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Abstract

We develop a controllability strategy for the computation of frequency-domain
solutions of the 3D visco-elastic wave equation, in the perspective of seismic
imaging applications. We generalize the controllability results for such equations
beyond the sound-soft scattering (obstacle) problem. We detail the conjugate
gradient implementation and show how an inner elliptic problem needs to be
solved to compute the Riesz representative of the gradient at each iteration. We
select a spectral-element spatial discretization and a fourth-order Runge-Kutta
time discretization. We implement the controllability method in the framework
of the SEM46 full waveform modeling and inversion software, to inherit for its
excellent scalability which relies on an efficient domain decomposition algorithm.
We perform a series of numerical experiments to validate the approach and
illustrate its scalability up to more than fifteen hundred cores. In this case,
with an elapsed time of less than 50 minutes, we solve a problem on a cubic
domain containing up to 160 wavelengths in each direction, involving more than
1.7 billion unknowns.

1. Introduction

Developing robust and scalable solvers for computing frequency-domain so-
lutions of the 3D visco-elastic wave equation is a long standing problem. The
interest for such high performance computing (HPC) algorithm emanates from
different applications, notably from the seismology and seismic imaging commu-
nities. In the frame of full waveform inversion (FWI), a high resolution seismic
imaging technique, the solution of the 3D visco-elastic equations needs to be
computed repeatedly in complex (heterogeneous) media, for possibly hundreds
to thousands source positions [see 59, for a review].

First 3D exploration scale applications of FWI were led in the acoustic ap-
proximation, for the interpretation of marine data i.e. data acquired with air-
guns as sources and hydrophones as receivers, in a water layer on top of the
investigated medium [49, 42]. For targets involving the propagation of several
tens of wavelengths in the three directions of space, conventional HPC facili-
ties (for instance available in national computing centers) make it possible to
use parallel direct solvers, relying on a LU factorization of the linear system
resulting from the discretization of the 3D acoustic equations [42]. Such a LU
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factorization is especially useful in this context of multiple source positions, each
position corresponding to a different right hand side. If the LU factorization can
be stored, the complexity for computing the solution for one right hand side is
linear (two triangular solves). The limitation comes from the ability to perform
the factorization, which requires to store O(N4) factors, where N is the number
of grid points in one spatial direction. More precisely, the difficulty comes from
the scalability of this operation, which remains limited even with state-of-the
art solver such as MUMPS [2, 33].

Investigating larger targets in the acoustic approximation, involving hun-
dreds to thousands of propagated wavelengths in each spatial direction, can
thus not rely on such direct solvers. Moving from an acoustic description to
an elastic description of the wave propagation implies the same: for realistic
size applications the number of propagated S-wavelength would be too large for
direct solvers to be employed. Several motivations currently exist to employ
such a more realistic description of the wave propagation: 1) when land data
has to be interpreted, where sources (explosives, vibrators) and receivers (geo-
phones) are deployed on land, recording data with a strong imprint of elastic
effects (Love and Rayleigh surface waves, S-waves); 2) when node data has to be
interpreted, where sources (airguns) are in the water layer, while 4-components
receivers (hydrophones and geophones) are deployed on the seabed, recording
data again with a strong imprint of elastic effects (Scholte waves at the sea bot-
tom interface, S-waves and converted waves). From an imaging point of view,
inverting land and node data is a challenge on its own. However, node acqui-
sition systems are currently more and more deployed, the decoupling between
sources and receivers making it possible to acquire wider offset/azimuth data
and therefore increasing the illumination depth. Incorporating a visco-elastic
modeling engine within the FWI algorithm also makes it possible to reconstruct
mechanical parameters beyond P-wave velocities: S-wave velocities, attenua-
tion factor, density, and anisotropy parameters, which are crucial to go beyond
imaging towards reservoir characterization. Modern FWI algorithms are thus
evolving from acoustic to fully anisotropic (visco-)elastic approximation.

Due to the limitation of direct solvers, FWI algorithms have evolved rapidly
towards time-domain based modeling engine, for acoustic and elastic approx-
imation. Time-domain implementation exhibit interesting properties: good
scalability on HPC platform, thanks to a two-levels parallelism over sources
(outer level) and domain decomposition (inner level), low memory requirement
in O(N3), and the possibility to apply straightforwardly data-processing based
on time/offset windowing. The vast majority of 3D FWI applications in seismic
imaging and seismology are currently performed using such time-domain FWI
algorithms [19, 57, 32, 24, 53, 47].

However, time-domain modeling still faces specific limitations. The most
stringent is the CFL condition, which makes the time discretization step in(
vmin
vmax

× h
)

where vmin and vmax are respectively the minimum and maximum

waves velocities, and h is the smallest element size in the spatial discretization
mesh. For elastic media with shallow soft sediments, the S-wave velocity can
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reach critically low values, making h and the ratio
vmin
vmax

very low as well, re-

sulting in a very small time discretization step. In addition, there exists no
solution to treat efficiently multiple right-hand sides, aside from treating them
in parallel. Finally, for inversion, attributing the same weight to each frequency
within a frequency band requires data spectral whitening, which can be difficult
to control on narrow frequency bands. This difficulty is not met by frequency-
domain FWI algorithms. Such a frequency whitening is beneficial especially to
invert for the lowest frequency band of the data when cycle skipping is to be
avoided.

These difficulties prompt us to continue the investigation on HPC algorithms
for computing frequency-domain solution of the visco-elastic equations, capable
of overcoming the limitations of direct solvers. Iterative solvers are a natural
alternative. Their matrix-free formalism enables low memory requirement and
good scalability properties. However, the discretization of frequency-domain
visco-elastic wave equation, as an instance of generalized Helmholtz equations,
is known to yield ill-conditioned linear systems. Iterative solvers therefore need
to be combined with efficient preconditioners to achieve satisfactory perfor-
mances. Recent examples are for instance the CARP-CG approach [34], shifted
Laplacian preconditioners [48], fast low-rank factorization/approximation based
on a hierarchical approach [21], or more simple preconditioners based on a lay-
ered approximation of the subsurface [5]. However the convergence of these
methods still deteriorates when tackling large scale problems as the efficiency of
the preconditioners decreases. A nice analysis why generalized Helmholtz equa-
tions yield increasingly ill-conditioned linear systems as the size of the systems
grows is provided in [17]. The same difficulty is faced with domain decompo-
sition methods combining direct solvers on subdomains, with a preconditioned
iterative solver for the unknowns at the interfaces [27, 51].

Other existing approaches rely instead on solving frequency-domain prob-
lems with time-domain solvers, to take advantage of the reliability and good
scalability properties of the latter [41, 50]. Among these, the controllability
method (CM), first proposed by Bristeau et al. for acoustic sound-soft scat-
tering problems [7] has been shown particularly efficient. In this approach, a
time-periodic solution of the time-domain wave equation is computed by min-
imizing the least-squares distance between the initial wavefield at time 0 and
the wavefield after one period T corresponding to the frequency at which the
frequency-domain solution is sought. The control variables are the initial value
of the solution and its derivative in time. In their seminal paper, Bristeau et
al. prove that the frequency domain solution can be expressed as a linear com-
bination of these control variables at convergence.

Recent studies have extended the work of Bristeau et al. to general acoustic
and electromagnetic wave propagation problems. In these studies, it is shown
how the CM makes it possible to solve very high frequency problems using
modern HPC devices with scalability observed over several thousands of com-
putational units [28, 26, 55, 25, 10, 56]. For acoustic wave problems, Appelö et
al. [3] have recently presented an alternative time-domain based approach called
WaveHoltz method. It is based on fixed-point iterations. Time-dependent wave
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Figure 1: Illustration of the computational domain Ω ⊂ Rd, Γ = ∂Ω, d = 2, 3, with physical
boundaries ∂D = ΓD ∪ ΓN ( ) and artificial boundaries ΓS ( ).

equations are solved over a short time period at each iteration. The higher eigen-
modes contained in the time-periodic solutions are filtered out by a Fourier-like
filter procedure.

Regarding (visco-)elastic equations, the first extension of the CM to these
equations has been performed by Mönkölä [38]. However in her study, the anal-
ysis is restricted to sound-soft scattering problems, and is performed in the con-
text of fluid/solid coupling. It also assumes isotropic elastic media for the solid
part, and the algorithm is illustrated in 2D. In this study, we are interested in
an extension of the CM to general elastodynamics problem, beyond sound-soft
scattering, considering fully anisotropic media and 3D implementation, with
3D seismic imaging as a perspective. We first prove a general controllability
theorem showing how the frequency-domain solution can be retrieved from the
initial conditions of the time-domain problem posed over a single period, consid-
ering a general set of boundary conditions, including the sound-soft scattering
problem, but also configurations typically encountered in seismic imaging with
a free surface on top and absorbing boundary conditions on the other sides
of the computational domain. We implement this strategy for the solution
of 3D frequency-domain visco-elastic equations using a spectral finite-element
discretization, within the framework of the 3D full waveform modeling and in-
version software SEM46 [58]. We analyze acceleration techniques based on the
fast computation of an initial guess through a transient-phase approach. We
illustrate the efficiency of the approach on 3D realistic examples: all computa-
tional steps of the algorithm benefit from the domain decomposition technique
implemented in SEM46, making the algorithm fully scalable. The final example
makes use of more than fifteen hundred cores with an elapsed time of 2851s for
solving a problem on a cubic domain containing up to 160 wavelengths in each
direction, involving more than 1.7 billion unknowns.

2. General elastic equations: expressing the frequency-domain solu-
tion from the time-domain solution

2.1. State of the art: sound-soft scattering problem

We consider the frequency-domain elastic wave equation in a bounded con-
nected Lipschitz computational domain Ω ⊂ Rd, d = 2, 3, whose boundary Γ is
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composed in the most general settings as

Γ = ΓD ∪ ΓN ∪ ΓS (1)

where ΓD (respectively ΓN ,ΓS) stands for the part of the boundary where
Dirichlet (respectively Neumann, absorbing) boundary conditions are imposed
– see Figure 1.

Let u denote the (complex-valued) wavefield which satisfies the frequency-
domain elastic wave equation

−ω2ρ(x)u(x)−∇ · σ(x,u) = f(x), x ∈ Ω, (2a)

−iωρ(x)B(x)u(x) + σ(x,u)n = gS(x), x ∈ ΓS , (2b)

σ(x,u)n = gN (x), x ∈ ΓN , (2c)

u(x) = gD(x), x ∈ ΓD, (2d)

where ω > 0 denotes the angular frequency, ρ(x) ≥ ρ0 > 0 the density, and
B(x) is a real-valued symmetric positive definite matrix. The stress tensor σ is
given by

σ(x,u) = C(x) : ε(x,u), (3)

with the fourth-order real-valued, symmetric positive definite, elastic tensor
C = (Cijkl)

d
i,j,k,l=1, and the linearized strain tensor by

ε(x,u) =
1

2
(∇u(x) +∇uᵀ(x)). (4)

We always assume that the time-harmonic elastic wave equation (2) has a unique
solution.

Remark 1.

i. The one-dimensional elastic wave equation can be written as the acoustic
wave equation, where the frequency-domain acoustic equation coincides
with the classical Helmholtz equation, which is investigated in [7, 26, 25].

ii. The linear operator B is derived from the absorbing boundary conditions [12].
In the one-dimensional case with Ω = (0, L), the boundary conditions
(2b) on ΓS coincide with the first-order Sommerfeld radiation condition
−u′(x) = i ω

c(x)u(x) on x = 0 and u′(x) = i ω
c(x)u(x) on x = L, where B =

1
c(x)ρ(x) is a positive scalar function. For higher dimensions (d = 2, 3),

an explicit form of B is given in Appendix A. For anisotropic media, we
refer to [4].

Instead of solving Equation (2) directly, we consider the CM approach. Let
us sketch briefly the method. It is well-known that the time-harmonic elastic
wavefield y of the solution u of (2), given by

y(x, t) = Re
{
u(x) e−iωt

}
, (5)
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solves the (real-valued) time-dependent elastic wave equation,

ρ(x)
∂2y(x, t)

∂2t
−∇ · σ(x,y(·, t)) = Re

{
f(x) e−iωt

}
, x ∈ Ω, (6a)

ρ(x) B(x)
∂

∂t
y(x, t) + σ(x,y(·, t))n = Re

{
gS(x) e−iωt

}
, x ∈ ΓS , (6b)

σ(x,y(·, t))n = Re
{
gN (x) e−iωt

}
, x ∈ ΓN , (6c)

y(x, t) = Re
{
gD(x) e−iωt

}
, x ∈ ΓD, (6d)

for t > 0, with the initial conditions

y(x, 0) = y0(x), x ∈ Ω, (6e)

∂y(x, 0)

∂t
= y1(x), x ∈ Ω, (6f)

and
y0(x) = Re {u(x)} , y1(x) = ω Im {u(x)} . (7)

The leading idea of CM is to seek for (y0,y1) such that y is time-harmonic
(5). Once such solution y is found, the solution u of (2) is simply given by

u(x) = y(x, 0) +
i

ω

∂y(x, 0)

∂t
= y0(x) +

i

ω
y1(x). (8)

The CM for the elastodynamics equations (2) was first proposed in [38],
restricted to sound-soft elastodynamics scattering problems (i.e. obstacle prob-
lems), for which we have Hd−1(ΓD),Hd−1(ΓS) > 0 and Hd−1(ΓN ) = 0 as
illustrated in Figure 1a with ΓD = ∂D and ΓS = Γ\ΓD. In this context, it is
shown in [38] that it is sufficient to find a time-periodic solution y, namely∣∣y(·, T )− y0

∣∣
C

= 0,

∥∥∥∥ ∂∂ty(·, T )− y1

∥∥∥∥
ρ

= 0, (9)

where |u|C =
√
〈u,u〉C and ‖v‖ρ =

√
〈v,v〉ρ, (u,v) ∈ W with the bilinear

forms (·, ·)C : (H1(Ω))d × (H1(Ω))d → R and (·, ·)ρ : (L2(Ω))d × (L2(Ω))d → R,

(u1,u2)C =

∫
Ω

C(x) : ε(x,u1) : ε(x,u2) dx, ∀u1,u2 ∈ (H1(Ω))d, (10)

(v1,v2)ρ =

∫
Ω

ρ(x)v1(x) · v2(x) dx, ∀v1,v2 ∈ (L2(Ω))d. (11)

From (9) we conclude that y also satisfies

y(·, T ) = y0,

∂

∂t
y(·, T ) = y1,

which is demonstrated later in Lemma 2. Then it is possible to use the fact that

the solution of (6) in [T, 2T ] with the initial value (y(·, T ), ∂y(·,T )
∂t ) is identically

equal to y in [0, T ], that is

y(·, T + t) = y(·, t), t ∈ [0, T ].

This directly follows from the well-posedness of (6) and the periodicity of all
source terms. Consequently, y with the same argument for [mT, (m + 1)T ],
m ≥ 1, is time periodic in R. The uniqueness of the time-periodic solution
implies that y satisfies (5) – see Theorem 1 presented in the next Section.
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2.2. Generalization

The CM has not been extended to more general boundary conditions, espe-
cially for wave propagation problems in heterogeneous media in seismic imag-
ing, with or without free surfaces and obstacles. The main difficulty to perform
this generalization is the loss of uniqueness of the time-periodic solution when
Hd−1(ΓD) = 0 or Hd−1(ΓS) = 0, in a similar way as what is shown in the
acoustic case in [26, Theorem 1].

Our first contribution is to perform this generalization. We consider general
boundary conditions on ∂Ω, where each boundary ΓD,ΓN or ΓS can be empty,
and we prove the following theorem.

Theorem 1. Let u ∈ (H1(Ω))d be the unique solution of (2) and y ∈ C0([0, T ]; (H1(Ω))d)∩
C1([0, T ]; (L2(Ω))d) be the solution of (6) such that y satisfies the time periodic
condition (9). Then the following assertions hold true:

(i) The wavefield y is given by the Fourier series expansion

y(x, t) = Re
{
u(x) e−iωt

}
+
t

T
η(x) + γ0(x) +

∑
|`|>1

γ`(x) e−iω`t, (12)

where η = y(·, T ) − y(·, 0) and γ` ∈ (H1(Ω))d, |`| 6= 1, solves the eigen-
value problem,

−∇ · σ(x,γ`) = (ω`)2ρ(x)γ`(x), x ∈ Ω, (13a)

−iω`ρ(x)B(x)γ`(x) + σ(x,γ`)n = 0, x ∈ ΓS , (13b)

σ(x,γ`)n = 0, x ∈ ΓN , (13c)

γ`(x) = 0, x ∈ ΓD. (13d)

Moreover, γ0,η ∈ U with

U := Span {e1, . . . , ed} ⊕ Span {xjei − xiej | 1 ≤ j < i ≤ d} . (14)

Here ei denotes the i-th unit vector in Rd.

(ii) If Hd−1(ΓD) > 0, then η = γ0 = 0 a.e. in Ω.

(iii) If Hd−1(ΓS) > 0, then η = γ` = 0 a.e. in Ω, |`| > 1.

Remark 2.

i. Theorem 1 implicitly implies that sound-soft scatterings have a unique
time-periodic solution which is identically equal to the time-harmonic so-
lution.

ii. The elliptic solutions γ0 and η both of (13) with ` = 0 lie in the kernel U
of the linear operator −∇ · σ.

For the proof of Theorem 1 we need the following lemmata:

Lemma 1. Let τ ∈ (H1(Ω))d solve

−∇ · σ(x, τ ) = 0, x ∈ Ω, (15a)

σ(x, τ )n = 0, x ∈ ΓS ∪ ΓN , (15b)

τ (x) = 0, x ∈ ΓD. (15c)

Then τ ∈ U . Moreover, τ = 0 a.e. in Ω when Hd−1(ΓD) > 0.
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Proof of Lemma 1. Let τ ∈ (H1(Ω))d be a solution of (15). Then the divergence
theorem, together with the boundary conditions, yields

0 =

∫
Ω

(∇ · σ(τ )) · τ dx =

∫
∂Ω

(σ(τ )n) · τ ds−
∫

Ω

σ(τ ) : ∇τ dx

= −
∫

Ω

(C : ε(τ )) : ε(τ ) dx ≤ 0.

From the symmetry and positive definiteness of the elastic tensor C we have

ε(τ ) = 0 a.e. in Ω,

and consequently ∇τ is skew-symmetric,

∂

∂xi
τ i = 0, i = 1, . . . , d, (16)

∂

∂xj
τ i = − ∂

∂xi
τ j i, j = 1, . . . , d, j 6= i. (17)

This implies

∂2

∂2xi
τ j = − ∂

∂xi

∂

∂xj
τ i = − ∂

∂xj

∂

∂xi
τ i = 0, i, j = 1, . . . , d. (18)

We conclude that ∂
∂xi
τ j is independent of xi, and moreover τ j depends linearly

on xi, i = 1, . . . , d. Thus there exist αi, βi,j ∈ R such that

τ (x) =

d∑
i=1

(
αi +

d∑
j=1

βi,jxj

)
ei. (19)

Equations (16) and (17) yield βi,i = 0, i = 1, . . . , d, and

βi,j =
∂

∂xj
τ i = − ∂

∂xi
τ j = −βj,i, i, j = 1, . . . , d. (20)

This results

τ (x) =

d∑
i=1

αiei +
∑

1≤j<i≤d

βi,j(xjei − xiej) ∈ U ,

which proves the first assertion.

Suppose that Hd−1(ΓD) > 0. Then τ i = 0 on ΓD, i = 1, . . . , d, and we have
τ i = 0 in Ω, since τ i is a linear polynomial. This completes the proof.

Lemma 2. Let y be the solution of (6) with Hd−1(ΓD ∪ ΓS) > 0 and satisfy
(9). Then y is T = 2π

ω -periodic in the sense of

y(x, T ) = y(x, 0),
∂y(x, T )

∂t
=

∂y(x, 0)

∂t
, x ∈ Ω. (21)

Proof of Lemma 2. Let η = y(·, T ) − y(·, 0). Then the periodic condition (9),
together with the symmetry and definiteness of the tensor C, yields ε(x,η) = 0
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a.e. in Ω, and thus η obviously solves (15).

From Lemma 1 η ∈ U and in the presence of Dirichlet boundary conditions
η vanishes identically on the boundary ΓD. Since η is a linear polynomial in Ω,
η = 0 a.e. in Ω, which shows Lemma 2 for Hd−1(ΓD) > 0.

Let ΓD be empty and Hd−1(ΓS) > 0. Then, by integrating the elastic wave
equation (6) multiplied with η, the periodicity of the harmonic source terms
and ∂y

∂t , and integration by parts, we obtain

0 =

∫ T

0

∫
Ω

ρ(x)
∂2y(x, t)

∂2t
· η(x) dx dt−

∫ T

0

∫
Ω

∇ · σ(x,y(·, t)) · η(x) dx dt

=

∫
Ω

ρ(x)

(
∂y(x, T )

∂t
− ∂y(x, 0)

∂t

)
· η(x) dx+

∫ T

0

∫
ΓS

σ(x,y(·, t))n · η(x) ds dt

= −
∫ T

0

∫
ΓS

ρ(x)B(x)
∂y(x, t)

∂t
· η(x) ds dt

= −
∫

ΓS

ρ(x)B(x)η(x) · η(x) ds.

The symmetry and positive definiteness of the linear operator B yields η(x) = 0
a.e. on ΓS , which again implies with Lemma 1 that η = 0 a.e. in Ω and
completes the proof.

Proof of Theorem 1. (i) We consider two situations: Hd−1(ΓD ∪ ΓS) > 0 and
ΓN = ∂Ω.
Case 1: Let Hd−1(ΓD ∪ ΓS) > 0 and

z(x, t) = y(x, t)− Re
{
u(x) e−iωt

}
. (22)

From Lemma 2 z is clearly T -time periodic and solves the elastic wave equation
(6) with homogeneous right hand sides and and the initial conditions

z0(x) = y0(x)− Re {u(x)} , x ∈ Ω, (23)

z1(x) = y1(x)− ω Im {u(x)} , x ∈ Ω. (24)

We can expand it in Fourier series as

z(x, t) =
∑
|`|≥0

γ`(x) e−iω`t (25)

with the complex-valued Fourier coefficients

γ` =
1

T

∫ T

0

z(·, t) eiω`t dt ∈ (H1(Ω))d. (26)

Next, we verify that γ` solves (13), ` ∈ Z. The integration by parts, together
with the periodicity of z, the definition (26), and equation (6) with no external
source term, yields

−(ω`)2ργ` =
ρ

T

∫ T

0

z(·, t)(−(ω`)2 eiω`t) dt =
ρ

T

∫ T

0

∂2

∂2t
z(·, t) eiω`t dt,

∇ · σ(·,γ`) =
1

T

∫ T

0

∇ · σ(·, z(·, t)) eiω`t dt =
ρ

T

∫ T

0

∂2

∂2t
z(·, t) eiω`t dt.

9



Consequently, we have

−(ω`)2ρ(x)γ`(x)−∇ · σ(x,γ`) = 0. (27)

Again, integration by parts in time and the boundary conditions (6b)–(6d) with
gD = gS = gN = 0, together with the definition (26), imply that γ` satisfies the
boundary conditions (13b)–(13d), whose fulfill (13) for |`| ≥ 1. In particular,
for ` = 1, (13) coincides with (2) and without any source terms, and hence the
uniqueness of u implies that γ1 = γ−1 = 0 a.e. in Ω. For ` = 0 and τ = γ0 we
have

∇ · σ(x, τ ) = 0, x ∈ Ω,

σ(x, τ )n = 0, x ∈ ΓS ∪ ΓN ,

τ (x) = 0, x ∈ ΓD.

Lemma 1 ends the proof for Hd−1(ΓD ∪ ΓS) > 0.
Case 2: Let ΓN = ∂Ω and ΓD = ΓS = ∅ and z(x, t) = y(x, t) − t

T η(x). Then,
by the definition of η and z and the periodicity of y, we have

z(x, T )− z(x, 0) = y(x, T )− y(x, 0)− η(x) = 0,

∂z(x, T )

∂t
− ∂z(x, 0)

∂t
=

∂z(x, T )

∂t
− 1

T
η(x)− ∂z(x, 0)

∂t
+

1

T
η(x) = 0.

From σ(x,η) = C : ε(x,η) = 0 in Ω and σ(x,η)n = 0 on ΓN , it is easy to
verify that z is a T -time periodic solution of (6) with the Neumann boundary
conditions on the entire boundary ∂Ω. Then the same argument in the first
case with Hd−1(ΓD ∪ ΓS) > 0 implies that

y(x, t) = z(x, t) +
t

T
η(x) = Re

{
u(x) e−iωt

}
+
t

T
η(x) + γ0(x) +

∑
|`|>1

γ` e−iω`t

which completes the first assertion.

(ii) The second assertion follows directly from (i) and Lemma 1.

(iii) From the first assertion and Lemma 1, we have η = 0 a.e. in Ω. The
boundary value problem (13) with Hd−1(ΓS) > 0 has only the trivial solution
[16, 15, 14, 6], which implies that all γ` vanishes identically, |`| > 1. This
completes the proof.

From Theorem 1, it is clear that the time-periodic solution of (6) is in general
not unique, except for sound-soft scattering problems withHd−1(ΓD),Hd−1(ΓS) >
0. To restore uniqueness, further post-processing are required: orthogonal pro-
jection and filtering method.

2.2.1. Orthogonal projection

In an unbounded domain, Hd−1(ΓS) > 0, the time-independent elastic wave
equation (2) has a unique solution u. However, in the absence of Dirichlet
boundary conditions, ΓD = ∅, Theorem 1 implies that for any solution y of (6)
satisfying the time-periodic condition (9) there is a spurious function γ0 ∈ U
such that

y(x, t) = Re {u(x) exp(−iωt)}+ γ0(x),

10



in particular,

v(x) := y(x, 0) +
i

ω

∂

∂t
y(x, 0) = u(x) + γ0(x). (28)

In order to determine γ0, let {ψ`}
d(d+1)

2

`=1 be an orthonormal basis of U with
respect to the L2-inner product (·, ·) and α` ∈ R such that

γ0(x) =

d(d+1)
2∑
`=1

α`ψ`(x). (29)

For example, a basis of U is given as follows:{
e1, e2,

(
y −x

)ᵀ}
for d = 2,{

e1, e2, e3,
(
y −x 0

)ᵀ
,
(
z 0 −x

)ᵀ
,
(
0 z −y

)ᵀ}
for d = 3

(30)

Orthonormality is obtained by applying the modified Gram-Schmidt method
to the basis (30). Then the variational formulation, derived directly from the
boundary value problem (2), yields

0 = (f + ω2v +∇ · σ(v)− ω2γ0,ψ`) = (f + ω2v +∇ · σ(v),ψ`)− ω2α`,

for ` = 1, . . . , d(d+1)
2 and moreover

α` =

(
f + ω2v +∇ · σ(v),ψ`

)
ω2

.

Finally, this gives, together with (28) and (29),

u = v − γ0 = v − 1

ω2

d(d+1)
2∑
`=1

(
f + ω2v +∇ · σ(v),ψ`

)
ψ`. (31)

Remark 3. Here we refer (31) to the compatibility condition in [26, 25] for
acoustic wave equations with instead U = P0.

2.2.2. Filtering procedure

From Theorem 1 a time-periodic solution of the time-dependent elastic wave
equation (6) may contain higher-order eigenmodes γ`, |`| > 1, i.e. ΓS = ∅. The
filtering procedure based on the Fourier transformation [55, 25, 10],

ŷ(x) = −
∫ T

0

(
y(x, t) +

i

ω

∂

∂t
y(x, t)

)
eiωt dt = 2 −

∫ T

0

y(x, t) eiωt dt, (32)

where

−
∫ T

0

f(t) dt =
1

T

∫ T

0

f(t) dt (33)

denotes the average of a function f over the interval [0, T ], is designed to filter
out all higher modes γ`, |`| 6= 1, and the constant in the Fourier expansion (12).

11



Let y be a T -time periodic solution of the elastic wave equation (6). Due to
the mutually orthogonality of the different modes,

−
∫ T

0

γ0(x) eiωt dt = γ0(x) −
∫ T

0

eiωt dt = 0 (34)

and

−
∫ T

0

γ`(x) e−iω`t eiωt dt = γ`(x) −
∫ T

0

e−iω`t eiωt dt = 0, |`| > 1. (35)

Hence, by putting the expansion in (12) of y into (32), the integration of the
harmonic function γ0 and the higher eigenmodes γ`, |`| > 1, vanish identically,
and thus we have

ŷ = −
∫ T

0

(
Re{u e−iωt}+

i

ω

∂

∂t
Re{u e−iωt}

)
eiωt dt = u− i

2π
η.

Moreover, for Hd−1(ΓD ∪ ΓS) > 0, where η = 0 a.e. in Ω, we have

ŷ(x) = 2 −
∫ T

0

y(x, t) eiωt dt = u(x), x ∈ Ω, (36)

which restores the uniqueness.

Let ∂Ω = ΓN . Then we again consider as in Section 2.2.1 an orthonormal
basis {ψ`} of U and we write

− i

2π
η =

d(d+1)
2∑
`=1

α` ψ`, α` ∈ C.

The variational formulation yields

α` =

(
f + ω2ŷ +∇ · σ(ŷ),ψ`

)
ω2

and

u = ŷ − 1

ω2

d(d+1)
2∑
`=1

(
f + ω2ŷ +∇ · σ(ŷ),ψ`

)
ψ`. (37)

We summarize the above results in the following propositions:

Proposition 1. Let y ∈ C0([0, T ]; (H1(Ω))d)∩C1([0, T ]; (L2(Ω))d) be a solution
of (6) with Hd−1(ΓS ∪ΓD) > 0 satisfying the time periodic condition (9). Then
ŷ given by (32) solves (2).

Proposition 2. Let y ∈ C0([0, T ]; (H1(Ω))d) ∩ C1([0, T ]; (L2(Ω))d) be a time-
dependent solution of (6) with ∂Ω = ΓN , which satisfies the time periodic con-
dition (9). Then the solution u of (2) is given by (37).

12



3. Exact controllability formulation

In order to find a T -time periodic solution of (6) to construct the frequency-
domain solution of (2), we propose the controllability approach. This yields the
PDE-constrained least-squares problem,

min
(y0,y1)∈VD

J (y0,y1) (38)

with VD ⊂
{

(y0,y1) ∈ W : y0 + i
ωy1 = gD on ΓD

}
and W = (H1(Ω))d ×

(L2(Ω))d.

We consider the cost functional J : VD → R≥0 defined by

J (y0,y1) =
1

2

∣∣y(T )− y0

∣∣2
C

+
1

2

∥∥ẏ(T )− y1

∥∥2

ρ
, (39)

where the state variable y = y[(y0,y1)] solves the elastic wave equation (6)
with the initial value, called control variable, (y0,y1). For simplicity, we use

the notation ẏ(x, t) for ∂y(x,t)
∂t and we write y(t), ẏ(t) instead of y(x, t), ẏ(x, t),

respectively, when there is no confusion from context.

To solve the optimization problem (38), we apply the conjugate gradient
(CG) method, which requires the derivatives of the functional J . This formula-
tion includes the finite element (FE) or spectral element (SE) formulation, e.g.
by choosing VD equal to the FE- or SE-space.

3.1. Fréchet Derivative

We first derive the Fréchet derivative of J with the adjoint state technique.
In doing so, we introduce (·, ·)E :W ×W → R and | · |E :W → R≥0 with

((u1,v1), (u2,v2))E = (u1,u2)C + (v1,v2)ρ, (u1,v1), (u2,v2) ∈ W, (40a)

|(u,v)|E =
√

((u,v), (u,v))E , (u,v) ∈ W. (40b)

Then the cost functional J in (39) is given by

J (y0,y1) =
1

2

∣∣(y(T )− y0, ẏ(T )− y1)
∣∣2
E .

For any perturbation (w0,w1) ∈ V ⊂ {(v0,v1) ∈ W : v0 = v1 = 0 on ΓD}
and (y0,y1) ∈ VD we have

〈J ′(y0,y1), (w0,w1)〉 =
(
(y(T )− y0, ẏ(T )− y1), (w(T )−w0, ẇ(T )−w1)

)
E

= −
(
y(T )− y0,w0

)
C
−
(
ẏ(T )− y1,w1

)
ρ

+
(
y(T )− y0,w(T )

)
C

+
(
ẏ(T )− y1, ẇ(T )

)
ρ
, (41)

where the corresponding time-dependent solution w of the homogeneous wave
equation (6) with f = gS = gD = gN = 0 and with the initial value (w0,w1).
We note that J ′ lies in the dual space V ′ of V with respect to the dual pairing
〈·, ·〉.
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Next, let us introduce the solution z of the adjoint or backward wave equation

ρ(x)
∂2z(x, t)

∂2t
−∇ · σ(x, z(·, t)) = 0, x ∈ Ω, t > 0, (42a)

ρ(x)B(x)
∂

∂t
z(x, t) + σ(x, z(·, t))n = 0, x ∈ ΓS , t > 0, (42b)

σ(x, z(·, t))n = 0, x ∈ ΓN , t > 0, (42c)

z(x, t) = 0, x ∈ ΓD, t > 0, (42d)

with the initial conditions

z(x, 0) = ẏ(x, T )− y1(x), x ∈ Ω, (42e)

(ż(·, 0),ϕ)ρ =
(
y(·, T )− y0,ϕ

)
C

(42f)

−
(
ρB(ẏ(·, T )− y1),ϕ

)
L2(ΓS)

∀ϕ ∈ (H1(Ω))d.

which again exactly coincides with the homogeneous elastic wave equation (6)
with f = gD = gN = gS = 0. Then, by applying (6a) on the perturbation w,
multiplied with the backward solution z(x, T −t) over Ω×(0, T ), the integration
by parts results

0 =

∫ T

0

∫
Ω

(
ρ(x)

∂2w(x, t)

∂2t
−∇ · σ(x,w(x, t))

)
· z(x, T − t) dx dt

=

∫
ΓS

ρ(x)

[(
Bz(x, T − t)

)
·w(x, t)

]∣∣∣∣t=T
t=0

ds

+

∫
Ω

ρ(x)

[
∂w(x, t)

∂t
· z(x, T − t) +

∂z(x, T − t)
∂t

·w(x, t)

]∣∣∣∣t=T
t=0

dx.

This, together with the backward wave equation (42a) with the boundary con-
ditions (42b)–(42d) and the initial conditions (42e)–(42f), gives(

ż(T ),w0

)
ρ

+
(
ρBz(T ),w0

)
L2(ΓS)

+
(
z(T ),w1

)
ρ

=
(
ż(0),w(T )

)
ρ

+
(
ρBz(0),w(T )

)
L2(ΓS)

+
(
z(0), ẇ(T )

)
ρ

=
(
y(T )− y0,w(T )

)
C

+
(
ẏ(T )− y1, ẇ(T )

)
ρ
.

This, Equation (41), and the initial conditions (42e)–(42f) immediately yield

〈J ′(y0,y1), (w0,w1)〉 =
(
ż(T )− ż(0),w0

)
ρ

+
(
ρB(z(T )− z(0)),w0

)
L2(ΓS)

+
(
z(T )− z(0),w1

)
ρ
. (43)

Interestingly, we note that the computation of the gradient for the CM requires
the solution of one forward and one backward wave propagation problem, in a
similar fashion as what is needed for the gradient computation in FWI [45]. The
difference being that here the forward and backward wave equations are solved
only over a single period of time, while they are computed over the whole time
interval in FWI.
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3.2. Controllability method combined with the conjugate gradient method

To solve the quadratic optimization problem (38) of the convex cost func-
tional J , we propose to use the conjugate gradient (CG) method [29, 35]. Each
CG iteration requires to compute the gradient J ′ given by (43), which needs
the forward and backward solution of the wave equation (6). However, the
gradient J ′ only lies in the dual space V ′, and thus we need to find a (Riesz)-
representative p in V,

〈p,ϕ〉B = 〈g,ϕ〉, ∀ϕ ∈ V, (44)

where B : V × V → R is a (suitable) coercive, bounded, and symmetric bilinear
form. This leads to solve a further elliptic problem at each CG iteration.

The standard inner product, 〈·, ·〉B = (·, ·)V , refers to looking for p ∈ V such
that

(p0,ϕ)(H1(Ω))d = 〈g0,ϕ〉, ϕ ∈ (H1(Ω))d, (45a)

p1 = g1. (45b)

Any choice of scalar products in V can also be used in (45). A natural choice
is to consider the energy (·, ·)E in (40). In the presence of Dirichlet boundary
conditions, Hd−1(ΓD) > 0, (·, ·)E is a coercive bilinear form on V [38] so that
the following elliptic problem has a unique solution:

−∇ · σ(x,p0) = g0(x), x ∈ Ω, (46a)

σ(x,p0)n = 0, x ∈ ΓS ∪ ΓN , (46b)

p0(x) = 0, x ∈ ΓD, (46c)

and p1 = g1. However, for ΓD = ∅ the elliptic problem (46) is ill-posed. To
recover the well-posedness, we need a compatibility condition such as∫

Ω

g0(x) ·ψ(x) dx = −
∫

Ω

(∇ · σ(x,p0)) ·ψ(x) dx

=

∫
Ω

σ(x,p0) : ε(x,ψ) dx−
∫
∂Ω

σ(x,p0)n ·ψ(x) ds = 0

for all ψ ∈ U in (14). Thus, we first project g0 into the range of ∇ · σ by
eliminating each basis function ψ` in U given in (30). By doing this, we apply
the orthogonal projection,

g0 ← g0 −
(ψ`,g0)

(ψ`,ψ`)
ψ`, ` = 1, 2, . . . ,

d(d+ 1)

2
. (48)

On top of the solution of one forward and one backward wave equation over
a single period of time, an elliptic problem thus needs to be solved at each iter-
ation of the CM technique, to find a (Riesz)-representative of the gradient. We
propose to use the inner product (·, ·)E of (46)–(48), which is also used in the
definition of the cost function J and thus makes this choice more intuitive. This
inner product can be considered as a preconditioner of the CG loop. Also, our
numerical experiments indicate that the use of (·, ·)E can improve the conver-
gence speed compared to using a standard Euclidean inner product, especially
when considering heterogeneous media.
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In order to avoid solving the elliptic problem, a mixed or first-order formula-
tion of the acoustic wave equation was proposed instead by Glowinksi et al. in
[23] and later in [22, 25, 10]. For elastic equations, the conventional first-order
velocity-stress formulation could be used in the same spirit. The advantage of
this formulation is that the gradient of the corresponding function based on the
first-order formulation is in a self-dual space, so no additional Riesz represen-
tative is needed. However, it requires working with a system of 9 equations
instead of 3 in 3D when working with the second-order formulation. This is the
reason why most if not all of the main elastodynamic codes are developed in
the second-order formulation.

3.3. Acceleration procedure: initial guess computation

Except from applying preconditioners to the CG method, a suitable estimate
of the solution as an initial guess for the CG method accelerates the convergence.
Considering the long-time asymptotic behavior of (6) with an arbitrary initial
value, running the time solver over a sufficiently long time interval [0,mT ], m ≥
1, should yield a “good” initial estimate. However, depending on the geometry
of the computational domain and the boundary conditions, the time interval
can be long, especially in the case of trapped modes [26, 25]. To overcome this
difficulty, multiplying the external force term by a smooth transient function
θtr,

θtr(t) =


(

2− sin

(
π

2

t

Ttr

))
sin

(
π

2

t

Ttr

)
, t ≤ Ttr,

1, t ≥ Ttr,
(49)

as proposed by Mur in [40], and Glowinski et al. in [7], a proper initial estimate
is computed for a more reasonable time interval [0, Ttr], Ttr ∈ TN [25]; e.g.

Ttr =

⌈
L

T minx∈Ω vS(x)

⌉
, (50)

where L is the longest dimensional length of Ω. This is the strategy we adopt
in this study.

4. Implementation

We now discuss our implementation choices for the controllability method
described in the two previous Sections.

4.1. Spatial Discretization: finite spectral element technique

We focus on a spatial discretization based on a finite spectral element tech-
nique. This method was first introduced by Patera [44] for fluid dynamics
problem. The goal is to benefit from the flexibility of finite-element techniques
while preserving the spectral convergence property of spectral methods. This
method has been introduced to seismologists by Komatitsch & Vilotte [31], first
in the context of elastic waveform modeling at the global scale. In the context of
wave propagation, the method has shown excellent properties in terms of con-
vergence, numerical dispersion, and scalability through domain decomposition.
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The spectral element technique is based on the Galerkin principle (same
approximation space for test functions and solution). The basis for the ap-
proximation space is composed of Lagrange polynomials of arbitrary degree n.
The integration points and collocation points are chosen as the Gauss-Lobatto-
Legendre (GLL) points, which ensure exact integration for polynomial to orders
up to 2n−1, continuity of the solution across elements, and spectral convergence
properties. The fact that the collocation and integration points are chosen the
same, together with the choice of Lagrange polynomial, ensure a diagonal mass
matrix.

We apply this technique to discretize equations (6) and (42). Let Ωh =
{xj}nΩ

j=1 ⊂ Ω, Vh ⊂ V, with nΩ := dim(Vh) = dim(Wh) = |Ωh| < ∞. For
simplicity, we again write y(t), f(t), gS(t), gN (t), and gD(t) instead of y(x, t),
f(x, t), gS(x, t), gN (x, t), and gD(x, t), respectively. Then, for fixed t > 0 we
consider the variational formulation,

∂2

∂2t

∫
Ω

ρ y(t) ·ϕ dx+

∫
Ω

(C : ε(y(t))) : ε(ϕ) dx+
∂

∂t

∫
ΓS

ρ(By(t)) ·ϕ ds

=

∫
Ω

f(t) ·ϕ dx+

∫
ΓS

gS(t) ·ϕ ds+

∫
ΓN

gN (t) ·ϕ ds, ϕ ∈ Vh.

Then the stiffness matrix K, the mass matrixM, and the (absorbing) boundary
matrix S are given by

K =

K11 · · · K1d

...
. . .

...
Kd1 · · · Kdd

 , M =

M
. . .

M

 , S =

S11 · · · S1d

...
. . .

...
Sd1 · · · Sdd

 ,

where K,M,S ∈ R(dnΩ)×(dnΩ) and

(Kkp)ij =



∫
Ω

(
(λ+ µ)

∂ϕi
∂xk

∂ϕj
∂xk

+ µ∇ϕi · ∇ϕj
)
dx, k = p,

∫
Ω

(
λ
∂ϕi
∂xk

∂ϕj
∂xp

+ µ
∂ϕi
∂xp

∂ϕj
∂xk

)
dx, k 6= p,

(M)ij =

∫
Ω

ρϕiϕj dx,

(Skp)ij =

∫
ΓS

ρBkpϕiϕj ds =

∫
ΓS

ρ
(
(vP − vS)nknp + vSδkp

)
ϕiϕj ds,

and δkp denotes the Kronecker-delta function. In addition, we have the discrete
right-hand side F given by

(F)i =

∫
Ω

fϕi dx+

∫
ΓN

gNϕi ds+

∫
ΓS

gSϕi ds.

This yields a semi-discrete, linear, time-dependent (second-order) system of or-
dinary differential equations,

∂2

∂2t
M~y(t) +K~y(t) +

∂

∂t
S~y(t) = Re{F e−iωt}, (51)
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where ~y(tm) = ((~y)j(tm))nΩ
j=1, (~y)j(tm) ≈ y(xj , tm), denotes the semi-discrete

solution of (51).

Remark 4. Of course, other discretization methods such as finite differences
(FD), finite elements, e.g., with mass lumps [11, 13], which avoid inversion
of mass matrices, or discontinuous Galerkin (DG) with block diagonal mass
matrices, also work. In particular, the latter method becomes more attractive
for the elastic wave equation in the first-order formulation, since it overcomes
the solution of the elliptic problems at each CG iteration [25, 10].

4.2. Time Discretization

For most applications, the time discretization used together with the spectral
element discretization in space is a second-order prediction-correction scheme
named as the Newmark scheme [30, 18, 58]. We however have experienced that
a higher order time-discretization scheme is desirable for CM to improve their
convergence, especially when high order discretization in space is to be consid-
ered. In this study, we thus deploy a fourth-order explicit Runge Kutta scheme.

Let us consider the fully discrete elastic wave equation (6) with the discrete
initial value (~y0, ~y1) ∈ R2nΩ ,

(~y0)j = y0(xj), (~y1)j = y1(xj), j = 1, . . . , nΩ,

in the finite number of time steps nT , where ∆t = T
nT

and T is single time period.
In order to apply classical higher-order one-step methods to (51), we write
the second-order time integration of (51) as a first-order system of differential
equations,

∂

∂t
~Y(t) = Φ(t, ~Y(t)) := D ~Y(t) + Re{R e−iωt}, (52)

where

~Y(t) =

(
y(t)
∂
∂ty(t)

)
, D =

(
0 I

−M−1K −M−1S

)
, R =

(
0

M−1F

)
. (53)

Then we apply the explicit Runge-Kutta (RK) to the first-order (52) formula-

tion, which has been shown efficient. We denote an approximation ~Ym of ~Y(tm)
and Rm = Re{R e−iωtm}. Then we consider

~Ym+1 = ~Ym + ∆t

s∑
p=1

bpk
m
p ,

kmp = Φ

(
tm + cp∆t, ~Y

m + ∆t

p−1∑
q=1

apqk
m
q

)
,

where a = (apq)
s
p,q=1 is the RK matrix and b = (bp)

s
p=1, c = (cp)

s
p=1 are the

weights and nodes of the RK method.

Here we explicitly list the classical fourth-order explicit Runge-Kutta (RK4)

method in Algorithm 1, for m ≥ 0, and ~Y0 =
(
~y0 ~y1

)ᵀ
, where ~y0 an ~y1 are the
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Algorithm 1: Classical explicit fourth-order Runge-Kutta method

km1 = Φ
(
tm, ~Y

m
)
;

km2 = Φ
(
tm + ∆t

2 ,
~Ym + ∆t

2 km1
)
;

km3 = Φ
(
tm + ∆t

2 ,
~Ym + ∆t

2 km2
)
;

km4 = Φ
(
tm + ∆t, ~Ym + ∆tkm3

)
;

~Ym+1 = ~Ym + ∆t
6

(
km1 + 2km2 + 2km3 + km4

)
;

discrete initial displacement and velocity of the elastic wavefield y. Thanks to
the SE property, the evaluation of (53) requires only matrix matrix and matrix-
vector multiplications and is thus fully explicit. The explicit RK4 is known
to be efficient and robust, but not absolutely stable, and the time step ∆t is
bounded by the CFL constant and the smallest mesh size.

In other studies [7, 23, 46, 25, 10], it has been shown that methods of other
order, such as Leap-Frog, explicit Euler, explicit Runge-Kutta second and third
order time schemes for time integration (51) work as well as RK4, especially the
higher order time scheme. However, lower order time schemes may not converge
exactly to a time harmonic function. For better convergence, further treatment
or slight modification of the time method is required, e.g., the method yields
the exact time harmonic.

The analytical solution of the ODE, y′(t) = f(t) := Re {a exp(−iωt)}, a ∈ C,
is given by y(t) = Re

{
ia
ω exp(−iωt)

}
. The modification, e.g., of the explicit

Euler method forced to converge with the time harmonic solution is

yn+1 = αyn + βδtf(tn, yn), α = cos(ωδt), β =
sin(ω∆t)

ω∆t
,

with y0 = y(t0). Then one can verify that

yn = y(tn), ∀n ≥ 0.

4.3. Filtering procedure

For general boundary conditions the main analysis in Theorem 1 shows that
time-periodic solutions may not be unique. To recover the uniqueness shown in
Propositions 1 and 2, we apply the filtering procedure (32) from Section 2.2.2,

ŷ(x) =
2

T

∫ T

0

y(x, t) eiωt dt ≈ 2

T

nT∑
m=1

∫ m∆t

(m−1)∆t

y(x, t) eiωt dt, (54)

to the time-periodic solution y(t).

For the known wavefields ~Ym−1 =
(
ym−1 ẏm−1

)
and ~Ym =

(
ym ẏm

)
at

the m-th time step, m ≥ 1, we first determine the Hermite interpolation of y
in [(m − 1)∆t,m∆t]. Then we compute the partial integration using a higher
order quadrature formula such as Gaussian quadrature over [(m−1)∆t,m∆t] by

replacing y(t) by its Hermite polynomial. Since only ~Ym−1 and ~Ym are needed
for each integration in the subinterval, the time integration can be computed
efficiently on the fly and there is no need to store the entire history of ~Ym.
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4.4. Final CMCG Algorithm

We list the CMCG method in Algorithm 2 starting with the initial guess Y(0)

to find an initial value Y = (y0,y1) such that the corresponding solution y of
the time-dependent elastic wave equation (6) is time-periodic. Then we apply
the filtering procedure (32) in Section 2.2.2 and 4.3 when the time-periodic
solution is not unique. Consequently, the time-harmonic solution of (2) is given
by the time-periodic solution (8).

Remark 5.

i. In each CG iteration, we compute the gradient of the cost function J ,
which requires the solution of the time-dependent forward and backward
wave equation, but only over a single short time period T = 2π

ω . In prac-
tice, the time step ∆t typically decreases antiproportionally to the fre-
quency ω, so that the number of time steps nT or the ratio between T
and ∆t is independent of ω and remains constant when the frequency is
increased.

ii. In order to compute the gradient in Step 2 and 5, we apply an inner CG
loop to solve the (46). To accelerate the convergence, we additionally apply
a Jacobi preconditioner to the CG method.

iii. The outer CG loops stops when the relative CG residual in Step 11 achieves
the outer CG tolerance tol. A typical choice is tol=10−3 or 10−6.

iv. The inner product 〈·, ·〉B and its corresponding norm ‖ · ‖B in Algorithm
2 depend on the choice of the coercive, bounded, and symmetric bilinear
form B : V × V → R used in (44).

4.5. Parallelization and integration in SEM46

Our implementation relies on the 3D (visco-)elastic full waveform model-
ing and inversion code SEM46, presented in Trinh et al. [58]. This package
is developed in the perspective of seismic imaging by FWI. It makes use of
a Cartesian-based mesh, and supports vertical deformations to conform to a
spatially varying topography on top of the computational domain. Element
size adaptation in the lateral directions is also implemented to adapt the dis-
cretization to the local wavelength given a frequency band and a local velocity.
This choice of a Cartesian-based mesh is motivated by the will to avoid any
dependence on a third-party mesher, and a greater flexibility and robustness:
no need to adapt the mesh manually to remove too small or too deformed cells.
This is motivated by the application to which the code is dedicated: FWI basi-
cally works with media where the only interface which is known a priori is the
air/subsurface interface (free surface boundary condition).

SEM46 is developed in modern FORTRAN90 and has been ported on numerous
high performance computing platforms, from local ones (CIMENT infrastruc-
ture, Univ. Grenoble Alpes), to national ones (IDRIS and TGCC, France) and
European ones (Barcelona Supercomputing center, Spain). Its scalability has
been tested satisfactorily up to several thousands of computational units. The
parallelization relies on a simple message-passing-interface (MPI) based domain
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Algorithm 2: CMCG algorithm

Result: Time-periodic solution Y
1 Solve the forward and the backward wave equations (6) and (42) to

determine the gradient of J , g(0) = J ′(Y(0)) ∈ V ′, defined by (43).
2 Solve the coercive elliptic problem (44) with g = g(0) to determine the

Riesz representative p(0) ∈ V.
3 Set d(0) = −r(0) = p(0) ∈ V.
4 for ` = 1, 2, . . . , do
5 Solve the homogeneous wave equations (6) (f = gD = gS = gN = 0)

with the initial values d(`) = (d
(`)
0 ,d

(`)
1 ) and (42).

6 Compute the gradient g(`) = Ĵ ′(d(`)) defined by (43). Solve the

coercive elliptic problem (44) with g = g(`) to get p(`).

7 α` =
‖(r(`)

0 , r
(`)
1 )‖2B

〈(p(`)
0 ,p

(`)
1 ), (d

(`)
0 ,d

(`)
1 )〉B

∈ R

8 Y(`+1) = Y(`) + α`d
(`) ∈ VD

9 r(`+1) = r(`) − α`p(`) ∈ V

10 β` =
‖(r(`+1)

0 , r
(`+1)
1 )‖2B

‖(r(`)
0 , r

(`)
1 )‖2B

∈ R

11 d(`+1) = r(`+1) + β`d
(`) ∈ V

12 Stop when the relative residual lies below the given tolerance tol,

relres(`) =
‖(r(`+1)

0 , r
(`+1)
1 )‖B

‖(r(0)
0 , r

(0)
1 )‖B

≤ tol. (55)

13 end

decomposition algorithm. Indeed, the spectral element method requires to ex-
change information only on the border of each domain, making it perfectly
suitable for such an implementation.

This domain decomposition algorithm is used for mass and stiffness matrix-
vector product. The mass matrix being diagonal, the computationally inten-
sive part is related to the latter matrix-vector product. Of interest here, each
part of the CM algorithm benefits from this domain decomposition algorithm.
The outer CG loop requires the solution of two wave equations. The inner
CG loop requires the solution of an elliptic problem involving stiffness matrix-
vector products, which are already parallelized thanks to domain decomposition.
Therefore, the whole CM algorithm is fully parallel, with no bottlenecks which
might hamper the scalability of the algorithm.

5. Numerical experiments

In this Section we present a series of experiments to validate the CMCG ap-
proach and illustrate its scalability for solving 3D frequency-domain elastic wave
problems (2). All the experiments are performed in the isotropic approximation
where the stiffness tensor can be expressed with two parameters, however from
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SEM46 it is possible to consider any kind of anisotropy up to fully triclinic me-
dia with 21 independent coefficient in the stiffness tensor [58].

We first investigate the convergence and the accuracy of the CMCG method
at each (outer) CG iteration, applied to the plane-wave problems in a semi-open
box. In order to speed up the convergence, we introduce an initial run-up phase
by using the wave solver to find a proper initial estimate, which is already used
in the acoustic case [26, 25]. Next, we consider a point source problem in a un-
bounded cuboid domain to compare the total computational time and memory
requirement of the CMCG method with a direct solver based approach which
solves (2) directly (with the same discretization). The direct solver is based
on the LU multi-frontal decomposition method, implemented in the MUMPS li-
brary [1]. To illustrate the scalability of the CMCG method for larger problems,
we measure the total computational time while we increase the number of cores.
Then we repeat the previous experiment in a 3D heterogeneous elastic media,
constructed from the 2D Marmousi II model [36]. Finally, in the perspective
of FWI, we present a series of point source problems in several heterogeneous
media corresponding to reconstructed media along FWI iterations. We show
how we can use the solution from a given model to the subsequent model as an
initial guess to speed-up the convergence of the CMCG method.

5.1. Convergence and accuracy tests on plane-wave solutions

The plane-wave u in Ω = (0, 2000m)× (0, 500m)× (0, 500m) is given by

u(x) = A exp(ik · x), (56)

which solves (2) with the Dirichlet boundary conditions ΓD everywhere except
from the absorbing boundary conditions on ΓS = {x = 2000m}. Here the
frequency is f = 10 Hz, the velocities vp(x) = 5000m/s, vs(x) = 2500m/s, and
the density ρ(x) = 1 g/m3 are all constant, and moreover, A ‖ k and |k| = ω

vP

with the angle of 5◦ in the xz-plane and |A| = 10−6. We apply the CMCG
method P5-SEM with h = 50m. Figure 2a monitors the relative CG residual
(55) at CG iteration and stops at 162 CG iterations to the CG tolerance=10−6,
which coincides with solving the time-dependent wave equation (6) over 324
time periods. Moreover, the cost functional J in (39), evaluated at each CG
iteration, decreases monotonically, where the relative numerical L2-error to the
exact solution (56) decreases as well to 4.6 · 10−5, which is shown in Figures 2b
and 2c, respectively.

According to the limiting amplitude principle [39, 60], the solution y(·, t) of
(6) converges asymptotically to the time-harmonic solution given in (5) when
t = mT , m ∈ N, tends to infinity, which requires only the solution of (6) for a
long time, where no optimization and elliptic solution is needed. To compare
this ”simple” wave solver with the CMCG method for finding a time-harmonic
solution, Figure 3a shows the history of the relative L2 error of both methods
for the same number of periods. We can see that solving only the wave equation
(6) may result in a slow convergence or even no convergence at all.

Next, we investigate the efficiency of the initial run-up described in Section
3.3 and try to find what a suitable run-up time would be. For m = 80 time
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Figure 2: 3D plane-wave: History of the relative CG residual (a), the periodic defects (b), and
the relative L2-error, obtained from the CMCG method at each CG iteration.
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Figure 3: 3D plane-wave: (a) Numerical L2 error at each time-period, obtained with the CMCG
method, the “simple” wave solver, and the initial run-up of the length m = 80 combined with
the CMCG method. (b) Total number of forward and backward elastic wave equations (6) solved
over one period T until convergence, started with an initial run-up of length of m periods.

periods, the relative L2 error decreases faster than with the CMCG method, but
does not reach the same accuracy with a relative L2 error of 4·10−3. Maintaining
the state with the CMCG method, it subsequently converges at 98 iterations.
Consequently, the CMCG method solves for a total of 276 time periods with
the initial estimate, and unlike 324, it saves about 15% time periods.

To study the convergence rate as a function of the run-up length m, we
repeat the initial run-up with different lengths m of the initial phase in combi-
nation with the CMCG method. We first consider m = 8 as suggested in (50),
which reduces the total number of wave equations solved in one period to 304.
Increasing the length m of the initial run-up accelerates the convergence, but
stops accelerating at m ≥ 160.

We conclude that the initial run-up does indeed provide a good estimate
for the CMCG method and accelerates convergence, but the optimal number of
time periods is generally unknown and must be set in advance.

Remark 6. The discretization of the sixth-order SE scheme and the fourth-
order time scheme is not order-preserving. However, the total error between
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#Cores Elapsed Max alloc. rel. L2 error
Timing Mem. ux uy uz

MUMPS 256 855s 1423 GB 4.6% 8.7% 4.6%
CMCG 8 378s 0.8 GB 3.6% 7.3% 3.6%

Table 1: Comparison between the CMCG method and MUMPS direct solver with respect to the
memory consumption, computational time, and numerical error.

f nDOFs #{Cores} Memory Initial runup CMCG
in Hz in Mio. in GB #{periods} #{iterations}

10 2 1– 18 0.2 13 22
20 8 8– 64 0.8 25 17
40 42 32– 512 4 50 21
80 257 256–1536 24 100 23

160 1784 800–1440 166 200 27

Table 2: 3D-Point source: estimated allocated memory of the CMCG method by increasing the
number of cores for a fixed frequency f , total number of CG iterations in the outer loop and
number of degrees of freedoms.

numerical and analytical solution contains the spatial and the time discretization
error as well as the residual of the CG method, where the spatial discretization
dominates. In order to reduce the total error, i.e., by increasing the number of
grid points, one can use order-preserving time schemes instead and reduce the
CG tolerance.

5.2. Comparison with a direct solver for point source problem in a homogeneous
medium

For the known analytical solution u(x),

u1(x) =
(x1 − p1)(x3 − p3)

4πρω2r5

(
(r2k2

p − 3 + 3irkp) eikpr −(r2k2
s − 3 + 3irks) eiksr

)
u2(x) =

(x2 − p2)(x3 − p3)

4πρω2r5

(
(r2k2

p − 3 + 3irkp) eikpr −(r2k2
s − 3 + 3irks) eiksr

)
u3(x) =

eikpr

4πρω2r5

(
(x3 − p3)2r2k2

p + (r2 − 3(x3 − p3)2)(1− irkp)
)

+
eiksr

4πρω2r5

(
(r2 − (x3 − p3)2)r2k2

s − (r2 − 3(x3 − p3)2)(1− irks)
)

where r = |x − p| and p is the position of the point source, we apply the
CMCG method to the point source problem in a homogeneous unbounded do-
main Ω = (0, 2.5km)3 with ΓS = ∂Ω, ρ = 1 g

m3 , vP = 5000m
s , and vS = 2500m

s .

We first compare the CMCG method with the strategy presented in Li et
al. [33] where the frequency-domain equations (2) are discretized by the same
spectral element technique, within the frame of SEM46, and a LU based direct
solver (MUMPS, [1]) is used to solve the associated linear system. The compu-
tational domain consists of 28× 28× 28 P5-SE with 4 sponge elements in each
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Figure 4: wavefields ux (1st row), uy (2nd row), and uz (3rd row) of the point source problem
of 20 Hz, obtained with the CMCG method (1st column) and the direct solver (2nd column) and
the analytical solutions (3rd column).

direction.

In Table 1, we present the comparison between the numerical solutions, ob-
tained with the CMCG method, combined with the initial run-up with a length
of 25 periods, and the direct solver approach using the MUMPS package. The
RK4 method listed in Algorithm 1 is applied to solve the time integration of (6)
with a total number of time steps nT = 48. The CG tolerance of the inner and
outer CG loops for the stopping criterion is set to 10−4. We see that the CMCG
method requires less computation time and particularly about 1700 times less
memory for a comparably accurate solution. Figure 4 illustrates the CMCG
solution (1st column), the MUMPS solution (2nd column), and the difference
between both methods (3rd column).

In [33], it is very challenging to adopt the direct linear solver and MUMPS
for solving (2) with frequencies higher than 20 Hz. Especially, the memory
requirement quickly reaches limits of conventional computational resources in
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Figure 5: Point source at f = 10, 20, 40, 80, and 160 Hz: total elapsed timing spent in the
CMCG method by increasing the total number of cores.
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Figure 6: Pointsource at 10, 20, 40, 80 and 160 Hz model: relative average elapsed timing spent
in the time-dependent solver (RK4 method) and the elliptic solver (inner CG method).

national HPC centers. In contrast, the CMCG method only requires modest
amount of memory, which is shown in Table 2. To show the efficiency of the
CMCG method by solving a larger problem, we increase the frequency from 20
Hz to 40 Hz, 80 Hz and 160 Hz, and respectively the mesh from 18 × 18 × 18,
28× 28× 28 to 48× 48× 48, 88× 88× 88, and 168× 168× 168 P5-SE, with 4
sponge elements in each direction, as well as the length of the initial phase from
13 to 25, 50, 100, and 200 periods.

While the number of grid points increases linearly with the frequency ω, the
time periods T = 2π

ω and the time steps ∆t decrease in an antiproportional
fashion with respect to ω, so that the number of time steps nT for each ω
remains equal to 48. As expected the CMCG method, which only consists
of matrix-vector multiplications, is inherently parallel. A linear scalability is
observed up to more than fifteen hundred cores, as illustrated in Figure 5. The
ratio of computational effort between the time-dependent and elliptic solvers is
80% to 20% at low frequencies (e.g. 10 Hz). However, this changes at higher
frequencies, as most of the computational effort shifts to the initial run-up to
some extent (90% time-dependent and 10% elliptic at 160 Hz), which can be
seen in Figure 6 and Table 2, where the total number of CG iterations increases
only slightly as we increase the frequency.
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Figure 7: Pointsource at 4, 8, 12, and 16Hz Model: number of CG iterations required in CM
until convergence reaches tolerance 10−3.

f nDOFs #{Cores} Memory Initial runup CMCG
in Hz in Mio. in GB #{periods} #{iterations}

10 5 1– 8 0.5 30 25
20 26 16– 256 3 60 17
40 155 64– 512 16 120 10
80 1061 256–1024 103 240 21

Table 3: 3D-Marmousi: total computational time of the CMCG method with various number
of cores, total number of CG iterations in the outer loop, as well as the number of degrees of
freedoms.

Further, it is assumed that the convergence of the CG method in CM depends
only on the problem given by the geometry of the domain, the homogeneity or
inhomogeneity of the media, the frequency, and the external source. In partic-
ular, the convergence is only slightly affected by the discretization of the mesh,
e.g., the mesh refinement. To verify this, we solve the point source problem
again for frequencies ω = 4, 8, 12, 16 Hz using the CMCG method as above with
P5-SEM and RK4, but without sponge layer and initial excitation (run-up). At
fixed frequency and source, the CMCG method is repeatedly applied to the elas-
tic wave equation (6), increasing the number of elements from 4 to 24 elements
in each direction. Figure 7 shows that the number of CG iterations (18–21,
35–38, 52–54, and 66–69) is nearly constant for a fixed setting (4, 8, 12, and 16
Hz]), confirming independence of mesh size. Interestingly, we observe that the
number of CG iterations increases almost linearly in this low frequency settings
(from 4 to 16 Hz).

5.3. CMCG method for a 3D heterogeneous elastic medium from the Marmousi
II model

We consider now a 3D heterogeneous medium built as a 3D extension of a
sub-target of the 2D Marmousi II model [36], where the 2D medium is extended
constantly along the y direction. Now both velocities vP and vS and the den-
sity ρ vary over the entire computational domain Ω = (0, 3900m)×(0, 1000m)×
(0, 1200m) (see Fig. 8).
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Figure 8: 3D-Marmousi model: 2D front view of the Marmousi model. Velocities vP and vS in
m
s in the 1st and 2nd rows and density ρ in mg

m3 in the 3rd row.

We apply the CMCG method to compute a solution in this medium for
a point source at (1950m, 500m, 100m), with a free surface condition on top
ΓN = {z = 0m} and absorbing boundary conditions everywhere ΓS = ∂Ω\ΓN .
To further dampen the outgoing waves on ΓS , we also add 4 sponge elements
in each direction. In order to show the parallel performances of the CMCG
method, we increase the number of cores for a fixed frequency and fixed mesh,
which is listed in Table 3, and measure the total elapsed time.

Here, the computational domain consists of 47 × 18 × 16, 86 × 28 × 28,
164 × 48 × 52, and 320 × 88 × 100 P5-SE at frequencies of 10, 20, 40, and
80Hz, respectively, with memory requirements ranging from 500MB to 103GB.
The time integration of (6) is solved in nT = 118 time steps. In Figure 9 we
observe a doubling of speed of the CMCG method for each frequency, indicating
linear scalability, while increasing the number of cores to 1024. Finally, Figure
10 illustrates a cross section from the numerical solution of 80Hz to Marmousi
problem, obtained with the CMCG method, where the background corresponds
to the P-Wave vP shown in Figure 8.
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Figure 9: 3D-Marmousi: total computational time of the CMCG method by increasing the number
of cores for a fixed frequency, 10Hz, 20Hz, 40Hz, and 80Hz.

5.4. CMCG method on successive 3D heterogeneous media corresponding to
FWI iterations

To complete this series of tests, in the perspective of FWI, we investigate the
behavior of the CMCG method when it is initialized with a solution computed in
a medium close from the one in which the computation is done. The motivation
is that in FWI, the subsurface model is iteratively updated from an initial to a
final estimation. Wave propagation problems are to be solved in each of these
models, which, along the FWI iterations, are relatively close one from each other.

To perform this preliminary study, we design a schematic synthetic FWI
experiment on a subtarget of the Marmousi II model extended in 3D, sim-
ilar to the one considered in the previous experiment. Its dimensions are
Ω = (0, 3900) × (0, 1000) × (0, 1400) m3. The acquisition is composed of a
single shot line in the middle of the x-y plane with 24 sources each 160m along
x-axis, and 5795 receivers sampling the x-y plane, with a spacing of 12.5m in
x-direction and 50 m in y-direction. The sources are vertical forces and the
receivers vertical geophones. The source signal is a Ricker with 4 Hz peak fre-
quency, generating a synthetic data set in the frequency band 0 - 10Hz.

The principle of FWI is to minimize iteratively the least-squares distance
between a reference dataset and data computed numerically. Describing FWI
precisely is beyond the scope of this study, and the reader is referred to [59] for
a review. Here for this schematic application, the data is simply inverted in a
single step (no multi-scale strategy), within 60 iterations of the l-BFGS algo-
rithm implemented in the SEISCOPE toolbox [37]. The exact, initial, and final
models are presented in Figure 11, denoted respectively by (v∗P , v

∗
S), (v0

P , v
0
S),

and (v60
P , v

60
S ). The misfit function evolution along the 60 iterations is also pro-

vided in Figure 12.

Along the convergence path, a series of (v`P , v
`
S) is generated, ` = 1, . . . , 60.

We consider two situations. For the first, we consider two models in the early
iterations, namely (v1

P , v
1
S) and (v2

P , v
2
S) where the model differences are sig-

nificant, and localized in the upper part of the model, in the vicinity of the
source (Figure 13a,b). For the second, we consider two models in the final it-
erations, namely (v58

P , v
58
S ) and (v59

P , v
59
S ), for which the model differences are

29



less pronounced, and distributed in the whole model (Figure 13c,d). The rela-

tive L2 difference between the models (v
(1)
P , v

(1)
S ), (v

(58)
P , v

(58)
S ) and (v

(2)
P , v

(2)
S ),

(v
(59)
P , v

(59)
S ) are (0.012%, 0.043%) and (0.006%, 0.015%), respectively. We de-

note by u(1) and u(58) the solutions to (2) on the 1st and 58th models (v
(1)
P , v

(1)
S )

and (v
(58)
S , v

(58)
S ).

We apply the CMCG method, combined with the RK4 and P4-SE method,
to (2) for the 2nd and 59th model, where Ωh consists of 47× 18× 18 elements.
Figures 14a and 14b show the history of the relative CG residual at each CG
iteration, obtained with the CMCG method applied to (2) for the corresponding
model. We observe that the CMCG method converges for the 2nd model with
and without the initial estimate u(1) as the initial guess at 175 and 347 CG iter-
ations (which implies the solution of the time-dependent equation (6) over 350
and 694 time periods, respectively). The computational time with the initial
guess thus represents 50% of the computational time without the initial guess,
yielding a factor 2 acceleration. Applying the CMCG method to the 59th model
with or without the u(58) solution in the 58th model, we observe that the CMCG
method converges in 46 and 336 CG iterations respectively (which implies solv-
ing the wave equation over 92 and 672 time periods respectively). Here, using
the initial guess reduces the computational time to 13% of the computational
cost without initial guess, corresponding to an acceleration by a factor larger
than 7. We also observe that the CMCG method without initial estimation
seems to converge consistently in about 350 CG iterations for different models
built along the convergence path of a given full waveform inversion application.

From this preliminary test, we observe that the CMCG method is able to
exploit efficiently the information from solutions computed in similar models to
accelerate its convergence, a very interesting feature in the perspective of FWI,
which is not shared by purely time-domain solvers.

6. Conclusion and perspectives

The controllability method (CM), combined with the conjugate gradient
(CG) method, is proposed to find a time-periodic solution of the elastic wave
equation, which yields the frequency-domain elastic solution. Although the
time-periodic solution may contain additional numerical errors involved by the
mass-lumping and numerical errors in the time integration and deficiency from
inexact periodicity, the results is still comparably accurate to the solution ob-
tained with a direct linear solver.

The main analysis proves that the filtering procedure extends the original
CMCG method in [38] from elastic sound-soft scattering problems to more gen-
eral elastic problems.

Numerical experiments illustrate the usefulness, efficiency, and good parallel
scalability of the CMCG method. We observe that most of the computational
efforts are spent either in the forward and backward wave propagation solver
or in the inner CG loop, which are both inherently parallel through domain
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decomposition.

An appropriate initial guess of the frequency-domain solution is also signif-
icant to speed up the convergence of the outer loop so that an initial run-up
process as proposed in [7, 26] is considered. On models extracted from a full
waveform inversion, it is shown how starting the CMCG method from a solu-
tion computed in the model from previous FWI iteration is beneficial to the
convergence. To generalize this approach, a scattered field formulation could
also be used [54, 43]. This approach makes it possible to take benefit from an
already known solution in a medium close from the one investigated in a more
general way. The known solution could be an analytical solution in a simple
medium, a solution based on travel-times computed with an eikonal solver, or,
as investigated here, a full waveform frequency-domain solution computed in
a previous medium in the frame of full waveform inversion. This will be the
matter of future investigations.

The extension of the CMCG approach to fluid-solid coupling problems, as
has been already explored in the time-domain within the frame of the SEM46
package by Cao et al. [8], should be also the matter of future investigations.

Finally, we note that there is a current trend, at least in the exploration
industry, to perform FWI on the whole usable frequency band, up to 100Hz and
above. We believe that the design of efficient 3D modeling engine which, as it
seems to be the case for the CMCG approach, have, on top of an excellent scal-
ability and low memory requirement, the capability to exploit the information
from previous iterations to build the wave equation solution in an efficient way,
is of particular interest.
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Alpes region (GRANT CPER07 13 CIRA), the OSUG@2020 labex (reference
ANR10 LABX56) and the Equip@Meso project (reference ANR-10-EQPX-29-
01) of the programme Investissements d’Avenir supervised by the Agence Na-
tionale pour la Recherche, and the HPC resources of CINES/IDRIS/TGCC
under the allocation 046091 made by GENCI.

Appendix A. Operator B in the isotropic case for dimension d > 1

In the isotropic approximation, we write the stress tensor σ as

σ(x,u) = λ(x)(∇ · u(x))Id + 2µ(x)ε(x,u) (A.1)
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where λ and µ are the Lamé parameters, or

σ(x,u) = ρ(x)(v2
P (x)− 2v2

S(x))(∇ · u(x))Id + 2ρ(x)v2
S(x)ε(x,u), (A.2)

where vP is the pressure wave (P-wave) velocity and vS is the shear wave (S-
wave) velocity with

vP =

√
λ+ 2µ

ρ
, vS =

√
µ

ρ
. (A.3)

For physical media, we assume vP > vS > 0 and ρ > 0 such that λ(x) ≥ λ0 > 0
and µ(x) ≥ µ0 > 0.

To simulate the outgoing waves by imposing the absorbing boundary condi-
tions on ΓS , we introduce the (coercive) linear operator B ∈ Rd×d given by

B = vPnnᵀ + vS(Id − nnᵀ) = (vP − vS)nnᵀ + vSId, (A.4)

where n denotes the outward unit normal vector [52, 12]. Note that

Bw = vPw⊥ + vSw‖ (A.5)

with the normal component of w,

w⊥ = (nnᵀ)w =
(
w · n

)
n, (A.6)

and the tangential component of w,

w‖ = w −w⊥ = (Id − nnᵀ)w = w −
(
w · n

)
n. (A.7)

In order to attenuate the reflected waves at the artificial boundaries ΓS , we ad-
ditionally expand the computational domain surrounded by the sponge layer [9,
20].
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(a) ux

(b) uy

(c) uz

Figure 10: 3D-Marmousi solutions, ux (1st row), uy (2nd row), and uz (3rd row) of the Mar-
mousi problem of 80Hz, obtained with the CMCG method, where the background corresponds to
the P-wave vP shown in Figure 8.
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Figure 11: 3D-Marmousi model: 2D vertical slices of the exact Marmousi models v∗P and v∗S,

initial models v0
P and v0

S, final models v60
P and v60

S
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Figure 12: FWI convergence: reduction of the misfit function along the iterations
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Figure 13: 3D-Marmousi model: 2D vertical slices of vP and vS model differences at iterations
2 and 1 (a,b) and 59 and 58 (c,d) respectively.
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Figure 14: 3D-Marmousi model: history of the relative CG residual at each CG iteration, ob-
tained with the CMCG method applied to (2) for the 2nd and 59th model.
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