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1. Introduction

Computational simulations of chemically reacting
flows leverage a wide range of components to account
for the kinetics of the combustion processes, the ther-
modynamics of the interacting compounds as well as
their transport properties. Their predictability is par-
ticularly sensitive to the kinetic models, which come
in different flavors depending on the level of fidelity
employed. These models in turn include a large num-
ber of parameters, subject to uncertainties that are es-
sential to quantify in order to assess the applicability
and performance of the underlying models.

Monte Carlo methods have traditionally been ap-
plied to assess the existing model uncertainties. How-
ever, their slow convergence and high computational
cost have given rise to alternative approaches that re-
duce the cost by considering a smaller set of the pa-
rameter space. Some of these approaches include
probabilistic methods such as Polynomial Chaos Ex-
pansion (PCE) [1] and related methods [2, 3] applica-
ble to high-dimensional parameter spaces, and Gaus-
sian process approximation method (Kriging) [4].
In most of these approaches, a response surface is
formed from function evaluations (computationally
intensive unsteady simulations) at sparsely and care-
fully selected points to approximate the dependence
between the model parameters (input) and the quan-
tity of interest (output). In the combustion commu-
nity, the large number of parameters has motivated the
development of various techniques to further speed up
the construction of the response surfaces, some based
on sensitivity analysis [5], High Dimensional Model
Representations (HDMR) [6] and Artificial Neural
Networks (ANN) [7]. A comprehensive review of re-
sponse surface methods in the context of combustion
simulations can be found elsewhere [8].

While effective in their own rights, most of these
methods suffer from the curse of dimensionality and
are not applicable as the number of parameters in-
creases beyond a certain threshold, which is the case
when considering detailed kinetic models of interest
to this study. Some remedies include resorting to sen-
sitivity analysis in order to lower the dimension of
the parameter space. These methods can be divided
into local and global alternatives. In local estima-
tion methods, the parameter space is reduced based
on the local estimations of the gradient; these meth-
ods therefore suffer from shortcomings such as sen-
sitivity to noise. Global methods provide more ro-
bust sensitivity estimates, at a significant additional
cost however [9, 10]. Alternatively, in the case of
PCE, collocation techniques with sparse quadrature
or adaptive regression strategies [11, 12] have been
used to reduce the high-dimensional parameter space
when constructing the response surface. These meth-
ods mainly rank the coordinates of the inputs. How-
ever, some models may vary most prominently along
directions of the input space that are not aligned with
the coordinate system.

Therefore, in this study, we adopt a different strat-

egy, namely the Active Subspace Method (ASM) [9],
where gradient information is used to detect and ex-
ploit the directions of the strongest variability of a
given function to construct an approximation on a
low-dimensional subspace of the function’s inputs.
ASM has successfully been applied to analyze the
chemical kinetic uncertainty for liftoff height in a tur-
bulent combustion application [13]. In a later work,
Ji et al. [14] develop a method to simultaneously
approximate the marginal PDFs of multiple quanti-
ties of interest, in particular, Ignition Delay Time
(IDT) in an isobaric reactor and Laminar Flame Speed
(LFS), based in both cases on the identification of
a single active direction. In a recent work, Su et
al. [15] have also employed active subspace method
together with sensitivity analysis to identify extreme
low-dimensional active subspace of the input param-
eter space of a dimethyl ether (DME) mechanism.

Using ASM, a certain number of gradient evalu-
ations at distinct sample points in the input param-
eter space are required to obtain good estimates of
the dominant directions. These gradients are usually
estimated by either finite differences or local linear
fitting, and the cost of their evaluation increases lin-
early with the number of parameters. In this work, we
leverage the adjoint method [16] to compute gradi-
ent information at a cost comparable to a single func-
tion evaluation. Furthermore, the adjoint method is
also used to provide a linear approximation of uncer-
tainties in the active direction (LAAM). To the best
knowledge of the authors, LAAM has never been ap-
plied to analyse uncertainties of chemical reaction
networks, and in this respect this manuscript shows
one of its first applications. We show that LAAM
is an accurate way of defining uncertainties for this
problem with a much lower cost, making this method
a practical tool for extracting uncertainties, especially
useful for large mechanisms. Cases are also consid-
ered where a single dominant direction can not be
identified and a strategy is provided in order to in-
clude multiple active directions in the analysis. Fi-
nally, the limitations of the LAAM approach are pre-
sented and discussed.

The paper is organized as follows: Sec. 2 describes
the methodologies for extracting the gradient and con-
structing the response surface using the active sub-
space algorithm. The described methods are then ap-
plied to three different cases in Sec. 3, extracting un-
certainties with respect to model parameters and ini-
tial conditions, and their applicability and limitations
are discussed. The conclusions and outlook of this
work are then presented in Sec. 4.

2. Methodology

In this section, the algorithms for extracting the un-
certainties and the relevant gradient information from
the system of interest are briefly presented. The ob-
jective function of interest to this work is the igni-
tion delay time (IDT), which is defined as the moment
where the gradient of temperature reaches its maximal
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value,
IDT = argmax

t0≤t≤tf

Ṫ (t) (1)

where t0 and tf denotes the initial and final times.
The system of interest consists of a zero-dimensional
isochoric adiabatic reactor, the composition and tem-
perature of which evolve according to

∂Yi

∂t
=

1

ρ
ω̇i

∂T

∂t
=

1

ρCv
ω̇T

(2)

where (Yi) (i ∈ J1, NsK) denote the species mass
fractions, and Cv and ρ the mixture’s average heat
capacity at constant volume and density, respectively.
The terms (ω̇i) denote the species’ rates of consump-
tion or production, which are related to the reaction
rates,

Kj = AjT
bj exp

(
−Ej

RT

)
, (3)

where j = J1, NrK. Nr denotes the mechanism’s
number of reactions, and (Aj), (bj) and (Ej) the Ar-
rhenius coefficients parameterizing reaction j. The
source term ω̇T is the heat release rate given by

ω̇T = −
Ns∑
i=1

ω̇iui, (4)

where ui denotes the internal energy of species i.

2.1. Adjoint Method
The adjoint method performs the computation of

the gradient of output functionals (real-valued quanti-
ties of interest) at a cost comparable to a single func-
tion evaluation, regardless of the number of compo-
nents (parameters of the model) [17]. While effi-
cient the adjoint method offers less flexibility than
forward sensitivities methods, such as the finite dif-
ference method, to tackle implicit functions such as
Eq. 1. As a consequence, the following alternative
objective function, proposed by [18], is employed,

J ≡ IDT =
1

2tf

∫ tf

0

(T (t)− Ts (t))
2 dt. (5)

where tf is the final time, Ts the shifted temperature
profile, and ts = −tr × 10−2[18] the shifting time,
proportional to the reaction characteristic time tr , de-
fined as,

tr =

[
max

(
∂T

∂t

)]−1

(Tf − T0) (6)

Forming the Lagrange multiplier [18], the adjoint
equations can be extracted, resulting in ∀i ∈ J1, NsK

−dξi
dt

=
∂J

∂Yi
+ ξj

∂

∂Yi

(
1

ρ
ω̇j

)
+ ϕ

∂

∂Yi

(
1

ρCv
ω̇T

)
,

−∂ϕ

∂t
=

∂J

∂T
+ ϕ

∂

∂T

(
ω̇T

ρCv

)
+ ξi

∂

∂Yi

(
ω̇i

ρ

)
(7)

where ξi is the adjoint variable corresponding to the
Yi equation and ϕ to the temperature equation (details
regarding the extraction of the adjoint equations are
provided in [18]). In the latter equations, J is the inte-
grand already included in the definition of J , namely

J ≡ 1

2tf
(T − Ts)

2 . (8)

The adjoint equations are integrated backward in
time from the following conditions,{

ξi (tf ) = 0, ∀i ∈ J1, NsK ,

ϕ (tf ) = 0.
(9)

The component of gradient associated with a parame-
ter g is then given as

dJ
dg

=

∫ tf

t0

[
∂J

∂g
+ ξj

∂

∂g

(
ω̇j

ρ

)
+ϕ

∂

∂g

(
ω̇T

ρCv

)]
dt. (10)

Here, g may denote a kinetics parameter (such as a
given Ai, i ∈ J1, NsK), a thermodynamics coeffi-
cient, or a component of the initial condition.

The linearisation of the primal source terms (ω̇i,
ω̇T , etc.) and objective (J ) are performed using au-
tomatic differentiation [19]. The primal and adjoint
equations are implemented in the open-source pack-
age Apophis.jl.

The comparison of the extracted sensitivities (gra-
dient components) using automatic differentiation
(AD), and complex step differentiation (CSD), an al-
ternative method for extracting accurate gradients (for
more information regarding CSD refer to [20]), are
compared in Fig. 1 for GRI 3.0 mechanism [18].
The agreement between the two approaches validates
the adjoint method in extracting sensitivities, inde-
pendent of the size of the mechanism considered. The
sensitivities are non-dimensionalised as,

S =
dJ
dg

g

J , (11)

and normalized by the maximum absolute value of
S. For this analysis, the initial mass fractions are
YCH4 = 0.05 and YO2 = 0.2 and YN2 = 0.75.
The initial temperature is set at T = 1000K in at-
mospheric pressure as stated in [18]. The extracted
sensitivities agree well, and confirm that the reaction
2CH3(+M) ⇒ C2H6(+M) dominates the ignition
process, as far as the Arrhenius parameters are con-
cerned. These results are consistent with those re-
ported in the literature [18].

2.2. Active Subspace Method (ASM)
This section highlights how the aforementioned

adjoint-based sensitivity computation is leveraged to
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Fig. 1: Sensitivity analysis of ignition delay time with re-
spect to A for the ten most dominant reactions using AD
(light gray) and CSD (dark gray) for GRI 3.0 mechanism.

perform uncertainty quantification of IDT with re-
spect to the parameters of interest (kinetics, thermo-
dynamics, initial conditions) using the active sub-
space methodology [9].

The dimension of the parameters space is de-
noted as D, and the random input variables as x =
(x1, · · · , xD). The distribution of xj (j ∈ J1, DK) is
normalised and centered, which may be assumed to
be lognormal, uniform, etc. for each parameter. The
QoI will be denoted by f . The number of samples M
is proportional to the number of the dimensions of the
input space D and a factor η.

The active subspace methodology aims to con-
struct an R-dimensional subspace of the D-
dimensional parameter space (R ≪ D) that describes
most of the variation of quantity of interest f . The
low-dimensional approximation of f is

f(x) ≈ G(y), y = S⊤x (12)

where G(y) is the response surface as, y ∈ KR, x ∈
KD , and S is an orthogonal matrix (K = R or C).
The active subspace is then defined as span (S). One
way to identify the active subspace is to perform an
eigenvalue decomposition of the expectation matrix
C defined as,

C =
1

M

M∑
i=1

(
df

dxi

)(
df

dxi

)⊤

= WΛW⊤ (13)

where M denotes the number of samples, W and Λ
the eigenvalues and eigenvectors. Selecting the first
R eigenvectors of this decomposition selects the R
most dominant directions of the parameter space and
provides an approximation of S ≡ [w1, · · · ,wR].
The motivation for computing the gradients of f at
each sample xi (i ∈ J1,MK) using the adjoint method
stems from the fact that it results in the computation
of C scaling as ln (D) as opposed to D ln (D) using
finite differences.

The error in the estimated eigenvalues and eigen-
vectors due to an insufficient number of runs can be

estimated with bootstrapping [7, 9]. Once the ac-
tive subspace is identified, various methods, includ-
ing polynomial fitting, Polynomial Chaos Expansion
(PCE) [1, 21] and High Dimensional Model Repre-
sentation (HDMR) [6], can be employed to construct
the response surface. Here a multi-dimensional least-
square method is used. A brief summary of the major
steps is presented in Tab. 1.

2.3. Linear Approximation using the Adjoint Method
(LAAM)

Linear approximation using the adjoint method
(LAAM) is proposed here as a low-cost alternative to
the active subspace method and is based on linearly
approximating the QoI with respect to its input pa-
rameter space [22]. While very efficient, it should be
noted that for functions with a high degree of non-
linearity with respect to the parameter space, this as-
sumption becomes inefficient, an example of this is
discussed in Sec. [3.3]. The expansion is performed
around the mean of the collected samples, denoted x
(the center of the mass), and expressed as

QoI (x) ≡ fLAAM (x) ≈ QoI (x)+
dQoI

dx

∣∣∣∣
x

(x− x) .

(14)
Focusing on ignition delay time (QoI = IDT), the
gradient computation is performed using

∀j ∈ J1, NrK ,
dIDT

dxj

∣∣∣∣
x

=

dJ
dAj

∣∣∣∣
x

Aj (xj)
ln (UFj)

3

IDT

J

(
tr

IDT

)3

(15)

where J and tr are defined in Eqs. 5 and 6, and ( tr
f
)3

is a normalization factor due to the difference between
J and f . The main advantage of LAAM is that it
can provide a good approximation of the uncertain-
ties with only a single function evaluation, regard-
less of the size of the system. This huge reduction in
the computational cost allows rapid analysis of large
mechanisms, which will be highlighted in Sec. [3].

3. Results

In this section, the system uncertainties are first ex-
tracted using ASM and LAAM for a range of mecha-
nisms using a single active dimension. A case is then
presented where a single dominant direction does not
emerge from the eigenmode expansion, motivating
the development of a surface reconstruction that relies
on a higher-dimensional subspace. Finally, uncertain-
ties with respect to initial conditions are considered to
highlight the limitations of the LAAM approach.

3.1. One-dimensional subspace
ASM is used here to construct a response surface

for kinetic model parameters. Due to comparatively
large available data on hydrogen mechanism (h2vb),
specifically uncertainty factors and distribution, this
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Table 1: Response surface construction algorithm.
1 Choose the appropriate distribution for input variables
2 Assemble M random points of the input space, where M = η ln (D)
3 Use adjoint-based method to compute the expectation matrix C (Eq. 13)
4 Apply eigenvalue decomposition to matrix C and choose the dominant eigenvalues and eigenvectors
5 Estimate upper and lower bounds for the eigenvalues with bootstrapping (vary M and repeat 3 and 4)
6 Construct the mapping matrix S from the dominant eigenvectors and compute the new variable y = S⊤x
7 Construct the response surface G (y) ≈ f (x) based on the number of active dimensions

y1

-4 -3 -2 -1 0 1 2 3 4

lo
g 1

0(
ID

T
 [
s]

)

-3.4

-3.2

-3.0

-2.8

-2.6

Fig. 2: Comparison of the response surface fitted against a
single active direction: •, samples; –––, third degree poly-
nomial fit.

mechanism is first employed to benchmark the pre-
sented methodologies. Assuming constant temper-
ature, the uncertainties with respect to the reaction
rates are mainly attributed to the pre-exponential fac-
tors, (Aj), j ∈ J1, NrK [23]. Following documented
studies [14], the random variables (Aj) are assumed
to follow a lognormal distribution,

ln (Aj) ∼ N

{
ln

(
A0

j

)
,

[
1

3
ln (UFj)

]2
}
, (16)

which are centered and normalised as

xj =

(
1

3
ln (UFj)

)−1

ln

(
Aj

A0
j

)
∼ N (0, 1) (17)

where A0
j is the mean value of the parameter (the

value originally stated by the mechanism) and UFj is
the temperature-independent Uncertainty Factor [24].
The number of input parameters xi is dependent on
the number of elemental reactions. The initial condi-
tions are YH2 = 0.29, YO2 = 0.15, YN2 = 0.56,
T0 = 1000K, and P0 = 1.59 × 105 Pa. Using the
normal distribution (Eq. 17), M samples are selected
and the value of IDT (f(x)) is computed. The gradi-
ents are evaluated using the adjoint methodology with
J (Eq. 5) as QoI. The extracted gradients are then nor-
malised as

df

dxj
=

Ajf

3J
dJ
dAj

lnUFj . (18)

log10(IDT [s])
-3.50 -3.25 -3.00 -2.75

P
D
F

0

1

2

3

Fig. 3: Comparison of the reconstructed PDF for h2vb
mechanism: —, ASM; ◦, Monte Carlo; −−−, LAAM.

As highlighted in Tab. 1, the matrix C is then con-
structed and an eigenvalue decomposition is per-
formed to identify the eigenvalues and vectors, be-
fore performing bootstrapping to estimate the error
bounds. In this particular case M = 65 (η = 50
and Nboot = 50) suffices to identify the active di-
rection. There is a difference of about four orders
of magnitude between the first and second eigenvalue
(λ1/λ2 ≈ 1×104 ), and a single direction is expected
to adequately capture the response surface and the re-
lation between IDT and the (Aj).

Fig. 2 shows a cubic fit between IDT and the re-
duced space variable y,

G (y) =

3∑
n=0

cny
n, (19)

where y = w⊤
1 x. The values of c0 = −3.1144 ,

c1 = −1.2182 × 10−1 , c2 = 6.8 × 10−3 and
c3 = 2.929 × 10−5 are computed using the least
square method. The resulting probability density
function (PDF) using the active subspace strategy is
then compared to an application of the Monte Carlo
method using N = 20000 samples (Fig. 3). The
two PDFs match well, and show the mean, µ, and
the standard deviation, σ, of around−3.1 and 0.12,
respectively.This comparison confirms the adequacy
of the QoI used for adjoint estimation for comput-
ing the required gradients using ASM method. In or-
der to assess the applicability of LAAM, Fig. 4 com-
pares the linear approximation of IDT to the origi-
nal function, using the mean extracted from averag-
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Fig. 5: Comparison of the reconstructed PDF for GRI 3.0
mechanism: —, ASM; ◦, Monte Carlo; −−−, LAAM.

ing N = 200 samples. Due to the presence of non-
linearities, the linear approximation of IDT deviates
from µIDT ±2×σ. Nevertheless, in this case, due to
a small variance of the PDF that clusters the samples
around the mean, the linear approximation is found
satisfactory. The resulting PDF is compared to that of
the Monte Carlo and ASM for N = 20000 samples
in Fig. 3. The comparison between LAAM and ASM
PDFs shows a deviation in the mean by ϵµ ≈ 10%
while the error in the variance is ϵσ ≈ 2%. The
departure between the peak values of the PDFs is
of order 3%. As a result, the overall approxima-
tion of the PDF using LAAM is satisfactory. In or-
der to demonstrate the applicability of the approach
to large mechanisms, uncertainties of the kinetic rates
for the GRI 3.0 mechanism are extracted and shown
in Fig 5. The number of samples used to construct
each PDF is N = 20000, showing a comparable re-
sults to Fig 3. The error in the mean between LAAM
and ASM for GRI 3.0 is ϵµ ≈ 1% while the error
in the variance is ϵσ ≈ 1%. Due to the similarity
in the results produced by the two mechanisms, the
imminent analysis will be carried out for h2vb only.

In general, the cost of LAAM is approximately
two orders of magnitude lower than ASM, since all
the information is gathered using a single forward-

log10(IDT [s]) 

PD
F

Fig. 6: Comparison between different PDFs: ◦, Monte
Carlo; . . . , response surface using a single eigenvector;
· · · × . . . , response surface using two eigenvectors; —,
LAAM.

then-backward sweep. The computational expense of
ASM compared to LAAM increases significantly as
the size of the mechanism increases. This remark-
able reduction in cost highlights LAAM’s advantage,
specifically as a first estimation of the uncertainties
of large mechanisms. For demonstration, the cost of
the two algorithms are compared in Tab. 2 for vari-
ous mechanisms using the same number of samples,
N. This table confirms that the computational cost of
LAAM is negligible compared to ASM, scaling as
O(N).

3.2. Multi-dimensional subspace
The cases that are studied in applications of inter-

est to this work [13, 14] are commonly reduced to a
single dominant direction (one dominant eigenvalue),
which can be fitted with a response line. However,
this can not be generalized to all the operating points,
especially when considering uncertainties of IDT, for
example in high-density isochoric reactors where the
ignition delay time increases.

One such case is replicated here by using sim-
ilar initial conditions as in [13], for h2vb, with a
slightly lower initial temperature, T0 = 925K and
mixture composition (YH2 = 0.29 , YO2 = 0.15 ,
YN2 = 0.56 and P0 = 1.59 × 105 Pa. It should
be noted that this case results in higher density com-
pared to the case studied in Sec. [3.1]. As density
increases so does IDT and the dispersion of the sam-
ple points, causing a polynomial fit using a single
dominant direction to become inaccurate, as shown
in Fig. 6 where the PDF using a single direction is
compared to the Monte Carlo. This figure shows that
using a single direction causes the peak to be overpre-
dicted.

However, this issue can be overcome by applying
multi-dimensional subspace using the first two eigen-
vectors. Fig. 7 shows that the majority of the sample
points align in a flat surface, which can be mapped
using a multi-dimensional least square method fitted
to a plane. Comparing the two PDFs in Fig. 6 plot-
ted using 20000 samples exhibits an improvement in
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Table 2: Response surface construction algorithm.
Mechanism h2vb GRI 1.2 GRI 2.11 GRI 3.0 ITV
Species number 10 32 49 53 490
Reaction number 21 177 297 325 2072
TimeLAAM [s] 161.163× 10−3 2.57 5.963 14.869 2267.604
TimeASM [s] 50.436 1202.813 3715.522 11570.595 2.683× 106
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0.00
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y1y2
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D
T

Fig. 7: Response surfaces constructed in multi-dimensions :
2, LAAM; 2 ASM; •, samples.

the accuracy using two dominant directions instead
of one. Although the three PDFs have similar shapes,
the standard deviation of the PDF constructed using a
single eigenvector is much lower than the PDFs using
Monte Carlo and two eigenvectors. However, it is im-
portant to note, that similar to the case considered in
the previous section, the deviation in the mean value
is not high, therefore we would expect LAAM to also
perform satisfactorily in this context.

Fig. 6 also compares the prediction of LAAM to
the Monte Carlo, and response surfaces using one and
two directions. While similar to the response surface
using a single direction the peak of the PDF is not
estimated correctly, LAAM is able to predict a cor-
rect shape for the distribution. The linear approxi-
mation of the QoI using LAAM (Eq. 14) can also
be projected on the active directions (y1, y2) to as-
sess how well it approximates the response surface.
This projection fLAAM (x) ⇒ fLAAM (y1, y2) is
shown by the plane with the highlighted borders in
Fig. 7. This figure shows that LAAM is able to ap-
proximate this response surface closely and therefore
provides a better approximation than the response sur-
face with only one direction. However, the peak of
the PDF is underestimated due to the linearity of the
approximation.In order to provide some insight into
the manner by which the active dimensions are se-
lected, Fig. 8 shows the linear combination of the rate
parameters constructing these dimensions. Compar-
ing the two dominant eigenvectors shows R1 to be the
most sensitive reaction in one direction and R5 in the
other. Therefore, further analysis is required in or-
der to identify the reaction with the highest overall
sensitivity. In multiple directions, the linear combina-
tion alone might be misleading and the analysis of the
global sensitivity is necessary to understand the reac-
tion pathway. Here, we compute this quantity by cal-
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Fig. 8: First two dominant eigenvectors, showing the linear
combination of rate parameters.
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Fig. 9: Global sensitivity of IDT: (red), one active dimen-
sion; (blue), two active dimensions.

culating the gradient of the response surface, dG(y)
dx

,
and averaging the result over the entire sample, result-
ing in the final global gradient with respect to system
parameters, as shown in Fig. 9. This figure shows
that considering only a single active dimension over-
estimates the role (sensitivity) of the fifth and twelfth
reactions (R5, R12) causing them to have a signifi-
cant contribution to the ignition process, while using
two active dimensions retrieves the dominance of R1
(H + O2 = O + OH), responsible for OH produc-
tion, in agreement with the literature [18].

3.3. Initial conditions effect
The results presented in Sec. [3.1] and [3.2]

compare the extracted sensitivities using ASM and
LAAM for cases exhibiting weakly nonlinear depen-
dence of the QoI with respect to the parameter space.
Here, we aim to lift this constraint by extracting
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Fig. 10: Comparison of the response surface fitted against a
single active direction: •, samples; –––, tenth order polyno-
mial fit.

the uncertainties of IDT with respect to variations in
the initial conditions, showing strong nonlinear be-
haviour, and test whether the LAAM approach can
provide acceptable predictions. For this purpose,
a random combination of initial fuel mass fraction
Y0,H2 to air mass fraction Y0,O2 ratio, and tempera-
ture T0 are extracted from a uniform distribution de-
fined as,

Ωi = U
(
Ωj × (B + 1),Ωj × (B − 1)

)
, (20)

Ωj = (YH2 , YO2 , YO2 , T0) , (21)

where B is the percentage of deviation from the mean
value Ωi. The test case mean value Ωj will be similar
to the studied case in Sec. [3.1] with twenty percent
of variation B = 0.2 around this value.

Following the procedure for constructing the active
subspace, the resulting response surface (not shown
here) is divided into two regions, separating igniting
and non-igniting samples. Since quantifying the un-
certainties of IDT is the purpose of this work, the
cases without ignition are discarded, allowing the re-
duction of the active dimensions to one, as shown in
Fig. 10.

The response line is calculated using a tenth-order
polynomial. Examining the chosen eigenvector (iden-
tified direction) shows that the temperature T0 has
the biggest influence on the selected direction. This
can be expected as the temperature affects the reac-
tion rate non-linearly and can cause larger gradients
when constructing the expectation matrix, C. There-
fore, the uncertainties in IDT are mainly due to the
variation in the initial temperature.

The resulting PDFs are shown in Fig. 11. This
figure shows that using the response surface in a
single direction approximates the overall PDF accu-
rately. The comparison to the PDF built using the
LAAM approach shows a large deviation from the
rest. This case highlights the limitations of the LAAM
approach. Several reasons contribute to this huge de-
viation between LAAM and Monte Carlo PDFs, but
the main factor can be attributed to the use of uniform

log10(IDT [s])
-4 -3 -2 -1 0

P
D
F

0.0

0.5

1.0

1.5

Fig. 11: Comparison of the reconstructed PDF: —-, ASM;
◦, Monte Carlo; −−−, LAAM.

distribution in the presence of a large variance, reduc-
ing the correlation between the computed gradient at
the mean and the other samples. In addition, at high
initial temperatures (above the mean value) the reac-
tion time tr is very small. As the initial temperature
decreases, tr dramatically increases, causing the devi-
ation in IDT to also increase, resulting in a large tail in
the PDF. As a result, the skewness and flatness of the
PDF in Fig. 11 are different from the PDFs in Figs. 3
and 6. The resulting PDF is therefore hard to capture
using linear approximation. This also necessitates a
higher-order polynomial fit (tenth order) when using
the ASM method to create the response surface.

However, this error can be reduced by using piece-
wise linear approximations by splitting the domain
into smaller segments and applying LAAM at the
mean value of the samples at each part individu-
ally [22], or by using higher-order derivatives, which
will be the subject of future work.

4. Conclusion and discussion

This study provides a framework for investigating
the uncertainties of chemical kinetic models in an iso-
choric adiabatic reactor configuration. The uncertain-
ties are extracted using active subspace methodology
(ASM) coupled with the adjoint method to minimize
the cost of evaluating the necessary gradients. The re-
sults are also compared to the linear adjoint approxi-
mation method (LAAM), which provides a very quick
estimation of the overall uncertainties.

In a standard low-density case, where a single
dominant direction can be selected, the uncertain-
ties extracted using LAAM and ASM compare well
with standard Monte Carlo. Although the accuracy
of ASM is better than LAAM for this case, LAAM
is able to provide a satisfactory result with a fraction
of the cost. Different operating conditions, achieved
by modifying the initial conditions, may lead to sig-
nificant differences in the dispersion of the samples
and the number of active dimensions. This is shown
in a second case where a single active direction does
not come out of the eigenmode expansion, motivating
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the use of a multi-dimensional subspace to construct
the response surface. Despite the underlying locality
and linearity assumptions, LAAM still gives a very
good approximation for this case. This suggests that
LAAM can be used as a preliminary estimation for
UQ especially for large systems.

Finally, the effect of strong nonlinearities on the
overall uncertainties are considered. The results prove
that the prediction of LAAM deteriorates in these
conditions. However, this error can be reduced by us-
ing piecewise linear approximations by splitting the
domain into smaller segments. This will be the sub-
ject of future research.
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