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Abstract  

The piRNA system controls transposable element (TE) mobility by transcriptional gene 
silencing and post-transcriptional gene silencing. Dispersed in insect genomes, piRNA clusters 
contain TE copies, from which they produce piRNAs (specific small RNAs). These piRNAs 
can both target the nascent transcripts produced by active TE copies and directly repress them 
by heterochromatinization. They can also target mature transcripts and cleave them following 
amplification by the so-called “ping-pong” loop mechanism. 

Moreover, piRNA clusters contain endogenous viral elements (EVEs), from which they produce 
piRNAs. The current idea is that these piRNAs could participate in the antiviral response 
against exogenous viral infection. 

In this review, we show that among insects, to date, this antiviral response by the piRNA 
system appears mainly restricted to mosquitoes, but this could be due to the focus of most 
studies on arboviruses. 
 

Highlights 

- piRNA clusters contain, in addition to transposable elements, endogenous viral 
elements (EVEs) from which piRNAs are produced. 

- The piRNA antiviral response upon viral infection is to date mainly known from 
mosquitoes. 

- The piRNA antiviral response is based on a specific mechanism of piRNA amplification (the 
“ping-pong” loop).  

 

 

Introduction 

 Mobile genetic elements such as transposable elements (TEs) and viruses constantly 
invade eukaryote genomes. During virus invasion, a viral genome fragment can integrate into 
the eukaryotic host genome. If this happens in the germline, it can be transmitted vertically 
to the offspring, mostly under neutral evolutionary pressure. These integrated viral sequences 
are referred to as endogenous viral elements (EVEs). Remains of retroviruses are the most 
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described viral sequences inserted in genomes due to their replication strategy involving an 
RNA reverse transcription step and integration into the DNA of the infected cell. However the 
analysis of EVE sequences shows that in fact all types of viruses can be found integrated in 
animal genomes [1–3], especially in arthropod genomes where EVEs are widespread [2,4].  
Some of these EVEs have even been conserved and selected over long evolutionary timescales 
and confer new essential functions to their hosts as described in some parasitoid wasp 
lineages [this issue and 5,6].  
 
 To suppress the movements of TEs, metazoans use a control system based on 23-30 
nucleotides long small RNAs, called piRNAs for Piwi interacting RNAs [7]. Some EVEs also 
produce piRNAs [8] suggesting that the cell might use the same defense system against EVEs 
as against TEs. In fact, in both cases, the newly integrated sequences potentially bring 
regulatory and / or coding sequences that the cell might control through the piRNA pathway. 
As the repression of TEs by piRNAs takes place at the transcriptional and post-transcriptional 
levels, referred to respectively as transcriptional gene silencing (TGS) and post-transcriptional 
gene Silencing (PTGS)  [9–11], it can be expected that the piRNAs produced by EVEs also have 
similar actions against viral transcripts upon viral infection. A topic of wide interest is whether 
piRNAs produced by EVEs could participate in the antiviral action against exogenous viruses. 

 
 Here, we summarize, for insects, the state of the art and the latest advances on TE 
regulation by piRNAs, the potential antiviral role of piRNAs and the links with EVEs located in 
piRNA clusters. Until now, studies on TE piRNA systems have been carried out mainly in 
Drosophila melanogaster and those on piRNAs involved in antiviral immunity in mosquitoes 
due to their central role as vectors of arboviruses. Generally, in arthropods, the piRNA system 
can occur in somatic and germinal tissues, meaning that the proteins of this pathway and 
piRNAs can be produced in both tissue types. However, the piRNA system in Drosophila 
appears to be mainly restricted to germinal tissues [12]. The primary production of piRNAs 
comes from the transcription of heterochromatic regions of the genome called piRNA clusters 
[9,13]. While most piRNA clusters are transcribed from a single strand, the Drosophila 
germinal clusters are generally transcribed on both strands. However, the first studied piRNA 
cluster called “flamenco” expressed in a particular somatic tissue surrounding the germline 
(follicle cells) is uni-strand transcribed. Flamenco has also the particularity of having only one 
origin of transcription, while in other species, uni-strand clusters have several origins [14]. 
Mosquitoes which harbor a large duplication of genes involved in the piRNA pathway and 
which as bloodfeeders are more susceptible to encounter viruses, seem to have enhanced 
piRNA-related immune capacities compared to other insects [12]. When evaluating the 
involvement of the piRNA system in the antiviral response in other insects, the knowledge 
acquired in Drosophila and mosquitoes should be used cautiously, bearing in mind that these 
well-studied models may have specific features [15]. 
 
Primary piRNA production by TE piRNA clusters 

 
 TEs are classified into two classes according to their transposition intermediary (DNA 
or RNA). Both TE classes are regulated by piRNA pathways. Production of piRNAs occurs from 
the transcription of particular regions of the genome, so-called piRNA clusters, which are 
heterochromatic (with the heterochromatic marks H3K9me3 and HP1 present within them) 
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and rich in TE copies. In Drosophila, piRNA clusters are transcribed by RNA polymerase II, 
which is indirectly recruited by the heterochromatin protein-1 variant Rhino [16]. This 
particular heterochromatic transcriptional context of the piRNA clusters leads to the primary 
piRNA production (Figure 1)  [17] and appears common to most animals [18]. The primary 
piRNAs are obtained during the maturation of the pre-piRNAs and possess as a molecular 
signature a Uridine (U) at their 5' end (1U bias) [15]. In general, the primary piRNAs produced 
by the clusters are mainly antisense to the TE transcript. The conservation of this orientation 
of TEs inserted in clusters might have been favored because it allows hybridization of the 
primary piRNAs with the TE transcripts. These primary piRNAs associated with the Piwi protein 
repress TE copies at two molecular levels: on the active genomic TE copies by TGS; and on the 
TE transcripts by PTGS. 
 
piRNA effect on TEs 

 
 In brief for TGS, the primary piRNAs associated with Piwi detect in the nucleus the 
transcription of active TE copies and recruit Panoramix, Nxf2 and Nxt1 proteins on the nascent 
transcript [19]. This protein complex, in turn, recruits histone modifying enzymes, which will 
deposit H3K9me3 marks on histones (major histone modification linked to heterochromatin) 
allowing HP1 (major heterochromatic protein) recruitment to the TE copies, thus completing 
their transcriptional silencing by heterochromatization [10]. 
 The primary piRNAs associated with Piwi will also go into the cytoplasm to repress 
the TE transcript by PTGS (Figure 2). First, the primary antisense piRNAs specifically bind to 
the TE transcript based on sequence recognition. Then, the TE transcript is cleaved into sense 
and complementary piRNAs, together forming the so-called secondary piRNAs. This 
degradation of the TE transcript by primary piRNAs is thus an amplification mechanism of 
piRNAs called ping-pong [9]. Due to the transcript cleavage, the secondary piRNAs have a 
characteristic molecular signature. Antisense piRNAs have a U at the 5’ end and sense piRNAs 
have an Adenine (A) in position 10 (10A bias), the two hybridize over an average length of 10 
nucleotides (Figure 3). In a pool of sequenced piRNAs, the detection of ping-pong signatures 
signals the degradation of cellular transcripts by the piRNA system.  
 The presence of TE copies in the piRNA clusters is at the basis of TE control by the 
piRNA system. Once a copy of an invading TE becomes integrated into a piRNA cluster, it will 
induce a piRNA response. A recent work confirmed experimentally  that the recent integration 
of a TE in a piRNA cluster allowed the piRNA system to produce piRNAs against it [20*]. The 
clusters contain mostly truncated TEs suggesting that during a TE invasion, TE copies 
integrated in piRNA clusters rapidly erode. It is now accepted that the composition of TE 
sequences in piRNA clusters provide a record of successive TE invasions over evolutionary 
time. Moreover, only a portion of TE sequences in piRNA clusters is necessary to induce the 
TGS or PTGS response against TEs. During TGS, heterochromatinization spreads to adjacent 
sequences causing their repression, and during PTGS, one transcript cleavage is sufficient to 
cause its degradation. With their diversified and high concentration in TE sequences, TE copies 
in piRNA clusters protect the cell against active TEs present in the genome and could also 
repress a new invading TE if a part of its sequence is present in the clusters. 
 
 
 The piRNA system therefore regulates TEs by keeping TE copies in piRNA clusters. As 
it was described relatively early on in mosquitoes (2010s) that piRNAs were involved in the 
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antiviral response against arboviruses [21], one may postulate that viral sequences inserted 
into piRNA clusters could be source of piRNAs involved in the antiviral response against 
exogenous viruses. EVEs inserted in the clusters would be the “memory” of past viral 
infections and the guardians against future viral infections. 
 However, RNA interference (RNAi) is the primary antiviral mechanism in arthropods 
[22]. It is therefore of interest first to verify the actual participation of the piRNA system in the 
antiviral response in insects, and second to study the involvement of EVEs located in piRNA 
clusters, in this antiviral response. 
 
The antiviral role of piRNAs  

  
 It is now clear that the piRNA system is indeed involved in the host antiviral response 
but seems to be restricted, in the insect world, to a few species, mainly mosquitoes. Since the 
early 2010s, mosquitoes have been found to harbor piRNAs specific to arboviruses [21,23–
26], as well as to other insect viruses, such as the cell-fusing agent virus (CFAV) or the Phasi 
Charoen-like virus (PCLV) [27]. All correspond to secondary piRNAs displaying typical ping-
pong signatures. If, as in the case of TE repression, this ping-pong signature reveals the specific 
destruction of the corresponding transcript, observation of secondary piRNAs against viral 
sequences would be an indication of the degradation of the viral transcript. To our knowledge, 
besides mosquitoes, the hemipteran Diaphorina citri is the only other insect species showing 
a piRNA ping-pong signature upon infection by a densovirus (arthropod virus) [28*].  
  To demonstrate that the presence of secondary piRNAs is linked to the regulation 
of viral replication, several studies have focused on disrupting the piRNA system. In Aedes 
aegypti, the knockdown of the genes producing PIWI 4-6 proteins leads to a decrease in piRNA 
quantities and the increase in virus RNA quantity [27,29,29–31].  Thus in mosquito, the piRNA 
system indeed appears to be involved in the antiviral response.  
 In contrast, in Drosophila, the antiviral response against different types of viruses does 
not involve the piRNA system [32]. Likewise, no virus specific piRNAs have been found in a 
global analysis of Apis mellifera [33], in which only siRNA is detected upon infection by the 
Sacbrood virus [34]. Similarly, no piRNAs are produced during Bombyx mori infection by the 
baculovirus BmNPV [35]. The number of PIWI proteins encoded by the different insect species   
could indicate whether the piRNA pathway is involved in antiviral response. Indeed, whereas 
Drosophila has three PIWI proteins (Piwi, Aub and Ago3), as most insects Apis mellifera two 
(Piwi/Aub and Ago3) and Bombyx mori two (Siwi and BmAgo3), Aedes aegypti has no less than 
seven PIWI proteins (Piwi 1-6 and Ago3) [12]. It is now accepted that this large number of PIWI 
proteins broadens the targets of the mosquito piRNA system. This hypothesis is sustained by 
the fact that PIWI proteins interacting with piRNAs against viruses (vpiRNAs) differ from those 
against TEs [31*]. 

  
  The conclusion that the involvement of the piRNA response in the antiviral response 
might be a specific feature of mosquitoes is mainly sustained by the fact that in a global RNA 
analysis including small RNAs and involving 20 arthropod species, nine species showed an RNAi 
antiviral response. Among those nine species, five produced primary piRNAs but secondary 
piRNA ping-pong signatures against viruses were only detected in the Aedes aegypti mosquito 
[12].  
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 Of note, even in mosquito, the involvement of the piRNA system generates a lower 
antiviral response than the RNAi system. In fact, in Aag2 mosquito cells, the down regulation 
of the piRNA system protein PIWI4 clearly showed a lower increase in viral replication than 
when Dicer2, a central protein in the system of interference RNAs was down regulated [29]. 
 
 Many studies have therefore focused on the search for EVEs in genomes, and the 
association of EVEs with piRNA clusters and their capacity to produce primary piRNAs. This 
type of investigation has mainly been carried out in mosquitoes [3,27,31,36, 37*,38], but also 
in Ixodes scapularis ticks [39] and Ornithodoros ticks [40]. A general approach carried out in 
48 arthropod species summarizes all of this work [8]. For 30 of these species, EVEs (mostly 
corresponding to  unclassified viruses, Rhabdoviridae and Parvoviridae) have been found in 
piRNA clusters and the vast majority of them produce primary piRNAs [8].  
 
  
Implication of piRNA clusters in antiviral immunity 

 

 Whether the primary piRNAs produced by the EVEs inserted in piRNA clusters serve 
to generate the ping-pong type PTGS response against a viral transcript is a key question, 
however, the answer is not straightforward. 
 For secondary piRNA PTGS to operate, the sequence of the primary piRNAs, coming 
from piRNA clusters and initiating the ping-pong cycle, must hybridize almost perfectly with 
the targeted transcript. Mechanistically, the primary piRNAs produced by the clusters can 
initiate ping-pong type PTGS against the transcript when the nucleotide identity is perfect. 
Indeed, the artificial insertion of an EVE sequence (also present in a piRNA cluster and 
producing primary piRNAs) into a virus was shown to reduce viral replication during the 
infection of Aag2 cells by this modified virus [31*].  
 However, as EVEs found in piRNA clusters generally show very weak nucleotide 
identity to known exogenous viruses, researchers are currently focusing on EVEs presenting 
the highest nucleotide identity with known viruses. This is the case in the Aag2 mosquito cells, 
persistently infected with PCLV, that exhibit a PTGS phenotype with a secondary piRNA ping-
pong type signature against this virus. Mapping of piRNA libraries to the virus and mosquito 
genomes showed that secondary sense piRNAs are specific to the viral transcript, while the 
secondary antisense piRNAs are specific to an EVE inserted in a piRNA cluster, thus suggesting 
a role of EVEs in the piRNA clusters in the ping-pong type PTGS [27]. 
 Currently, a single study establishes a direct link between the production of primary 
piRNAs from clusters and PTGS by secondary piRNAs on a virus transcript. In the Ae aegypti 
mosquito, the deletion of an EVE with 96% nucleotide identity to CFAV causes the loss of the 
secondary piRNA ping-pong signature and leads to higher viral replication [41**]. 
 In contrast, in Diaphorina citri, the only model other than mosquitoes with an 
antiviral ping-pong type PTGS signature upon virus infection, this ping-pong type PTGS 
response against the densovirus was first thought to depend on the presence of an EVE having 
a very large nucleotide identity with densovirus and producing primary piRNAs. However, 
studies in one D. citri population that does not possess the EVE but still induces a piRNA 
response upon densovirus infection showed that the ping-pong type PTGS response is not 
dependent on EVE presence [28*]. 
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 Several ideas emerge from these findings. First, with sufficient nucleotide identity, 
EVEs in piRNA clusters can repress viral transcripts by a ping-pong type PTGS. As most EVEs in 
clusters are unclassified and as many insect viruses are yet to be discovered, the antiviral role 
of EVEs in piRNA clusters could be dedicated to these undescribed viruses. Indeed, although 
the piRNAs deriving from EVEs are mainly primary, the global analysis detected ping-pong type 
signatures  [8,37]. Secondly, the ping-pong-type PTGS antiviral response could apparently take 
place without the production of primary piRNAs by the clusters. The study of the 
interconnection between the RNAi and piRNA systems, represented by the PIWI4 protein in 
mosquito [29], may allow us one day to understand this intriguing phenomenon. 
 Finally, we would like to propose a new mechanism by which the piRNA system could 
impact viral infection. As the piRNA system represses the expression of euchromatic TE copies 
by TGS, another role of viral piRNAs could be to repress by TGS a fortuitous genomic viral 
insertion, using piRNAs to target it (Figure 4). Local heterochromatinization would repress the 
fortuitous genomic viral insertion and protect the genome from potential perturbations 
induced by inserted regulatory and / or coding viral sequences. These insertions could later 
become EVEs following erosion of viral sequences. However, to our knowledge, the use of TGS 
(unlike for PTGS) against viruses in insects has not yet been investigated. 
 In conclusion, the piRNA system seems so far to participate in the antiviral response 
but mainly in mosquitoes based on current knowledge. The study of viruses not yet described 
in insects should make it possible to determine whether the piRNA antiviral response system 
works in most insects. For future studies, it is also important to bear in mind that piRNAs are 
involved in multiple other pathways such as the maintenance of germinal stem cells, DNA 
repair mechanisms, sex determination as well as learning and memory, and that piRNAs are 
also deregulated in cancer cells, therefore much remains to be discovered in this piRNA world 
[42–46]. 
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Figure 1 : Primary piRNA production by TE copies inserted in piRNA clusters.
piRNA cluster transcription by RNA polymerase II generates a long transcript
(called piRNA precursor transcript) on which the Piwi protein binds at the 5'
end. The Piwi protein recognizes the precursor transcript thanks to a sense
primary piRNA the origin of which is not well understood. An endonuclease
(Zucchini [16]) positions itself at the 3' end adjacent to the Piwi protein and
cuts the transcript just before the first accessible Uridine (U). This cleavage
generates two fragments: the one linked to PIWI called pre-piRNA that will be
matured into piRNA (due to the 3’ to 5’ exonuclease Trimmer) ; and the
remaining fragment, with a 5' U , which is called pre-pre-piRNA. A new Piwi
protein binds to the pre-pre-piRNA, next to which the endonuclease
(Zucchini) is attached, which cuts in 3' before the first accessible U thus again
producing a pre-piRNA (with a U in 5') and a pre-pre-piRNA (with a U in 5') on
which a new Piwi protein binds.
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Figure 2 : The piRNA system controls TE mobility by TGS and PTGS.
The piRNA pathway presented here corresponds mostly to the one described in Drosophila. piRNA precursor
transcripts are transcribed from piRNA clusters in the nucleus thanks to the RNA polymerase II. piRNA precursor
transcripts are then transported to the cytoplasm and cleaved by Zucchini (Zuc) protein, a protein localized in the
outer membrane of mitochondria, to form primary piRNAs which possess a U bias at the first position of the 5’
end. For the PTGS pathway, primary piRNAs, translocated from Piwi to Aubergine protein are mostly antisense to
TE transcripts. The specific sequence pairing between the primary antisense piRNAs and the TE transcript allows
the Aub protein with Zucchini to cleave the TE transcript approximately 10 nucleotides from the 5' end of the
piRNA. Therefore, a secondary sense piRNA bound to the AGO3 protein, is produced from the TE transcript. It
targets transcripts originating from piRNA clusters in order to generate even more antisense piRNAs thus
amplifying the pool of what is called secondary piRNAs.
For the TGS pathway, Piwi proteins harbouring an antisense piRNA will enter into the nucleus where they will
bind to TE nascent transcripts. The TE active copies are transcriptionally repressed by heterochromatinization and
marked by H3K9me3 histone flags and the presence of Heterochromatin Protein 1 (HP1).
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Figure 4: potential role of the piRNA pathway in transcriptional gene silencing of a recently integrated EVE.
Presence of an EVE in a genome must have arisen from an insertion of a viral copy during a viral infection.
This newly inserted copy (named here “Active EVE”) potentially provides regulatory and / or coding
sequences that could interfere with cell function. We propose here that a role of piRNAs produced by
piRNA clusters would be to repress these sequences by TGS as it has been shown for the TEs.


