Deep learning for Lagrangian drift simulation at the sea surface - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Deep learning for Lagrangian drift simulation at the sea surface

Résumé

We address Lagrangian drift simulation in geophysical dynamics and explore deep learning approaches to overcome known limitations of state-of-the-art model-based and Markovian approaches in terms of computational complexity and error propagation. We introduce a novel architecture, referred to as DriftNet, inspired from the Eulerian Fokker-Planck representation of Lagrangian dynamics. Numerical experiments for Lagrangian drift simulation at the sea surface demonstrates the relevance of DriftNet w.r.t. state-of-the-art schemes. Benefiting from the fully-convolutional nature of Drift-Net, we explore through a neural inversion how to diagnose modelderived velocities w.r.t. real drifter trajectories.
Fichier principal
Vignette du fichier
DriftNet2022.pdf (954.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03852489 , version 1 (16-11-2022)

Identifiants

Citer

Daria Botvynko, Carlos Granero-Belinchon, Simon Van Gennip, Abdesslam Benzinou, Ronan Fablet. Deep learning for Lagrangian drift simulation at the sea surface. ICASSP 2023: IEEE International Conference on Acoustics, Speech, and Signal Processing, Jun 2023, Rhodes, Greece. ⟨10.1109/ICASSP49357.2023.10094622⟩. ⟨hal-03852489⟩
146 Consultations
271 Téléchargements

Altmetric

Partager

More