp.org/data-access/kin/#/home



Further reading

• This was a really quick introduction to the science of kinetics, if you 
would like to learn more about it, consider the following book:



Conclusions

• Kinetics has important effects in all aspects of atmospheric chemistry

• Kinetics is a fundamental quantity that can be measured with a 
variety of analytical and experimental techniques

• This quantity often varies according to the atmospheric conditions 
(temperature and pressure effects)

• Atmospheric chemistry produces a huge variety of chemical products

• This leads to an enormous parameter-space (too many to measure)

• So, we also need to think how we can estimate those things that we 
don’t have time to measure


