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Cell motility as an energy minimization process

H. Chelly and P. Recho
(Dated: May 13, 2022)

The dynamics of active matter driven by interacting molecular motors has a non-potential struc-
ture at the local scale. However, we show that there exists a quasi-potential effectively describing
the collective self-organization of the motors propelling a cell at a continuum active gel level. Such
a model allows us to understand cell motility as an active phase transition problem between the
static and motile steady state configurations that minimize the quasi-potential. In particular both
configurations can coexist in a metastable fashion and a small stochastic disorder in the gel is suffi-
cient to trigger an intermittent cell dynamics where either static or motile phases are more probable,
depending on which state is the global minimum of the quasi-potential.

I. INTRODUCTION

In three-dimensional biological matrices, cell migration
usually does not rely on the formation of focal adhesions
[1] and, taking advantage the external confinement, uses
the non-specific friction between the cell and its envi-
ronement [2] to exert traction forces that break the sys-
tem symmetry and lead to motion. Depending on the
force production mechanism of the traction forces, sev-
eral physical models have been put forward to shed light
on this instability setting the onset of motility [3–10]. In
such models, the interaction with the substrate is present
in the form of a friction coefficient that can be modulated
depending on the affinity of the cell and its environment.

Recently, several two or three dimensional models have
been put forward to show that the limit of a vanish-
ing friction coefficient where the power exerted by the
traction forces on the substrate is negligible compared to
other sources of bulk dissipation, can still lead to cell mo-
tion [11–13]. In such limit, motility is possible because of
the turnover property of the cell skeleton which can build
up through polymerization in the vicinity of the leading
edge and depolymerize in sinks while the building blocks
requiered to do so are not connected to the substrate [14].
The cell material is then continuously renewed ahead of
the cell front and can support a traction-free motion. In-
terestingly, in such paradigmatic situation, motility be-
comes an intrinsic property of the cell that is indepen-
dent of the environment biophysical details. One can also
speculate on the biological role of such mechanism as it
would render cell motion robust with respect change of
the environment chemistry and rheology.

Assuming that cell propulsion in a confined environ-
ment such as a track or a channel [15, 16] is mainly
driven by its molecular motors [1], we study one of the
most simple one-dimensional model of this substrate in-
dependent type of cell motility. We show that, despite
its active nature, our model has a variational structure
with an effective quasi-potential that is minimized in
the course of the cell motion and that the minima of
the quasi-potential correspond to the model metastable
steady states. These minima represent a static symmetric
configuration or a motile asymmetric configuration of the
cell and their appearance and relative level is controlled

by two non-dimensional parameters driving the motors
self-organization: a global contractility coefficient and a
parameter representing the steric hindrance between the
motors.

Next, by introducing a small stochastic perturbation in
the active stress, we show that the metastability of the
deterministic system leads to intermittent cell dynam-
ics which can be either dominated by static phases or
by motile phases depending on which state is the global
or local minimum of the quasi-potential. Although our
minimal model aims at establishing a physical paradigm
rather than reproducing some specific experimental data,
this result may have importance to physically rational-
ize some experimentally observed phenomena such as the
intermitency of individual cell dynamics [17, 18] or the
fact that in a population of similar cells, a proportion is
motile while others are static [19].

II. CONTRACTION DRIVEN MOTION

A simple physical paradigm describing contraction-
diven cell motility on a stiff substrate is presented in
[5, 20]. In this model the cell skeleton can be repre-
sented as a segment with a fixed length moving on a
one-dimensional track. More generally, for a deformable
substrate [21], the stress balance in the skeleton reads

∂xσ = ξ(v − vs), (1)

where x ∈ [l−(t), l+(t)] is the spatial coordinate labeling
material points of the cell skeleton, t > 0 is the time,
l−(t) and l+(t) are the moving fronts of the cell, σ(x, t)
is the axial stress, ξ is a friction coefficient, v(x, t) is
the velocity of the skeleton and vs(x, t) is the velocity of
the substrate. Supposing that the two moving fronts are
connected by a stiff spring representing the cell volume
regulation mechanism [22], we can associate the following
boundary conditions to (1):

σ(l−(t), t) = σ(l+(t), t) and L = l+(t)− l−(t), (2)

where L > 0 is the fixed cell length. Since the incoming
fluxes of skeleton at the cell boundaries vanish, we have:

V (t)
def
= ∂tl−(t) = ∂tl+(t) = v(l−(t), t) = v(l+(t), t), (3)
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where V is the velocity of the cell. The skeleton constitu-
tive behavior is assumed to be that of a visco-contractile
active gel [14],

σ = η∂xv + χc, (4)

where η is the skeleton viscosity, χ is the motor con-
tractility and c(x, t) is the concentration of motors cross-
linking the skeleton filaments. Notice that this simple
description only models the contraction-driven skeleton
flow setting the cell fronts velocity. Although the skele-
ton building blocks polymerization and depolymeriza-
tion is not described as this process follows the skeleton
flow without impacting it in our perspective (see Ap-
pendix D), such turnover is nonetheless essential to re-
construct a realistic skeleton density [5]. Following Ap-
pendix A, we assume that the motor concentration fol-
lows the non-linear drift-diffusion equation

∂tc+ ∂x(cv −D∂x(f(c/c0)c)) = 0, (5)

where D is an effective diffusion coefficient, f is a non-
dimensional positive and non-decreasing function that
accounts for the inhibition of the motors attachment to
the skeleton at a high concentration due to a steric hin-
drance constraint [23] and

c0 =
1

L

∫ l+

l−

c(x, t)dx. (6)

is the average concentration of motors. Because the
fluxes of motors through the cell boundaries vanish

∂xc(l±(t), t) = 0, (7)

c0 is a constant set by the initial concentration.
Finally, the substrate is assumed to be visco-elastic

so that certain functional L relates its velocity with the
traction forces exerted by the cell, vs = L[∂xσ]. Clearly,
if the traction forces ∂xσ vanish, the substrate velocity is
also zero: L[0] = 0.

III. SUBSTRATE INDEPENDENT REGIME

In this paper, we consider the case of a vanishing fric-
tion coefficient, ξ → 0. This limit physically means that
the dissipation due to the interaction with the substrate
is negligible compared to the bulk viscous dissipation.
More specifically, combining (1) and (4) with boundary
conditions (2) and (3), we obtain the following balance
of powers [24]:

−χ
∫ l+

l−

c∂xvdx = η

∫ l+

l−

(∂xv)2dx+ ξ

∫ l+

l−

(v − vs)vdx.

The lefthandside of the above relation is the active power
performed by the molecular motors to deform the cell
skeleton meshwork. It is dissipated at the righthandside

by the skeleton viscosity and its interaction with the sub-
strate which can itself be decomposed into the dissipation
due to the relative frictional velocity and the visco-elastic
dissipation in the substrate bulk. Denoting v̄ the typi-
cal scale of velocities, in the regime that we consider, we
therefore have the scaling relations

χc0v̄/L ∼ η(v̄/L)2 and ξv̄2 � η(v̄/L)2.

Thus v̄ ∼ χc0L/η and L �
√
η/ξ and the vanishing

friction limit corresponds to the situation where the cell
length is much smaller than the hydrodynamic length√
η/ξ screening the stress propagation in the skeleton

[25]. In this situation, the propagation of the stress lo-
cally created by a bundle of molecular motors is long-
range as it spans over the whole skeleton meshwork.
This approximation is not directly applicable to the well-
characterized case of fish keratocytes crawling on a two
dimensional surface for which it can be roughly estimated
that η ' 105 Pa s and ξ ' 1016 Pa m−2 s [26], rather

leading to
√
η/ξ ∼ L. But we anticipate that this limit,

aside from its conceptual interest, can be important for
other cells types that move in the bulk of an extra-cellular
matrix [27] where the adhesion with the environment is
usually weaker.

When the friction with respect to the substrate can be
neglected compared to the internal friction represented
by viscosity, as the skeleton and substrate velocities re-
main bounded, we locally have ∂xσ ' 0 in (1), leading
to vs = 0. In the case where ξ = 0, the mechanical prob-
lem is ill-posed as any arbitrary rigid body motion can
be superimposed to the movement. However, from the
boundary conditions (2) imposing the same stress at the
two fronts, we obtain the global constraint

ξ

∫ l+

l−

(v − vs)dx = 0,

which we use, supposing that ξ is not exactly zero, to
impose the condition:∫ l+

l−

vdx = 0.

Such global constraint is sufficient to eliminate the rigid
body motions and define unambiguously the vanishing
friction limit which leads to a generic cell dynamics that
is independent of the cell/substrate mechanical behavior.

IV. MODEL FORMULATION

Combining the constitutive relation (4) with the no-
flux boundary conditions (3), we obtain that the homo-
geneous stress in the skeleton is σ = χc0. As a result,
χ(c0 − c) = η∂xv which leads by integration to,

v(x, t)− V (t) =
χ

η

∫ l+

l−

H(x− z)(c0 − c(z, t))dz,
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where H denotes the Heaviside step function.
Defining the non-dimensional traveling coordinate y =

[x − (l− + l+)/2]/L and rescaling the concentration by
c0, the space by L and the time by L2/D, we obtain the
following non-dimensional coupled problem:{

α(1− c) = ∂yw
∂tc+ ∂y(cw − ∂y(f(c)c)) = 0,

(8)

with no-flux boundary conditions on c, ∂yc(±1/2, t) = 0
and w, w(±1/2, t) = 0. In (8), there is a single non-
dimensional parameter α = χc0L

2/(ηD) sets the impor-
tance of the contractile activity compared to the two
dissipative mechanisms of diffusion and viscosity. As
w = v−V represents the flow of skeleton in the cell frame
of reference, the cell velocity is given by the condition,

V (t) = −
∫ 1/2

−1/2
w(y, t)dy. (9)

System (8) can also be written as a single non-linear and
non-local drift-diffusion equation by solving for w in (8)1,

w(y, t) = α

∫ 1/2

−1/2
H(y − z)(1− c(z, t))dz (10)

such that (8)2, becomes

∂tc+∂y

(
cα

∫ 1/2

−1/2
H(y − z)(1− c(z, t))dz

)
= ∂yy(f(c)c).

(11)
In this non-dimensional formulation of the problem, the
total mass conservation constraint (6) becomes∫ 1/2

−1/2
c(y, t)dy = 1. (12)

Combining (9) and (10) and using condition (12), we
obtain the following formula directly relating the velocity
and the first moment of the distribution of motors

V (t) = −α
∫ 1/2

−1/2
zc(z, t)dz, (13)

showing that the cell motion is supported by the global
asymmetry of c.

When α = 0, (11) represents a purely passive system
where the motors only diffuse and the solution of (11) is
a homogeneous motor distribution c ≡ 1 associated with
V = 0 (and w ≡ 0). However, when α becomes larger
than the critical value αc = π2(f(1) + f ′(1)), where ′ de-
notes the derivative, multiple steady states become pos-
sible (See Appendix B) and the question of their local
and global stability properties arises. We shall address
this question in the following section by exhibiting a Lya-
punov functional that is minimized during the evolution
of (8).

V. VARIATIONAL STRUCTURE

We define the Lyapunov functional [28, 29], F = E−αS
where the “energetic” and “entropic” terms are

E [w] = −1

2

∫ 1/2

−1/2
w2dy and S[c] = −

∫ 1/2

−1/2
s(c)dy.

Notice that F is not directly interpretable as a free energy
of the system in a classical active gel thermodynamics
perspective [24]. In the above formula the entropy per
unit volume s(c) is defined in the following way:

s′′(c) = f ′(c) +
f(c)

c
,

where we impose that s(0) = 0 and s(∞) = ∞. As f is
a positive and non-decreasing function, these conditions
imply the existence of a minimum smin ≤ 0 such that
s ≥ smin. When f(c) = 1, we recover the Boltzmannian
entropy s(c) = c log(c)− c while for our choice

f(c) = 1 + rc2, (14)

where r is a non-dimensional parameter controlling the
strength of the steric hindrance (see Appendix A), we
obtain,

s(c) = rc3/2 + c log(c)− c.

For the homogeneous solution, only the entropic term
contributes to F = F0 = α(r/2− 1).

Using (8), the inequality

∂tF = −α
∫ 1/2

−1/2

(cw − ∂y(f(c)c))2

c
dy ≤ 0,

shows that F necessarily decays during the dynamics
and that ∂tF = 0 implies that ∂tc = 0. As using
(10) we can check that |w| ≤ α, we also obtain that
F ≥ −(α2/2 − αsmin) is bounded from below insuring
via Lyapunov theory [28] that system (8) converges to
an equilibrium state.

The effective energy can be expressed as a functional
of c only by using (10),

E [c] =
α2

2

∫ 1/2

−1/2

∫ 1/2

−1/2
max(y, z)(1−c(y, t))(1−c(z, t))dydz

such that F is also a functional of c only. Using this
expression, we compute the gradient of F with respect
to c

δF
δc

(y, t) = −α2

∫ 1/2

−1/2
max(y, z)(1−c(z, t))dz+αs′(c(y, t)).

Thus (11) is equivalent to

∂tc = ∂y

(
c

α
∂y

(
δF [c]

δc

))
,
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FIG. 1. Three first bifurcations from the homogeneous state
for r = 0. (a) and (b) are bifurcation diagrams for the quasi-
potential and the cell velocity. They have a pitchfork super-
critical structure. Black dots localize the bifurcation points.
(c) and (d) show the profiles of c and w for some special points
labeled with the corresponding colored circles on (a) and (b).
Full lines correspond to locally stable branches or solutions
while dashed lines are locally unstable

showing that the dynamics of c is driven by its relaxation
to the minimum of the quasi-potential F . The globally
stable steady state is therefore the ceq(y) distribution
that minimizes F under the constraints ∂yceq(±1/2) = 0

and
∫ 1/2

−1/2 ceq(y)dy = 1. The local minima of F are lo-

cally stable steady states while maxima and saddle points
are unstable steady states [28, 29].

VI. METASTABLE STEADY-STATES

We begin by characterizing the critical points of F
which correspond to the possible steady states of sys-
tem (8). To do so, we implement a continuation method
starting from the homogeneous solution at α = 0 using
the software AUTO [30] and follow into the non-linear
regime the bifurcations branching from this state as α
increases. The critical values at which these non-trivial
solution emerge are given by α = αk

0 = (1 + 3r)k2π2,
where k ≥ 1 is an integer (see Appendix B). The first of
these values is αc = α1

0. We show the first three branches
obtained this way in Fig. 1 for r = 0. As solution mea-
sures, we show the values of F − F0 and V . For each
solution bifurcating at an odd bifurcation point (i.e. k is
odd), there is a symmetric solution with respect to the
center of the segment associated with the opposite veloc-
ity (see [20]). The value of the quasi-potential for these
two symmetric solutions is the same and we only show
the solution leading to a positive velocity in Fig. 1. Each
solution bifurcating at an even bifurcation point (i.e. k
is even) has an even symmetry with respect to zero and
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FIG. 2. Structure of the first bifurcation from the homoge-
neous state for r = 3. (a) and (b) are bifurcation diagrams
for the quasi-potential and the cell velocity showing the sub-
critical nature of the bifurcation. The black dot localizes the
first bifurcation point and the red dot the turning point. The
thin dotted vertical lines represent the domain where both the
static and motile configurations are locally stable. (c) and (d)
show the profiles of c and w for some special points labeled
with the corresponding colored circles on (a) and (b). Full
lines correspond to locally stable branches or solutions while
dashed lines are locally unstable.

is thus associated with a zero velocity (see (13)). As we
show in Fig. 1, when the bifurcation order increases, the
number of patterns in the motor concentration increases.
We check in Appendix C that, except for the first bifur-
cation, all the bifurcating solutions are locally unstable.
Added to this, the homogeneous solution ceases to be
locally stable past the first bifurcation point.

However, the stability status of the first bifurcation
branch is interesting. We can analytically show using a
normal form expansion (See Appendix B) that the bifur-

cation is pitchfork supercritical if r < rc = (7 +
√

57)/12
or subcritical if r > rc. In the supercritical case, a lo-
cal stability of the bifurcating branch is found, leading
to a simple situation where the cell converges to either a
motile or static (homogeneous) state depending whether
α ≥ αc or α ≤ αc. The subcritical case is more complex.
As we illustrate in Fig. 2, there is a turning point located
at α = αt ≤ αc along the bifurcating branch leading to a
fold. We can then again check numerically that solutions
before the fold are numerically unstable while solutions
after the fold are linearly stable again, although they
look qualitatively similar with motors self organizing at
the trailing edge of the cell, see Fig. 2. Thus, there is a
choice of parameters (r > rc and α ∈ [αt, αc]) for which
the static and motile configurations can be both locally
stable, the globally stable solution being the one corre-
sponding to the minimum of the quasi-potential. We
show in Fig. 3 the resulting phase diagram where the
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FIG. 3. Phase diagram in the parameter space (α, r) charac-
terizing the steady state of system (8). The black line is the
locus of the first bifurcation point and the red line the one
of the turning point along the first bifurcating branch (when
it exists). The blue dashed line represents a “Maxwell line”.
Above this line, the homogeneous solution is the global min-
imum of the Lyapunov functional F while below this line, it
is the non-trivial polarized solution. We use exp(r) instead of
r to better graphically visualize the separation between the
bifurcation, turning point and Maxwell lines.

motile and static phase are shown as well as the third
metastable phase where the two configurations can coex-
ist. In this phase, a “Maxwell line” separates the region
of parameters space where the motile state is the global
minimum of F and those where it is the static (homoge-
neous) state.

This property entails interesting consequences when
the contractility is no longer deterministic but is sub-
jected to small stochastic fluctuations as the cell can
switch between the two configurations leading to stop-
and-go dynamics.

VII. STOCHASTIC CONTRACTILITY

To simply illustrate the effect of metastability on the
cell dynamics, we consider a source of noise in the model
by changing (4) into

σ = η∂xv + χc+ Σs,

where Σs(x, t) is a small (|Σs| � χc0) stochastic spatio-
temporal noise. As an example, we take

∂tΣs −Θ∂xxΣs = Ẇ

where Θ is a diffusion coefficient and Ẇ (x, t) is a spatio-
temporal white noise. Thus Σs represents small varia-
tions of the mechanical stress in the cell skeleton due
to some existing random disorder. The non-dimensional
model (8) then becomes α(1− c− δσs) = ∂yw

∂tc+ ∂y(cw − ∂y(f(c)c)) = 0
∂tσs − θ∂yyσs = eω̇,

(15)
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FIG. 4. Effect of stochastic fluctuations on the cell metastable
dynamics defined by system (15). (a) Probability densities of
the distribution of velocity of a moving cell in four typical
cases: in red the static configuration is the only steady state
of the deterministic cell dynamics, in green both static and
motile states are locally stable but the static state is the global
minimum of the quasi-potential, in blue the motile state be-
comes the global minimum and in black only the motile state
is locally stable. (b) shows samples of the velocity dynamics
in the four cases. Parameter r = 3 and parameters defining
the noise are Θ = 0.01 and e = 0.001. The simulations to
obtain the probability densities start from the homogeneous
distribution and are ran over a non-dimensional time of 1000.
The transient state is removed and the distributions are sym-
metrized with respect to V = 0 to minimize the computation
cost.

where the new non-dimensional variables are θ = Θ/D
that quantifies the spatio-temporal correlation of the
noise and e � 1 that represents the small noise mag-
nitude in the system. ω̇ is a normalized white noise such
that, denoting 〈.〉 the ensemble average,

〈ω̇(y, t)〉 = 0 and 〈ω̇(y, t)ω̇(y′, t′)〉 = δ(y − y′)δ(t− t′).

The stochastic stress σs = Σs/(χc0) is shifted by

δσs(y, t) = σs(y, t)−
∫ 1/2

−1/2
σs(y

′, t)dy′

such that it has a zero spatial average.
Next, we chose r = 3 and numerically simulate (15) for

four values of α = 96, 96.7,97.5 and 100. The two cen-
tral values correspond to a metastable regime, see Fig. 2,
where either the static state or the motile state is the
global minimum of the quasi-potential while the other
state is a local minimum. We show in Fig. 4, the typical
dynamics as well as the probability densities of the cell
velocities for all four cases. When the static state is the
only existing -and stable- steady state of the determinis-
tic system, the velocity is peaked around V = 0. Then,
as we reach the metastable regime, the distribution has
three peaks corresponding to a static state and the two
symmetric motile configurations. The size of the peaks of
the probability density of V depends on which state is the
global minimum of F and the system may feature pre-
dominantly fluctuations around the static state with rare
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motile excursions or, on the contrary, a motile dynamics
rarely alternating the sign of the velocity and spending
a small duration around the static state. As α increases
such that the system leaves the metastable domain, the
unstable static state disappears from the velocity distri-
bution.

It is potentially interesting to interpret these results at
the collective level as metastability can qualitatively ex-
plain why, in a cell population with the same parameters
defining their molecular motors dynamics, most of the
cells may be almost static with only a certain proportion
moving at a large velocity or, on the contrary, most cells
can be motile and a few of the them static depending
which state is the global attractor of the deterministic
system.

VIII. CONCLUSIONS

We have exhibited one of the simplest model of cell
motion that is independent of its interaction with the
substrate as, while they exert vanishingly small traction
forces, the molecular motors still produce an internal flow
of skeleton that can propel the cell boundary. Such flow
has to be coupled with a physical process that insures
the recycling of the skeleton building blocks and which
is not solved for in this minimalist model. This can
be achieved by considering a backflow [11] or a chem-
ical turnover reaction that depolymerizes the skeleton
at the back and polymerizes it at the front [22]. We
show in details in Appendix D that the present model
can emerge from such perspective. This substrate inde-
pendent motion mode has a variational structure with a
quasi-potential that allows to characterize the local and
global stability of its steady states. In particular, we find
that there exists a region in the non-dimensional param-
eter space where a static and mobile configuration can
co-exist in a metastable fashion. In the presence of an
additional small stochastic stress, this leads to the pos-
sibility of an intermittent cell dynamics where the static
or motile phases of motion dominate depending on which
state is the global minimum of the quasi-potential.

It may be interesting to generalize our results outside
of the vanishing friction limit where the power of the
traction forces is not negligible compared to the internal
viscous dissipation. While an intermittent dynamic can
still be observed in a certain parameters range in this
case, it remains unclear whether it is possible or not to
find a quasi-potential that would precisely specify the
stability of the steady states.
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Appendix A: Effective diffusion of molecular motors
with steric hindrance

We consider two concentrations of molecular motors:
c(x, t) the concentration of motors that cross-link two
fibers of the cytoskeleton (concentration c) and m(x, t)
the concentration of motors that are free to diffuse (coeffi-
cent Dm) in the cytoplasm [31]. There is an attachment
(rate ka) and detachment (rate kd) dynamics between
these two populations that lead to the following coupled
system:

∂tc+ ∂x(cv) = kam− kdc (A1)

∂tm−Dm∂xxm = kdc− kam.

While we assume that the rate of detachment kd is fixed,
the rate of attachment ka = k0ag(c) decreases with the
concentration c because of steric hindrance. The function
g(c) is therefore a positive and decreasing to zero as c
becomes large.

Assuming that the system remains close to its chemical
equilibrium because the rates are large compared to the
transport and diffusion (ka, kd � v/L,D/L2), we have
that

m ≈ kd
k0a

c

g(c)
.

Plugging this approximation in (A1) and assuming that
kd/k

0
a is a small parameter while D = Dmkd/k

0
a re-

mains finite, we obtain the equation (5) by setting that
f(c/c0) = 1/g(c) where the scaling parameter c0 is the
average concentration of motors that is constant during
the dynamics.

Appendix B: Normal forms of the solutions
bifurcating from the homogeneous solution

The steady states of (8), for which ∂tc = 0 correspond
to the solutions of the equation

∂y

(
∂y(f(c)c)

c

)
+ α(c− 1) = 0 (B1)

with Neumann boundary conditions at y = ±1/2.
Eq. (B1) has the homogeneous solution c ≡ 1. From this
solution, non-trivial solutions bifurcate at specific values
of α. These bifurcation points and the behavior of the
bifurcating solutions can be investigated by plugging a
Taylor expansion of c and α in Eq. (B1),

c(y, t) = 1 + εc1(y) + ε2c2(y) + ε3c3(y) + ... (B2)

α = α0 + εα1 + ε2α2 + ε3α3 + ...
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where the root mean square of the ci is fixed to one and
ε is a small parameter.

At first order we find that the operator

(f(1) + f ′(1))∂yyc1 + α0c1 = 0,

with Neumann boundary conditions becomes degenerate

at the values of α0 indexed by the integer k ≥ 1:

αk
0 = (f(1) + f ′(1))k2π2.

The smallest value of α0 corresponding to k = 1 is de-
noted αc. At each αk

0 , a solution bifurcates along the two
symmetric eigenvectors

ck1(y) = ±
√

2 cos(πk(y + 1/2)).

At the second order in ε, we obtain using the Fredholm
alternative that αk

1 = 0 and

ck2(y) =
ck1(y)

√
22f(1)f ′(1) + 7f ′(1)2 + 4 (f(1)− f ′(1)) f ′′(1) + 7f(1)2 − 2f ′′(1)2 +

√
2ck1(2y) (f(1)− f ′′(1)− f ′(1))

3 (f ′(1) + f(1))

Finally, the value of αk
2 fixing the local nature of the bifurcation is classically given by the third order expan-

sion:

αk
2 =

π2k2
(
−4f ′′(1)2 − 10f ′(1)2 + f(1)

(
3f (3)(1) + 11f ′′(1) + 8f ′(1)

)
+ f ′(1)

(
3f (3)(1)− 5f ′′(1)

)
+ 2f(1)2

)
12 (f ′(1) + f(1))

Taking the simple form f(c) = 1+rc2 where r is a non-
dimensional parameter fixing the strength of the steric
hindrance, we obtain

αk
2 =

π2k2
(
−18r2 + 21r + 1

)
18r + 6

,

which is positive for r < rc = (7 +
√

57)/12 indicating a
super-critical pitchfork bifurcation while it becomes neg-
ative when r > rc indicating a sub-critical pitchfork bi-
furcation.

Appendix C: Local stability

The local (or linear) stability of a certain steady state
ceq(y) is given by the second variation of F at this point.
Based on the expressions of E and S, we obtain the fol-
lowing quadratic form:

δ2F [h] =
α2

2

∫ 1/2

−1/2

∫ 1/2

−1/2
max(y, z)h(z)h(y)dydz (C1)

+
α

2

∫ 1/2

−1/2
s′′(ceq(y))h(y)2dy.

If δ2F is strongly positive for all test functions h that
satisfy the Neumann boundary conditions at ±1/2 and
the constraint ∫ 1/2

−1/2
h(y)dy = 0,

the steady state ceq is linearly stable. It is unstable oth-
erwise. Such condition is equivalent to checking the pos-
itivity of the eigenvalues of the polar form associated to

δ2F . This leads to the eigenvalue problem

α2

∫ 1/2

−1/2
max(y, z)h(z)dz + αs′′(ceq(y))h(y)dy = µh(y),

where µ is the eigenvalue and h the eigenvector. Differen-
tiating twice this relation, we obtain the boundary value
problem

α2h(y) = ∂yy ((µ− αs′′(ceq(y)))h(y))
with ∂yh(±1/2) = 0.

(C2)

Each eigenvector being defined up to a constant, we ad-
ditionally impose the normalization∫ 1/2

−1/2
h(y)2dy = 1.

The local stability of the homogeneous solution
ceq(y) ≡ 1 can be resolved analytically since the solu-
tion of (C2) is explicit in this case and we obtain:

µ =
−α2

k2π2
+ α(f(1) + f ′(1)),

where k ≥ 1 is a positive integer. As a consequence, there
exists at least one negative eigenvalue as soon as α > αc

indicating the loss of local stability of the homogeneous
solution past the first bifurcation point.

For the non-homogeneous branches, it is not straight-
forward to solve (C2) and we investigate the local sta-
bility properties numerically by using the test function
combining the first Q modes

h(y) =

Q∑
k=1

hkc
k
1(y)
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in (C1). We thus have to test the positivity of the eigen-
values of the symmetric matrix δF = δE− αδS with

δEi,j =
α2

2

∫ 1/2

−1/2

∫ 1/2

−1/2
max(y, z)ci1(y)cj1(z)dydz = −α

2δij
2i2π2

and

δSi,j = −1

2

∫ 1/2

−1/2
s′′(ceq(y))ci1(y)cj1(y)dy

and where δij is the Kronecker symbol and i, j are inte-
gers in the interval [1, Q].

Appendix D: Model of the skeleton turnover

In this section, we expand the model formulation to
represent the implicit material turnover of the cell skele-
ton that is coupled to its retrograde flow. While in the
main text, we consider for simplicity only the skeleton
and the molecular motors which actuate it, we shall con-
sider here two additional components in the system: a
fluid phase (the cytosol in a cell context) that permeates
the skeleton meshwork and the skeleton building blocks
that are in solution in the permeating fluid phase (such
as actin monomers in a cell context).

Relying on the porous medium active gel theory pre-
sented in [32] and considering that the volume fraction
of fluid is fixed, we can express the mass balance laws of
the skeleton, fluid and skeleton building blocks as

∂tρ+ ∂x(ρv) = k+b− k−ρ (D1)

∂tρf + ∂x(ρfvf ) = 0 (D2)

∂tb+ ∂x(bvf −Db∂xb) = k−ρ− k+b, (D3)

where ρ(x, t) is the density of skeleton, ρf (x, t) that of
the permeating fluid and b(x, t) is the concentration of
building blocks in the fluid. Thus, k± are the assumed
fixed polymerization and depolymerization rates of the
skeleton, vf (x, t) is the fluid velocity and Db is a diffusion
coefficient characterizing the mobility of the monomers
with respect to the fluid. As we do not consider any flux
of skeleton, water or skeleton building blocks through the
cell membrane during the motion, we have that ∂tl±(t) =
v(l±(t), t) = vf (l±(t), t) and ∂xb(l±(t), t) = 0.

The total stress in a representative volume element is

Σ = −pf + η∂xv + χc, (D4)

where, we have neglected the skeleton compressibility as-
suming that on a long time scale, it behaves as a viscous
fluid and pf (x, t) is the pressure in the permeating fluid.
In the absence of inertia, force balance imposes that

∂xΣ = ξ(v − vs), (D5)

where ξ is a friction coefficient ecompassing both pas-
sive friction and the active friction stemming from the
engagement and disengagement of focal adhesions cou-
pling the skeleton and the substrate [33, 34] as intro-
duced in (1).To the force balance (D5), following [35], we
associate the following boundary conditions Σ(l±(t), t) =
−γ(l+(t)−l−(t)) that account for the presence of a mem-
brane tension γ. Finally the fluid motion through the
skeleton is described by a Darcy law

vf − v = − κ

ηf
∂xpf , (D6)

where κ is the meshwork permeability and ηf the fluid
viscosity.

Using the fact that the permeating fluid is incompress-
ible, we obtain from (D2) that ∂xvf = 0 which, using
the associated boundary conditions, leads to (3) of the
main text. In particular, this implies that the length
L = l+(t)− l−(t) is a constant. Added to this, it is also
considered that the fluid permeation is fast compared to
the velocity of the meshwork itself at our (long) timescale
of interest. This can be quantified by the non dimensional
number

κχc0
ηfD

' 4× 103 � 1,

where we used the rough estimates derived from exper-
iments on fish keratocytes [20, 32]: κ ' 2 × 10−16 m2,
χc0 ' 103 Pa, ηf ' 2 × 10−3 Pa s and D ' 0.25 ×
10−13m2s−1. We then assume that ∂xpf ' 0 (while the
product κ∂xpf remains undetermined) and pf is approx-
imately constant in (D4) and (D5). Setting σ = Σ + pf ,
we thus obtain (1) and (4) with the associated boundary
conditions (2) where the residual stress at the boundaries
σ(l±(t), t) = −γL + pf .Along with the dynamical equa-
tion for the molecular motors, we therefore recover the
model presented in the main text. This model is aug-
mented with the dynamics for the cytoskeleton density
(D1) and that of its building blocks (D3). More specif-
ically, using the above formulated assumptions and the
non-dimensionalization of the main text, we can couple,{

∂tρ+ ∂y(ρw) = ν+b− ν−ρ
∂tb− d∂yyb = ν−ρ− ν+b

(D7)

to our model system (8). In (D7), we have kept the same
notations for the densities rescaled by the constant ρf :
ρ := ρ/ρf and b := b/ρf and used the non-dimensional
quantities d = Db/D and ν± = L2k±/D. Once w is
solved for in (8), we can solve the coupled drift-diffusion
equation determining ρ and b in (D7). In particular, the
cytoskeleton building blocks diffuse in the cytoplasm and
are polymerized and depolymerized into the meshwork
according to a first order kinetic.
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