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Modeling and Control of Conducting Polymer
Actuator

Lingxiao Xun, Gang Zheng, Senior Member, IEEE, Sofiane Ghenna, Alexandre Kruszewski, Éric
Cattan, Christian Duriez, Sébastien Grondel

Abstract—Conducting polymer actuator has nonlinear dy-
namic characteristics during its charge process. In this study, we
proposed an electromechanic model and an optimal controller
for a type of ionic electroactive polymer (IEPA) actuator with
sub-millimeter scale, which can produce large deformation un-
der low actuation voltage. The electronic model is to describe
the evolution of charge state in time domain. The mechanic
model is to calculate the deformation of conducting polymer
actuator under the actuation force and external force. Based on
the electromechanic coupling model, a parameter identification
method is proposed to estimate the nonlinear parameter of
conducting polymer actuator. The experiments show that our
electromechanic model successfully predicts the deformation
of actuator under different input voltages with the identified
parameters. In the last step, an optimal controller is designed
to control the orientation of IEAP actuator, which achieves at a
high control performance in our experiments. The success of the
modeling and control lays the foundation work for the subsequent
biomedical applications.

Index Terms—Conducting polymer actuator, IEAP, parameter
identification, optimal control.

I. INTRODUCTION

A. Review of relevant literature

Typical conducting polymer actuators are ionic poly-
mer–metal composites and ionic electroactive polymer (IEAP).
They have specific characteristics that allow them to be now
used for various applications, whether in applications requiring
actuation and/or sensing mode. The main advantage of these
polymers based actuator is their soft nature, good stability,
sufficiently high electric conductivity [1], bio-compatibility
[2], large work density, low operating voltages (typically63V)
[3] that attracted a lot of attention over recent years for
the realization of artificial muscles [4]. Moreover, their good
electromagnetic compatibility, noise-free operation, low cost,
light weight, their long life cycle [5] without degradation
make these actuators a promising technology for microelec-
tromechanical systems (MEMS). In addition, these polymers
can be used as linear [6] or flexural micro-actuators [7],
operating in solution [4] or in ambient air conditions [8]. Due
to these advantages, they are implemented in a wide range
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of applications in robotics [9] or biomedical applications [3].
The work of this paper focuses on a typical actuator based on
IEAP as the conducting polymer, which contains its nonlinear
modeling, parameter estimation and control.

In this paper the IEAP based trilayer micro-actuator
was micro-fabricated according to the method described in
[7]. The upper and lower layers are made of electroni-
cally conducting polymers (CP) material basically poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate as reported in
[10]. The middle layer is considered as an ion reservoir
providing the system with ionic conductivity and mechanical
properties [10]. This middle layer is formed with a semi-
interpenetrated polymer network (IPN) composed of two poly-
mers: poly ethylene oxide (PEO) and linear nitrile butadiene
rubber (NBR) network. When a potential difference is applied
to these two CP layers, one of the layers will undergo an
oxidation reaction and the other one has a reduction reaction.
It results in a corresponding increase or decrease in the charge
density of the two layers. The change in ionic charge density
will cause the two electrodes to produce opposite strains,
which will cause one layer to expand and one layer to shrink.
The expansion and contraction effect can be regarded as the
bending of the actuator caused by the equivalent moment
of force exerted on it. It should be noted that, the bending
direction is occurring toward the anode [13].

Usually, an RC circuit model to describe the charge change
process in the two electrode layers is used, and then the
internal stress and strain are analyzed to obtain the curvature
of the actuator. At present, some equivalent RC circuit models
have been proposed [11], [12]. These models usually use
isolated RC combinations or limited RC grid circuits to
equivalent charge change processes. Although these models
are efficient, their disadvantage is that they do not take into
account the nonlinear changes of physical parameters in the
actuator. The research of [14] shows that the resistivity and
volumetric capacitance will both have greater nonlinearity
during the charging process. The change interval affects the
corresponding time of the actuator, so the nonlinear character-
istics of the material are a consideration that can not be ignored
in the modeling. [15] has proposed a finite nonlinear 2D-
RC model, where this model takes into account the nonlinear
characteristics of material properties following changes in
charge density. In the work of Nishida [16], the infinite RC
circuit was used to approximate the real system and finite
difference method was adopted to get the numerical solution.
However, the methods mentioned above struggle to achieve a
balance between the dimensionality and accuracy of the model.
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The second part of modeling for conducting polymer ac-
tuator is calculating its deformation. It is noticed that if the
charging time is enough long to reach the equilibrium charge
state, the deformation will be uniform along the polymer,
leading to the uniform curvature, which has been calculated
by several studies [11], [17]. In fact, it usually takes a long
time to reach the equilibrium charge state, thus the local
deformation is necessary to study. [16] and [18] proposed the
Timoshenko model to predict the deformation of conducting
polymer actuator with the assumption of small deformation
of 2 degrees of freedom. Meanwhile, in most cases the
conducting polymer actuator does not work alone but interacts
with the environment, such as external forces applying on it or
multi conducting polymer actuators being connected in series.

Another difficulty related to the nonlinear model lies in the
measurement of electronic model parameters. The nonlinear
changing of various physical parameters of materials requires
a large amount of experimental data to construct. At the same
time, it is difficult to realize the control of a single variable
during the experiment due to the excessive change of material
parameters, which affects the accuracy of the experimental
results. This process is often cumbersome and is limited by
measurement accuracy, resulting in error stacking.

In terms of drive control, [19] designed PID and adaptive ro-
bust controller for controlling the displacement of conducting
polymer actuator. However, the above-mentioned controller
design is only based on the system model after the end
point displacement is identified, which does not include the
actuator curvature and bending moment information, thus this
simplified model makes it difficult to further meet the control
requirements of the actuator, such as actuator rotation angle
control and multi-drive coupling control.

B. Contributions
Facing to the limitations of the current research, the contri-

butions of our proposed model and controller are as follows:
1) This work aim to find a more general format for

both the electronic and mechanic model in order to reduce
the computational complexity without losing accuracy and
facilitate the control design. In this paper, we put forward a
parameterization of both charge field and strain field to model
the real system, which greatly reduces its dimension. The
Cosserat rod theory is adopted to deal with the exact nonlin-
earity in the large deformations of conducting polymer in six
degrees of freedom under the interaction with the environment.
Comparing with the current modeling methods, our proposed
coupling model, with lower dimension and a balance between
accuracy, robustness and computational complexity, intent to
lay the foundation for real-time simulation and control works.

2) To overcome the problems related to the unknown or
imprecise physical parameters, this paper proposes a parameter
identification method based on a nonlinear electro-mechanical
coupling model. A visual identification system is designed to
measure the curvature of actuator which is used for parameter
identification.

3) An optimal controller based on the proposed electro-
mechanic model is designed in this paper, which lays the foun-
dation work for the subsequent multi-drive coupling trajectory

tracking control in the future. Experiments are carried out to
validate the controller design and its robustness.

In summary, this paper is organized as follows: A nonlinear
modeling of the electronic and mechanical part is introduced
in Section II. Then parameter identification is addressed in
Section III. Controller design is presented in Section IV. Nu-
merical simulations and experimental validation are presented
in Section V. Finally, Section VI concludes this article.

II. NONLINEAR MODEL OF POLYMER

The modeling task of conducting polymer can be mainly
divided into two parts: the electronic model and the mechanic
model. Noting that the working state of IEAP actuator depends
on the actuation frequency [20] , it can be classified into two
cases: (i). When the actuation frequency is below the mechan-
ical resonance frequency of the actuator, the deformation is
quasi-static. (ii). When the actuation frequency is greater than
the mechanical resonance frequency, the deformation varies
mainly due to inertial mass effects. Thus the dynamics in
mechanic model is necessary.

Fig. 1. 2D-RC infinite grid for electronic model.

Based on the above two different cases, this paper investi-
gates different types of models: a nonlinear electronic dynamic
model in Section II-A, a mechanic quasi-static model for case
(i) and a mechanic dynamic model for case (ii) in Section II-C.
The final coupling model is then deduced in Section II-D.

A. Electronic model

In this part we will first build the continuous electronic
model which describes the dynamic evolution of charge along
actuator. Then the discrete model is built by discretization of
the continuous model.

1) Strong form of electronic dynamics: Denote the total
length of polymer as L where two electrode layers outside
wrap the middle ion reservoir membrane. When the polymer is
charged, the research in [20] shows that the process of charge
can be regarded as an infinity RC circuit grid (see Fig. 1(a)).
Let us consider an infinitesimal element dx, and denote ∆Re1
and ∆Re2 as the electric resistance of outer layers and ∆Ri
as the ionic resistance of middle layer, ∆C1 and ∆C2 as the
corresponding capacitances of outer layers, which satisfy the
following equations according to its definition:

∆Re1 =
dx

ωe1bhe
, ∆Re2 =

dx

ωe2bhe
, ∆Ri =

hi
ωibdx

∆C1 = Cv1bhedx , ∆C2 = Cv2bhedx,

where b represents the width of polymer, he is the thickness of
the CP layer, Cv1 and Cv2 are the volumetric capacitance of
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the top CP layer and the bottom CP layer , ωe1 and ωe2 are the
volumetric conductivity of the top CP layer and the under CP
layer, ωi is the volumetric conductivity of the separator layer.
For each RC grid element depicted in Fig. 1(a), its scheme
can be simplified as Fig. 1(b), where

∆Ri = hi
ωibdx

= ri
dx

∆Re = ∆Re1 + ∆Re2 = ( dx
ωe1bhe

+ dx
ωe2bhe

)dx = redx

∆C = ∆C1 + ∆C2 = (Cv1bhe + Cv2bhe)dx = cedx
(1)

Without loss of generality, it is assumed that the electric
resistances and ionic resistance are not constant. In fact, this
electronic nonlinear characteristic has been observed in [15],
which implies that the values of those resistances depend on
the local charge.

As shown in Fig. 1(b), for the RC grid element located at
x with dx length, denote v as the voltage of capacity ∆C,
∆q as the charge of ∆C, i1 and i2 as the currents of the two
branches, λ as the linear charge density at x, then v, i1 and
i2 can be represented by λ(x, t) via the following equations:

v(x, t) =
λ

ce
, i1(x, t) =

∂λ

∂t
dx, i2(x, t) =

∫ l

x

∂λ

∂t
dr. (2)

For each grid as Fig. 1(b), according to Kirchhoff laws (i.e.,∑
U = 0), we have

i2(x, t)∆Re+ λ(x+dx,t)
ce

+ i1(x+ dx, t)∆Ri

−i1(x, t)∆Ri − λ(x,t)
ce

= 0,

With (1) and (2), we can then get the strong form of electronic
dynamics from the above equation:

re(λ)

∫ L

x

∂λ

∂t
dr +

1

ce

∂λ

∂x
+ ri(λ)

∂2λ

∂x∂t
= 0, (3)

which is a partial differential equation (PDE) describing the
charge density along the polymer, satisfying the following
boundary conditions:

λ(x, 0) = 0,
λ(0, t)

ce
+ ri(λ(0, t))

∂λ(0, t)

∂t
− Vin = 0, (4)

where Vin is the tension input applied on the two CP layers.
Remark 1: Due to the balance of charge in the charging

process, the charge along actuator will tend to become stable
when time tends to infinity, which means ∂λ

∂t = 0, thus
∂λ
∂x = 0 according to (3). Consequently, the distribution of
charge along actuator at the equilibrium point will become
geometrically uniform.

Up to now, we have built the continuous equation of charge
density as PDE (3), and with (4) they compose a BVP
(Boundary Value Problem). However, analytically solving such
a highly nonlinear BVP is quite complicated. In the following,
we derive its weak form by applying Galerkin method to ap-
proximate the solution via spatially parameterizing the charge
field.

2) Weak form of electronic dynamics: In order to simplify
the writing of (3) and (4), we use prime in place of ∂

∂x and
dot in place of ∂

∂t . Thus (3) and (4) can be written as follows:

re(λ)

∫ L

x

λ̇dr + ce
−1(λ)λ′ + ri(λ)λ̇′ = 0, (5)

with the boundary condition:

ce
−1(λ(0, t))λ(0, t) + ri(λ(0, t))λ̇(0, t)− Vin(t) = 0. (6)

Now we can define the ”virtual charge displacement” δλ of
each micro RC grid, then the energy balance equation of
conducting polymer might be deduced, which corresponds to
the weak form of PDE (5) as follows:
∀x ∈ [0, L] 7→ δλ(x) ∈ R,∫ L

0

δλT (x)

{
re

∫ L

x

λ̇dr + ce
−1λ′ + riλ̇

′

}
dx = 0. (7)

3) Parameterization charge field: Note that the solution
of (7) is defined in an infinite set. To discretize the system
and find the numerical solution, we consider that the field of
charge can be approximated by a set with limited degrees of
freedom. To generically handle this kind of approximation, the
field of charge λ is defined by the product of basis function
and coefficients. i.e.,

λ(x, t) := Φ(x)λ(t), s ∈ [0, L], (8)

where Φ(x) = [Φ0, Φ1, . . . , Φm] ∈ R1×m is the basis
function and λ = [λ0, λ1, . . . , λm]T ∈ Rm×1 is the
coefficients. In order to globally parameterize the charge field
without losing physical meaning, the basis function Φ(x) is
chosen by these two assumptions below:
Assumption 1: The conducting polymer can be divided into
several sections and for each section the charge density is
distributed linearly.
Assumption 2: All the physical parameters are homogeneous
in each section.

Based on the piece-wise linear assumption 1, basis function
Φ(x) holds following structure:

Φ =



[
l−x
l
, x
l
, 0, . . . , 0

]
, 0 6 x < l

...
...[

0, . . . , 0, kl−x
l
, x−(k−1)l

l
, 0, . . . , 0

]
, (k − 1)l 6 x < kl

...
...[

0, . . . , 0, nl−x
l
, x−(n−1)l

l

]
, (n− 1)l 6 x < nl

As a result, (8) leads to two relations:

δλ(x) = Φδλ, λ(x)′ = Φ′λ. (9)

4) Discrete electronic model: Note that the weak form
(7) is equivalent to (3). This weak form holds the advantage
of realizing the approximation from the continuous dynamics
of electronic model to discrete dynamics. Concretely, by
substituting (8)-(9) into (7), one can get:

δλT
∫ L

0

ΦT

{
re

∫ L

x

Φλ̇dr + ce
−1Φ′λ+ riΦ

′λ̇

}
dx = 0.

The equation above should hold for any δλ, thus after remov-
ing δλT and adding the boundary condition (6), we obtain
the following succinct ODE representation of the electronic
model:

(Re

[
0
P

]
+Ri

[
W
Q

]
)λ̇+Ce

−1

[
W
Q

]
λ =

[
Vin
0

]
, (10)
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with
W =

[
1 0 . . . 0

]
∈ Rm+1,

P =

∫ L

0

ΦT (x)

∫ L

x

Φ(r)drdx, Q =

∫ L

0

ΦT (x)Φ′(x)dx,

Re = diag{re(λ0), re(
λ0 + λ1

2
), . . . , re(

λm−1 + λm
2

)},

Ri = diag{ri(λ0), ri(
λ0 + λ1

2
), . . . , ri(

λm−1 + λm
2

)},

Ce = diag{ce(λ0), ce(
λ0 + λ1

2
), . . . , ce(

λm−1 + λm
2

)}.

After having established the discrete dynamic equation (10)
of electronic model to describe the evolution of charge density
along actuator, the next step is to show how the charge density
of each section can create the deformation of polymer.

B. From electric charge to actuation moment

Consider now one element of 3-layer polymer depicted in
Fig. 2 with Ee and Ei being the Young’s modulus of the CP
layer and the separator layer respectively. Denote α as the
strain-to-charge ratio of the CP layers, and λ as the linear
charge density of CP layers. Obviously, the values of charge
density for these two CP layers should be opposite due to the
balance of charge. Thus we define the linear charge density
of the upper CP layer as λ, so that of the bottom CP layer
should be −λ. As shown in Fig. 2, for a micro element of the
actuator, the stress on its cross section S is comprised with
two parts (see Fig. 2): the elastic stress σe and the redox stress
σr. Since the redox strain is proportional with charge density
[14], the equivalent redox stress can be calculated as follows:

σr(y) =


−Ee αλbhe ,

hi
2 < y 6 hi

2 + he
0, −hi2 6 y 6 hi

2

Ee
αλ
bhe

, −hi2 − he 6 y < −hi2

Consequently, for any cross section we can compute its

Fig. 2. The equivalent redox stress distribution on the cross section S of
polymer based actuator.

actuated force defining in the local frame of cross section.
It can be deduced directly that the total contribution of the
electric stress is a moment while the forces of the two CP
layers counteract with each other:

Fa =

∫∫
S

σrdS = t1

∫∫
S

σrdS =

∫
t1

∫ hi
2 +he

−hi2 −he
σrdydz,

where vector t1 is the identical direction vector of σr (i.e.,
t1 =

[
1 0 0

]T
). The integral part

∫ hi
2 +he

−hi2 −he
σrdy = 0,

which yields Fa =
[
0 0 0

]T
,

Ma =

∫∫
S

y × σrdS =

∫∫
S

t2 × t1σrydS

=

∫ b

0

t

∫ hi
2

+he

−hi
2
−he

σrydydz = t

∫ b

0

Eeα(he + hi)λ

b
dz

= tEeα(he + hi)λ = tβλ =
[
0 0 βλ

]T
,

(11)

where t2 is the identical direction vector of y (i.e., t2 =[
0 1 0

]T
), t = t2 × t1 =

[
0 0 −1

]T
, β = Eeα(he +

hi)λ. For ease of expression, we use an actuation wrench Λa ∈
R6 to represent Fa and Ma:

Λa =
[
Ma

T FaT
]T

=
[
0 0 βλ 0 0 0

]
= Γβλ (12)

where Γ =
[
0 0 1 0 0 0

]T
.

Once we deduced the actuation moment of polymer ac-
tuator, the dynamic state of polymer actuator can be then
analyzed.

C. Mechanic model

In the aspect of mechanic analysis, it is natural that the
polymer actuator can be regarded as a slender beam. The local
charge accumulated inside the polymer will induce the internal
stress which causes the deformation of the polymer actuator. In
this section we will first build the relation between the internal
force and local charge. Then the dynamics of the polymer
actuator will be analyzed in the following subsections, where
we consider the deformation of polymer actuator in 6 DOF
(bending, shear, torsion, extension) under actuation force and
external force.

1) Continuous geometries & kinematics of Cosserat rod:
In cosserat rod theory, the configuration of rod is described by
the rotation matrix R ∈ SO(3) and position vector u ∈ R3,
which represent the orientation and position of each cross
section of the rod with respect to global frame. Thus, the
configuration space of rod is defined as follows:

C = {g : x ∈ [0, L] 7→ g(s) ∈ SE(3)}, g =

[
R u
0T 1

]
The space-time variation of the configuration can be defined
with two vector fields ξ and η which stand for the strain and
velocity of rod respectively in local frame: ∀x ∈ [0, L] 7→
ξ̂(x) ∈ se(3):

ξ̂ = g−1g′ =

[
κ̃ ε
0T 0

]
∈ se(3), ξ = ξ̂

∨
=
[
κT εT

]T ∈ R6

where κ stands for the angular strain and ε represents the
linear strain. ∀x ∈ [0, L] 7→ η̂(s) ∈ se(3):

η̂ = g−1ġ =

[
w̃ v
0T 0

]
∈ se(3), η = η̂∨ =

[
wT vT

]T ∈ R6

where w stands for the angular velocity and v represents the
linear velocity with respect of local frame.
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Based on the definitions of ξ and η, one can derive the ge-
ometries and kinematics through the following two equations
respectively:

g′ = gξ̂ , η′ = ξ̇ − adξ η (13)

which connect the velocity and acceleration with strain.
2) Strong form of dynamics: To analyze the mechanic

behavior of beam such as polymer actuator, the strong form of
dynamic model can be demonstrated as (14), which is detailed
in [21] and [22]:

Mη̇−adTηMη = Λ′i− adTξ Λi−Λ′a + adTξ Λa + Λe, (14)

satisfying the following boundary conditions:

Λi(L)−Λa(L) = Λe(L), (15)

where M represents the screw inertia matrix, M =
diag{ρIx, ρIy, ρIz, ρA, ρA, ρA} ∈ R6×6. ρ is the equivalent
mass density of the total actuator. A is the area of cross-
section. Ix, Iy and Iz are the second moment of the area
of the three axis respectively. Λi ∈ R6 represents the internal
force wrench of polymer actuator which can be calculated by
the constitutive equation based on Cosserat model hypotheses:
Λi = Kξ with K = diag{GIx, EIy, EIz, EA,GA,GA} ∈
R6×6, the equivalent stiffness matrix of the entire electrodes
plus polymer layers, where G represents the shear modulus
and E represents the young’s modulus. Λa ∈ R6 represents
the actuation force wrench of polymer actuator. Λe ∈ R6

represents the distributed load applied on the polymer actuator.
3) Weak form of dynamics: According to the La-

grange–d’Alembert principle, if we define the virtual displace-
ment of each micro solid along polymer actuator δr(x), one
can write the virtual work of polymer actuator which leads to
the weak form of equation (14) as follows:
∀x ∈ [0, L] 7→ δr(x) ∈ R6,∫ L

0

δrT (x)(Mη̇ − adTηMη

−Λ′i + adTξ Λi + Λ′a − adTξ Λa −Λe)ds = 0
(16)

4) Parameterization strain field: To find the solution of
equation (16), the same parameterization idea with electric
model is introduced here in order to get the discretize the
mechanic model. (13) represents the geometries of the rod.
i.e., its configuration space can be reconstructed by knowing
the strain ξ and the initial condition g(0). As a result, this
yields to the second definition of the configuration space: C =
SE(3) × S, where S = {ξ : x ∈ [0, L] 7→ ξ ∈ R6}. Note
that space S is an infinite dimensional space. For the sake of
approximating the solution of (16), we consider that a finite
dimensional space S can be adopted by parameterizing the
strain field ξ, i.e.,

ξ(s) := ξ0 + Ψ(x)q, x ∈ [0, L], (17)

where Ψ(x) = [Ψ0, Ψ1, . . . , Ψn] ∈ R6×n is the basis func-
tion and q = [ξ0, ξ1, . . . , ξn]T ∈ Rn×1 is the coefficients. ξ0
stands the constant part of ξ which we do not want to chose
to be variable.

5) Discrete mechanic model: As a result of parameteri-
zation of strain field, the geometries and kinematics can be
analytically reconstructed by q from (13). For instance, if
we chose Ψ(x) as a piecewise constant basis function, the
analytical solutions of configuration g and η are as follows:
for x ∈ [li−1, li],

g(x, t) = g(li−1, t)e
ξi(x−li−1), (18)

η(x, t) =e−(x−li−1) adξi(
η(li−1, t) +

∫ x

li−1

e(s−li−1) adξidsξ̇i

)
.

(19)

Thanks to the work of [23], these mapping between ξ and η
can be represented by the Jacobian matrix J(x, q):

η(x, t) = J(x, q)q̇(t). (20)

Furthermore, the relationship of their time derivative can be
deduced by the derivation of (20):

η̇(x, t) = J̇(x, q, q̇)q̇(t) + J(x, q)q̈(t). (21)

From (20) one can deduce δr(x) = J(x)δq. Taking it into
equation (16) yields:

δqT
∫ L

0

JT (Mη̇ − adTηMη −Λ′i + adTξ Λi

+ Λ′a − adTξ Λa −Λe)ds = 0.

(22)

After removing δq and taking (20) (21) into (22), we can
finally get the discrete dynamic equation:

M(q)q̈+C(q, q̇)q̇ = Fi(q)+Fa(q)+Fe(q)+N(q)G (23)

where Fe(q) =
∫ L

0
JTΛeds, N(q) =

∫ L
0
JTMAd−1

g ds, G =
[01×4 9.81 0]T is the twist of gravitational acceleration,

Fi =

∫ L

0

JT (Λ′i−adTξ Λi)ds, Fa = −
∫ L

0

JT (Λ′a−adTξ Λa)ds.

(24)
Form kinematics in (13) one can get η′ = − adξi η + ξ̇i for
x ∈ [li−1, li]. Taking (20) into the above equation yields:

J ′q̇ = − adξi Jq̇ + ξ̇i = − adξi Jq̇ + Ψq̇.

Thus, one can get J ′ = − adξi J + Ψ. Then, by substituting
this relationship into Fi in (24) and using the integral by parts
one can obtain

Fi =

∫ L

0

(JTΛi)
′ − (− adξ J + Ψ)TΛi − JT adTξ Λids

=

∫ L

0

(JTΛi)
′ −ΨTΛids = JTΛi|L0 −

∫ L

0

ΨTΛids.

The two boundary conditions J(0) = 0 and Λi(L) = Λa(L)
lead to JTΛi|L0 = JT (L)Λa(L). The piecewise constant
strain assumption leads to Λi = Kξ = KΨq. As a result,
Fi can be simplified by substituting these two relations into
the equation above: Fi = JT (L)Λa(L) −

∫ L
0

ΨTKΨdsq.
Thanks to the same mathematical form of Fa and Fi, the same
structure holds: Fa = −JT (L)Λa(L) +

∫ L
0

ΨTΓΦdsβλ.
After deducing Fi and Fa, the final mechanic model can be
rewritten as following:

Mq̈ +Cq̇ +Kq = Hz(t) + P , (25)
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with the following definitions of all matrices:
• z(t) = [z0, z1, . . . , zm]T = βλ(t) ∈ Rm, the actuation

input;
• M(q) =

∫ L
0
JTMJds ∈ Rn×n, the mass matrix;

• C(q, q̇) =
∫ L

0
JT (MJ̇ − adTJq̇MJ)ds ∈ Rn×n, the

Coriolis matrix;
• K =

∫ L
0

ΨTKΨds ∈ Rn×n, the stiffness matrix;
• H =

∫ L
0

ΨTΓΦds ∈ Rn×m, the actuation matrix;
• P (q, t) = Fe(q, t) + N(q)G ∈ Rn, the contribution of

external force and gravity.

D. Whole coupling model

After having deduced the electric model and the mechanical
model of polymer, we can then gather these two models
together to describe the whole dynamics of input tension
and the corresponding deformation by the combination of the
deduced electric system:

(Q1Σ1 +Q2Σ2)ż +Q3Σ2z = UVin, (26)

with
Q1 =

1

β
Re, Q2 =

1

β
Ri, Q3 =

1

β
Ce
−1,

Σ1 =

[
0
P

]
, Σ2 =

[
W
Q

]
, U =

[
1
0

]
,

and the obtained mechanic system:

Mq̈ +Cq̇ +Kq = Hz(t) + P . (27)

If the actuator works in quasi-static state, one can obtain its
static model by just deleting the first two items Mq̈ and Cq̇
of (27).

III. PARAMETERS IDENTIFICATION

In the case of polymer actuator, the parameters of electric
system are normally hard to measure directly, thus an iden-
tification work is necessary via which we can estimate the
parameters from the data that are easily to measure. The elec-
tric model (26) deduced in the above section is nonlinear and
contains unknown matrix Q1, Q2, Q3 which are nonlinear
function of z. Therefore, a parameter identification procedure
is presented in this section to reveal the nonlinearlity of those
parameters.

From the definition of Re, Ri and Ce, we define:

Q1 = diag{q1(z0), q1(
z0 + z1

2
), q1(

z1 + z2

2
), . . . , q1(

zm−1 + zm
2

)},

Q2 = diag{q2(z0), q2(
z0 + z1

2
), q2(

z1 + z2

2
), . . . , q2(

zm−1 + zm
2

)},

Q3 = diag{q3(z0), q3(
z0 + z1

2
), q3(

z1 + z2

2
), . . . , q3(

zm−1 + zm
2

)}.

It is assumed that these nonlinearlities of function q can be
approximated by polynomials with certain order k, i.e.,

q1(s) =

k∑
i=0

ais
i , q2(s) =

k∑
i=0

bis
i , q3(s) =

k∑
i=0

cis
i. (28)

By noting a =
[
a0, . . . , ak

]
, b =

[
b0, . . . , bk

]
, c =

[
c0, . . . , ck

]
and Π =

[
I diag(z) diag2(z) . . . diagk(z)

]
, the matrix

Q1, Q2 and Q3 can be represented as: Q1 = ΠaT ,Q2 =

ΠbT ,Q3 = ΠcT . Set θ =
[
a b c

]T
and concatenate the

following values at different time from t1 to tnp with np > m
where m is the dimension of z:

Ξ =

 Σ1Π(t1)ż(t1) Σ2Π(t1)ż(t1) Σ2Π(t1)z(t1)
...

...
...

Σ1Π(tnp)ż(tnp) Σ2Π(tnp)ż(tnp) Σ2Π(tnp)z(tnp)


System (26) can be written into the following algebraic form:
Ξθ = Ψ, where Ψ =

[
UTVin(t1), · · · , UTVin(tnp)

]T . It is
clear that, if all the z can be measurable and Ξ is full row
rank, then θ can be identified by using classical least square
method.

IV. CONTROLLER DESIGN

This section is devoted to designing controller to control the
orientation of polymer at free state, as depicted in Fig. 3.

Fig. 3. (a). Geometry of polymer based actuator and its linearization in
workspace. αs is the tangent angle of point A; θL is the included angle
between vector of end point and axis y; θLref is the reference angle; the figure
on right side shows the linearization of system in workspace. (b). Geometry
at θLpi when the curvature of actuator is uniform.

A. State-space representation

In our study, the actuation frequency is below the me-
chanical resonance frequency of the actuator, thus only quasi-
static model is considered in the experimental tests. From (27)
one can then get the mechanic system of quasi-static model
ignoring the gravity and external force:

Kq = −Hz(t). (29)

It is clear that in this scene there is only one variable degree
of freedom which is the angular strain κ along axis z. Thus
here we firstly reduce the order of (29) by a matrix B =
[01×2 1 01×3]:

κ = −BK−1Hz. (30)

From κ one can calculate the geometric matrix g by (18) and
extract the position of end-effector and its orientation from g:

p = Dg(κ)T , (31)

with D =
[
I3×3 0

]
, T =

[
0 0 0 1

]T
. As a result, the

bending θL can be deduced by p:

θL = arctan(p). (32)

Consider the deduced system (26) (30) (31) and (32), it can
be written into the following state-space form:{

ż = f(z) + g(z)u(t)

θL = h(z)
(33)
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where f(z) = −(Q1Σ1 + Q2Σ2)−1Q3Σ2z, g(z) =
(Q1Σ1 + Q2Σ2)−1U , u(t) = Vin(t) and function h(z) is
implicitly defined by (30) (31) and (32).

B. Observer design
In the aspect of control, considering the different application

scenarios of polymer actuator, we suppose that one can only
measure the position of end effector, thus in order to design
state-feedback controller to control θL, we need to design
firstly an observer to estimate z. Considering that the system
is nonlinear and observable, extended Kalman filter [24] has
been adopted in this paper, whose form is written as

˙̂z = f(ẑ) + g(ẑ)u+ PHTR−1[θL − h(z)], (34)

with P is the solution of the following equation:

Ṗ = AP + PAT +Q− PHTR−1HP ,

where A = ∂f
∂z |z=ẑ

,H = ∂h
∂z |z=ẑ

. matrix Q and R are
respectively the power spectral density of process noise and
that of the observation noise, which represent the errors of
system and measurement respectively.

C. Interpolation and linearization
As shown in Fig. 3(a), for the end-effector of polymer, we

firstly divide the workspace between θLmin and θLmax by m+
1 points θLpi to form m zones Ui = [θLpi−1

, θLpi ] with θLp0 =
θLmin and θLpm = θLmax , i.e., [θLmin , θLmax ] = ∪mi=1Ui.
Then the reference path θLref (t) is interpolated by θLpi , and
nonlinear system (33) whose output is located into the ith zone
Ui is linearized at the equilibrium point θLpi , based on which
linear controller will be designed to drive θL moving toward
reference θLref .

According to Remark 1 in Section II, the equilibrium charge
density λ for a given orientation θLpi is geometrically uniform.
Thus, for any θLpi ∈ [θLmin , θLmax ] we have z0(θLpi ,∞) =
· · · = zn(θLpi ,∞). As shown in Fig. 3(b), the geometry leads
to the following relation:

κ(θLpi ,∞) =
βLpi
L

=
2θLpi
L

,∀θLpi ∈ [θLmin , θLmax ] . (35)

Thus one can deduce z(θLpi ,∞) from (30):

z0(θLpi ,∞) = · · · = zn(θLpi ,∞) = EIzκ(θLpi ,∞).

For simplicity, at each θLpi ∈ [θLmin , θLmax ], note the equi-
librium z as zeq(θLpi ) =

[
z0(θLpi ,∞), · · · , zn(θLpi ,∞)

]T
. By

taking zeq(θLpi ) in (33), the input voltage ueq of equilibrium
point can be solved.

Such a linearization of nonlinear system (33) at θLpi yields
ż = Azeq(θLpi )

(z − zeq(θLpi ))

+Bzeq(θLpi )
(u− ueq(θLpi ))

θL = Hzeq(θLpi
)(z − zeq(θLpi )) + θLpi

, ∀θLpi ∈ Ui

(36)
where Azeq(θLpi

) = ∂f
∂z |z=zeq(θLpi

)
,Bzeq(θLpi

) = ∂g
∂z |z=zeq(θLpi

)

Hzeq(θLpi
) = ∂h

∂z |z=zeq(θLpi
)

(37)

D. Controller design
The above linearized system can be represented by tracking

error with extended state below:

x =
[
ez

T eiθ
]T
,

where ez = zeq(θLpi )−z, eθ = θLpi − θL and eiθ =
∫
eθdt.

With the above state, we can obtain the following observation
error dynamics:[

ėz
ėiθ

]
=

[
Azeq(θLpi

) 0

Hzeq(θLpi
) 0

]
︸ ︷︷ ︸

Ā

[
ez
eiθ

]

+

[
−Bzeq(θLpi

)

0

]
︸ ︷︷ ︸

B̄

(u− ueq(θLpi ))︸ ︷︷ ︸
ū

.

(38)

Remark 2: Integrator eiθ in (38) is added on purpose to get
a precise steady state. By doing so, we ensure that at steady
state (when ėz = 0) we get the output at the right value.
Note that this integrator will produce a pole at location zero.
The location of this pole in closed loop (when u = Kx , K
computed by our proposed LQR method) will be in the left
hand plane, i.e. the system becomes stable [25].

With the estimated curvature ẑ via extended Kalman filter
(34), then the iterative LQR controller [25] is used to stabilize
the linearized system at each time step, which guarantees the
convergence speed and robustness of system by its advantage
as the optimal controller, thus we replace z by ẑ in imple-
mentation. Concretely, by noting ez = zeq(θLpi ) − ẑ in the
new state x of system, in order to minimize the following cost
function:

J =

∫ ∞
ti

(xT Q̄x+ ūT R̄ū)dt,

where ti is the initial time when end-effector enters the current
linearized zone of θLpi , R̄ and Q̄ are the weight matrices for
ū and x, the following analytical solution of LQR controller
is obtained:

ū = uLQR = R̄
−1
B̄P̄ x, (39)

with P̄ is the solution of the following algebraic Riccati
equation:

ĀP̄ + P̄ Ā
T

+ Q̄− P̄ B̄T
R̄
−1
B̄P̄ = 0.

Thus, the input voltage u = uLQR + ueq(θLpi ).

V. NUMERICAL SIMULATION & EXPERIMENT

In this section, experimental tests will be presented to
valid the deduced nonlinear model, and the proposed LQR
controller.

A. Experimental setup
As shown in Fig. 4, our platform contains the polymer

actuator which is connected to Arduino card and a camera
(Microscope USB Dino-Lite) which enables us to catch the
deformation of actuator with 20 fps. Specific image processing
program has been developed by us to track the shape of
polymer actuator in real time and compute the corresponding
curvatures and its time derivatives for each divided segment,
which will be detailed in the next subsection. Tab.I shows the
measured parameters of the tested actuator.
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Microscope USB Dino-LiteXY Micropositioner Microactuator

Microcontroller PicoScope

Matlab

Zoom

Fig. 4. Experiment device. The actuator is fixed on the workbench and charged
by micro-controller (MakeBlock MegaPi). A Dino-Lite micro camera on the
right side is installed for observing the deformation of actuator.

B. Nonlinear model validation

1) Parameter identification: In order to identify the un-
known parameters (q1, q2, q3), we use a ramp signal Vin = at
with a = 0.01 V/s as the excitation input signal to deform the
polymer. In the work of Section III, the variable z is calculated

TABLE I
MEASURED PARAMETERS

Length L Width b Thickness h

5.87 mm 1.37 mm 0.035 mm

Strain to stress ratio α Mean Young’s modulus E Mass density ρ

7.31×10−10m3/C 2.53 GPa 2.42×103 kg/m3

from the curvature of actuator, which can be measured directly
by our designed visual system. Since the actuation speed is
very low, the actuator can be regarded as quasi-static state.
Since there is no external force applied on the actuator, the
internal force equals to the actuation one, i.e., for s ∈ [0, L],
Λi(s) = Λa(s), which means:

κ(s, t) =
βλ(s, t)

EIz
=
z(s, t)

EIz
, (40)

where κ is the curvature along axis z of polymer actuator.
Thus z can be calculated by observing κ:

z(s, t) = EIzκ(s, t). (41)

Based on the image captured by the rapid camera, the shape
of actuator can be extracted, from which we can compute
the curvature along actuator and its derivative of time. An
algorithm of image binarization, inter-frame difference [26]
and skeleton extraction [27] is applied via Matlab for obtaining
the center skeleton of actuator. Then the curvature could be
calculated by the following equation:

κ =
y′′

(1 + y′2)3/2
, κ̇ =

∂κ

∂t
. (42)

However, it is inconvenient to compute the curvature and its
derivative directly by the point data set of skeleton, due to the
repeated calculation and discontinuity of data. To overcome
this problem a polynomial curve fitting method is used here

to get the curve function of actuator in real time which is of
the following form:

y =

w∑
i=0

pix
i. (43)

The analytical expression of the curvature and its derivative
can be obtained directly by taking (43) into (42):

κ =

∑w
i=0 i(i− 1)pix

i−2

(1 + (
∑w
i=0 ipix

i−1)2)3/2
, κ̇ =

∂κ

∂t
. (44)

Based on the methods above, we got the curvature and its
derivative of all sections as shown in Fig. 5. From the figure
we can observe that the overall derivative of curvature of the
actuator shows a trend of increasing first and then becoming
steady. This is because the charge inside actuator gradually
reaches saturation from the near power end (section 1) to
the far power end (section 10). From the physical analysis

Fig. 5. Curvature and its derivative measured under input u = 0.01t.

about the micro structure of conducting polymer actuator
[15], the resistance of the inter-layer is little varied by the
charge density. Thus it is reasonable to suppose that q2 in
our model is constant, which mostly corresponds to the ionic
mass transport. On the contrary, there exists a variation of
conductivity and volumetric capacitance of the electrode which
can not be ignored during the procedure of charge [15].
Indeed the electrical conductivity of the conducting polymer
is a nonlinear function of redox level and the volumetric
capacitance changes with the oxidation state. Hence, in the
identification process, we finally adopt the following 5-order
polynomial to represent the nonlinearity of q1, and q3:

q1(s) =

5∑
i=0

ais
i , q2(s) = b0 , q3(s) =

5∑
i=0

cis
i.

The identified values are given in Tab. II.
2) Comparison and validation: In order to show the de-

duced model is reliable, we simulate our model with the
identified nonlinearity of q1, q2 and q3, and compare the
deformation result with experimental measurements. Fig. 6
shows the evolution of the curvature for the 1st section, the
5th section and the 10th section, indicating the fitting level
between the experiment and the deduced model with the
parameter fitting function of 4 order and 5 order. The error
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TABLE II
IDENTIFIED RESULT OF q1 , q2 , q3

i 0 1 2 3 4 5

ai 526 249 −6.814 0.111 −6.9e−4 1.4e−6

b 0.0275

ci 0.0110 −5.9e−5 −2.4e−7 6.1e−9 2.8e−11 4.2e−14

percentage of average curvature of the latter is less than 5%
which is acceptable in our study. Fig. 7 shows the coincidence

Fig. 6. The evolution of the curvature for each segment of the actuator.

level of the deformation of actuator with time between the
experiment and the simulation via quasi-static model and
dynamic model, under a ramp input voltage u = 0.0075t
and a step input voltage of amplitude 1.5V respectively. An

Fig. 7. (a). Deformation of the polymer actuator under the ramp input
comparing with mechanical static model; (b). Deformation of the polymer
actuator under the step input comparing with mechanical dynamic model.

experiment with external load is also carried out. As shown in
Fig.8, a payload mass of 63mg is fixed on the tip of actuator.
In this case, by changing the boundary condition of (15) to:

Λi(L)−Λa(L) + Ad−1gLMpG =Mpη̇L − adT
ηL
MpηL,

one can deduce the mechanical dynamics model of actuator
in case of adding payload, where Mp is the inertial matrix of
payload and AdgL is the transformation matrix (see appendix).
The comparison between simulation and experiment is shown
in Fig.8 under the step input voltage of amplitude 1.5V and
0.1Hz.

C. Orientation control

Two control tests were implemented respectively for moving
to fixed orientation and tracking a variable reference.

Fig. 8. Displacement of tip of the polymer actuator with external load under
the step input voltage of amplitude 1.5V and 0.1Hz comparing with mechanic
dynamic model.

1) Moving to fixed orientation: It is expected to con-
trol polymer’s end-effector orientation θL to a given desired
orientation θLfin from its initial orientation θLini . A linear
trajectory is planned to avoid input saturation (i.e., Vin ≤ 3V )
and ensures that the actuator might arrive at desired orientation
in a stable speed. Therefore, we have the following output
reference with k = 2.5:

θLref =

{
kt+ θLini , t <

θLfin−θLini
k

θLfin , t >
θLfin−θLini

k

where θLini = π/12, θLfin = π/4 and k = 0.045.
2) Tracking variable reference: A sinusoidal reference is

tested in the experiment, which is as follows:

θLref = θLini + θasin(ωt),

where the initial orientation θLini = π/6, amplitude θa =
π/25 and frequency ω = 0.02 rad/s.

3) Parameter setting: By following the proposed procedure
in Section V, we first linearize the deduced nonlinear model in
each zone, and then an Extended Kalman filter of form (34)
has been constructed with Q = 10I and R = 0.01. After that,
the proposed LQR controller of form (39) has been realized
with Q̄ = diag{1, ..., 1, 10} ∈ R11×11 and R̄ = 100.

4) Result analysis: The corresponding experimental results
have been depicted in Fig. 9 and Fig. 10. Clearly, we can
observe that the trajectory of polymer’s end-effector can track
the reference trajectory accurately with an error within 1%.
The system can maintain stable when an external vibration
disturbance was applied on it. Additionally, the input signal is
within 3V , which is in the ideal input region.

VI. CONCLUSION

In this paper, a nonlinear modeling and control for conduct-
ing polymer actuator are investigated. The study focuses on
electric and mechanic model, allowing to consider nonlinearity
which occurs in the micro-actuator. Electro-mechanical model
is proposed, based on which the parameter identification ap-
proach has been addressed where measured curvatures are well
predicted by the deduced model. Then controller design using
Linear–Quadratic Regulator is proposed, where an Extended
Kalman filter has been introduced to estimate polymer’s cur-
vatures. With the proposed LQR controller, actuator bending
angle is then controlled where measurements are in good
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Fig. 9. Control performance of tracking ramp reference.

Fig. 10. Control performance of tracking sinusoidal reference.

agreement with the imposed bending angle. The results of
this study is illustrated with simulation and experimental
validations. Future work would focus on the design and control
for multi-body (in series/parallel) micro-robot based on IEAP
actuators, in order to validate the final application (such as
robots for navigation in vessel and micro gripper).
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APPENDIX

A. Lie group notations

The adjoint representation of the Lie algebra is given by

adξ =

(
κ̃ 03×3
ε̃ κ̃

)
∈ R6×6, adη =

(
w̃ 03×3
ṽ w̃

)
∈ R6×6,

where the operator (̃·) represents a conversion from a 3-
dimensional vector to its skew-symmetric matrix.

B. Transformation matrix

The matrix transforming the velocity or acceleration twist
from body frame to inertial frame is given by

Adg(X) =

(
R 03×3
ũR R

)
∈ R6×6.
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[5] F. Vidal, C. Plesse, D. Teyssié, and C. Chevrot, “Long-life air working
conducting semi-ipn/ionic liquid based actuator,” Synthetic Metals, vol.
142, no. 1-3, pp. 287–291, 2004.

[6] M. Ghaffari, W. Kinsman, Y. Zhou, S. Murali, Q. Burlingame, M. Lin,
R. Ruoff, and Q. Zhang, “Retracted: Aligned nano-porous microwave
exfoliated graphite oxide ionic actuators with high strain and elastic
energy density,” Advanced Materials, vol. 25, no. 43, pp. 6277–6283,
2013.

[7] L. Seurre, K. Rohtlaid, G. T. Nguyen, C. Soyer, S. Ghenna, S. Grondel,
F. Vidal, B. Cagneau, C. Plesse, and E. Cattan, “Demonstrating full
integration process for electroactive polymer microtransducers to realize
soft microchips,” in 2020 IEEE 33rd International Conference on Micro
Electro Mechanical Systems (MEMS). IEEE, 2020, pp. 917–920.

[8] I. Must, V. Vunder, F. Kaasik, I. Põldsalu, U. Johanson, A. Punning,
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nique Hauts-de-France Valenciennes, France. His
research interests include modeling and control of
smart material-based actuators.

Alexandre Kruszewski (39 y/o, male, Full Profes-
sor, first-time participant to FET H2020) is a full
professor at Centrale Lille Institutes. He is a member
of the joint team (CRIStAL UMR 9189 – Inria)
Defrost. He has a strong experience (both theoretical
and practical) in the robust control design based
on numerical optimization. Since 2015, his main
research topic is the control design of soft robots
based on Finite Element Methods.
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