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1 1. Introduction
Computational simulations of chemically reacting flows leverage a wide range of components to account for the kinetics of the combustion processes, the thermodynamics of the interacting compounds as well as their transport properties. Their predictability is particularly sensitive to the kinetic models, which come in different flavors depending on the level of fidelity employed. These models in turn include a large number of parameters, subject to uncertainties that are essential to quantify in order to assess the applicability and performance of the underlying models.

Monte Carlo methods have traditionally been applied to assess the existing model uncertainties. However, their slow convergence and high computational cost have given rise to alternative approaches that reduce the cost by considering a smaller set of the parameter space. Some of these approaches include probabilistic methods such as Polynomial Chaos Expansion (PCE) [START_REF] Hantouche | Global sensitivity analysis of n-butanol reaction kinetics using rate rules[END_REF] and related methods [START_REF] Doostan | A non-adapted sparse approximation of pdes with stochastic inputs[END_REF][START_REF] Savin | Sparse polynomial surrogates for aerodynamic computations with random inputs[END_REF] applicable to high-dimensional parameter spaces, and Gaussian process approximation method (Kriging) [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF]. In most of these approaches, a response surface is formed from function evaluations (computationally intensive unsteady simulations) at sparsely and carefully selected points to approximate the dependence between the model parameters (input) and the quantity of interest (output). In the combustion community, the large number of parameters has motivated the development of various techniques to further speed up the construction of the response surfaces, some based on sensitivity analysis [START_REF] Davis | A new approach to response surface development for detailed gas-phase and surface reaction kinetic model optimization[END_REF], High Dimensional Model Representations (HDMR) [START_REF] Tomlin | Evaluation of combustion mechanisms using global uncertainty and sensitivity analyses: a case study for low-temperature dimethylether oxidation[END_REF] and Artificial Neural Networks (ANN) [START_REF] Li | Accelerate global sensitivity analysis using artificial neural network algorithm: Case studies for combustion kinetic model[END_REF]. A comprehensive review of response surface methods in the context of combustion simulations can be found elsewhere [START_REF] Wang | Combustion kinetic model uncertainty quantification, propagation and minimization[END_REF].

While effective in their own rights, most of these methods suffer from the curse of dimensionality and are not applicable as the number of parameters increases beyond a certain threshold, which is the case when considering detailed kinetic models of interest to this study. Some remedies include resorting to sensitivity analysis in order to lower the dimension of the parameter space. These methods can be divided into local and global alternatives. In local estimation methods, the parameter space is reduced based on the local estimations of the gradient; these methods therefore suffer from shortcomings such as sensitivity to noise. Global methods provide more robust sensitivity estimates, at a significant additional cost however [START_REF] Constantine | Active subspace methods in theory and practice: Applications to kriging surfaces[END_REF][START_REF] Saltelli | Global sensitivity analysis: the primer[END_REF]. Alternatively, in the case of PCE, collocation techniques with sparse quadrature or adaptive regression strategies [START_REF] Eldred | Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification[END_REF][START_REF] Xiu | High-order collocation methods for differential equations with random inputs[END_REF] have been used to reduce the high-dimensional parameter space when constructing the response surface. These methods mainly rank the coordinates of the inputs. However, some models may vary most prominently along directions of the input space that are not aligned with the coordinate system.

Therefore, in this study, we adopt a different strat-egy, namely the Active Subspace Method (ASM) [START_REF] Constantine | Active subspace methods in theory and practice: Applications to kriging surfaces[END_REF], where gradient information is used to detect and exploit the directions of the strongest variability of a given function to construct an approximation on a low-dimensional subspace of the function's inputs. ASM has successfully been applied to analyze the chemical kinetic uncertainty for liftoff height in a turbulent combustion application [START_REF] Ji | Quantifying kinetic uncertainty in turbulent combustion simulations using active subspaces[END_REF]. In a later work, Ji et al. [START_REF] Ji | Shared low-dimensional subspaces for propagating kinetic uncertainty to multiple outputs[END_REF] develop a method to simultaneously approximate the marginal PDFs of multiple quantities of interest, in particular, Ignition Delay Time (IDT) in an isobaric reactor and Laminar Flame Speed (LFS), based in both cases on the identification of a single active direction. In a recent work, Su et al. [START_REF] Su | Uncertainty analysis in mechanism reduction via active subspace and transition state analyses[END_REF] have also employed active subspace method together with sensitivity analysis to identify extreme low-dimensional active subspace of the input parameter space of a dimethyl ether (DME) mechanism.

Using ASM, a certain number of gradient evaluations at distinct sample points in the input parameter space are required to obtain good estimates of the dominant directions. These gradients are usually estimated by either finite differences or local linear fitting, and the cost of their evaluation increases linearly with the number of parameters. In this work, we leverage the adjoint method [START_REF] Hassan | Adjoint-based sensitivity analysis of steady char burnout[END_REF] to compute gradient information at a cost comparable to a single function evaluation. Furthermore, the adjoint method is also used to provide a linear approximation of uncertainties in the active direction (LAAM). To the best knowledge of the authors, LAAM has never been applied to analyse uncertainties of chemical reaction networks, and in this respect this manuscript shows one of its first applications. We show that LAAM is an accurate way of defining uncertainties for this problem with a much lower cost, making this method a practical tool for extracting uncertainties, especially useful for large mechanisms. Cases are also considered where a single dominant direction can not be identified and a strategy is provided in order to include multiple active directions in the analysis. Finally, the limitations of the LAAM approach are presented and discussed.

The paper is organized as follows: Sec. 2 describes the methodologies for extracting the gradient and constructing the response surface using the active subspace algorithm. The described methods are then applied to three different cases in Sec. 3, extracting uncertainties with respect to model parameters and initial conditions, and their applicability and limitations are discussed. The conclusions and outlook of this work are then presented in Sec. 4.

Methodology

In this section, the algorithms for extracting the uncertainties and the relevant gradient information from the system of interest are briefly presented. The objective function of interest to this work is the ignition delay time (IDT), which is defined as the moment where the gradient of temperature reaches its maximal value, IDT = arg max

t 0 ≤t≤t f Ṫ (t) (1) 
where t0 and t f denotes the initial and final times.

The system of interest consists of a zero-dimensional isochoric adiabatic reactor, the composition and temperature of which evolve according to

       ∂Yi ∂t = 1 ρ ωi ∂T ∂t = 1 ρCv ωT (2) 
where (Yi) (i ∈ 1, Ns ) denote the species mass fractions, and Cv and ρ the mixture's average heat capacity at constant volume and density, respectively. The terms ( ωi) denote the species' rates of consumption or production, which are related to the reaction rates,

Kj = AjT b j exp -Ej RT , (3) 
where j = 1, Nr . Nr denotes the mechanism's number of reactions, and (Aj), (bj) and (Ej) the Arrhenius coefficients parameterizing reaction j. The source term ωT is the heat release rate given by ωT = -

Ns i=1 ωiui, (4) 
where ui denotes the internal energy of species i.

Adjoint Method

The adjoint method performs the computation of the gradient of output functionals (real-valued quantities of interest) at a cost comparable to a single function evaluation, regardless of the number of components (parameters of the model) [START_REF] Giles | An introduction to the adjoint approach to design[END_REF]. While efficient the adjoint method offers less flexibility than forward sensitivities methods, such as the finite difference method, to tackle implicit functions such as Eq. 1. As a consequence, the following alternative objective function, proposed by [START_REF] Lemke | Adjoint-based sensitivity analysis of quantities of interest of complex combustion models[END_REF], is employed,

J ≡ IDT = 1 2t f t f 0 (T (t) -Ts (t)) 2 dt. (5)
where t f is the final time, Ts the shifted temperature profile, and ts = -tr × 10 -2 [START_REF] Lemke | Adjoint-based sensitivity analysis of quantities of interest of complex combustion models[END_REF] the shifting time, proportional to the reaction characteristic time tr, defined as,

tr = max ∂T ∂t -1 (T f -T0) (6) 
Forming the Lagrange multiplier [START_REF] Lemke | Adjoint-based sensitivity analysis of quantities of interest of complex combustion models[END_REF], the adjoint equations can be extracted, resulting in ∀i ∈ 1, Ns

- dξi dt = ∂J ∂Yi + ξj ∂ ∂Yi 1 ρ ωj + ϕ ∂ ∂Yi 1 ρCv ωT , - ∂ϕ ∂t = ∂J ∂T + ϕ ∂ ∂T ωT ρCv + ξi ∂ ∂Yi ωi ρ ( 7 
)
where ξi is the adjoint variable corresponding to the Yi equation and ϕ to the temperature equation (details regarding the extraction of the adjoint equations are provided in [START_REF] Lemke | Adjoint-based sensitivity analysis of quantities of interest of complex combustion models[END_REF]). In the latter equations, J is the integrand already included in the definition of J , namely

J ≡ 1 2t f (T -Ts) 2 . ( 8 
)
The adjoint equations are integrated backward in time from the following conditions,

ξi (t f ) = 0, ∀i ∈ 1, Ns , ϕ (t f ) = 0. (9) 
The component of gradient associated with a parameter g is then given as

dJ dg = t f t 0 ∂J ∂g + ξj ∂ ∂g ωj ρ +ϕ ∂ ∂g ωT ρCv dt. ( 10 
)
Here, g may denote a kinetics parameter (such as a given Ai, i ∈ 1, Ns ), a thermodynamics coefficient, or a component of the initial condition.

The linearisation of the primal source terms ( ωi, ωT , etc.) and objective (J ) are performed using automatic differentiation [START_REF] Schäfer | Abstractdifferentiation.jl: Backend-agnostic differentiable programming in julia[END_REF]. The primal and adjoint equations are implemented in the open-source package Apophis.jl.

The comparison of the extracted sensitivities (gradient components) using automatic differentiation (AD), and complex step differentiation (CSD), an alternative method for extracting accurate gradients (for more information regarding CSD refer to [START_REF] Martins | The complexstep derivative approximation[END_REF]), are compared in Fig. 1 for GRI 3.0 mechanism [START_REF] Lemke | Adjoint-based sensitivity analysis of quantities of interest of complex combustion models[END_REF]. The agreement between the two approaches validates the adjoint method in extracting sensitivities, independent of the size of the mechanism considered. The sensitivities are non-dimensionalised as,

S = dJ dg g J , (11) 
and normalized by the maximum absolute value of S. For this analysis, the initial mass fractions are YCH 4 = 0.05 and YO 2 = 0.2 and YN 2 = 0.75. The initial temperature is set at T = 1000 K in atmospheric pressure as stated in [START_REF] Lemke | Adjoint-based sensitivity analysis of quantities of interest of complex combustion models[END_REF]. The extracted sensitivities agree well, and confirm that the reaction 2CH3(+M ) ⇒ C2H6(+M ) dominates the ignition process, as far as the Arrhenius parameters are concerned. These results are consistent with those reported in the literature [START_REF] Lemke | Adjoint-based sensitivity analysis of quantities of interest of complex combustion models[END_REF].

Active Subspace Method (ASM)

This section highlights how the aforementioned adjoint-based sensitivity computation is leveraged to jSAj -1.0 -0.5 0.0 0.5 1.0
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Fig. 1: Sensitivity analysis of ignition delay time with respect to A for the ten most dominant reactions using AD (light gray) and CSD (dark gray) for GRI 3.0 mechanism.

perform uncertainty quantification of IDT with respect to the parameters of interest (kinetics, thermodynamics, initial conditions) using the active subspace methodology [START_REF] Constantine | Active subspace methods in theory and practice: Applications to kriging surfaces[END_REF]. The dimension of the parameters space is denoted as D, and the random input variables as x = (x1, • • • , xD). The distribution of xj (j ∈ 1, D ) is normalised and centered, which may be assumed to be lognormal, uniform, etc. for each parameter. The QoI will be denoted by f . The number of samples M is proportional to the number of the dimensions of the input space D and a factor η.

The active subspace methodology aims to construct an R-dimensional subspace of the Ddimensional parameter space (R ≪ D) that describes most of the variation of quantity of interest f . The low-dimensional approximation of f is

f (x) ≈ G(y), y = S ⊤ x (12) 
where G(y) is the response surface as, y ∈ K R , x ∈ K D , and S is an orthogonal matrix (K = R or C). The active subspace is then defined as span (S). One way to identify the active subspace is to perform an eigenvalue decomposition of the expectation matrix C defined as,

C = 1 M M i=1 df dxi df dxi ⊤ = WΛW ⊤ (13)
where M denotes the number of samples, W and Λ the eigenvalues and eigenvectors. Selecting the first R eigenvectors of this decomposition selects the R most dominant directions of the parameter space and provides an approximation of S ≡ [w1,

• • • , wR].
The motivation for computing the gradients of f at each sample xi (i ∈ 1, M ) using the adjoint method stems from the fact that it results in the computation of C scaling as ln (D) as opposed to D ln (D) using finite differences. The error in the estimated eigenvalues and eigenvectors due to an insufficient number of runs can be estimated with bootstrapping [START_REF] Li | Accelerate global sensitivity analysis using artificial neural network algorithm: Case studies for combustion kinetic model[END_REF][START_REF] Constantine | Active subspace methods in theory and practice: Applications to kriging surfaces[END_REF]. Once the active subspace is identified, various methods, including polynomial fitting, Polynomial Chaos Expansion (PCE) [START_REF] Hantouche | Global sensitivity analysis of n-butanol reaction kinetics using rate rules[END_REF][START_REF] Conrad | Adaptive smolyak pseudospectral approximations[END_REF] and High Dimensional Model Representation (HDMR) [START_REF] Tomlin | Evaluation of combustion mechanisms using global uncertainty and sensitivity analyses: a case study for low-temperature dimethylether oxidation[END_REF], can be employed to construct the response surface. Here a multi-dimensional leastsquare method is used. A brief summary of the major steps is presented in Tab. 1.

Linear Approximation using the Adjoint Method (LAAM)

Linear approximation using the adjoint method (LAAM) is proposed here as a low-cost alternative to the active subspace method and is based on linearly approximating the QoI with respect to its input parameter space [START_REF] Wang | Risk assessment of scramjet unstart using adjointbased sampling methods[END_REF]. While very efficient, it should be noted that for functions with a high degree of nonlinearity with respect to the parameter space, this assumption becomes inefficient, an example of this is discussed in Sec. [3.3]. The expansion is performed around the mean of the collected samples, denoted x (the center of the mass), and expressed as 

QoI (x) ≡ fLAAM (x) ≈ QoI (x)+ dQoI dx x (x -x) . (14) 
where J and tr are defined in Eqs. 5 and 6, and ( tr f ) 3 is a normalization factor due to the difference between J and f . The main advantage of LAAM is that it can provide a good approximation of the uncertainties with only a single function evaluation, regardless of the size of the system. This huge reduction in the computational cost allows rapid analysis of large mechanisms, which will be highlighted in Sec. [START_REF] Savin | Sparse polynomial surrogates for aerodynamic computations with random inputs[END_REF].

Results

In this section, the system uncertainties are first extracted using ASM and LAAM for a range of mechanisms using a single active dimension. A case is then presented where a single dominant direction does not emerge from the eigenmode expansion, motivating the development of a surface reconstruction that relies on a higher-dimensional subspace. Finally, uncertainties with respect to initial conditions are considered to highlight the limitations of the LAAM approach.

One-dimensional subspace

ASM is used here to construct a response surface for kinetic model parameters. Due to comparatively large available data on hydrogen mechanism (h2vb), specifically uncertainty factors and distribution, this mechanism is first employed to benchmark the presented methodologies. Assuming constant temperature, the uncertainties with respect to the reaction rates are mainly attributed to the pre-exponential factors, (Aj), j ∈ 1, Nr [START_REF] Phenix | Incorporation of parametric uncertainty into complex kinetic mechanisms: application to hydrogen oxidation in super-critical water[END_REF]. Following documented studies [START_REF] Ji | Shared low-dimensional subspaces for propagating kinetic uncertainty to multiple outputs[END_REF], the random variables (Aj) are assumed to follow a lognormal distribution,

ln (Aj) ∼ N ln A 0 j , 1 3 ln (UFj) 2 , (16) 
which are centered and normalised as

xj = 1 3 ln (UFj) -1 ln Aj A 0 j ∼ N (0, 1) (17) 
where A 0 j is the mean value of the parameter (the value originally stated by the mechanism) and UFj is the temperature-independent Uncertainty Factor [START_REF] Konnov | Remaining uncertainties in the kinetic mechanism of hydrogen combustion[END_REF]. The number of input parameters xi is dependent on the number of elemental reactions. The initial conditions are YH 2 = 0.29, YO 2 = 0.15, YN 2 = 0.56, T0 = 1000 K, and P0 = 1.59 × 10 5 Pa. Using the normal distribution (Eq. 17), M samples are selected and the value of IDT (f (x)) is computed. The gradients are evaluated using the adjoint methodology with J (Eq. 5) as QoI. The extracted gradients are then normalised as As highlighted in Tab. 1, the matrix C is then constructed and an eigenvalue decomposition is performed to identify the eigenvalues and vectors, before performing bootstrapping to estimate the error bounds. In this particular case M = 65 (η = 50 and N boot = 50) suffices to identify the active direction. There is a difference of about four orders of magnitude between the first and second eigenvalue (λ1/λ2 ≈ 1×10 4 ), and a single direction is expected to adequately capture the response surface and the relation between IDT and the (Aj). Fig. 2 shows a cubic fit between IDT and the reduced space variable y,

df dxj = Ajf 3J dJ dAj ln UFj. ( 18 
)
G (y) = 3 n=0 cny n , (19) 
where y = w ⊤ 1 x. The values of c0 = -3.1144 , c1 = -1.2182 × 10 -1 , c2 = 6.8 × 10 -3 and c3 = 2.929 × 10 -5 are computed using the least square method. The resulting probability density function (PDF) using the active subspace strategy is then compared to an application of the Monte Carlo method using N = 20000 samples (Fig. 3). The two PDFs match well, and show the mean, µ, and the standard deviation, σ, of around-3.1 and 0.12, respectively.This comparison confirms the adequacy of the QoI used for adjoint estimation for computing the required gradients using ASM method. In order to assess the applicability of LAAM, Fig. 4 compares the linear approximation of IDT to the original function, using the mean extracted from averag- ing N = 200 samples. Due to the presence of nonlinearities, the linear approximation of IDT deviates from µIDT ± 2 × σ. Nevertheless, in this case, due to a small variance of the PDF that clusters the samples around the mean, the linear approximation is found satisfactory. The resulting PDF is compared to that of the Monte Carlo and ASM for N = 20000 samples in Fig. 3. The comparison between LAAM and ASM PDFs shows a deviation in the mean by ϵµ ≈ 10 % while the error in the variance is ϵσ ≈ 2 %. The departure between the peak values of the PDFs is of order 3 %. As a result, the overall approximation of the PDF using LAAM is satisfactory. In order to demonstrate the applicability of the approach to large mechanisms, uncertainties of the kinetic rates for the GRI 3.0 mechanism are extracted and shown in Fig 5 . The number of samples used to construct each PDF is N = 20000, showing a comparable results to Fig 3 . The error in the mean between LAAM and ASM for GRI 3.0 is ϵµ ≈ 1 % while the error in the variance is ϵσ ≈ 1 %. Due to the similarity in the results produced by the two mechanisms, the imminent analysis will be carried out for h2vb only.

In general, the cost of LAAM is approximately two orders of magnitude lower than ASM, since all the information is gathered using a single forward- then-backward sweep. The computational expense of ASM compared to LAAM increases significantly as the size of the mechanism increases. This remarkable reduction in cost highlights LAAM's advantage, specifically as a first estimation of the uncertainties of large mechanisms. For demonstration, the cost of the two algorithms are compared in Tab. 2 for various mechanisms using the same number of samples, N. This table confirms that the computational cost of LAAM is negligible compared to ASM, scaling as O(N).

Multi-dimensional subspace

The cases that are studied in applications of interest to this work [START_REF] Ji | Quantifying kinetic uncertainty in turbulent combustion simulations using active subspaces[END_REF][START_REF] Ji | Shared low-dimensional subspaces for propagating kinetic uncertainty to multiple outputs[END_REF] are commonly reduced to a single dominant direction (one dominant eigenvalue), which can be fitted with a response line. However, this can not be generalized to all the operating points, especially when considering uncertainties of IDT, for example in high-density isochoric reactors where the ignition delay time increases.

One such case is replicated here by using similar initial conditions as in [START_REF] Ji | Quantifying kinetic uncertainty in turbulent combustion simulations using active subspaces[END_REF], for h2vb, with a slightly lower initial temperature, T0 = 925 K and mixture composition (YH 2 = 0.29 , YO 2 = 0.15 , YN 2 = 0.56 and P0 = 1.59 × 10 5 Pa. It should be noted that this case results in higher density compared to the case studied in Sec. [3.1]. As density increases so does IDT and the dispersion of the sample points, causing a polynomial fit using a single dominant direction to become inaccurate, as shown in Fig. 6 where the PDF using a single direction is compared to the Monte Carlo. This figure shows that using a single direction causes the peak to be overpredicted.

However, this issue can be overcome by applying multi-dimensional subspace using the first two eigenvectors. Fig. 7 shows that the majority of the sample points align in a flat surface, which can be mapped using a multi-dimensional least square method fitted to a plane. Comparing the two PDFs in Fig. 6 plotted using 20000 samples exhibits an improvement in the accuracy using two dominant directions instead one. Although the three PDFs have similar shapes, the standard deviation of the PDF constructed using a single eigenvector is much lower than the PDFs using Monte Carlo and two eigenvectors. However, it is important to note, that similar to the case considered in the previous section, the deviation in the mean value is not high, therefore we would expect LAAM to also perform satisfactorily in this context. Fig. 6 also compares the prediction of LAAM to the Monte Carlo, and response surfaces using one and two directions. While similar to the response surface using a single direction the peak of the PDF is not estimated correctly, LAAM is able to predict a correct shape for the distribution. The linear approximation of the QoI using LAAM (Eq. 14) can also be projected on the active directions (y1, y2) to assess how well it approximates the response surface. This projection fLAAM (x) ⇒ fLAAM (y1, y2) is shown by the plane with the highlighted borders in Fig. 7. This figure shows that LAAM is able to approximate this response surface closely and therefore provides a better approximation than the response surface with only one direction. However, the peak of the PDF is underestimated due to the linearity of the approximation.In order to provide some insight into the manner by which the active dimensions are selected, Fig. 8 shows the linear combination of the rate parameters constructing these dimensions. Comparing the two dominant eigenvectors shows R1 to be the most sensitive reaction in one direction and R5 in the other. Therefore, further analysis is required in order to identify the reaction with the highest overall sensitivity. In multiple directions, the linear combination alone might be misleading and the analysis of the global sensitivity is necessary to understand the reaction pathway. Here, we compute this quantity by cal- culating the gradient of the response surface, dG(y) dx , and averaging the result over the entire sample, resulting in the final global gradient with respect to system parameters, as shown in Fig. 9. This figure shows that considering only a single active dimension overestimates the role (sensitivity) of the fifth and twelfth reactions (R5, R12) causing them to have a significant contribution to the ignition process, while using two active dimensions retrieves the dominance of R1 (H + O2 = O + OH), responsible for OH production, in agreement with the literature [START_REF] Lemke | Adjoint-based sensitivity analysis of quantities of interest of complex combustion models[END_REF].

Initial conditions effect

The results presented in Sec. [3.1] and [3.2] compare the extracted sensitivities using ASM and LAAM for cases exhibiting weakly nonlinear dependence of the QoI with respect to the parameter space. Here, we aim to lift this constraint by extracting the uncertainties of IDT with respect to variations in the initial conditions, showing strong nonlinear behaviour, and test whether the LAAM approach can provide acceptable predictions. For this purpose, a random combination of initial fuel mass fraction Y0,H 2 to air mass fraction Y0,O 2 ratio, and temperature T0 are extracted from a uniform distribution defined as,

Ωi = U Ωj × (B + 1), Ωj × (B -1) , (20) 
Ωj = (YH 2 , YO 2 , YO 2 , T0) , (21) 
where B is the percentage of deviation from the mean value Ωi. The test case mean value Ωj will be similar to the studied case in Sec. [3.1] with twenty percent of variation B = 0.2 around this value. Following the procedure for constructing the active subspace, the resulting response surface (not shown here) is divided into two regions, separating igniting and non-igniting samples. Since quantifying the uncertainties of IDT is the purpose of this work, the cases without ignition are discarded, allowing the reduction of the active dimensions to one, as shown in Fig. 10.

The response line is calculated using a tenth-order polynomial. Examining the chosen eigenvector (identified direction) shows that the temperature T0 has the biggest influence on the selected direction. This can be expected as the temperature affects the reaction rate non-linearly and can cause larger gradients when constructing the expectation matrix, C. Therethe uncertainties in IDT are mainly due to the variation in the initial temperature.

The resulting PDFs are shown in Fig. 11. This figure shows that using the response surface in a single direction approximates the overall PDF accurately. The comparison to the PDF built using the LAAM approach shows a large deviation from the rest. This case highlights the limitations of the LAAM approach. Several reasons contribute to this huge deviation between LAAM and Monte Carlo PDFs, but the main factor can be attributed to the use of uniform distribution in the presence of a large variance, reducing the correlation between the computed gradient at the mean and the other samples. In addition, at high initial temperatures (above the mean value) the reaction time tr is very small. As the initial temperature decreases, tr dramatically increases, causing the deviation in IDT to also increase, resulting in a large tail in the PDF. As a result, the skewness and flatness of the PDF in Fig. 11 are different from the PDFs in Figs. 3 and6. The resulting PDF is therefore hard to capture using linear approximation. This also necessitates a higher-order polynomial fit (tenth order) when using the ASM method to create the response surface. However, this error can be reduced by using piecewise linear approximations by splitting the domain into smaller segments and applying LAAM at the mean value of the samples at each part individually [START_REF] Wang | Risk assessment of scramjet unstart using adjointbased sampling methods[END_REF], or by using higher-order derivatives, which will be the subject of future work.

Conclusion and discussion

This study provides a framework for investigating the uncertainties of chemical kinetic models in an isochoric adiabatic reactor configuration. The uncertainties are extracted using active subspace methodology (ASM) coupled with the adjoint method to minimize the cost of evaluating the necessary gradients. The results are also compared to the linear adjoint approximation method (LAAM), which provides a very quick estimation of the overall uncertainties.

In a standard low-density case, where a single dominant direction can be selected, the uncertainties extracted using LAAM and ASM compare well with standard Monte Carlo. Although the accuracy of ASM is better than LAAM for this case, LAAM is able to provide a satisfactory result with a fraction of the cost. Different operating conditions, achieved by modifying the initial conditions, may lead to significant differences in the dispersion of the samples and the number of active dimensions. This is shown in a second case where a single active direction does not come out of the eigenmode expansion, motivating the use of a multi-dimensional subspace to construct the response surface. Despite the underlying locality and linearity assumptions, LAAM still gives a very good approximation for this case. This suggests that LAAM can be used as a preliminary estimation for UQ especially for large systems.

Finally, the effect of strong nonlinearities on the overall uncertainties are considered. The results prove that the prediction of LAAM deteriorates in these conditions. However, this error can be reduced by using piecewise linear approximations by splitting the domain into smaller segments. This will be the subject of future research.
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	Mechanism	h2vb	GRI 1.2	GRI 2.11 GRI 3.0	ITV
	Species number	10	32	49	53	490
	Reaction number 21	177	297	325	2072
	TimeLAAM [s]	161.163 × 10 -3 2.57	5.963	14.869	2267.604
	TimeASM [s]	50.436	1202.813 3715.522 11570.595 2.683 × 10 6
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