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Lecture outline

* Why should we care about chemical kinetics?
e Lifetime in the atmosphere

 The nature of the rate coefficient, k
* What is it?
* The gas-kinetic limit
* The Arrhenius equation

* Methods for measuring k
* Dependence of kon T and P
* The problem with parameter-space



Kinetic parameters of the atmosphere

* Photolysis: * Termolecular reactions:
* O, +hv— O('D) + O, * OH+S0O,+M — — H,SO, + M
* Thermal decomposition: * Equilibria:
* CH,C(0)OONO, — CH,C(0)0O0 + NO, * NO, + NO, = N,O.
* Radical-molecule: * Phase transfer:
* OH + isoprene — products * Gas-phase — aerosol-phase
e Radical—-radical: * Heterogeneous reactions:
* RO, +RO, — RO +RO + 0, * 2NO, + H,0 + surface — HONO + HNOj,
e ...+ more



Why we study chemical kinetics

* So, the atmosphere has lots of
different chemical reactions that can
happen

* Many of these reactions are in
competition with each other

* Normally, the faster the rate of
reaction, the more important it is

* That is, the more competitive it is
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Types of competition

* For a simple compound like methane, we
could ask:
which oxidant is most important?

* For more complex compounds, we could H Hi i H|IH ! H H H
ask: AANANANANANX
which reactive sites are more important? H™ Y\ H . H ! HIlH I H H

* For compounds of a difference size, we RO, + RO, — RO+ RO + O,

could ask:
which mechanism is most important? Ro, +Ro, - RooR




Atmospheric lifetime

* Atmospheric
chemists often use
the lifetime with
respect to OH as a
general measure
of lifetime:
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Why is the lifetime so

stratosphere

* Lifetime is a major control on
the distance over which
pollution can be transported

* The pollution from one
country could affect the air
quality of another

* Furthermore, for certain
chemicals, vertical transport
(and persistence) becomes
important (e.g. CFCs, HCFCs)

For example:
e j: T, Mcpc-n
ODP =

i
3 fCFC—ll TCcEC-11 Mi

For example:
AGWP,(H) = A,.f(1 = exp ( [i) )

T




The total atmospheric lifetime

e Reaction with OH is generally important for destroying pollution
* But there are many other processes that can be important

* Therefore, it is more useful to consider the lifetime as follows:

1 1 1 1 1 1 1
+ +—+—+ + + oo

Ttotal TOH TNO3; TO5 TCl Tphotolysis Thydrolysis

* Also, depending on the location in the atmosphere, individual
processes may dominate, e.g. photolysis is faster in the stratosphere,
but hydrolysis is very slow, so we can express lifetime as follows:

1 1 1 1
= + +
Ttotal Ttroposphere Tstratosphere Tmesosphere




Either way, it all depends on k (or J)

1 1
T = k[OH] T()3 — k[0;] etcetera ...
1
TAvi — :
oxidant Koxidantloxidant]
1

similarly ... Tphotolysis — 7



The rate coefficient, k

* Simple atmospheric chemical reactions are first-order, A — B
(e.g. unimolecular, photolysis):

d[A] [A] Relatue concentration clhange
= k[A] p In=—2=kt with time (comvenient)
dt [Al,
* Many atmospheric reactions are bi-molecular and second-order, A+ B — C
(e.g. OH addition): Absolute concentration
d[A] L [AMBL _ o iange with fime
it~ K[AI[B] > [Al,-[B], [AL[B] (nconvenient)
» Kinetics prefer to work under pseudo-first-order conditions, where:
[B] > [A] + [Blo~ [Bl: Cihounges un concentratfion
R Y > k. =kx[B] GNLLTUNL..

dt



The rate coefficient, k

e But what is k?

* k is a parameter that describes efficiency

* If k is big, the reaction process is efficient

* If k is small, the reaction process is inefficient

* If kis 100% efficient, then every collision between molecule A and
molecule B results in a reaction

* This is known as the “gas kinetic limit” or “collision limit”



The gas kinetic limit

* Begin by considering how fast a gas molecule can move
Let’s consider something simple like N, at room temperature:

8ksT 8% 1.38 x 10~23(m2%kg s—2K~1) x 298(K) B

= — = 4747 ms™ !

m 3.14 ... X 4.65 x 10=26(kg)

Nexr;c consider how far a molecule travels before it hits another molecule (mean free
path):

v =

RT 8.314(m3 - Pa- K1 -mol™1) x 298(K)

A ) —_—
V2rd2N,P  2m(3.64 x 10710)2(m2) x 6.02 x 1023 (1 mol) x 101325(Pa)

=6.898x 10" 8m

Now we can calculate how many collisions are happening:

, v 4747(ms™Y) 688 x 109 s-1
217 6898x108(m) >

And, if you divide by the number density of 1 atmosphere of gas at room temperature:

. A 6.88 x 10%(s™1)

= = 2.79 x 10~1° cm3molecule~1s
n  2.46 x 10°(molecule cm=3) cmomotecute =S




What controls the size of k7 §>

* Some reactions are highly efficient, i.e. = gas kinetic limit (e.g.
reactions with chlorine and alkenes, k = 10-19)

* Others are a lot less efficient (e.g. alkene ozonolysis, k = 10-2?)

* SO, some reactions are a trillion times more efficient than others!
 Where does this inefficiency come from?

* There are several possibilities...



The Arrhenius equation

 Many reactions have an activation energy
* This emparts a temperature dependence:

k(T) = Zexp(—E_/RT)

e Other (steric) factors are also important:

k(T) = Zpexp(-E,/RT)

* Leading to the familiar Arrhenius equation:

k(T) = Aexp(—E_/RT)

energy
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How do we measure kinetic parameters?

Let’s consider a bi-molecular reaction (A + B — C), we generally need
three different things:

A. An environment where A and B can react together (a reactor)
* Appropriate temperature/ pressure, absence of secondary chemistry

B. An analytical tool to measure (at least one of) A, Bor C

* Needs to be sensitive enough, and rapid enough _4l4] _ [A]
dt — Mobs

C. A measurement of time
* A way of exposing A to B for a known amount of time d[A]



Ldser

* Temperature range:

nduced . 220-373 K
| gorescence —— * Pressure range:
reactant with 30—-600 Torr

* Bath gases:
He, Ar, N,, O,

* OH precursors:
H,0,, HNO,

* On-line
measurement of
S0,]

* Supporting RR
measurements
(N,, Ar, O,, Air)

LIF reactor

fluorescence

Bandpass filter
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Laser photolysis coupled to CRDS

What is CRDS??7?

Ada o .

Ih odiode
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Convenient chemistry
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Relative rate kinetics

* Another approach is to use
the relative rate approach
Less reactinve componnds  Here we introduce two
compounds that are allowed
to react simultaneously:
A + OH — product
B + OH — product
* So, if we know the reactivity
of B (for example), then we
can deduce that of A
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In([Alo/[Aly) - kqt

Relative rate kinetics
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* This is done with the relative
rate approach:

A k, (B
In (%) — kyt = éln (B—:> — kyt

* This can be very precise and
effective, but it is limited by
the accuracy of the reference




T-dependence of k

-1 -1
lecule s )

* Many reactions are temperature

cm mo

3

dependent <
* And over a small temperature range,
they may obey the Arrhenius Js 30 32 34 38 38 40 42
equation 1000/T (K
1000 500 300 " 200 150
* But over larger ranges, we observe M S ' '

curvature 0"

 And this curvature can be described
by the modified Arrhenius equation

* This is referred to as non-Arrhenius
behaviour

k(T) = A(T/300)"exp(—E,/RT)

-1 -1
lecule s )
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cm mo
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k(

1000/T (K™



Non-Arrhenius behaviour OH OH
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. L P vdW-mediated
* A typical atmospheric emission H abstraction
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such as cis-3-hexenol
possesses several reaction
sites

* These sites react through 4
several mechanisms, which |
respond differently to Y
temperature changes

* Some sites have a positive T-
dep, some sites have a
negative T-dep, some sites
have positive and negative T-
dep

Wait... negative T-dep?




Negative temperature-dependence of k

 Remember what | / X

said earlier? . .
The Arrhenius equation
 Well, it is true, but

)
It isn’t the WhOle * Many reactions have an activation energy % reactants
truth * This emparts a temperature dependence:
k(T) — ZQXQ(—.EQ/RT) fresiisss Svante Arrhenius

. . Reacti dinas (1889)
* Other (steric) factors are also important: eaction coordinate

k(T) = Zpexp(~E,/RT)

.‘j// * Leading to the familiar Arrhenius equation: 5‘
2

o

]

k(T) = Aexp(-E,/RT)
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Negative temperature-dependence of k

* We see negative temperature
dependence for many
atmospheric reactions

* Atmospheric chemistry
transforms reduced molecules
into oxygenated molecules

* This is an opportunity for van
der Waals complexes to form

* |n fact, non-Arrhenius behaviour

is not exceptional, it is common Almost all atmospireric degradation
produrctsy are oxygenated



Non-Arrhenius behaviour
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Pressure-dependence of k

* There are several very important reactions in the atmosphere that
exhibit pressure dependence

* Pressure dependence in atmospheric reactions (mostly) involves
energy transfer with the N, and O,

* These are referred to as M, a third body that doesn’t participate
direction in a reaction:

For example: SO, + OH = [HOSO,]* + M — HOSO, + M —— H,SO,

* This is a competition: can [HOSO,]* collide with M before it falls
apart?

* Therefore, this reaction dependends on [M] (« pressure)



kinetics in the fall-off regime

* Where atmospheric
pressure dependence is
Important, reactions are
(stabilization channel) . .
[HSOLJ* + M — HOSO, + M usually in the fall-off region

HSO - > 0N 150,/ igh-pressure it * At some point, k cannot get
any larger, it has reached its
high-pressure limit (k..)

* The onset of k., can vary
widely <mBar — 100s of Bar

ow-pressure limit * This depends of the stability

T, of the intermediate
log(pressure)

falloff regime

log(bimolecular rate constant)
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Pressure dependence in ozonolysis

* Ozonolysis is a unique
chemical system with a large
number of local minima on the
PES

* There is a cascade of
intermediate species, which
are losing energy by colliding
with M

* [t becomes a race to the
bottom of the potential energy
surface

Rapid reaction

Ho_CF3 |}




Estimating k

Area-proportional Venn diagram: number of
products formed from two atmospheric

e | have talked a lot about chemicals vs those that have been studied
measuring k so far Studied
chemicals

* But measuring k is often very

difficult and time-consuming

* Yet there are many reactions j \ .
rates that we would like to i /.
know GECKO-A GECKO-A

* This is generally done by a-pinene Yy’
parameterizing aspects of \] _ i
molecules that control reactivity Known knowns

* These are the structure-activity “Known unknowns”
relationships (SARS) 500,000 /”Unknown unknowns”

Source: McGillen et al. (2020)



Structure-activity relationships (SARs)

There are many types of SARs that can be used
CH

The most popular approach is the group-additivity 3
method
This method makes use of the idea that the
observed k is the summation of all reaction CH. CH
channels: 3 73
~Ey
= - A RT
ktOtal (T) Z KlAle total = {2ks:cF(_CH2—)F( CH—)F5F6
L

This has the advantage of providing estimates for + kier [F(-CH,))*F(>CH-)FsF s F6
product branching ratios + kyoy [F(—CH, )] F(SC<)F s F i F ¢
This is ideal for chemical models, where we want ~CH\2
to know the lifetime of a chemical, but also the t ke [F(>CHA)J F s Fs
secondary pollutants that are formed + kien F(>CX)F(>CH-)F(-CH;) FsF,

+ ke F(SCZ) + kprim F(>CH-)}

Example calculation from: Kwok and Atkinson (1995)



Structure-activity relationship principles

* Fundamentally, these are parameterizations, so, regardless of the
approach, the idea is to describe the process of interest in a simplified way

* For SARs, this is linked to the molecular structure

* But the molecular property that is chosen for parameterization will change
depending on the reaction mechanism

* For example, for the hydrogen abstraction reaction: RH + OH — H,0O +R,
a description of the strength of the R—H bond may be best

* On the other hand, for OH addition reactions:
R,(R,)C=C(R;)R, + OH — R,(R,)(OH)C=C(R;)R,, a description of the electron
density of the C=C bond may be the best approach



Structure-activity relationship performance

* High quality measurements OH s o NOy,
may determine k within ~5% ;" @ _# ~ &
* SARs tend to be accurate to e W = e e
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* There is no replacement for
high-quality laboratory data, R o
but models need to contain o
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reasonable information

Source: Carter (2020)



Databases to find kinetic data

NIST Chemical Kinetics Database:
https://kinetics.nist.gov/kinetics/

IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation:
https://iupac-aeris.ipsl.fr/

NASA/ JPL data evaluation:
https://jpldataeval.jpl.nasa.gov/

Database for the kinetics of the gas-phase atmospheric reactions of organic compounds:
https://data.eurochamp.org/data-access/kin/#/home



Further reading

* This was a really quick introduction to the science of kinetics, if you
would like to learn more about it, consider the following book:

REACTION
¥ x-o°
KINETICS




Conclusions

* Kinetics has important effects in all aspects of atmospheric chemistry

 Kinetics is a fundamental quantity that can be measured with a
variety of analytical and experimental techniques

* This quantity often varies according to the atmospheric conditions
(temperature and pressure effects)

* Atmospheric chemistry produces a huge variety of chemical products
* This leads to an enormous parameter-space (too many to measure)

* So, we also need to think how we can estimate those things that we
don’t have time to measure



