
�>���G �A�/�, �?���H�@�y�j�3�8�k�8�R�8

�?�i�i�T�b�,�f�f�?���H�X�b�+�B�2�M�+�2�f�?���H�@�y�j�3�8�k�8�R�8

�a�m�#�K�B�i�i�2�/ �Q�M �R�8 �L�Q�p �k�y�k�k

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�S���`���H�H�2�H�@�B�M�@�i�B�K�2 ���/�D�Q�B�M�i�@�#���b�2�/ �Q�T�i�B�K�B�x���i�B�Q�M �� ���T�T�H�B�+���i�B�Q�M
�i�Q �m�M�b�i�2���/�v �B�M�+�Q�K�T�`�2�b�b�B�#�H�2 �~�Q�r�b

�a�X �*�Q�b�i���M�x�Q�- �h���`���M�2�? �a���v���/�B�- �J�X �6�Q�b���b �/�2 �S���M�/�Q�- �S�X�C�X �a�+�?�K�B�/�- �S�X �6�`�2�v

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�a�X �*�Q�b�i���M�x�Q�- �h���`���M�2�? �a���v���/�B�- �J�X �6�Q�b���b �/�2 �S���M�/�Q�- �S�X�C�X �a�+�?�K�B�/�- �S�X �6�`�2�v�X �S���`���H�H�2�H�@�B�M�@�i�B�K�2 ���/�D�Q�B�M�i�@�#���b�2�/
�Q�T�i�B�K�B�x���i�B�Q�M �� ���T�T�H�B�+���i�B�Q�M �i�Q �m�M�b�i�2���/�v �B�M�+�Q�K�T�`�2�b�b�B�#�H�2 �~�Q�r�b�X �C�Q�m�`�M���H �Q�7 �*�Q�K�T�m�i���i�B�Q�M���H �S�?�v�b�B�+�b�- �k�y�k�k�-
�9�d�R�- �T�T�X�R�R�R�e�e�9�X ���R�y�X�R�y�R�e�f�D�X�D�+�T�X�k�y�k�k�X�R�R�R�e�e�9���X ���?���H�@�y�j�3�8�k�8�R�8��

https://hal.science/hal-03852515
https://hal.archives-ouvertes.fr

Parallel-in-time adjoint-based optimization {
application to unsteady incompressible ows

S. Costanzoa,d, � , T. Sayadia, M. Fosas de Pandob , P.J. Schmidc, P. Freyd

aSorbonne Universit�e, CNRS, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
bDepartment of Mechanical Engineering and Industrial Design, Universidad de C�adiz,

Cadiz, Spain
cDepartment of Mechanical Engineering, KAUST, 23955 Thuwal, Saudi Arabia

dSorbonne Universit�e, Institut des Sciences du Calcul et des Donn�ees, ISCD, F-75005
Paris, France

Abstract

Gradient-based optimization algorithms, where gradient information is extracted

using adjoint equations, are e�cient but can quickly slow down when applied

to unsteady and nonlinear ow problems. This is mainly due to the sequential

nature of the algorithm, where the primal problem is �rst integrated forward

in time, providing the initial condition for the adjoint problem, which is then

integrated backward. In order to address the sequential nature of this opti-

misation procedure parallel-in-time algorithms can be employed. However, the

characteristics of the governing equations of interest in this work, and in par-

ticular, the divergence-free constraint (incompressibility e�ect) as well as the

nonlinearity and the unsteadiness of the ow, make direct application of ex-

isting parallel-in-time algorithms less than straightforward. In this work, we

introduce a parallel-in-time procedure, applied to the integration of the adjoint

problem, which addresses all the existing constraints and allows quick access

to local gradients. The performance of the proposed algorithm is assessed for

both steady and unsteady actuation; in both cases it readily outperforms the

sequential algorithm.

Keywords: Flow control, Adjoint-based methods, Parallel-in-time algorithm

� Corresponding author
Email address: serena.costanzo@dalembert.upmc.fr (S. Costanzo)

Preprint submitted to Journal of L ATEX Templates November 15, 2022

1. Introduction

Numerical simulations of multiphysics and multiscale phenomena in uid

mechanics have advanced remarkably over the past decades, and complex phys-

ical processes can now be simulated with an astonishing degree of �delity and

accuracy. While it is important to be able to simulate such complex ows with5

increasing degree of con�dence, it is just as crucial to be able to extract rel-

evant optimization and control strategies dedicated to improving performance

and e�ciency. Although advances in computing capability and software have

made computational uid dynamics (CFD) a valuable tool in determining con-

trol strategies in a limited number of applications (including aero-acoustics and10

shape optimization), as of yet, the application of high-�delity control strate-

gies to ever more complex systems of equations remains vastly unexplored and

resorts systematically to reduced-order models [1, 2]. While e�ective in their

own right, these models are unable to describe the full range of dynamics of

the system and their potential coupling under various operating conditions.15

In many applications, a control strategy based on detailed simulations is re-

quired. Among the two general classes of optimization algorithms, (i) gradient-

based and (ii) derivative-free, the former, when applicable, proves to be the

most e�cient. It will be the focus of this study. Originally arising as part

of a design algorithm for uid systems [3, 4, 5, 6], adjoint methods have been20

applied to aero- and thermo-acoustic applications [7, 8] (dominated by linear

dynamics), and to nonlinear systems [9, 10, 11]. Gradient-based optimization

techniques have also been incorporated into reactive and multi-phase simula-

tions [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. While very e�cient and exible,

these algorithms still su�er from a great many challenges.25

Recently, challenges encountered in the application of gradient-based tech-

niques to extract control strategies in the presence of turbulence have been

tackled, and promising results have been reported in [22, 23, 24]. In particular,

Vishnampet et al. [25] proposed an exact space-time discrete-adjoint formula-

tion able to predict the gradient at all turbulent scales with reduced cost and30

2

e�ort. This method has been extended to chemically reacting mixtures in the

work of Capecelatroet al. [26, 16, 27, 28], allowing the optimization of chaotic

con�gurations, albeit over short time horizons.

On the algorithmic side, on the other hand, a key challenge is associated with

the unsteadiness of the ow and the integration of the reverse problem. The35

evolution of the adjoint variable is governed by a linear, variable-coe�cient dy-

namical system with a general structure similar to the forward problem, except

that the adjoint is integrated backward in time. The variable-coe�cient nature

of the adjoint equations dictates that the solution of the forward integration is

needed at each time step of the adjoint problem. This solution must be either40

stored in memory or recalculated from forward solutions at speci�cally chosen

time instants, referred to as checkpoints. In large scale high-�delity simulations,

relevant in engineering applications, many time steps are usually required for

each forward integration, leading to excessive memory requirements to store the

solutions. Checkpointing schemes in which only a small number of time steps45

is stored provide a remedy. In this approach, the solution is stored at carefully

chosen checkpoints, and during the backward integration of the adjoint equa-

tions, the discarded intermediate solutions are then restored by starting anew

the forward integration from the respective checkpoint. Various checkpointing

algorithms exist which aim to optimize the number of stored points in memory50

and the time required for the respective forward integration to access the inter-

mediate solutions [29]. In unsteady cases, the use of checkpointing algorithms

increases the computational costs nearly by a factor of three. In addition, the

overall time to solution increases proportionally, since these operations (forward

and backward integrations) are executed sequentially. While the cost of the cal-55

culation cannot be circumvented (adjoint equations need to be solved in order

to gain access to derivative information), strategies can be adopted to reduce

the overall time to solution, such that, ideally, once the forward problem has

reached the �nal time, the gradient is also available simultaneously. One way

of reducing the total time to solution is using parallel-in-time algorithms.60

Time-parallel integration has been an active area of research, which started

3

with the pioneering work of Nievergelt [30]. The existing space-time paral-

lel methods can be divided into four main categories: (i) methods based on

multiple shooting, (ii) methods based on domain decomposition and waveform

relaxation, (iii) methods based on multigrid, and (iv) direct time-parallel meth-65

ods [31]. While most of these e�orts concentrated on accelerating the integration

of the direct(forward) simulations, some e�orts also considered incorporating a

direct-adjoint optimization procedure, such as Maday et al. [32] and Skeneet

al. [33]. Here, we will concentrate on accelerating the adjoint equations using a

parallel-in-time approach introduced by Gander and G•uttel [34]. While the ap-70

plicability of this parallel-in-time methodology to adjoint-based optimization has

been analyzed by Skeneet al. [33], and multiple possible algorithms have been

suggested, the system of equations considered here add multiple layers of intri-

cacy which have not been addressed in previous studies. One such challenges

is due to the complexity of the problem, i.e. the nonlinear unsteady Navier-75

Stokes equations, compared to Burgers' equation studied previously. However,

the main di�culty is due to the algebraic-di�erential nature of the governing

equations (owing to the divergence-free constraint), which makes the applica-

tion of the exponential time integrator nontrivial and also leads to an algebraic

formulation of the adjoint equations. For the parallel-in-time strategy to be80

relevant for real scale applications, these underlying issues need to be properly

addressed, thus motivating the work presented here.

The paper is organized as follows. Section 2 gives an overview of adjoint-

based optimization methods, section 4 describes the parallel-in-time procedure.

The governing equations and the numerical framework are introduced in sec-85

tion 3. Finally, results of our study are presented in section 5, and conclusions

from our work are o�ered in section 6.

2. Adjoint-based framework

In this section, a methodology for the evaluation of the gradient of a general

cost function based on the adjoint equations is presented. In what follows, we90

4

consider general algebraic-di�erential equations, linked to the formulation of the

incompressible Navier-Stokes equations. For a detailed classi�cation of various

di�erential equations and their respective adjoint equations see Caoet al.[35].

In the context of control and optimization problems, the variables solved

during the forward integration are referred to as the state variables (denoted

q). In addition to the state variables, a set of parameters,g, is also de�ned as

the control or design variables. The cost functional,J , refers to a functional

expression based on the state and control variables that is ultimately optimized

(i.e. minimized or maximized). Finally, a set of constraints is described by

governing equations and side conditions that the state and control variables

have to satisfy. Therefore, the resulting optimization problem can be formally

stated as follows:

min
g

J (q; g); where J (q; g) �
Z T

0
J (q; g; t) dt, (1.1)

s.t. F(q; _q; g; t) = 0 for 0 � t � T; and G(q(0); g) = 0, (1.2)

where t is the time, T stands for the integration time, _q denotes the temporal

derivative of the state vector, F represents the nonlinear di�erential operator,95

and the function G has been introduced to allow for initial conditions that

depend on the vector of design parametersg. In the context of derivative-based

optimization, we are interested in computing the gradient of the cost functional

with respect to the parameters g. Fr�echet-di�erentiating equations (1.1) and

(1.2) with respect to g, we arrive at100

dJ
dg

=
Z T

0

�
@J
@q

dq
dg

+
@J
@g

�
dt, (2.1)

where the sensitivity dq=dg is determined by
@F
@q

dq
dg

+
@F
@_q

d _q
dg

+
@F
@g

= 0 for 0 � t � T; and
@G

@q(0)
dq(0)

dg
+

@G
@g

= 0 : (2.2)

Evaluating the gradient dJ =dg in equation (2.1) requires solving for the sensi-

tivity d q=dg using equation (2.2), which necessitates the resolution of a linear

equation for each parametergi . It can be readily established that the compu-

tational cost of evaluating the gradient using the above equations is directly

5

proportional to the number of design variables in g, and, as the number of

parameters increases, this direct approach reaches its limit. For this reason,

an alternative strategy is required. An e�cient procedure for the computation

of sensitivities in a high-dimensional design space lies in the construction and

use of adjoint equations. To this end, an auxiliary functional known as the

augmented Lagrangian is de�ned as

L (q; g; � ; � 0) = J (q; g) �
Z T

0
� yF(q; _q; g; t) dt � � y

0G(q(0); g), (3)

where the superscript (�)y denotes the conjugate transpose and� (t) and � 0

are the so-called Lagrange multipliers or adjoint variables. Note that if the

constraints in equation (1.2) hold, the value of the Lagrangian and the cost

functional coincide, together with their respective gradients, for an arbitrary

choice of� (t) and � 0. We next look for speci�c choices of these variables such

that the cost of computing the gradient dL=dg(= d J =dg) is independent of the

number of design variables. We hence consider

dL
dg

=
dJ
dg

�
Z T

0
� y

�
@F
@q

dq
dg

+
@F
@_q

d _q
dg

+
@F
@g

�
dt � � y

0

�
@G

@q(0)
dq(0)

dg
+

@G
@g

�

(4)

and substitute equation (2.1) into equation (4). Integrating by parts the term

� y(@F=@_q)(dq=dg) we arrive, after some manipulations, at

dL
dg

=
Z T

0

��
@J
@q

� � y @F
@q

+
@
@t

�
� y @F

@_q

��
dq
dg

+
@J
@g

� � y @F
@g

�
dt�

�
�
� y @F

@_q
dq
dg

� T

0
� � y

0

�
@G

@q(0)
dq(0)

dg
+

@G
@g

�
.

(5)

We notice that the gradient dL=dg can be made independent of dq=dg by setting

@J
@q

� � y @F
@q

+
@
@t

�
� y @F

@_q

�
= 0 for 0 � t � T , (6.1)

� y(T)
@F
@_q

�
�
�
�
T

= 0, (6.2)

and

� y(0)
@F
@_q

�
�
�
�
0

� � y
0

@G
@q(0)

= 0. (6.3)

6

We also note that the adjoint equation constitutes an algebraic-di�erential

equation. The backward solution in e�ect provides gradient or sensitivity in-

formation for an optimization problem, using the optimality condition (referred

to as the Karush-Kuhn-Tucker (KKT) equation) that links the result from the

adjoint evolution equation to an optimal control strategy. Finally, the gradient

reads
dJ
dg

=
Z T

0

�
@J
@g

� � y @F
@g

�
dt � � y

0
@G
@g

: (7)

Solving simultaneously for g, q(t) and � (t) using equations (1.2), (6), (7)

and setting dJ =dg = 0 leads to the so-called one-shot method. For the case of

numerical simulations of unsteady ows, the resulting problem becomes com-

putationally intractable due to the large dimensionality of the resulting system.105

For this reason, an iterative approach is usually preferred, where the evolution

equations for the forward (equation (1.2)) and backward problems (equation

(6)) are solved exactly, and the condition dJ =dg = 0 is solved iteratively. This

approach produces an increasingly optimal design or control e�ort, as the di-

rect and adjoint equations are solved repeatedly. Since the adjoint equations110

are inherently linear, the application of parallel-in-time techniques is rather

straightforward. Section 4 will therefore illustrate the application of one such

parallel-in-time algorithm to the temporal evolution of the adjoint equation in

order to reduce the computational e�ort for each optimization iteration.

3. Governing equations115

In this section, the di�erential-algebraic equations that arise from the spatial

discretization of the Navier{Stokes equations for incompressible ow are pre-

sented. Without loss of generality, we consider the projection-based immersed

boundary method introduced by [36] as implemented in [37]. This method is

proposed for incompressible ows over obstacles with prescribed surface motion.

Following this approach, the physical domain is modi�ed by embedding these

obstacles and introducing localized volume forces at their boundaries such that

7

the respective boundary conditions are satis�ed. In continuous form, we have

@u
@t

+ u � r u = �r p +
1

Re
r 2u +

Z

B
f (� (s; t)) � (� (s; t) � x) ds; (8.1)

r � u = 0 ; (8.2)

u (� (s; t)) =
Z

u(x ; t)� (� (s; t) � x) dx = u B (s; t); (8.3)

on the domain
 � [0; T], together with the initial conditions at t = 0 ; given by

u(x ; 0) = u 0; and suitable boundary conditions at @
. In the above, u and p

are the non-dimensionalized velocity vector and kinematic pressure, respectively,

and Re denotes the Reynolds number. The last term in equation (8.1) represents

the contribution of the localized forces f at the surface of the obstaclesB120

described by� (s; t) and � denotes the Dirac delta function. Similarly to the role

of the pressurep in ful�lling the incompressibility constraint, equation (8.2), the

localized forcesf are introduced such that the velocity �eld at the boundary of

the surfaces coincides with the prescribed valueu B (� ; t) (equation (8.3)). In the

following, we consider initial and boundary conditions that are parameterized125

by the vector of design variablesg that we seek to optimize according to a given

objective function.

Equations (8.1){(8.3) are then discretized in space using a �nite-volume

method on a Cartesian grid with a staggered arrangement for the velocity and

pressure variables. A set of Lagrangian points is introduced at the surface of the

obstacles, and the boundary forces are then applied on these points to satisfy

the no-slip constraint along the surface of the immersed bodies. In particular,

we have

F(q; _q; g; t) �

0

@
M _u + N (u ; g) + Q� � Lu + b1(g)

Qyu + b2(g)

1

A = 0 for 0 � t � T ,

(9.1)

u (0) � u 0(g) = 0, (9.2)

where u and � = (p; f)T are now the discrete representation of the veloc-

ity, pressure and boundary forces, respectively. In the above,M is the mass

8

matrix, N (u ; g) is the discrete advection operator andL represents the dis-130

cretized di�usion operator. The operator Q stands for the discretized gradient

and interpolation operators that are respectively applied to the pressure and

the localized forces. Finally, the boundary terms b1 and b2 arise from the

spatial discretization of the di�usion operator and the constraints, i.e. incom-

pressibility and no-slip boundary condition at the obstacles. Note that in the135

above equations the dependency on the design variables has been indicated ex-

plicitly. The above system of equations can be recast into the form given in

equation (1.2) by introducing the state vector q = (u ; �)T . The temporal dis-

cretization of the governing equations (forward problem) is carried out using the

implicit Crank-Nicolson method for the viscous terms and the explicit second-140

order Adams-Bashforth scheme for the convective terms. The reader is referred

to [36] for further details.

3.1. Adjoint equations

Traditionally, adjoint equations are derived from the continuous equations

by applying a variational principle to the unconstrained optimization problem145

and setting the �rst variations with respect to all involved dependent variables

to zero. This results in governing equations for the direct (original) and for the

adjoint variables, together with appropriate boundary conditions, initial con-

ditions, and optimality expressions, which subsequently have to be discretized

and implemented [38, 39, 40]. This process, in particular for complex govern-150

ing equations and/or optimization objectives, is rather cumbersome and error-

prone. Alternatively, the spatially discretized equations (e.g. resulting from the

application of the method of lines) can be used and processed by automatic-

di�erentiation (AD) software to produce an associated adjoint code [41]. This

approach often leads to overly inated, and thus very ine�cient and ultimately155

impractical, codes. Recently, Fosas de Pandoet al. [42] implemented and vali-

dated an approach that extracts linearized and adjoint information directly from

a nonlinear simulation code. Following this approach, the nonlinear modules are

linearized and trans-conjugated, such that by producing the adjoint of a directed

9

acyclic graph (a simple reversal procedure), the adjoint solution is produced. In160

this manner, the adjoint information is simply extracted from the already ex-

isting nonlinear simulation code, avoiding signi�cant additional programming

e�ort, and exploiting the discretization schemes of the original solver, causing

it to execute as e�ciently (and parallel) as the original code; the adjoint code is

simply embedded in the nonlinear simulation code. In addition, modi�cations165

to the code, such as the addition of reactive-ow simulation capabilities, are

automatically reected on the adjoint side by local di�erentiation of the added

modules/subroutines, usually by means of a complex-step di�erentiation. This

strategy has shown great promise in reducing trailing-edge noise and improving

airfoil shape design in an aeroacoustic application [42] as well as extracting the170

mechanism governing the frequency response of an M-ame to the surrounding

acoustic wave [15], and has been adopted here for extracting the discretized

adjoint equations.

Using the discrete form of the equations presented in (9), the adjoint equa-

tions, following the formalism presented in (6), are

M
d~u
dt

�

� L +
@N
@u

y
!

~u � Q ~� +
@J
@u

y

= 0, (10.1)

� Qy ~u +
@J
@�

y

= 0 for 0 � t � T , (10.2)

and ~u(T) = 0. (10.3)

Note that the adjoint variable is � y = (~u y ~� y), where ~u and ~� are, respec-

tively, the adjoint velocity �eld and adjoint pressure and localized forces. In

the derivation, it has been taken into account that M is independent of time

and the operators M and L are symmetric. The adjoint equations are again a

system of di�erential-algebraic equations, and they are integrated backwards in

time starting from t = T once the forward (direct) solution has been computed.

With the two equations solved, the cost-functional gradient is given by

dJ
dg

=
Z T

0

�
@J
@g

� ~u y
�

db1

dg
+

@N
@g

�
� � y db2

dg

�
dt + ~u y(0)M

du 0

dg
: (11)

10

4. Parallel-in-time algorithm

A brief account of the development and implementation of various parallel-175

in-time algorithms can be found in [31]. Following the overlapping time-domain

decomposition method developed by Gander and G•uttelParaexp [34], the time

domain of a linear initial-value problem is decomposed into smaller segments of

constant size � T; and the problem is separated into subproblems on overlapping

time intervals. Figure 1 represents schematically the integration of the initial-180

value problem using the Paraexp algorithm on three di�erent time partitions,

assigned to three di�erent threads p = 1 ; 2; 3. Each subproblem is subsequently

split into homogeneous and inhomogeneous components. The inhomogeneous

problems (red) with zero initial conditions are simultaneously solved in the

corresponding time partition t 2 [Tp� 1; Tp]. The inhomogeneous solution at the185

end of each time segment is then used as initial conditions for the homogeneous

problems (blue), which are then integrated ont 2 [Tp; T], where T signi�es the

�nal time horizon. The �nal result is a superposition of the �nal solutions of

each segment.

Integrating the homogeneous problem in time can be expensive and time190

consuming, therefore, fast time integrators are essential in order to speed up

the process. InParaexp, this speed up is obtained by using exponential time

integrators to solve the homogeneous subproblems.

T0 T1 T2 T3

q0

Thread 1 Thread 2 Thread 3

Figure 1: Overlapping time decomposition of an initial-value problem into four inhomogeneous

problems with zero initial guess (solid red curves) and four homogeneous problems (dashed

blue curves), the latter are exponentially propagated. The solution of the original problem is

obtained by summation of all these curves [34].

11

Paraexp shows great promise due to the following advantages: this method

performs particularly well if the existing inhomogeneity is di�cult to integrate,195

which is a common scenario in complex unsteady ows. In addition, it allows

the use of any existing serial time integration method. Moreover, this direct

method is non-iterative and requires a single communication between threads

at the end of the algorithm. As a result, the achieved parallel e�ciency is

higher than the maximal achievable parallel e�ciency of the (Krylov-enhanced)200

parareal algorithms, and in particular the algorithm by Farhat et al. [43] for lin-

ear initial-value problems, which require more than a single iteration in general.

Although Paraexp has been mainly applied to linear systems, an extension of

the algorithm to a simpli�ed nonlinear problem is now also available [44]. Due

to these advantages, this method is employed in this study for time-parallelism205

of the adjoint equation.

Parallel-in-time algorithms have been mostly employed in accelerating the

primal (forward) problem. Some applications to the optimization procedure

are also available, in particular, in the recent work of Skeneet al. [45], where

algorithms are proposed based on the linearParaexp algorithm developed by210

G•uttel [34] and its extension to nonlinear partial di�erential equations (PDE)s

by Kooij [46]. In their study Skene et al., investigated various strategies of

accelerating both the forward (nonlinear) problem and the backward (linear)

problem by using various combinations ofParaexp in its linear and nonlinear

forms. Their �ndings, however, show that based on the form of the nonlinear215

forward problem the fully time-parallel algorithm can prove less e�ective due

to the number of iterations required to converge the nonlinear version of the

algorithm. Therefore, in this work, we concentrate on accelerating the linear

part of the optimization algorithm concerned with time integration of the adjoint

equations with algebraic constraint, resulting in a hybrid serial-direct-parallel-220

adjoint algorithm.

For this purpose, we consider the generic optimization problem (1), with

equation (1.2) representing the direct problem and equation (6) denoting the

12

k� pk

kqk

T0 T1 T2 T3

q(T1)

Thread 1 Thread 2 Thread 3

(a)

k� pk

kqk

T0 T1 T2 T3

q(T2)

Thread 1 Thread 2 Thread 3

(b)

k� pk

kqk

T0 T1 T2 T3

Thread 1 Thread 2 Thread 3

(c)

k� pk

kqk

T0 T1 T2 T3

Thread 1 Thread 2 Thread 3

(d)

k� pk

kqk

T0 T1 T2 T3

Thread 1 Thread 2 Thread 3

Communication and interpolation

(e)

k� pk

kqk

T0 T1 T2 T3

Thread 1 Thread 2 Thread 3

(f)

Figure 2: A schematic of a direct-adjoint loop with three threads, using a parallel-in-time

procedure. Solid lines indicate the forward evolution of the direct equation (top) and backward

integration of the inhomogeneous adjoint equations on the three threads (bottom). Once the

direct and inhomogeneous adjoint equations are solved, the direct solution is communicated

(see red lines) to each thread to initialize the homogeneous adjoint equation. This equation

is then solved up to T0 (see dashed blue lines) by each thread.

13

corresponding adjoint problem. The direct problem is solved in serial onp 2

f 1; : : : ; N g, while accounting for appropriate time partitioning t 2 [Tp� 1; Tp],

and the adjoint problem is split into its homogeneous and inhomogeneous com-

ponents, as previously described in theParaexp algorithm. The resulting inho-

mogeneous algebraic adjoint equations, in general form, are solved backward in

time by thread p 2 f N; : : : 1g on [Tp; Tp� 1],

@J
@q

� � y
I;p

@F
@q

+
@
@t

�
� y

I;p
@F
@_q

�
= 0 (12.1)

� I;p (Tp) = 0 ; (12.2)

where � I;p is the inhomogeneous adjoint solution for threadp. A schematic of

the algorithm is given in �gure 2, while a pseudo-code is presented in algorithm

1. The direct problem is integrated forward in time on thread p up to Tp; The

last time solution q(Tp) is then communicated to the next thread (�gure 2a) is225

used as the initial condition to continue the forward integration of the direct

problem on the corresponding time partition. While thread p + 1 is solving the

direct problem, the preceding threads solve the inhomogeneous adjoint problems

(12.2), with zero initial condition, on t 2 [Tp; Tp� 1] (�gure 2b).

Following this scheme, when the direct problem is solved by the last thread

p = N , the inhomogeneous equations are almost completely solved on the an-

tecedent time partitions (�gure 2c). A non-uniform time partitioning is used to

ensure the simultaneity of the solutions of the direct and adjoint inhomogeneous

problems, thus preventing latency between threads. The analytic expression for

the time partition is given by

Tp = T

0

B
@

1 �
�

k
k+1

� p

1 �
�

k
k+1

� N

1

C
A ; (13)

whereTp is the �nal time of thread p, T denotes the total time horizon, N stands230

for the number of threads andk = � y
I =� I represents the ratio between the time

taken per time unit for the inhomogeneous adjoint and the direct solver. Further

details on the time partitioning can be found in [45].

14

Once the inhomogeneous equation is integrated down toTp� 1 by thread p,

this thread initializes and solves the homogeneous problem, given below, for the

time partition [Tp� 1; 0],

� � y
H;p

@F
@q

+
@
@t

�
� y

H;p
@F
@_q

�
= 0 ; (14.1)

� H;p (Tp� 1) = � I;p (Tp� 1); (14.2)

with � H;p the homogeneous adjoint solution for threadp, and � I;p (Tp� 1) the

solution at the �nal time of the inhomogeneous adjoint problem, here used as235

the initial condition.

The resolution of the adjoint problem requires the knowledge of the direct

state at each time step. While the inhomogeneous equation is solved on the

same time partition as the forward problem and maintains the same discretiza-

tion scheme, the homogeneous equation is solved on [0; Tp� 1]. Due to the time240

partitioning previously described, the generic threadp does not have access to

the full direct solution up until T = 0. This solution must therefore be dis-

tributed to all threads, resulting in an unavoidable increase of time to solution.

To reduce this one-time cost, each thread communicates a fraction of the direct

solution to all. The submatrices are then stacked together and used by each245

thread to perform a linear interpolation on the coarser exponential time grid

(�gure 2e). The N � 1 homogeneous adjoint equations are solved simultaneously

(�gure 2f).

An alternative way to circumvent memory cost, associated with the storage

and communication of the forward solution, involves checkpointing algorithms,

where only a small number of time steps are stored. Following this approach,

the direct equation is integrated in time, saving the solution only at the check-

points chosen by the underlying algorithm [47]. The direct-adjoint loops are

then solved using the parallel-in-time algorithm between checkpoints, saving

all intermediate solutions. The values of the cost functional and gradient can

be computed between checkpoints, further reducing memory cost. The incor-

poration of checkpointing schemes on the proposed parallel-in-time algorithm

15

is straightforward, and its performance using equispaced checkpoints has been

studied in detail in [45]; it therefore will not be addressed here.

The total time to solution, excluding the use of checkpointing, is thus

TN = T � I + (TN � TN � 1) � y
I + TN � 1� y

H ; (15)

where N is the number of threads, � I the time to solution needed per time

unit to solve the inhomogeneous direct equation, and� y
I and � y

H are the time250

to solution needed per time unit to solve the inhomogeneous and homogeneous

adjoint equations, respectively. The e�ciency of this parallel-in-time algorithm

crucially relies on the minimization of the last two terms in (15), representing

the time needed to solve the inhomogeneous adjoint problem on the last time

partition and the time to solve the homogeneous adjoint problems. As observed255

in �gure 2d, the non-uniform time partitioning assigns a smaller time interval

to the last thread, so that the time required to solve the inhomogeneous adjoint

on this time partition is ensured to be negligible. Finally, the cost associated

with the resolution of the homogeneous adjoint problems can be reduced us-

ing an exponential time integrator, as implemented in Paraexp. Exponential260

time integrators and their extensions to algebraic di�erential equations will be

discussed in detail in section 4.1.

The original Paraexp computes the total solution as a superposition of the

solution computed by each thread, however, in cases where the size of the prob-

lem is large, the resulting communication can become rather expensive. When265

applied to the adjoint equation, the knowledge of the total solution is required

only to compute the gradient. As a result, the partial gradients can be computed

locally by each core using the optimality condition (11) and �nally distributed

to all threads and summed. This approach is employed both for the gradient

and the value of the cost functional and reduces the size of the communication270

considerably.

The application of this parallel-in-time strategy to the problem of interest

to this work, presented by equation (10.3), results in the following semidiscrete

16

inhomogeneous and homogeneous set of equations (for a generic threadp) re-

spectively,

M y _~u I;p +
�

N u (u)y � L + by
1;u (u ; g)

�
~u I;p + Q ~� I;p + Jy

u = 0 (16.1)

Qy ~u I;p � J y
�

~� I;p = 0 for Tp� 1 � t � Tp, and � I (Tp) = 0, (16.2)

and

M y _~u H;p +
�
N u (u)y � L

�
~u H;p + Q ~� H;p = 0 (16.3)

Qy ~u H;p = 0 for 0 � t � Tp� 1, and � H;p (Tp� 1) = � I;p (Tp� 1), (16.4)

where discrete operators have been introduced in equation (10.3), the subscripts

I and H denote the inhomogeneous and homogeneous adjoint variables, respec-

tively, and subscript p indicates the thread.275

4.1. Exponential time integrators

As mentioned in the previous section, the bottleneck of time acceleration

using the proposed parallel-in-time procedure is the cost associated with inte-

grating the homogeneous problem on each thread (Algorithm 1 line 16). Expo-

nential time integrators can be employed to reduce this cost due to their superior280

accuracy with a minimal number of time-steps, and are directly applicable since

the solution of the homogeneous problems can be expressed analytically in terms

of the matrix exponential of the state-matrix.

Exponential integrators rely on numerical approximations of the matrix ex-

ponential in order to perform time-stepping. Considering a general form of a

linear initial value problem, and the corresponding initial condition

dq
dt

= A q

q(0) = q0;
(17)

the solution of this equation can be expressed in terms of the matrix exponential

of the state matrix as

q = exp [(� t) A] q0 ; (18)

17

Algorithm 1 Parallel-in-time direct-adjoint loop
Input : q(0), g, T, N

Output : J (q; g), dJ =dg

1: Compute k = � y
I =� I

2: De�ne N non uniform time partitions for t 2 [0; T] using equation (13)

3: for p = 0 ; : : : ; N � 1 do

4: if p > 0 then

5: Wait to receive qp� 1(Tp) from thread p � 1 . communication

6: end if

7: Solve direct problem (1.2) on [Tp; Tp+1]

8: if p < N � 1 then

9: Sendqp(Tp+1) to thread p + 1 . communication

10: end if

11: Solve inhomogeneous adjoint problem (12) on [Tp+1 ; Tp]

12: end for

13: Scatter a fraction of the direct solution to all . communication

14: for p = 1 ; : : : ; N � 1 do

15: Interpolate direct solution on [0; Tp]

16: Solve homogeneous adjoint problem (14) on [0; Tp]

17: Stack � H;p and � I;p to form full adjoint solution

18: Compute cost functional on each threadp, J p(qp; g)

19: Compute gradient on each threadp, dJ p=dg

20: end for

21: Sum costJ (q; g) =
P

p J p . communication

22: Sum gradient dJ =dg =
P

p dJ p=dg . communication

18

whereA is the system state matrix (or Jacobian). Here, matrix A is assumed to

be time independent. Direct access toA becomes challenging as the dimension285

of the discretized problem increases. In such cases the exponential matrix is ap-

proximated directly using two categories of methods: projection-based methods

and polynomial-interpolation-based methods. Projection-based methods ap-

proximate the matrix exponential on the orthogonal, lower-dimensional Krylov

subspace ofA [48], using the Arnoldi algorithm 2 [49, 50].290

The homogeneous algebraic adjoint equation presented in (14) has to be re-

formulated for an exponential time integrator to be applicable. An additional

projection procedure needs to be devised to include the constraint in equation

(14.1) and to reformulate the equation in the form of a partial di�erential equa-

tion presented in (17) (without a constraint).295

The divergence-free constraint of the incompressible formulation of the gov-

erning equations, along with the constraint formed by no-slip conditions on

the immersed boundaries makes the application of such schemes non-trivial.

To accommodate these constraints, the momentum equation must be reformu-

lated [51]. To this end, the semi-discrete homogeneous adjoint system given in

(16.3) and (16.4), for a generic processp, with appropriate initial conditions,

multiplied by QyM y� 1 and di�erentiated with respect to time, gives

Qy _~u H;n = QyM y� 1 �
L � N u (u n)y�

~u H;n + QyM y� 1Q ~� H;n (19.1)

Qy ~u H;n = 0 : (19.2)

Substituting (19.2) in (19.1) and solving for ~� H;n , results in

~� H;n = �
�
QyM y� 1Q

� � 1
QyM y� 1 �

L � N u (u n)y�
~u H;n : (20)

This formulation for ~� H;n is then used in (19.1) to get the projection of the

momentum equation into the subspace de�ned by the constraints (19.2). The

homogeneous adjoint equation (16.3) and its projected initial condition are then

rewritten as

_~u H;n = P
�
L � N u (u n)y�

~u H;n

~u H;n (Tp) = P ~u In (Tp) :
(21)

19

with the associated projection operator

P =
h
M y� 1 � M y� 1Qy �

QyM y� 1Q
� � 1

QyM y� 1
i

: (22)

Using this projection (21) allows the application of an exponential integrator.

It should however be noted that the right-hand side of equation (21) depends

on time, whereas the system matrix A = P
�
L � N u (u n)y

�
is considered to

be independent of time. In order to use the exact solution given in (18), the

transconjugate advection operatorN u (u n)y is updated at each time iteration300

and is considered piecewise-constant in time. The accuracy of the method is

further discussed in section 5. To avoid excessive memory costs, the approxi-

mation of the matrix exponential is accomplished by Krylov projection, which

allows a matrix-free implementation. Additionally, the computation and storage

of the projection operator in (22) is not practical. Therefore, a fractional step305

method [52] has to be added to the Arnoldi algorithm every time the product

Av j needs to be computed (see algorithm 2).

Algorithm 2 Arnoldi algorithm

1: Given v1, with kv1k = 1

2: for j = 1 ; : : : ; m do

3: for i = 1 ; : : : ; m do

4: hij = (Av j ; v i)

5: end for

6: w j = Av j �
P j

i =1 hij v i

7: hj +1 ;j = kw j k

8: if hj +1 ;j = 0 then

9: stop

10: end if

11: v j +1 = w j =hj +1 ;j

12: end for

20

5. Results

In this section, the performance of the parallel-in-time adjoint algorithm is310

presented using a selection of cases, from drag reduction of a ow around a

cylinder to reducing pressure loss across a blade using boundary control. In

the �rst case, steady actuation is imposed using immersed boundary forces and

in the second case, unsteady actuation is performed at a domain boundary,

introducing new challenges for the parallel-in-time algorithm, which will be315

discussed in the following. The e�ciency of the parallelization and the decrease

of the computational cost has been evaluated for a single gradient extraction

(one direct-adjoint loop).

The parallel-in-time algorithm has been implemented in the incompressible

Navier-Stokes solver [37] using theMPI for Python package [53]. The subroutine320

has been structured to return only the values of the cost function and gradient

and remains independent of the choice of a descent algorithm. In what follows,

we used the L-BFGS-B method as implemented in thescipy.optimize.minimize

class from SciPy [54]. In order to provide a fair comparison of the time-to-

solution for the serial and parallel mode, the convergence of the descent algo-325

rithm has been �xed by equalizing the maximum number of iterations in both

cases.

5.1. Temporal Energy Growth { examining the exponential time integrator

Before discussing the performance of the parallel-in-time optimization al-

gorithm, the convergence of the Krylov-based exponential time integrator is

assessed and compared to the original explicit second-order Adams-Bashforth

method. As mentioned in the previous sections, the exponential time integrator

is applied to the homogeneous part of the equation only. Therefore, the opti-

mization problem has to be designed such that the resulting adjoint equation

becomes homogeneous and can be integrated by either integration method in-

dependently. Optimizing the initial condition of the forward ow solver, such

that an energy norm, G(T), at a selected time T is maximized o�ers an ideal

21

test case. In this approach, the optimization procedure aims at maximizing the

ratio between an energy norm att = T and t = 0, resulting in the following cost

functional

J (q; g) =
(g � g)

(q(T) � q(T))
(23)

where g = q(0) is the control parameter (the optimal initial condition), and

the energy is computed with a simpleL 2-norm, using the full state vector.330

Since the cost functional does not depend on the time evolution of the forward

problem, the �rst term of the adjoint equation (6) is equal to zero, resulting in

a homogeneous problem. The exponential integrator can therefore be used to

propagate the entire equation backward in time.

10� 4 10� 3

� t

10� 3

L
2

er
ro

r

Figure 3: Convergence history of time integrators: (black) Explicit Adam-Bashforth method;

(red) Krylov-based exponential Euler method.

The optimization is applied to a case of a lid driven cavity at Re = 1000 on a335

very short time interval in order to analyze the convergence of the two time inte-

grators. It should be noted, however, that due to the presence of the convection

term (a nonlinear operator), the solution of the adjoint problem is dependant

on the forward problem. In order to remove the errors due to the forward in-

tegration of the primal problem from the convergence of the adjoint equation,340

22

the primal problem is integrated once using the most re�ned � t. This solu-

tion is then stored and used to linearize the advection operator for the adjoint

equations when the time step is increased. The convergence results obtained

using the exponential integrator and the explicit Adam-Bashforth method are

displayed in �gure 3. The L 2-error is computed using the di�erence between345

the �nal solution of the adjoint equation qy(0), from each time integration, and

the reference solution, from a highly re�ned simulation. The optimization is

performed without time parallelism, in order to focus on the time integrator.

The errors due to the parallel-in-time algorithm will be assessed in the following

sections.350

This �gure shows the explicit Adam-Bashforth method converging with a

�rst-order slope, which is less than the expected second-order convergence. This

deterioration is caused by the presence of immersed boundary forces and the

use of fractional step to solve the direct problem. As expected, the exponential

integrator shows a convergence rate that increases when �t is re�ned. This355

behavior allows the use of a coarser time-step without a�ecting the accuracy of

the �nal solution.

5.2. Drag reduction { steady actuation

The �rst system considered here is the two-dimensional ow around a cylin-

der at Re = 200. This regime is characterized by the appearance of a von Kar-360

man vortex street, and the vorticity contours of the uncontrolled case are shown

in �gure 4a, along with the immersed boundary points de�ning the surface of the

cylinder. The spatial discretization of the domain must be uniform and re�ned

in the proximity of the cylinder to ensure the stability of the solution [55], and

the arc length � s between the Lagrange points are selected to be equal to the365

size of the neighboring cells �x, as shown in �gure 4b. The system is discretized

over a Cartesian non-uniform staggered grid of sizenx = 382 � 382 and the sur-

face of the cylinder is de�ned by nIB = 96 Lagrangian points. The dimension of

the state vector, including the immersed boundary points, isn = 437581, where

n = nu + nv + np +2nIB represents, respectively, the dimension of the discretized370

23

(a)

� x

� s

(b)

Figure 4: Flow around a cylinder at Re = 200. (a) Vorticity contours and immersed boundary

points. (b) Schematic of Lagrangian points (blue) versus the background Cartesian grid.

horizontal and vertical velocity, along with the pressure on the Cartesian grid,

as well as horizontal and vertical velocities on the surface points.

The evolution of the drag coe�cient is shown in �gure 5. As expected in

this regime, after the initial transient, the drag coe�cient converges to the

average value of 0:0187 with oscillations of amplitude 0:0005 and a frequency375

corresponding to the shedding frequency of the cylinderSt = 0 :196. Once the

simulation reaches steady state,t � 41, the optimization procedure is initiated

and carried out over �ve shedding periods { the longest time horizon achievable

without resorting to checkpointing algorithms.

A blowing/suction control is induced on the surface of the cylinder, allowing

the vertical and horizontal velocities at each Lagrangian point to act as actu-

ators. A smoothing �lter is applied on the resulting velocity pro�les to avoid

discontinuities between neighboring points. The discrete cost functional is then

de�ned as the sum of the squares of the drag coe�cientCd = 2 f x , where f x are

the dimensionless boundary forces in the streamwise direction. In addition, a

penalization of the control variables g is added to keep their value su�ciently

small, resulting in

J (q; g) =
1
T

Z T

0
C2

d dt + � kgk2: (24)

24

Figure 5: Drag coe�cient Cd , with the red line signifying the location where actuation starts,

t = 41 s.

g = 0 g = gopt

J (q; g) 3.987 1.700

Table 1: Value of the cost functional before and after the actuation process.

The solution of the optimization process is presented in �gure 6. The result-380

ing velocity pro�le (shown along the surface of the cylinder for clarity) in �gure

6a shows blowing and suction e�ects on the back of the cylinder. The actuation

results in a reduction of the objective functional J (q; g) and of the amplitude of

the drag coe�cient oscillations in time Cd(t), respectively presented in table 1

and �gure 6b. The actuation reduces not only the average drag but also the385

amplitude of the oscillations around this average. There is a slight change in

the frequency of the oscillations due to the steady actuation.

The performance of the parallel-in-time algorithm is shown in �gure 7. Here,

the total time to solution is represented for both the serial and the parallel cases.

For a direct comparison, no checkpointing algorithm is included (the solution390

of the forward integration at each time-step is accessible on memory). As a

result, the time necessary to integrate the adjoint equation \in serial" is the

same as that of the forward problem, leading to twice the cost. To assess the

performance of the algorithm with respect to problem size, we consider two

spatial grids of dimension nx = 382 � 382 and nx = 252 � 382, resulting in395

25

(a) (b)

Figure 6: The resulting actuation and cost functional. (a) Pro�le of the boundary velocities

(red) projected on the cylinder surface as a reference (black). (b) Drag coe�cient Cd without

the actuation (black) and with the optimal control (red).

Figure 7: Performance of the parallel-in-time algorithm (red line) compared to the serial

counterpart (black line) reported for a single iteration of the optimization loop, using steady

control.

26

two state vectors of dimensionsn = 437581 and n = 289877; respectively. To

compare the results obtained for the two cases, the �gure has been normalized

according to the total time needed to solve the direct-adjoint loop in serial.

The �gure shows that, for both cases, using the parallel-in-time algorithm,

the time needed to compute the gradient converges to a value very close to the400

time needed for simply solving the direct problem, as the number of threads is

increased. In other words, the value of the cost functional and the gradient are

obtained almost at the same time as the end of the forward integration, result-

ing in a reduction of 70% of the total time of the optimization process. Though

the algorithm has been shown to be independent of the spatial discretization,405

its e�ciency nonetheless depends on the selected time horizon for the optimiza-

tion problem. As mentioned in section 4, the time partitioning is non-uniform

and each thread solves the direct problem and the inhomogeneous adjoint on a

shorter time interval than the previous thread. Increasing the number of threads

involved in the resolution of the system reduces the number of time steps as-410

signed to the last threads, reaching a limit where the time partition is smaller

than the minimum time-step needed to solve the equation. In the case of the

cylinder, the maximum number of threads that can be used isN = 7. When

eight threads are used, the algorithm assigns three time-steps to the last core,

which is the minimum allowed to form the advection term in equation (9). For415

N > 4 the �gure shows a loss of e�ciency of the algorithm, beyond this point,

the time needed to communicate the direct solution to each core overwhelms

the time saved by time parallelism.

The accuracy of the resulting gradient using the parallel-in-time algorithm420

is shown in �gure 8. The gradient obtained using the serial adjoint algorithm

(without the parallel-in-time treatment) is used as the reference in computing

the error. Two major di�erences of the parallel-in-time implementation and

its serial counterpart are that, �rstly, in the parallel-in-time algorithm, the

problem is separated into the homogeneous and inhomogeneous equations and425

an exponential integrator is used to propagate the solution of the homogeneous

27

Figure 8: Accuracy of the estimated gradient computed for a single optimization loop: |,

Adams-Bashforth method; |, exponential integrator without interpolation; | Exponential

integrator with interpolation.

problem backward in time. In addition, in order to speed-up the adjoint loop,

larger time steps are used to integrate the homogeneous problem. The latter

step necessitates an interpolation of the forward problem from a �ner resolution

in time (used by the lower-order time integrator) on the coarser grid used by430

the exponential time integrator. This interpolation can impact the accuracy

of the �nal optimization algorithm. In order to assess the rami�cation of each

of these steps on the overall accuracy, three di�erent implementations of the

parallel-in-time algorithm are compared in �gure 8.

As described in section 4, the parallel-in-time algorithm includes the com-435

munication of only a fraction of the direct solution to all tasks (see �gure 2e),

followed by an interpolation on each time partition. In order to remove the error

associated with this interpolation, and to evaluate only the error due to the dif-

ferent time-integrators used to advance the adjoint equations, the assessment of

the gradient accuracy has been performed over three shedding periods, allowing440

communication of the full direct solution without incurring memory errors.

28

In the �rst implementation, highlighted by the black line in the �gure, the

homogeneous adjoint equations are solved using the same time integrator and

time discretization as the inhomogeneous equations. Therefore, the error ac-

crued due to the interpolation step and the change in the time integrator is445

eliminated. As expected, the �nal solution remains the same as the original

gradient, independent of the number of threads. In the second implementation,

denoted by the blue line, the homogeneous equations are solved using the expo-

nential time integrator but the same time discretization as the inhomogeneous

problem, removing the error due to interpolation. The exponential integrator is450

more accurate than its counterpart resulting in a small error between the two

solutions. This error increases as the number of threads increase since a larger

portion of the problem is solved using the exponential integrator. Finally, in the

last implementation (the implementation suggested in this study), denoted by

the red line, the homogeneous equations are solved using the exponential time455

integrator on larger time intervals compared to the inhomogeneous equations.

This �gure shows that the error due to interpolation (the di�erence between the

blue and red curves) decreases when increasing the number of threads. Due to

a non-uniform time partitioning, smaller portions of the time domain are inte-

grated using the exponential time integrator as the number of threads increase,460

causing the error due to interpolation to saturate.

To evaluate the e�ect of the error associated with exponential time integra-

tion on the optimal solution, the full optimization problem is solved both in

serial and in parallel with N = 4. The serial and the parallel implementations465

are initialized with the same initial value of g. When run in serial, the optimiza-

tion problem reaches the optimal solution in three gradient-descent iterations.

In order to compare fairly the time-to-solution and the results obtained, the

number of iterations of the L-BFGS-B method is �xed to three, identical to the

parallel simulation. Table 2 shows that the two di�erent simulations converge470

approximately to the same minimum of the cost functional 24, reaching a small

gradient value in both cases. However, the time to solution needed to solve the

29

problem in parallel is only 63% of the time needed to solve the same problem in

serial. The resulting actuation on the boundary velocities for the two cases are

shown in �gure 9, showing similar pro�les. In particular, �gure 9a shows the475

boundary velocities projected onto the cylinder, indicating blowing and suction

e�ects on the surface, while �gure 9b reports the actual values of the velocity

at each Lagrangian point.

Serial
N = 1

Parallel
N = 4

J (q; g) 1.666 1.669

kdJ =dgk 2:87� 10� 5 2:69� 10� 5

t [s] 2118 1346

Table 2: Values of the cost functional and time to solution obtained running the same op-

timization problem in serial N = 1 and in parallel N = 4. The number of iterations to

convergence of the optimization algorithm is �xed to three.

(a) (b)

Figure 9: (a) Pro�le of the boundary velocities obtained running the optimisation in serial

(red) and parallel (blue) projected on the cylinder surface as a reference (black) . (b) Boundary

velocities obtained running the optimisation in serial (red) and parallel (blue)

5.3. Total pressure loss { unsteady actuation480

One of the main causes of aerodynamic losses in turbomachinary is due to

vortices generated at the tip of the blades as they interact with the outside

30

casing [56]. These vortices are promoted by the pressure gradient on the surface

of the blades, as well as the relative motion between the blade tip and the

casing of the the rotor. In this section, we present an optimization problem485

with unsteady actuation inspired by this phenomenon. The objective is to

determine whether modi�cations of the casing of the rotor (in the form of a

small perturbation or roughness) would be able to suppress the generation of

such vortices. This actuation is of relevance since it is reproducible in real-scale

applications with relatively minimal e�ort.490

Figure 10 shows the rotor of an axial compressor that rotates with a cer-

tain angular velocity around the axis. In order to simplify the description of

this complex phenomenon, the domain considered for the numerical simulations

consists of a section of a single unit of the casing and blade geometry, de�ned as

a square domain with periodic boundary conditions in the streamwise direction,495

as shown in the sketch of �gure 10. The blade is represented by a vertical wall

de�ned by the immersed boundaries and covers 90% of the vertical direction.

Periodic boundary conditions in the streamwise direction simulate the series

of blades. Curvature e�ects are neglected in this setup. The relative motion

between the casing and the blade is enforced by applying a uniform horizontal500

velocity on the top boundary (casing).

Perturbations on the casing are replicated by adding a roughness on the

top boundary. In order to reduce the dimension of the optimization problem,

the roughness is considered to have the shape of a Gaussian function, and its

width and amplitude is optimized via the optimization process. In addition,505

the roughness is assumed to have the characteristics of a dynamic roughness

element.

Dynamic roughness elements have been investigated by [57] and further ex-

plored by [58] and [59]. In this approach, the roughness elements are modeled

using linearized boundary conditions representing oscillating bumps with sim-

ple geometries. The roughness element is approximated by the streamwise and

31

Figure 10: Schematic of a rotor of an axial compressor, and the numerical domain in the red

box with one blade (periodic boundary conditions on the horizontal axis simulate a series of

blades). The upper boundary moves with a constant velocity and the dynamic roughness is

added on its pro�le.

wall-normal velocity distribution as

u(x; y; t)jw = � H (x; y; t)U
0

0(x) ;

v(x; y; t)jw = _H (x; y; t) ;
(25)

where H denotes the height of the roughness, varying in space and time,U
0

0(x)

represents the wall-normal derivative of the mean velocity pro�le at the wall,

and _H is the derivative of the height with respect to time. Since, the shape of

the roughness is Gaussian, its heightH can be expressed as

H (x; y; t) = " exp
�

�
(x � � (t))2

2� 2

�
; (26)

where " is the height of the curve's peak,� is its standard deviation or width,

and � (t) denotes the center of the Gaussian moving with the upper boundary.

The control vector is then de�ned as g = ["; �].510

The objective of this optimization process is to extract the most optimal

modulation on the casing which will result in a maximum reduction of the

average pressure loss across the blade, or in other words, �nding the optimal

value for g that minimizes the cost functional

J (q; g) =
1
T

Z T

0
� p + �

�
kuN (g; t)k2 + kvN (g; t)k2�

dt ; (27)

32

where � p is the spatial average of the total pressure loss around the blade and

uN (g; t) and vN (g; t) are the respective horizontal and vertical boundary con-

ditions imposed on the top of the domain, depending on the control parameters

g. The time interval chosen for the optimization is one period of the roughness

motion. At t = 0 the Gaussian is centered atx = 0 ; and at t = T it is at x = 1.515

g = [0 ; 0] g = [0 :095; 0:184]

J (q; g) 2.000 1.982

Table 3: Pressure loss minimization, listing the cost functional before and after the actuation.

Figure 11: Evolution of the average pressure loss in time, comparison of the base case (black

line), and the case with actuation (red line).

The e�ect of the unsteady actuation is highlighted in table 3 by comparing

the resulting pressure loss to the uncontrolled setup, resulting in a 1% improve-

ment. The resulting e�ect on the evolution of the average pressure gradient

across the blade,� p, is also shown in �gure 11. This �gure shows that the520

presence of the roughness exerts a large inuence on the oscillation frequency

of the average pressure signal. While in the uncontrolled setup the pressure

oscillated with a frequency proportional to the relative di�erence between the

33

(a) (b)

(c) (d)

Figure 12: Vorticity pro�le and pressure distribution for t = 0 :35: (a) uncontrolled vorticity,

(b) controlled vorticity, (c) uncontrolled pressure, (d) controlled pressure

34

(a) (b)

(c) (d)

Figure 13: Vorticity pro�le and pressure distribution for t = 0 :77: (a) uncontrolled vorticity,

(b) controlled vorticity, (c) uncontrolled pressure, (d) controlled pressure

35

width of the domain and the gap between the blade and the casing surface, in

the case with unsteady control the pressure oscillates with the same frequency525

as the passing of the roughness element. In addition, the actuation increases

the amplitude of the oscillations fourfold. The maximum amplitude is reached

when the roughness is atx = 0 :35, shortly before reaching the gap. The lowest

amplitude, however, is encountered when the roughness is atx = 0 :77 before

reaching the outlet. Due to the respective frequencies of the pressure signal530

in the controlled and uncontrolled scenarios, the optima of both curves nearly

coincide. Therefore, in order to assess the quantitative di�erences of the two

cases, vorticity and pressure distributions are compared at the maximum and

the minumum of the curve describing the pressure loss of the controlled regime,

as highlighted by the dashed lines in �gure 11.535

The spatial distributions of pressure and vorticity pro�les are displayed in

�gures 12 and 13, at the maximum and the minimum, respectively.

At the time where the average pressure is at its maximum (corresponding

to �gure 12(d)), a large di�erence between the pressure distribution on the

two sides of the blade is noticeable, whereas in �gure 13(d), corresponding to540

the point in time where the average pressure is at its minumum, the pressure

distribution across the blade is more homogeneous. When comparing the un-

controlled cases in the same two time instances, the main di�erence is the value

of the pressure at the tip of the blade, which appears stronger in the �gure 12(c)

than in �gure 13(c). However, the pressure distribution along the two sides of545

the blade seems mostly una�ected. The reason for an overall change in the pres-

sure distribution can be deduced by analyzing the distribution of the vorticity

inside the domain. In the uncontrolled case, a vortex is developed on the tip of

the blade, which ultimately sheds with a frequency similar to the frequency of

the average pressure loss. Due to the periodic boundary conditions, this vor-550

tex reenters the domain and creates a series of vortex pairs developing on the

suction side of the blade. The shedding process is entirely suppressed by the

presence of the roughness. Instead, vorticity is created as the roughness enters

and leaves the domain, respectively, leading to a larger vortical structure.

36

The performance of the parallel-in-time algorithm evaluated for one iter-555

ation of the optimization algorithm, is shown in �gure 14. To compare the

performance between steady and unsteady actuation, we consider two spatial

re�nements, similar to the ones used for the previous case, resulting in two state

vectors of dimensionsn = 431001 andn = 277481; respectively. As in the previ-

ous case,forN > 4, the time needed for the communication of the direct solution560

to all threads exceeds the time saved by the time partitioning and no improve-

ment is accomplished by the parallel-in time procedure. The time to solution

reduces towards a maximum of 58% of the total serial time. The magnitude

of the gain obtained here is less signi�cant than for the previous case, because

of the use of unsteady control. While the resolution and the simultaneity of565

the forward-adjoint loop is unchanged, the optimality condition (equation (11))

used to compute the gradient, is now time-dependent. Each thread builds the

operators needed to solve this equation for its time partition, resulting in ad-

ditional time. The time required to construct the operators is unavoidable and

increases with the time interval chosen for the simulation. It is also the main570

cause of e�ciency loss for the parallel-in-time algorithm with unsteady con-

trol. Nonetheless, the additional gain obtained by using the parallel-in-time

algorithm is non-negligible, even in the presence of unsteady control.

37

Figure 14: Performance of the parallel-in-time algorithm (red line) compared to the serial

counterpart (black line) reported for a single iteration of the optimization loop, using unsteady

control.

38

6. Conclusions

An algorithm for accelerating gradient-based optimization problems has been575

presented. The algorithm is the extension of the parallel-in-time algorithm for

direct-adjoint loops by Skene et al. [45] to the two-dimensional Navier-Stokes

equation with immersed boundaries. The pressure and boundary forces are

treated by introducing a projection operator to allow the exponential integration

of the linear homogeneous adjoint equations using Krylov subspace projection580

methods. The performance of this method has been tested on two di�erent op-

timization cases using steady and unsteady control for one gradient evaluation.

In both cases the time to solution has been signi�cantly reduced, following a

trend consistent with the numerical and theoretical results derived by Skeneet

al. Better results have been observed for the steady control optimization. In585

this case, the time required to solve the adjoint-loop converged asymptotically

to the time needed to solve the direct equation in serial, suggesting that the

computation of the gradient can be obtained with a small additional penalty

in overall time. The use of time-dependent control has proven to a�ect the

e�ciency of the parallel-in-time procedure. In this case, the gain obtained by590

using the proposed algorithm is appreciable, but less substantial.

Whilst showing promising results in reducing the computational time, this

approach does not address the complications related to the use of gradient-based

algorithms in the presence of turbulence or chaotic dynamics Recently, Chung

& Freund [24] proposed a novel adjoint-based optimization method for chaotic595

turbulent ows. This method aims to overcome the highly non-convex nature

of objective functionals by breaking the time domain into intervals compatible

with the chaotic time scales and adding constraints on the intermediate disconti-

nuities generated at the boundaries of each time partition. However, the authors

argue that the addition of these intermediate constraints increases overall cost.600

Making use of our parallel-in-time approach within each such time partition

would constitute an interesting option, which will be pursued in a future e�ort.

39

Acknowledgements

M.F.P. gratefully acknowledges �nancial support from MINECO/AEI and

FEDER/UE through grant DPI2016-75777-R.605

References

[1] A. Annaswamy, A. Ghoniem, Active control of combustion instability: the-

ory and practice, IEEE Control Systems 22 (6) (2002) 37{54.

[2] S. Candel, Combustion dynamics and control: Progress and challenges,

Proc. Combust. Inst. 29 (1) (2002) 1{28.610

[3] O. Pironneau, On optimal design in uid mechanics, J. Fluid Mech. 64 (1)

(1974) 97{110.

[4] A. Jameson, Aerodynamic design via control theory, J Sci. Comp. 3 (3)

(1988) 233{260.

[5] A. Jameson, L. Martinelli, N. Pierce, Optimum aerodynamic design using615

the Navier-Stokes equations, Theor. Comp. Fluid Dyn. 10 (1) (1998) 213{

237.

[6] J. Reuther, A. Jameson, J. Alonso, M. Rimlinger, D. Saunders, Constrained

multipoint aerodynamic shape optimization using an adjoint formulation

and parallel computers: Part 2, J. Aircraft 36 (1) (1999) 61{74.620

[7] M. Juniper, Triggering in the horizontal Rijke tube: non-normality, tran-

sient growth and bypass transition, J. Fluid Mech. 667 (2010) 272{308.

[8] M. Lemke, J. Reiss, J. Sesterhenn, Adjoint-based analysis of thermoacous-

tic coupling, ICNAAM (2013) 2163{2166.

[9] S. Schmidt, C. Ilic, V. Schulz, N. R. Gauger, Three-dimensional large-scale625

aerodynamic shape optimization based on shape calculus, AIAA J. 51 (11)

(2013) 2615{2627.

40

[10] S. Rabin, C. Caul�eld, R. Kerswell, Designing a more nonlinearly stable

laminar ow via boundary manipulation, J. Fluid Mech. 738 R1 (2014)

1{12.630

[11] D. Foures, C. Caul�eld, P. Schmid, Optimal mixing in two-dimensional

plane Poiseuille ow at �nite Peclet number, J. Fluid Mech. 748 (2014)

241{277.

[12] K. Duraisamy, J. Alonso, Adjoint-based techniques for uncertainty quan-

ti�cation in turbulent ows with combustion, 42nd AIAA Fluid Dynamics635

Conference and Exhibit (2012) 25{28.

[13] K. Braman, T. Oliver, V. Raman, Adjoint-based sensitivity analysis of

ames, Comb. Theor. Modelling 19 (1) (2015) 29{56.

[14] M. Lemke, L. Cai, J. Reiss, H. Pitsch, J. Sesterhenn, Adjoint-based sen-

sitivity analysis of quantities of interest of complex combustion models,640

Comb. Theo. Modelling 23 (1) (2019) 180{196.

[15] M. Blanchard, T. Schuller, D. Sipp, P. Schmid, Response analysis of a lami-

nar premixed M-ame to ow perturbations using a linearized compressible

Navier-Stokes solver, Phys. Fluids 27 (4) (2015) 043602.

[16] J. Capecelatro, D. Bodony, J. Freund, Adjoint-based sensitivity analysis of645

ignition in a turbulent reactive shear layer, AIAA Sci. Tech. Forum (2017).

[17] A. Hassan, T. Sayadi, V. LeChenadec, H. Pitsch, A. Attili, Adjoint-based

sensitivity analysis of steady char burnout, Comb. Theor. Modeling (2020).

[18] A. Hassan, T. Sayadi, V. LeChenadec, A. Attili, Sensitivity analysis of an

unsteady char particle combustion, Fuel 287 (2021).650

[19] A. Fikl, V. Le Chenadec, T. Sayadi, Control and optimization of interfacial

ows using adjoint-based techniques, Fluids 5 (2020) 3.

[20] A. Fikl, D. J. Bodony, Adjoint-based interfacial control of viscous drops,

Journal of Fluid Mechanics 911 (2021).

41

[21] N. K•uhl, J. Kr•oger, M. Siebenborn, M. Hinze, T. Rung, Adjoint comple-655

ment to the volume-of-uid method for immiscible ows, Journal of Com-

putational Physics 440 (2021) 110411.

[22] J. R. Martins, Aerodynamic design optimization: Challenges and perspec-

tives, Computers & Fluids 239 (2022) 105391.

[23] J. Kim, D. J. Bodony, J. B. Freund, Adjoint-based control of loud events660

in a turbulent jet, Journal of Fluid Mechanics 741 (2014) 28{59.

[24] S. W. Chung, J. B. Freund, An optimization method for chaotic turbulent

ow, Journal of Computational Physics 457 (2022) 111077.

[25] R. Vishnampet, D. J. Bodony, J. B. Freund, A practical discrete-adjoint

method for high-�delity compressible turbulence simulations, Journal of665

Computational Physics 285 (2015) 173{192.

[26] J. Capecelatro, R. Vishnampet, D. J. Bodony, J. B. Freund, Adjoint-based

sensitivity analysis of localized ignition in a non-premixed hydrogen-air

mixing layer, in: 54th AIAA Aerospace Sciences Meeting, 2016, p. 2153.

[27] J. Capecelatro, D. J. Bodony, J. B. Freund, Adjoint-based sensitivity and670

ignition threshold mapping in a turbulent mixing layer, Combustion Theory

and Modelling 23 (1) (2019) 147{179.

[28] A. Kord, J. Capecelatro, Optimal perturbations for controlling the growth

of a rayleigh{taylor instability, Journal of Fluid Mechanics 876 (2019) 150{

185.675

[29] Q. Wang, R. Hu, P. Blonigan, Least Squares Shadowing sensitivity analysis

of chaotic limit cycle oscillations, J. Comp. Phys. 267 (2014) 210{224.

[30] J. Nievergelt, Parallel methods for integrating ordinary di�erential equa-

tions, Communications of the ACM 7 (12) (1964) 731{733.

[31] M. J. Gander, 50 years of time parallel time integration, in: Multiple shoot-680

ing and time domain decomposition methods, Springer, 2015, pp. 69{113.

42

[32] Y. Maday, M.-K. Riahi, J. Salomon, Parareal in time intermediate targets

methods for optimal control problems, in: Control and optimization with

PDE constraints, Springer, 2013, pp. 79{92.

[33] C. Skene, P. Schmid, Adjoint-based parametric sensitivity analysis for685

swirling M-ames, J. Fluid Mech. 859 (2019) 516{542.

[34] M. Gander, S. G•uttel, A parallel integrator for linear initial-value problems,

SIAM J Scienti�c Computing 35 (2013) 123{142.

[35] Y. Cao, S. Li, L. Petzold, R. Serban, Adjoint sensitivity analysis for

di�erential-algebraic equations: The adjoint DAE system and its numerical690

solution, SIAM J. Sci. Comput. 24 (3) (2003) 1076{1089.

[36] K. Taira, T. Colonius, The immersed boundary method: A projection ap-

proach, J. Comp. Phys. 225 (2007) 2118{2137.

[37] M. Fosas de Pando, IBMOS: Immersed boundary method for optimization

and stability (2020). doi:10.5281/zenodo.3757783 .695

[38] A. Jameson, Aerodynamic Shape Optimization Using the Adjoint Method,

Lectures at the Von Karman Institute (2003).

[39] T. Bewley, P. Moin, R. Temam, DNS-based predictive control of turbulence:

an optimal benchmark for feedback algorithms, J. Fluid Mech. 447 (2001)

179{225.700

[40] M. Wei, J. Freund, A noise-controlled free shear ow, J. Fluid Mech. 546

(2005) 123.

[41] N. Sa�ran, J. Lotz, U. Naumann, Algorithmic Di�erentiation of Numeri-

cal Methods: Second- order Adjoint Solvers for Parameterized Systems of

Nonlinear Equations, Procedia Computer Science 80 (2016) 2231{2235.705

[42] M. Fosas de Pando, D. Sipp, P. Schmid, E�cient evaluation of the direct

and adjoint linearized dynamics from compressible ow solvers, J. Comp.

Phys. 231 (23) (2012) 7739{7755.

43

[43] C. Farhat, J. Cortial, C. Dastillung, H. Bavestrello, Time-parallel implicit

integrators for the near-real-time prediction of linear structural dynamic710

responses, Int. J. Numer. Meth. Engng. 67 (2006) 697{724.

[44] M. Gander, S. G•uttel, M. Petcu, A nonlinear ParaExp algorithm, Int.

Conference on Domain Decomposition Methods, Domain decomposition

methods in science and engineering XXIV (2017) 161{270.

[45] C. S. Skene, M. F. Eggl, P. J. Schmid, A parallel-in-time approach for715

accelerating direct-adjoint studies, Journal of Computational Physics 429

(2021) 110033.

[46] G. L. Kooij, M. A. Botchev, B. J. Geurts, A block krylov subspace imple-

mentation of the time-parallel paraexp method and its extension for non-

linear partial di�erential equations, Journal of computational and applied720

mathematics 316 (2017) 229{246.

[47] A. Griewank, A. Walther, Algorithm 799: revolve: an implementation of

checkpointing for the reverse or adjoint mode of computational di�erentia-

tion, ACM Transactions on Mathematical Software (TOMS) 26 (1) (2000)

19{45.725

[48] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.

[49] W. Arnoldi, The principle of minimized iterations in the solution of the

matrix eigenvalue problem, Quarterly of Applied Mathematics 9 (1951)

17{29.

[50] Y. Saad, Analysis of some krylov subspace approximations to the matrix730

exponential operator, SIAM Journal on Numerical Analysis 29 (1) (1992)

209{228.

[51] G. L. Kooij, M. A. Botchev, B. J. Geurts, An exponential time integrator

for the incompressible navier{stokes equation, SIAM journal on scienti�c

computing 40 (3) (2018) B684{B705.735

44

[52] A. J. Chorin, Numerical solution of the navier-stokes equations, Mathe-

matics of computation 22 (104) (1968) 745{762.

[53] L. Dalc��n, R. Paz, M. Storti, Mpi for python, Journal of Parallel and Dis-

tributed Computing 65 (9) (2005) 1108{1115.

[54] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,740

D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.

van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.

Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,_I. Polat, Y. Feng, E. W.

Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,

E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-745

dregosa, P. van Mulbregt, SciPy 1.0 Contributors, SciPy 1.0: Fundamental

Algorithms for Scienti�c Computing in Python, Nature Methods 17 (2020)

261{272. doi:10.1038/s41592-019-0686-2 .

[55] A. M. Roma, C. S. Peskin, M. J. Berger, An adaptive version of the im-

mersed boundary method, Journal of computational physics 153 (2) (1999)750

509{534.

[56] J. D. Denton, Loss mechanisms in turbomachines, Vol. 78897, American

Society of Mechanical Engineers, 1993.

[57] I. Jacobi, B. McKeon, Dynamic roughness perturbation of a turbulent

boundary layer, Journal of Fluid Mechanics 688 (2011) 258{296.755

[58] B. McKeon, A model for `dynamic'roughness in turbulent channel ow, in:

Proceedings of the Summer Program, 2008, pp. 399{410.

[59] A. K. M. F. Hussain, W. C. Reynolds, The mechanics of an organized wave

in turbulent shear ow, Journal of Fluid Mechanics 41 (2) (1970) 241{258.

45

	Introduction
	Adjoint-based framework

