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Labrossea and Yanick Ricarda
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In the quest to understand the basic universal features of compressible convection, one
would like to disentangle genuine consequences of compression from spatial variations
of transport properties. Unfortunately this is sometimes difficult: for instance, one may
choose to consider a fluid with uniform dynamic viscosity, but then, compressible effects
will often generate a density gradient and consequently the kinematic viscosity will not
be uniform. Similarly, a uniform thermal conductivity leads to a gradient of thermal
diffusivity. In the present work, we consider a very peculiar equation of state, whereby
entropy is solely dependent on density, so that a nearly isentropic fluid domain is nearly
isochoric. Within this class of equations of state, there is a thermal adiabatic gradient and
a key property of compressible convection is still present, namely its capacity to viscously
dissipate a large fraction of the thermal energy involved, of the order of the well-named
dissipation number. In a series of anelastic approximations, under the assumption of an
infinite Prandtl number, the number of governing parameters can be brought down to
two, the Rayleigh number and the dissipation number. This framework is proposed as a
playground for compressible convection, an opportunity to extend the vast corpus of the-
oretical analyses on the Oberbeck-Boussinesq equations regarding stability, bifurcations
or the determination of upper bounds for the turbulent heat transfer. Here, in a two-
dimensional geometry, we concentrate on the structure of upward and downward plumes
depending on the dissipation number, on the heat flux dependence on the dissipation
number and on the ratio of dissipation to convective heat flux. For all Rayleigh numbers,
a change in the vertical temperature profile is observed in the range of dissipation num-
ber between 0 and less than 0.4, associated with the weakening of ascending plumes. For
larger dissipation numbers, the heat flux dependence on this number is found to be well
predicted by Malkus’s model of critical layers. For dissipation numbers of order unity, in
the limit of large Rayleigh numbers, dissipation becomes related to the entropy heat flux
at each depth, so that the vertical dissipation profile can be predicted, and consequently
so does the total ratio of dissipation to convective heat flux.

Key words: Rayleigh-Bénard, Equations of state, Compressible convection, Anelastic
Approximations

1. Introduction

Natural convection is the response of a fluid with a specific equation of state subject to
a thermal or compositional buoyancy forcing – for instance an imposed temperature dif-
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ference in a gravity field – while conservation laws of mass, momentum and energy apply.
Compressibility effects are inevitable, but in a famous approximation due to Oberbeck
(1879) and Boussinesq (1903), pressure effects are relegated to a secondary role. The
Oberbeck-Boussinesq model is so simple and has become so popular that most theo-
retical studies of natural convection are made in its framework. We will concentrate on
the Rayleigh-Bénard configuration (Bénard (1901); Rayleigh (1916)), mostly relevant to
stars and planets. In these large natural objects, where compressibility plays a large role,
fewer theoretical results have been derived and we think this is essentially due to the
absence of a simple set of equations which could be used as a playground for studies of
compressible convection.
In a simple geometry, the Oberbeck-Boussinesq model has just two dimensionless pa-

rameters, the Rayleigh Ra and Prandtl Pr numbers. The Prandtl number is only relevant
to the inertial effects in the momentum equation. In the limit of infinite Prandtl numbers
as it is the case for convection in the solid mantle of terrestrial planets, this parameter
becomes irrelevant, so that there is a single governing parameter, the Rayleigh number
Ra. Since the stability analysis of Rayleigh (1916), a century of theoretical investigations
were led and thousands of scientific papers have been published using the Oberbeck-
Boussinesq model. As soon as compressibility effects are taken into account, the number
of governing parameters jumps to six (see Curbelo et al. 2019): Pr, Ra, αT , cp/cv, Th/Tc,
αgH/cp, where the symbols α, cp, cv, T , Th, Tc, g, H denote the coefficient of thermal
expansion, heat capacity at constant pressure, heat capacity at constant volume, tem-
perature, hot imposed temperature, cold imposed temperature, gravity and the height
of the fluid layer, respectively. Depending on the equation of state considered, there can
be fewer parameters (αT = 1 for ideal gases) or more parameters needed to describe
the fluid. This – and numerical difficulties mentioned below – explain why there are
comparatively few studies devoted to compressible convection and stresses the need to
propose simple approaches that might enable the community to identify basic features
of compressible effects. Hopefully our work will contribute to this objective.
Carnot (1824) was the first to suggest that the low temperature at high altitude were

due to adiabatic decompression of air in ascending currents, while descending currents
and adiabatic compression would bring air back to the higher temperature at sea level.
This was later generalized by Schwarzschild (1906) for the temperature profile in con-
vective regions of stars, while Jeffreys (1930) proved that the stability of compressible
convection was governed by the superadiabatic Rayleigh number with the same threshold
(for moderate compressibility) as obtained by Rayleigh (1916) in the Boussinesq approx-
imation. Later, stability was studied by a number of authors (Spiegel 1965; Giterman
and Shteinberg 1970; Bormann 2001; Busse 1967; Paolucci and Chenoweth 1987; Fröhlich
et al. 1992). More recently, we published a model of stability valid for any arbitrary equa-
tion of state and uniform dynamic viscosity and conductivity (Alboussière and Ricard
2017).
A difficulty with the fully compressible governing equations was soon spotted: they

contain the fast sound wave and the convective timescales. In many instances those
timescales are so different that the numerical task of computing convection is overwhelm-
ing. Anelastic approximations (AA) were developed for the atmosphere, Earth’s core and
stars (Ogura and Phillips (1961); Braginsky and Roberts (1995); Lantz and Fan (1999)),
valid in convective regions, consisting in an expansion about an isentropic state. The
simplified anelastic liquid approximation ALA was proposed in (Anufriev et al. 2005) in
which the role of pressure fluctuations on other thermodynamic quantities is neglected.
In the stably stratified cases, sound-proof models have also been developed (Durran 1989;
Lipps 1990; Vasil et al. 2013) in the pseudo-incompressible approximation. Lecoanet et al.
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(2014) note that the pseudo-incompressible equation of state introduces some inaccura-
cies in the thermodynamic variables.

When compressible effects are present, there is usually a significant range of tem-
peratures in the system, since the adiabatic gradient is a key feature of compressible
convection. The same is true for pressure, density, and so on. A consequence is that
transport coefficients of heat or momentum – thermal conductivity and (dynamic) vis-
cosity – are usually not uniform. It is then difficult to distinguish between consequences
of compressibility and consequences of non-uniform transport properties. Even in the
classical Boussinesq model can non-uniform transport coefficients be modelled, they are
called the Non-Oberbeck-Boussinesq (NOB) effects, for instance in Horn et al. (2013).
In the present paper, we try to minimize the NOB effects. For this reason, we choose
uniform constant thermal conductivity and (dynamic) viscosity. However, when density
varies so do kinematic viscosity and thermal diffusivity. Hence we make a peculiar choice
of equation of state, such that density is constant when entropy is constant s(ρ). This
ensures that a nearly isentropic convective region is also a region of nearly uniform den-
sity and kinematic viscosity. We will see that the heat capacity cp and thermal diffusivity
are also uniform where entropy is uniform.

In the next section 2, we discuss the general validity of an equation of state and ex-
pand the case s = s(ρ). Using that class of equations of state, section 3 is devoted to
the description of the configuration and to writing the governing equations and anelas-
tic approximations. In section 4 we first show results of the initial phase of convection
from rest, with a small superadiabatic Rayleigh number and a large dissipation number,
in order to assess the validity of the different anelastic approximation models. We then
show that a significant change in temperature profiles occurs at small dissipation number,
in section 5.1, namely the disappearance of the top overshoot on the vertical averaged
profile. Top and bottom asymmetry is further studied in section 5.2 for larger values
of the dissipation number. The basic model of critical boundary layer is applied to the
compressible case in section 6 and provides a model for the change of heat flux when the
dissipation number is increased. In section 7, we introduce the expressions for the vertical
heat flux in the different models (fully compressible and anelastic approximations), as
well as that for the dissipation profile, under a form that will be suited to understand
energy transfers in the final sections. The numerical results of global dissipation rela-
tive to the convective heat flux are shown for all models and a range of superadiabatic
Rayleigh numbers and dissipation numbers in section 7.1. A definite limit is observed
at large superadiabatic Rayleigh numbers which is further studied in section 7.2. It is
interpreted as a local mesoscale equilibrium state whereby the entropy flux contribution
is found to correspond both to energy dissipation and to the main part of the heat flux.
Finally, in section 8, we consider the additional effects of inertia, cavity aspect ratio and
boundary conditions, to show that another state of flow can be obtained which does
not correspond to that local equilibrium and exhibits larger dissipation. However, those
last boundary conditions with impermeable vertical walls are less relevant in the geo-
physical and astrophysical context. In conclusion (section 9), our study gives support to
the mesoscale equilibrium implying that the vertical profile of dissipation takes the form
of the function αg/cp in compressible convection in the limit of large dissipation and
superadiabatic Rayleigh numbers.

Considering the very specific equation of state considered here, the condition of infinite
Prandtl number, the two-dimensional geometry and the absence of rotation and magnetic
effects, the results of this study should not be applied to stellar or planetary objects
without further investigations. However, they provide a possible asymptotic behaviour
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for the large compressibility, large Rayleigh number, limit. It remains to determine under
which conditions that behaviour will be observed.

2. Impossible EoS ρ(T ) and possible EoS ρ(s)

From gases to solids, a wide range of equations of state (EoS in short) is possible. From
a theoretical point of view, one can wonder what should be a possible EoS and when a
tentative EoS is impossible. One answer is that one should just start from a fundamental
EoS under the form

e = e(s, ρ). (2.1)

where s, e and ρ are the specific entropy, specific energy and density, respectively. From
Gibbs equation de = Tds+P/ρ2dρ (T temperature, P pressure), one just needs T to be
positive, if we want to consider real existing conditions

∂e

∂s

∣

∣

∣

∣

ρ

> 0. (2.2)

However, one rarely starts from a fundamental EoS (2.1). Usually, one expresses density ρ
as a function of pressure P and temperature T . The first obvious idea when one wishes to
get rid of compressible effects – and jump immediately into the Boussinesq approximation
– is to state that density is independent of pressure

ρ = ρ(T ). (2.3)

We now investigate the consequences of this assumption (2.3) (see also Grandi and
Passerini (2020)). We derive a general relationship, equation (A7) in Alboussière and
Ricard (2013), on the partial derivative of enthalpy h = e+P/ρ with respect to pressure
at constant temperature

∂h

∂P

∣

∣

∣

∣

T

=
1− αT

ρ
, (2.4)

which is obtained from Gibbs equation under several forms (using the differential of h
and that of Gibbs free energy g = h − Ts) and deriving Maxwell relations. Note that
the right-hand side – assuming (2.3) and hence α = −ρ′/ρ where the prime denotes
derivative with respect to the single variable T – is a function of T only, that we denote
A

A =
1

ρ
+

ρ′T

ρ2
, (2.5)

Equation (2.4) is integrated to give an expression for the enthalpy

h = AP +B, (2.6)

where B is another function of temperature. This expression is used to write dh which
is then substituted in Gibbs equation dh = Tds+ dP/ρ leading to

ds =
A′P +B′

T
dT +

ρ′

ρ2
dP. (2.7)

Considering that A′ = T (ρ′/ρ2)′ from (2.5), equation (2.7) implies the following form for
s

s =
ρ′

ρ2
P + C, (2.8)
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where C is yet another function of T which turns out to be an integral of B′/T . We can
now write an expression for the Gibbs free energy g = h− Ts

g =
P

ρ
+B − TC. (2.9)

A condition of stability of a material substance (Bazarov 1989) is that its Gibbs free
energy g should be a concave function of P and T . If not, the substance would split into
two different phases that have together a larger entropy, as for instance in the phase-
change region of the Van der Waals model. Locally, a necessary condition is that the
Hessian of g (its matrix of second partial derivatives) is a negative-definite matrix, i.e.
has alternatively negative and positive leading principal minors according to Sylvester’s
criterion (Gilbert 1991). The Hessian matrix is







∂2g
∂T 2

∣

∣

∣

P

∂2g
∂T∂P

∂2g
∂P∂T

∂2g
∂P 2

∣

∣

∣

T






(2.10)

The first leading principal minor is ∂2g/∂T 2 at constant pressure. From Gibbs equation
dg = −sdT + dP/ρ, we have

∂g

∂T

∣

∣

∣

∣

P

= −s,
∂g

∂P

∣

∣

∣

∣

T

=
1

ρ
, (2.11)

and hence

∂2g

∂T 2

∣

∣

∣

∣

P

= − ∂s

∂T

∣

∣

∣

∣

P

= −
(

ρ′

ρ2

)′

P − C′ = −
(

ρ′

ρ2

)′

P − B′

T
, (2.12)

from (2.8), which can indeed be made negative for an appropriate choice of the function
ρ(T ) and B(T ). Now, the second and last leading principal minor (in dimension two) is
the determinant of the whole Hessian matrix. From (2.11), we can see that the second
derivative of g with respect to P will be zero. The determinant of the Hessian matrix is
then just equal to

det







∂2g
∂T 2

∣

∣

∣

P

∂2g
∂T∂P

∂2g
∂P∂T

∂2g
∂P 2

∣

∣

∣

T






= −

(

∂2g

∂P∂T

)2

= −
[

∂

∂T

(

1

ρ

)
∣

∣

∣

∣

P

]2

. (2.13)

It is negative, meaning that g is not a concave function of T and P . The only way to
save that equation of state would be to make this determinant zero: since it is the partial
derivative of 1/ρ with respect to T at constant P , it is zero only when ρ is a constant.
Such an equation of state is not interesting for thermal convection as no buoyancy would
exist. Hence we consider equation (2.3) as an impossible equation of state. Another
related aspect can be noted from Mayer’s relationship

cp − cv = − T

ρ2
∂P

∂T

∣

∣

∣

∣

ρ

∂ρ

∂T

∣

∣

∣

∣

P

. (2.14)

That difference is infinite since ∂P/∂T is infinite at constant ρ, from Euler’s chain rule
∂P/∂T |ρ ∂T/∂ρ|P ∂ρ/∂P |T = −1. Hence the choice of meaningful heat capacities is
impossible.
We now investigate another simple form of EoS, such that density is a function of

entropy only and show that it satisfies marginally the criterion of stability, as noted in
Scott (2001). Let us identify all possible equations of state such that density is solely a
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function of entropy, or reciprocally such that entropy is solely a function of density

s = s(ρ). (2.15)

The thermodynamics Gibbs equation can be written

de = Tds− Pdv =

(

Ts′ +
P

ρ2

)

dρ, (2.16)

where v is the specific volume (v = 1/ρ) and the primes now denote the usual derivative
with respect to the single variable ρ. It follows from the previous equation that e is also
solely a function of ρ,

e = e(ρ). (2.17)

The next consequence, by definition, is that the heat capacity at constant volume cv is
zero

cv ≡ ∂e

∂T

∣

∣

∣

∣

v

=
∂e

∂T

∣

∣

∣

∣

ρ

= 0. (2.18)

This shows that our choice is a limit case of valid equations of state, a negative cv would
not be realistic. Instead of considering that entropy is a function of density only, had we
added a tiny dependence on temperature, we would probably have been able to obtain
a strictly positive and small value for cv and that equation of state would have been
perfectly valid. Equation (2.16) can also be written

Ts′ = e′ − P

ρ2
. (2.19)

Multiplying (2.19) by ρ2 and deriving with respect to temperature T at constant pressure
P leads to the following expression for the coefficient of thermal expansion

α ≡ −1

ρ

∂ρ

∂T

∣

∣

∣

∣

P

=
ρs′

−(ρ2e′)′ + T (ρ2s′)′
, (2.20)

Using Gibbs equation (2.19) to extract P/ρ, we express the specific enthalpy h as follows

h ≡ e+
P

ρ
= e+ ρe′ − ρTs′. (2.21)

From (2.21) and (2.20), after straightforward but slightly tedious steps, we derive an
expression for the heat capacity at constant pressure

cp ≡ ∂h

∂T

∣

∣

∣

∣

P

= −ρTαs′. (2.22)

At this point, from (2.20) and (2.22), we note that αT/cp – which multiplied by gravity
g expresses the adiabatic gradient – is solely a function of ρ

αT

cp
= − 1

ρs′
, (2.23)

so that, in an isentropic region under a uniform gravity field, one can expect to observe
a uniform adiabatic temperature gradient. The condition s′ < 0 is needed to avoid a
negative α or worse a negative cp according to equation (2.23). However, cp and αT are
functions of ρ and T , hence will not be uniform in an isentropic region. In order to avoid
complexity, we assume – in addition to s being a function of ρ – that (ρ2e′)′ is zero, hence

e =
K

ρ
, (2.24)
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up to an irrelevant additive constant, and where the multiplicative constant K is a pa-
rameter whose value can be freely specified. This eliminates the temperature dependence
of αT and cp. With equation (2.24) we have

αT =
ρs′

(ρ2s′)
′
, (2.25)

cp = − ρ2s′
2

(ρ2s′)′
. (2.26)

The condition of stability on the leading principal minors of the Hessian matrix of g is
now examined. With our choice for energy (2.24) and the form of h in (2.21), Gibbs free
energy g ≡ h− Ts takes the form g = −T (ρs)′. Using (2.11), we obtain

∂2g

∂T 2

∣

∣

∣

∣

P

= − ∂s

∂T

∣

∣

∣

∣

P

= −s′
∂ρ

∂T

∣

∣

∣

∣

P

, (2.27)

∂2g

∂P 2

∣

∣

∣

∣

T

= − 1

ρ2
∂ρ

∂P

∣

∣

∣

∣

T

, (2.28)

∂2g

∂T∂P
= − ∂s

∂P

∣

∣

∣

∣

T

= −s′
∂ρ

∂P

∣

∣

∣

∣

T

. (2.29)

In order to evaluate these second derivatives, we need expressions for the partial deriva-
tives of density with respect to temperature and density. From (2.19), we get

∂P

∂ρ

∣

∣

∣

∣

T

=
(

ρ2e′
)′ − T

(

ρ2s′
)′

= −T
(

ρ2s′
)′

, (2.30)

owing to our choice
(

ρ2e′
)′

= 0. The inverse of (2.30) provides ∂ρ/∂P while (2.25) is used
to express ∂ρ/∂T . When substituted in (2.27), (2.28) and (2.29), we obtain the Hessian
matrix







∂2g
∂T 2

∣

∣

∣

P

∂2g
∂T∂P

∂2g
∂T∂P

∂2g
∂P 2

∣

∣

∣

T






=





ρ2s′2

T (ρ2s′)′
s′

T (ρ2s′)′

s′

T (ρ2s′)′
1

ρ2T (ρ2s′)′



 , (2.31)

The first leading principal minor is negative when
(

ρ2s′
)′

< 0, so that this condition must
be fulfilled. The second minor is the whole determinant of the Hessian matrix and it is
easy to check that it is zero. In that sense the equation of state s(ρ) is just marginally
stable.
There is still a large set of possibilities since we are free to consider any function s(ρ),

provided
(

ρ2s′
)′

< 0 and s′ < 0 if one wishes to restrict the analysis to positive values
of α. Let us choose a set of such decreasing functions, defined as one of the following up
to an irrelevant additive constant

s(ρ) = a ln(ρ), (2.32)

or s(ρ) = aρn, for n > 0 a real number, (2.33)

where a < 0 is a negative constant real parameter. With the logarithm function s ∼ ln(ρ),
we have αT = 1 and a constant cp = −a. With a power law s ∼ ρn, we have a constant
αT between 1 and 0 whose value can be tuned by choosing the positive exponent n and
cp is a function of ρ

αT =
1

n+ 1
, cp = −a

n

n+ 1
ρn, for n > 0. (2.34)
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Other relations will be needed, namely the expressions of P and h

P = −K − aTρ, h = −aT, (2.35)

or P = −K − naTρn+1, h = −naTρn, for n > 0. (2.36)

We first remark that one of these equations of state is an ideal gas equation: this is the
case of (2.32) when K = 0, a = −cp and corresponds to an ideal gas with cv = 0. The
marginal stability of this equation of state is reflected by the infinite speed of sound that
results from a finite cp and a null cv.
Although our equation of state was built from theoretical arguments, one may try to

find real substances with a similar behaviour, at least in some range of temperature and
pressure: a monoatomic gas with large molar mass has a small cv for instance. Radon
gas is a good example. Next, the ratio cp/cv can be made large (diverging to infinity)
near the critical point, so that radon near the critical point would have the expected
behaviour concerning heat capacities. However, the thermal expansion coefficient also
diverges near the critical point and that does not match our equation of state.
Among the large class of equations of state such that entropy is a function of density,

driven by a principle of simplicity, we have identified a set of such equations, with αT
constant ranging from 1 (log function) to zero asymptotically (power law with n → ∞).
For all of them, cp and the expected adiabatic gradient are functions of density only.

3. Rayleigh-Bénard configuration and governing equations

We define the geometric configuration and boundary conditions that will be investi-
gated in this paper. Different convection models are considered : complete continuum
thermodynamic and dynamic equations (FC for ’fully compressible’), anelastic approxi-
mation (AA), anelastic liquid approximation (ALA) and a further simplified model (SCA
for ’simple compressible approximation’).

3.1. Fully compressible model

For simplicity, we take the infinite Prandtl number approximation which eliminates iner-
tia. This limit has been studied mathematically (Wang 2004) and used for the study of
mantle dynamics (Ricard 2015) for which Prandtl numbers are estimated around 1025:
the effective kinematic viscosity of solids is much larger than their thermal diffusivity.
Other objects, like the Earth’s core, the interior of stars and of gaseous planets have low
Prandtl numbers (Schaeffer et al. 2017; Garaud 2020; Fuentes and Cumming 2020). For
infinite Prandtl numbers, the governing equations of thermal convection are the following

Dρ

Dt
= −ρ∇ · u, (3.1)

0 = −∇P + ρg+ η

[

∇
2u+

1

3
∇ (∇ · u)

]

, (3.2)

ρT
Ds

Dt
= ǫ̇ : τ +∇ · (k∇T ) , (3.3)

where u is the velocity field, g the gravity field, η the dynamic viscosity of the fluid, k
its thermal conductivity, D/Dt = ∂/∂t + u · ∇ is the material derivative, ǫ̇ denote the
tensor of rate of deformation, τ the Newtonian stress tensor defined as

τij = 2η

[

ǫ̇ij −
1

3
(∇ · u) δij

]

, (3.4)

using Stokes’ assumption regarding the bulk viscosity.
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Figure 1. Geometry and boundary conditions. A typical vertical temperature profile is
sketched (solid line) with an adiabatic, isentropic, temperature profile (dashed line).

We consider a two-dimensional rectangular domain, with horizontal periodic boundary
conditions. In a Cartesian frame (x, z), the horizontal axis is x while the vertical axis is
z. The height of the cavity is H , its length L. The aspect ratio is set to L/H = 4

√
2,

corresponding to twice the horizontal period of the stability analysis in the Boussinesq
approximation for an infinite layer. Gravity is uniform g = −gez along the direction of
the unit vertical vector ez. The thermal boundary conditions are that of a hot temper-
ature Th at the bottom and a cold temperature Tc at the top. At the top and bottom
boundaries, the normal velocity component is zero and so is the tangential viscous stress,
i.e. ∂ux/∂z = 0. Because there is no natural constraint on the horizontal velocity, we
impose that the horizontal average of ux is zero on the top boundary. Finally, instead of
imposing some pressure value, we impose that the average density in the domain is ρ0

1

HL

∫

ρ dxdz = ρ0. (3.5)

This condition is an initial condition and that integral cannot change in time with im-
permeable or periodic boundaries.

The set of equations is complete when an equation of state is specified. In this paper,
as we consider the class of EoS such that entropy is a function of density (2.15), we have
Ds/Dt = s′Dρ/Dt. Using the continuity equation (3.1), equation (3.3) can be written in
the following form

−ρ2Ts′∇ · u = ǫ̇ : τ +∇ · (k∇T ) , (3.6)

which is now an elliptic equation for temperature. When P is expressed in terms of
T and ρ – see equations (2.35) or (2.36) – the Stokes’s equation (3.2) also becomes a
Poisson equation for velocity (along with the continuity equation). By the way, it is
already clear that the constant K in the expression for the internal energy (2.24) and in
that for pressure (2.35) or (2.36) is completely irrelevant in the governing equations for
convection: internal energy does not appear explicitly and taking the gradient of pressure
eliminates K from the momentum equation (3.2).

The next step consists in defining dimensional scales and in writing the equations in
dimensionless form.We have already mentioned a scale for density, ρ0 which is the average
density in the domain that remains constant with the imposed boundary conditions. Next,
we define T0 = (Th+Tc)/2 the average temperature of the hot and cold boundaries. Then,
we need to choose either a log or power law EoS along with an exponent n. We specify
cp0 the value of cp at the conditions T = T0 and ρ = ρ0, which is equivalent to specifying
the constant a. From the logarithmic equation s ∼ log ρ, we have cp0 = −a while for the
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power law s ∼ ρn and (2.34), we have

cp0 = −a
n

n+ 1
ρn0 , for n > 0. (3.7)

From (2.32) and (2.33), we derive an expression for s′ which is valid for both the loga-
rithmic (n = 0) and power-law (n > 0) EoS

s′(ρ) = −(n+ 1)
cp0
ρ0

(

ρ

ρ0

)n−1

, for n > 0. (3.8)

Similarly, a generic expression is obtained for the pressure gradient, from (2.35) and
(2.36)

∇P = (n+ 1)cp0

(

ρ

ρ0

)n

[(n+ 1)T∇ρ+ ρ∇T ] , for n > 0. (3.9)

We consider a uniform thermal conductivity k, so that a scale for thermal diffusivity
is κ = k/(ρ0cp0). We now make all variables dimensionless using H , κ/H , H2/κ, T0,
ρ0, cp0, ρ0cp0T0, κ/H

2, ηκ/H2, for length, velocity, time, temperature, density, entropy,
pressure, deformation rate and stress. Using the same symbols for dimensionless variables,
the equations of continuity, momentum and entropy become

Dρ

Dt
= −ρ∇ · u, (3.10)

0 = −Rasa(n+ 1)

ε

(

ρn

D [(n+ 1)T∇ρ+ ρ∇T ] + ρez

)

+∇
2u+

1

3
∇ (∇ · u) , (3.11)

0 = −(n+ 1)ρn+1T∇ · u+
εD
Rasa

ǫ̇ : τ +∇2T, (3.12)

where the following dimensionless numbers appear, the superadiabatic Rayleigh number
Rasa, the dissipation number D, the ratio of superadiabatic temperature difference over
the average temperature ε and implicitly the product α0T0, as a function of n:

Rasa =
ρ0gα0∆TsaH

3

ηκ
, (3.13)

D =
α0gH

cp0
, (3.14)

ε =
∆Tsa

T0
, (3.15)

α0T0 =
1

n+ 1
. (3.16)

The dissipation number D is one of the possible measures for compressibility, of the
same nature as the number of scale heights in astrophysics (Spiegel and Veronis 1971). It
was introduced by Gebhart (1962), motivated by the context of cooling turbine blades by
natural convection. Interestingly, the dissipation number can be defined in the framework
of the Boussinesq approximation, although compressibility is absent and despite the fact
that its value has no effect on the solutions. Moreover, it can be shown rigorously from
the Boussinesq equations that the integral of viscous dissipation is equal to the product
of the dissipation number D and the convective heat flux in a Rayleigh-Bénard cavity
(Howard 1963). The superadiabatic temperature difference ∆Tsa is equal to the difference
between the imposed hot and cold temperatures minus the temperature difference along
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the adiabat

∆Tsa = Th − Tc −
α0gT0H

cp0
. (3.17)

When writing the dimensionless momentum equation (3.11), we use (3.9) to express
the pressure gradient in terms of density and temperature gradient. When writing the
dimensionless entropy equation (3.12), we use (3.6) and (3.8). It can be checked that the
final set of dimensionless equations (3.10), (3.11) and (3.12) takes a generic form for any
real value of n > 0: the case n = 0 corresponds to the logarithmic relationship (2.32)
while the cases n > 0 correspond to the power laws (2.33). The choice of n amounts to
choosing the product α0T0, see (3.16).
As initial conditions, we set the velocity to zero, and density, pressure and, tempera-

ture fields satisfying the (potentially unstable) hydrostatic conduction regime, with an
additional random temperature field of magnitude 10−6. The boundary conditions on
the velocity and temperature fields are the following

∂ux

∂z
= 0, when z = ±1

2
, (3.18)

uz = 0, when z = ±1

2
, (3.19)

∫ L/(2H)

−L/(2H)

ux

(

x, z =
1

2

)

dx = 0, (3.20)

T =
Th

T0
, when z = −1

2
, (3.21)

T =
Tc

T0
, when z =

1

2
. (3.22)

The stress-free, non-penetrative conditions (3.18) and (3.19) do not constrain the mean
horizontal velocity, hence an arbitrary condition of zero average horizontal velocity (3.20)
is imposed on the upper boundary. The imposed temperature ratios are linked to the
values of the dissipation number and the superadiabatic temperature coefficient

Th

T0
= 1 +

D + ε

2
, (3.23)

Tc

T0
= 1− D + ε

2
. (3.24)

As shown in Curbelo et al. (2019), the equations of convection with infinite Prandtl
number are subjected to viscous relaxation, and the associated relaxation time limits the
time-steps to D/Rasa for numerical calculations. Let us determine here the expression
for this relaxation time scale, for our particular class of EoS. We consider a small planar
disturbance with respect to the steady solution (ρ = 1, T = 1−Dz, u = 0) with ǫ = 0

ρ′ = ρ̃eikx+ωt, T ′ = T̃ eikx+ωt, u′

x = ũxe
ikx+ωt, (3.25)

where ρ̃, T̃ and ũx are scalars. The governing equations (3.10), (3.11) and (3.12), are
linearized near z = 0 (the steady solution is nearly constant T = 1) and lead to

ωρ̃ = −ikũx, (3.26)

0 = −Rasa(n+ 1)

εD
[

(n+ 1)ikρ̃+ ikT̃
]

− 2

3
k2ũx, (3.27)

0 = −(n+ 1)ikũx − k2T̃ . (3.28)
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Eliminating ũx and T̃ , leads to a single equation for ρ̃

0 = −Rasa(n+ 1)2

εD
[

kρ̃+
ω

k
ρ̃
]

− 2

3
kωρ̃, (3.29)

admitting non-trivial solutions when

ω = −3

2

Rasa(n+ 1)2

εD
[

1 +
ω

k2

]

, (3.30)

implying that the magnitude of the rate of decay |ω| is bounded from above as

|ω|<3

2

Rasa(n+ 1)2

εD , (3.31)

irrespective of the wavenumber k. In practice, we make it slightly safer by changing the
prefactor from 3/2 to 1, and our numerical scheme is always found to be stable with
time-steps δt smaller than

δt 6
εD

Rasa(n+ 1)2
=

εD (α0T0)
2

Rasa
. (3.32)

This makes it difficult to calculate flows with large superadiabatic Rayleigh numbers,
small dissipation numbers, small superadiabatic parameters ε or small products αT0

(large n).

We are now going to write a series of anelastic models from the most to the least
faithful approximation of the fully compressible equations.

3.2. Anelastic Approximation AA

The first model is called simply the anelastic model and corresponds to the early mod-
els by Ogura and Phillips (1961) for the atmosphere, Lantz and Fan (1999) for stellar
convection and Braginsky and Roberts (1995) for the Earth’s core. It corresponds to a
first order expansion modelling of thermodynamic variables with respect to a hydrostatic
isentropic state. In our case, the structure of the well-mixed isentropic region is simple,
with a uniform density and uniform temperature gradient: in dimensionless form

ρa = 1, (3.33)

Ta = 1−Dz, (3.34)

where Ta is the isentropic profile. We have set arbitrarily Ta = 1 at z = 0 (mid-height)
but we will see later that this does not constrain the anelastic solution. Let us denote
with tildes the two-dimensional and time-dependent departures of each variable from
its isentropic counterpart. From the standard procedure of linearization of the functions
of state about the adiabatic profile (Anufriev et al. 2005), and with a change in the
dimensional scale for temperature (∆Tsa instead of T0), pressure (ρ0cp0∆Tsa instead of
ρ0cp0T0) and entropy (cp0∆Tsa/T0 instead of cp0), we get the following dimensionless
anelastic equations

∇ · u = 0, (3.35)

0 = −Rasa
D ∇P̃ +Rasas̃êz +∇

2u, (3.36)

D

Dt
(Tas̃) = −Duz s̃+

D
Rasa

ǫ̇ : τ +∇2T̃ . (3.37)
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For our equation of state, s̃ is proportional to ρ̃ – see (3.8) – and linearizing equations
(2.35) or (2.36) leads to

s̃ = −(n+ 1)ρ̃, (3.38)

ρ̃ = − T̃

(n+ 1)Ta
+

P̃

(n+ 1)2Ta
, (3.39)

and therefore

s̃ =
T̃

Ta
− P̃

(n+ 1)Ta
. (3.40)

Because of the new temperature scale ∆Tsa, the temperature boundary conditions
become

T̃

(

z = ±1

2

)

= ∓1

2
. (3.41)

The boundary conditions for pressure are obtained from the condition of mass con-
servation. With our choice in (3.33), the (uniform) adiabatic density profile corresponds
already to the total mass in the fluid layer, the integral of the departure ρ̃ must be zero
at all times. This might be achieved by imposing an appropriate value of pressure at the
top or at the bottom of the cavity. However, an easier way is to impose that the mean
value of P̃ on the top boundary is equal to the mean value at the bottom. This can be
seen on equation (3.36) by integration along z. The integral of density in the cavity is
zero, the viscous term ∇

2u in (3.36) integrates into the difference of averaged viscous
traction τzz = 2∂uz/∂z between top and bottom boundaries. The continuity equation
(3.35) leads to τzz = −2∂ux/∂x whose integral of each boundary is zero with periodic
conditions on x. The condition on pressure is thus

∫ L/H

0

P̃

(

x, z =
1

2

)

− P̃

(

x, z = −1

2

)

dx = 0. (3.42)

An invariance property of these AA equations can be put in evidence. Since the anelas-
tic equations have been obtained by linearization around the adiabatic profile, one expects
that a shift in the superadiabatic temperature conditions should leave the solution un-
changed, with the same total mass. From a (possibly time-dependent) solution (u, P̃ , T̃ )
to the equations above, we just add a constant c to the temperature boundary conditions,
now becoming T̃ (z = ±1/2) = ∓1/2 + c. We can check that (u, P̃ + c/(n+ 1), T̃ + c) is
a solution to the AA equations with the shifted temperature boundary conditions.

3.3. Anelastic Liquid Approximation ALA

In that approximation, departures of entropy from the adiabatic profile are considered
to be due only to temperature departures, while departures in pressure are neglected in
equation 3.40 (Anufriev et al. 2005). The governing equations are still (3.35), (3.36) and
(3.37) where s̃ is changed in each instance into

s̃ =
T̃

Ta
. (3.43)

When applying the boundary conditions, we now find that it is not possible to impose
the obvious temperature boundary condition (3.41): if we did so, it is most likely that
the integral of T̃ /Ta over the fluid domain would not be zero. However, because of
the anelastic liquid approximation, entropy departures are linked to T̃ /Ta which are
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themselves proportional to density departures, because of the equation of state. Hence
a non-zero integral of T̃ /Ta implies that the total mass of the fluid is not conserved
at first order. Thus, we keep the condition (3.42) on pressure, which ensures total mass
conservation and we consider that only the imposed temperature difference is meaningful
between two isothermal boundaries

∂T̃

∂x
= 0 z = ±1

2
, (3.44)

T̃

(

x, z = −1

2

)

− T̃

(

x, z =
1

2

)

= 1. (3.45)

Coming back to the pressure constraint (3.42), any additive constant to P̃ is irrelevant
since only the gradient of pressure plays a role in the ALA equations. In conclusion, we
may decide to set the mean value of P̃ to zero (or any other constant) on both hot and
cold boundaries. Equation (3.42) is changed for

∫ L/H

0

P̃

(

x, z = ±1

2

)

dx = 0. (3.46)

The invariance mentioned for the solutions to the AA equations is no longer relevant
in the ALA equations. Now, the mass balance imposes that the integral of T/Ta must be
zero over the whole domain because density fluctuations are solely functions of entropy
fluctuations, which are themselves solely functions of temperature fluctuations in the
ALA approximation. That cannot be changed by another choice of pressure offset.

3.4. Simple Compressible Approximation SCA

We now introduce a new approximation aiming at getting a very simple system of equa-
tions where compressible effects are still present. In the ALA approximation, the adia-
batic temperature profile appears explicitly in the equations and we consider replacing
Ta by a constant value equal to 1, the value of Ta in the mid-plane of the cavity. We
certainly lose connection to thermodynamics with that move, but compressible work is
still present and it will be interesting to investigate which compressible effects are still
well accounted for in this approximation. Note that this SCA model is equivalent to a
version of the ”Extended Boussinesq Approximation”, or EBA (King et al. 2010), where
the background density is assumed to be uniform (with our EoS, this is the case of all
our anelastic models) and where the background temperature is also assumed to be uni-
form. The SCA model is still defined by equations (3.35), (3.36) and (3.37), where the
expression for entropy (3.43) is changed for

s̃ = T̃ , (3.47)

and Ta is also changed for the constant value 1 is the left-hand side term of (3.37). Under
this approximation, the equations are very similar to the classical Boussinesq equations,
except for viscous heating and adiabatic cooling that play a significant role when the
dissipation number is of order one.
The boundary conditions are similar to those for the ALA equations. Now, the average

of the temperature departure T̃ on the whole domain is zero thanks to the condition on
pressure (3.46). An important invariance is valid only in the case D = 0. This corresponds
to the Boussinesq equations with another change in pressure scale, from ρ0cp0∆Tsa to
α0∆Tsaρ0gH . In that case only (D = 0), the equations are invariant by symmetry about
the mid-plane. More precisely, if (ux, uz, P̃ , T̃ ) is a solution (possibly time-dependent),
then the fields (ux(x,−z, t),−uz(x,−z, t), P̃ (x,−z, t),−T̃ (x,−z, t)) constitute another



Compressible Convection Playground 15

solution. This implies that the solutions to the incompressible Rayleigh-Bénard system
are bottom-up invariant: ascending and descending plumes are statistically symmetrical.
However, when D 6= 0, that invariance does no longer hold, for none of the compressible
models presented here, fully compressible (FC), anelastic approximation (AA), anelastic
liquid approximation (ALA) nor the last simple compressible approximation (SCA). We
will have the opportunity to investigate that non-invariance in the following sections.
All numerical results, FC, AA, ALA and SCA have been obtained with the software

Dedalus (Burns et al. 2020). For the fully compressible model a Runge-Kutta model of
order 1 was used (RK111 in dedalus) and of order 4 for the anelastic models (RK443 in
dedalus). The number of Fourier modes in the horizontal direction nx is four times that of
Chebyshev modes nz in the vertical direction. A dealiasing factor of 3/2 has been used in
all cases. The value of nz we used goes from 32 at low superadiabatic Rayleigh numbers
to 512 at Rasa = 109. Time steps have been set by half the short viscous relaxation time
in the fully compressible model and by a Courant condition for anelastic models with a
safety factor set to 0.9. Noise on the initial conduction temperature field, of magnitude
10−6 has been added in all models to trigger convection.
The complete set of equations FC, AA, ALA and SCA, with boundary conditions,

are written in their explicit forms in appendix A. The parameters of all simulations are
listed in appendix B. The files used for each convection model FC, AA, ALA and SCA
are provided as supplemental materials or available at github.

4. From rest to steady rolls at Rasa = 104, D = 1.5

In this section, we just analyze the transition from an unstable superadiabatic motion-
less initial state to steady rolls of convection, for a moderate superadiabatic Rayleigh
number of Rasa = 104 and a large dissipation number of D = 1.5. We do that for dif-
ferent values of the dimensionless parameter α0T0 = 1, 0.5 and 0.1 (with n = 0, 1 and
9) and the different models of convection: FC, AA, ALA and SCA. In figure 2, we plot
the upper and lower heat fluxes (on the top and bottom boundaries) for all values of
α0T0 and all models. Only the heat fluxes above the conduction flux along the adiabatic
gradient are represented: this is straightforward in the anelastic model as the conduction
flux along the adiabat is not computed, while for the fully compressible model we just
remove the contribution of conduction along the adiabatic gradient. Then, the remaining
part of the flux is scaled by the conduction heat flux driven by ∆Tsa, the superadiabatic
temperature difference: again, this is natural in the anelastic models where temperature
intervals are already scaled by ∆Tsa, while in the fully compressible model the tempera-
ture scale is T0 and the flux has to be rescaled by ∆Tsa corresponding to a division by the
superadiabatic fraction ε = ∆Tsa/T0. In the present FC calculations, the superadiabatic
fraction ε is set to 0.1. The initial (unstable) conduction state corresponds to a heat
flux unity, while when a convective steady state of convection is reached, the heat flux is
around 5 or slightly less. This dimensionless flux is the classical Nusselt number, which
will also be used in the next sections. The blue/green colors correspond to the heat flux
at the upper boundary, while red/purple colors correspond to the heat flux on the lower
boundary (for all values of α0T0 and FC, AA, ALA). The simple compressible model
(SCA) is plotted with a black color: it can be shown easily that upper and lower heat
fluxes coincide at all times for this model. All plots have been shifted in time so that the
maximum upper flux is at t = 0. The real starting time of the simulation depends on
the model considered and is made visible by a small transient period, as we have started
the simulations from our approximations of the conductive hydrostatic state. The time
needed to develop the convective instability depends on the model of convection, and
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Figure 2. Upper and lower heat flux (Nusselt number) during the initial transient from rest
to steady rolls, at Rasa = 104 and D = 1.5.

Figure 3. Difference between the heat flux (Nusselt number) on the upper boundary obtained
with FC and AA, ALA and SCA respectively, at Rasa = 104 and D = 1.5, for n = 0 (α0T0 = 1),
n = 1 (α0T0 = 0.5) and n = 9 (α0T0 = 0.1) from left to right.

weakly on α0T0 for FC. For all models FC, AA and ALA, the curves of upper and lower
heat fluxes are rather similar, we will come back to the small differences below. In all
cases, in the beginning of the convective instability, the heat flux on the upper boundary
grows rapidly to a large value (around 11), while the heat flux on the lower boundary
decreases rapidly to negative values (around -4). Then follows a series of oscillations of
decreasing amplitude, with a phase shift of approximately π/2 between upper and lower
fluxes, until a steady state is reached with equal upper and lower fluxes (around 5 or
slightly less).
On Fig. 3, we take the difference on the upper flux between the FC model and the
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Figure 4. Time and horizontal averaged superadiabatic temperature profiles along the vertical
direction z, for Rasa = 106 (left) and Rasa = 108 (right), for D between 0 and 0.4, α0T0 = 1,
obtained in the anelastic approximation AA.

approximations AA, ALA and SCA. Unsurprisingly, the smallest difference is obtained
with the AA approximation, followed by the ALA and finally the SCA approximation. We
also observe that the difference between AA and ALA approximations becomes smaller
as the product α0T0 is decreased. This was expected from equation (3.40) as the effect
of pressure is divided by n+ 1, i.e. decreases with α0T0.

5. Top/bottom asymmetry

The top/bottom symmetry is observed to hold for all models in the limit of vanishing
compressibility effect D −→ 0. In the case of the fully compressible model (FC) one must
also have a top/bottom temperature ratio close to one, but that condition has a small
effect on the asymmetry compared to that of the dissipation parameter. However, when
D is non-zero we will see that a distinct difference appears between the top and bottom
parts of the average temperature profile, or between raising and descending plumes.
Perhaps surprisingly, the asymmetry becomes very clear from relatively small values of
the dissipation number, D ∼ 0.1 (section 5.1 below), and continues to exist when D
is further increased (section 5.2 below). Also, increasing the superadiabatic Rayleigh
number does not seem to change that asymmetry. From this point until the end of the
paper, the value of α0T0 is set to 1 (n = 0).

5.1. Change of temperature profile with moderate compressibility

We examine now the effect of a small compressibility on the structure of convection.
From this point until the end of the paper, the value of α0T0 is set to 1 (n = 0).
When the dissipation number D is increased from 0 to a moderate value of 0.1 to 0.4,
a change in the averaged vertical temperature profile is observed. In the absence of
compressible effects (D ≃ 0), the temperature profile is symmetrical with respect to the
horizontal mid-plane as a result of the invariance of the Boussinesq equations under the
transformation T (x, z) → −T (x,−z), ux(x, z) → −ux(x,−z) and uz(x, z) → uz(x,−z).
It is also well-known that overshoots in the temperature profile occur near the top and
bottom thermal boundary layers (Sotin and Labrosse 1999). These overshoots have an
amplitude (and extent) decreasing with increasing Rayleigh numbers, but are always
present. We observe here that the overshoot near the top is nearly eliminated when
the dissipation number D exceeds 0.2. In Fig. 4, D is increased from 0 to 0.4 in AA
calculations and the time and horizontally averaged superadiabatic temperature profiles
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Figure 5. Snapshots of superadiabatic temperature fields for Rasa = 107, α0T0 = 1, with
D = 0.05 (top) and D = 0.2 (bottom) obtained in the anelastic approximation AA.

are plotted along the vertical direction for two values of the superadiabatic Rayleigh
number Rasa = 106 and Rasa = 108. The inset shows a close-up view of the top overshoot
in the temperature profile. A tiny value of D = 0.05 already has a noticeable effect, and
when D = 0.2 most of the change has been made. Conversely, the bottom overshoot is
nearly unchanged. As a result, the nearly constant mean value of temperature is increased,
an observation that will be related to the behaviour of the Nusselt number in section 6.
The disappearance of the top superadiabatic temperature overshoot under moderate

compressibility can be connected to the fact that ascending plumes fail to reach the top of
the cavity. In Fig. 5, we show snapshots of the superadiabatic temperature fields, obtained
in the anelastic approximation AA, for Rasa = 107 and two values of the dissipation
number D = 0.05 and D = 0.2. In the first case, ascending plumes initiated at the
bottom reach the top boundary and spread horizontally, creating the top temperature
overshoot. Similarly descending plumes initiated at the top reach the bottom and spread.
When D = 0.2 however, most ascending plumes get mixed with the surrounding fluid
before they reach the top, hence the absence of top overshoot in the temperature profile.
Descending plumes can still reach the bottom.
One should not think that compressible effects are always associated with stronger

descending plumes. This property seems to be related to the equation of state. In another
paper (Ricard et al. 2022), we consider an equation of state suitable for planetary mantles
and in that case, the opposite is true: with compressible effects, ascending plumes are
stronger.

5.2. Asymmetry at larger compressibility

We have seen in the previous section that a relatively moderate dissipation number of
D = 0.2 introduces a top-bottom asymmetry in thermal convection. In this section, we
consider a large dissipation number D = 1.2 and investigate the asymmetry of convection
depending on the four models presented earlier: fully compressible FC, anelastic approxi-
mation AA, anelastic liquid approximation ALA and simple compressible approximation
SCA. In Fig. 6, averaged entropy profiles are shown. They are conditional profiles ob-
tained for selected values of the vertical velocity in bins centred around the indicated
values, i.e. entropy profiles for parcels of a given vertical velocity. Negative velocity val-
ues put the emphasis on descending plumes, positive values on ascending plumes. We
can see that there are more profiles with negative velocities. This is because there are
strong descending plumes and weak ascending plumes, a tendency already seen in the
previous section for moderate dissipation numbers. The FC results are well recovered in
the anelastic models AA and ALA which show perhaps a slight increase in the asym-
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Figure 6. Vertical profiles of conditional entropy, depending on the vertical velocity scaled

by Ra
2/3
sa , for the fully compressible equations FC and anelastic models AA, ALA and SCA,

Rasa = 3 × 105, D = 1.2 and α0T0 = 1. For FC, a value ǫ = 0.1 has been taken for the
superadiabatic temperature difference. The dashed profile is the overall mean entropy profile.

metry with fewer curves corresponding to positive velocity. The entropy scale of the FC
plot is exactly ten times smaller than in the other models as a result of the choice of the
superadiabatic parameter ǫ = 0.1 in the FC calculations. This difference comes from the
choice of temperature scale: it is T0 for the FC model and ∆Tsa for the AA, ALA and
SCA models.

A striking feature of these profiles, and in particular the overall mean profiles (dashed
lines) is that the top boundary layer has a much larger entropy drop compared to the
bottom layer in the FC, AA and ALA cases. We will see in the next section that the
superadiabatic temperature drop varies slowly with the dissipation number, and the
entropy drop is essentially equal to the temperature drop divided by temperature. At
D = 1.2, the adiabatic temperature ratio is equal to 4, hence an entropy drop nearly four
times larger at the top compared to that at the bottom. Meanwhile, as can be seen in the
anelastic equation (3.36), entropy is the driving force for convection. This explains why
descending plumes are stronger than ascending plumes. In that respect, the situation gets
somewhat similar to the case of convection cooled from the top and thermally insulated
bottom, or equivalently to the case of volumic heating with fixed boundary temperatures
(Sotin and Labrosse 1999).

Note however that other hand-waving arguments can be put forward indicating that
ascending plumes (not descending) should be stronger in compressible convection. For
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Figure 7. Probability density function (pdf) of the vertical velocity uz in logarithmic scale,
depending on the altitude z, for FC, AA, ALA and SCA models, Rasa = 3 × 105, D = 1.2 and

α0T0 = 1. Velocity is scaled by Ra
2/3
sa .

instance, the increasing value of thermal expansion as altitude increases is thought be
be such an argument leading to the strengthening of ascending plumes and weakening
of descending plumes. This seems to apply in mantle convection (Ricard et al. 2022).
However, we have the opposite effect in the present paper, although thermal expansion
also increases with altitude.
In terms of entropy jump, the asymmetry of the thermal boundary layers is very much

reduced in the simple anelastic model SCA (see Fig. 6) because the adiabatic gradient is
ignored in this model and the entropy drop is identical to the temperature drop. In the
SCA case, the top-bottom asymmetry still exists, but its origin has been shifted in the
thermal equation (3.37). In that equation, the term −DuzT̃ is negative in ascending and
descending plumes, and consequently favours descending plumes while impeding rising
plumes. This feature of the thermal equation is really specific to the SCA model. For
the other anelastic models AA and ALA, this is not the case, because the left-hand side
term and the first term on the right-hand side of equation (3.37) combine to form a
conservative term D(Tas̃)/Dt.
In Fig. 7, we have plotted the distribution of vertical velocities for the same simulations

as those in Fig. 6. A symmetrical top-bottom configuration would lead to contour plots
symmetrical with respect to the central point (z = 0, uz = 0). The asymmetry of con-
vection under D = 1.2 is clear, with distributions extending further toward the negative
velocities (descending plumes), while the returning ascending flow is more broadly dis-
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tributed on smaller values of positive velocity. Here again, AA and ALA models capture
very well the distribution of velocities obtained in the FC model, although maybe with a
lower probability of large values than for the FC case. However, the SCA model displays
an exaggerated asymmetry and stands clearly away from the other models.

6. Malkus-type model of heat flux

The total heat flux across the fluid layer is split into the heat conducted along the
adiabat and the superadiabatic heat flux. The superadiabatic heat flux is split itself
into the conduction heat flux due to the superadiabatic temperature difference and the
convective heat flux. Finally, as we will see in section 7, the convective heat flux is split
into the convective transport of enthalpy and the power of viscous forces.
Here, we consider the superadiabatic flux and scale it with the heat conducted along

the superadiabatic temperature difference, which is known as the Nusselt number Nu.
In the fully compressible model (FC), we have to subtract the adiabatic conduction heat
flux (D in this paper) to the total flux, so that the Nusselt number is defined as

Nu =
QFC −D

ε
. (6.1)

One of the simplest models for the heat flux in the Boussinesq approximation is that
proposed by Malkus (1954) (see also Howard (1964)), AKA the “critical boundary layer”
model. In this model, heat flux is independent of the depth of the fluid layer. In di-
mensionless terms, this leads to Nu ∼ Ra1/3. Let us adapt this model to the case of
compressible convection. Let δc and δh be the dimensionless thicknesses of the top and
bottom boundary layers, while ∆Tc and ∆Th are the dimensionless superadiabatic tem-
perature jumps across these layers. The heat flux conducted through both layers must
be equal to the superadiabatic heat flux, so that

Nu ∼ ∆Tc

δc
=

∆Th

δh
, (6.2)

while obviously, the sum of both temperature jumps must be equal to the superadiabatic
temperature difference, in dimensionless terms:

∆Tc +∆Th = 1. (6.3)

Concerning local Rayleigh numbers at the scale of each boundary layer, we can build them
from (3.13) keeping in mind that α0 should be changed accordingly (other parameters
are uniform with our equation of state). From (3.16), we can relate the local value of α
to the local adiabatic temperature. Finally the local Rayleigh numbers can be written

Rac = Rasa
δ3c∆Tc

Tac
= Rasa

δ3c∆Tc

1−D/2
, (6.4)

Rah = Rasa
δ3h∆Th

Tah
= Rasa

δ3h∆Th

1 +D/2
. (6.5)

Assuming that the local Rayleigh numbers remain equal to a number RaBL independent
of D, combining (6.2), (6.3), (6.4) and (6.5) leads to the following relationship

Nu ∼
(

Rasa
RaBL

)1/3
[

(

1− D
2

)1/4

+

(

1 +
D
2

)1/4
]−4/3

. (6.6)

Assuming that the boundary layer Rayleigh RaBL does not depend on the dissipation
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Figure 8. Nusselt number normalized by Ra
1/3
sa in the anelastic model. The Nusselt number is

defined as the ratio of the superadiabatic heat flux to the superadiabatic pure conduction flux.
The solid lines correspond to the expression (6.6) with boundary layer Rayleigh numbers equal
to RaBL = 14.1, RaBL = 17.5 and RaBL = 19.4, such that they are quadratic best fits of the
numerical Nusselt between D = 0.4 and D = 1.8.

number, this expression (6.6) shall provide a prediction on the effect of the dissipation
number on the Nusselt number. The RayleighRaBL defined above should not be confused
with the critical Rayleigh number for the onset of convection (based on the height of
the cavity). The latter is close to Rayleigh’s value 27π4/4 for a nearly uniform density
(Alboussière and Ricard 2017).
Figure 8 shows the Nusselt number as a function of the dissipation number, for three

values of the superadiabatic Rayleigh number in the higher range Ra = 107, Ra = 108

and Ra = 109. From D = 0 to approximately D = 0.4, a reduction of the Nusselt number
is observed: this should be understood as a consequence of the structure change discussed
in section 5.1 where the ascending plumes are shown to get weaker with the disappearance
of the top overshoot of the superadiabatic temperature profile. Then for larger values of
D, the Nusselt number increases, as predicted by our model (6.6) and even a little faster.
The three lines in Fig. 8 correspond to equation (6.6) each with a boundary Rayleigh
number RaBL adjusted to fit the numerical Nusselt numbers at different Ra. A general
good agreement is obtained from the model of boundary layer Rayleigh number (6.6).
It should be noted that a more sophisticated version of heat transfer model exists for

compressible convection. The model of Jones et al. (2022) is designed as an extension
of a model of heat transfer by Grossmann and Lohse (2000) valid in the Boussinesq
approximation. These models provide expressions for the Nusselt number as a function
of the Rayleigh number, Prandtl number and dissipation number in the compressible
case. They apply in a domain of finite aspect ratio, i.e. bounded by vertical walls, as
assumptions are made on the large-scale velocity field. The Prandtl number can be small
or large, but not infinite. In the compressible case (Jones et al. 2022), the model takes
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a different form depending on whether dissipation occurs mostly in the boundary layers
or in the bulk. Unfortunately, these models have been developed in the no-slip boundary
condition and the case of dissipation mostly in the bulk is associated with small Prandtl
numbers, and turbulence cascade. This makes it rather difficult to apply in our case
of infinite Prandtl number and free-slip boundary conditions, even though dissipation is
mainly in the bulk in the upper range of our superadiabatic Rayleigh numbers. Moreover,
the model by Jones et al. (2022) has been developed for an EoS of a perfect gas. This
model predicts a decrease of the Nusselt number with the dissipation number for a fixed
value of the Rayleigh (and Prandtl) number, which is not compatible with our results.
That discrepancy is however not relevant, given the mismatch between the conditions of
validity of the model and our configuration.

7. Heat flux and Dissipation in the different models

The expression for the vertical heat flux across horizontal planes takes a specific form
for each model of convection. In the fully compressible model (FC), we take equation
(3.12), integrate by parts the viscous dissipation term and use the dot-product of equation
(3.11) with velocity u to obtain an expression for the heat flux as a function of height z

QFC(z) = (n+ 1)Tρn+1uz −
εD
Rasa

ujτzj −
dT

dz
, (7.1)

where the overline · denotes the average over horizontal planes, or constant-z surfaces,
and over time. This is fully in accordance with the general expression for the heat flux
(see for instance (4.5) in Curbelo et al. (2019))

QFC(z) = ρhuz −
εD
Rasa

ujτzj −
dT

dz
, (7.2)

as from (2.35) and (2.36), the dimensionless expression of h is

h = (n+ 1)Tρn, for n > 0. (7.3)

In the statistically stationary case considered here, the function QFC(z) must be inde-
pendent of z, and we may equally denote it QFC .
In the anelastic approximation (AA), equations (3.37), (3.36) and (3.40) lead to the

following expression for the superadiabatic heat flux

QAA(z) =

(

T̃ +
n

n+ 1
P̃

)

uz −
D

Rasa
ujτzj −

dT̃

dz
. (7.4)

This is again compatible with the general anelastic expression (see for instance (4.6) in
Curbelo et al. (2019))

QAA(z) = ρah̃uz −
D

Rasa
ujτzj −

dT̃

dz
, (7.5)

with ρa = 1, uniform within the class of equations of state considered in this paper, and
the following linearized expression for enthalpy, from (7.3) and using (3.39)

h̃ = T̃ +
n

n+ 1
P̃ , for n > 0. (7.6)

In statistically stationary cases, the time-averaged heat flux is independent of z and its
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value can be obtained by integrating (7.4) over the height of the fluid domain, leading to

QAA =
〈

T̃ uz

〉

+
n

n+ 1

〈

P̃ uz

〉

+ 1, (7.7)

since the power of viscous forces can be shown to integrate to zero, because of the
continuity equation ∇ · (ρau) = ∇ · u = 0 in the anelastic approximation, as ρa = 1.
In the anelastic liquid approximation (ALA), the expression for the superadiabatic

flux, obtained in the similar way as for AA, is

QALA(z) =
(

T̃ + P̃
)

uz −
D

Rasa
ujτzj −

dT̃

dz
. (7.8)

In a statistically stationary situation, the heat flux can be computed as

QALA =
〈

T̃ uz

〉

+
〈

P̃ uz

〉

+ 1. (7.9)

These expressions correspond to the limit n → ∞ of those obtained in the general
anelastic approximation (AA), which also corresponds to the limit αT → 0.
Finally, in the simple compressible approximation (SCA), the expressions for the heat

flux are identical to those in the anelastic liquid approximation (ALA).
However, the heat flux can be written differently than in the expressions above. For

instance, in the anelastic approximation (AA), instead of (7.4), (7.5) or (7.7), one can
base it on the flux of entropy. From Gibbs equation dh = Tds+ dP/ρ, expression (7.5)
can be written

QAA(z) = Tas̃uz + P̃ uz −
D

Rasa
ujτzj −

dT̃

dz
. (7.10)

In the same time, from the horizontal and time average of the dot-product of Navier-
Stokes with velocity, one obtains the expression for the viscous dissipation at each vertical
position

D
Rasa

ǫ̇ : τ(z) = Ds̃uz −
d

dz

[

P̃ uz −
D

Rasa
ujτzj

]

. (7.11)

Introducing

G(z) = P̃ uz −
D

Rasa
ujτzj , (7.12)

equations (7.10) and (7.11) can be rewritten

QAA(z) = Tas̃uz +G(z)− dT̃

dz
, (7.13)

D
Rasa

ǫ̇ : τ(z) = Ds̃uz −
dG(z)

dz
. (7.14)

It can be noted that these expressions are valid for any general equation of state and
can also be generalized when inertia and possible Lorentz forces are included: it suffices
to add the flux of inertia to the expression of G(z), as detailed in appendix C. In the
anelastic liquid approximation, the expression for G(z) is unchanged and the flux and
dissipation profiles become

QALA(z) = T̃ uz +G(z)− dT̃

dz
, (7.15)

D
Rasa

ǫ̇ : τ(z) = D T̃ uz

Ta
− dG(z)

dz
. (7.16)
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In the simplest SCA approximation, G(z) is still the same and the flux and dissipation
profiles are

QSCA(z) = T̃ uz +G(z)− dT̃

dz
, (7.17)

D
Rasa

ǫ̇ : τ(z) = DT̃ uz −
dG(z)

dz
. (7.18)

7.1. Global dissipation

The total Dissipation is expressed as a fraction of the heat flux, more specifically the
superadiabatic convective heat flux. The reference result is obtained in the Boussinesq
approximation, where it has been shown that the integrated viscous dissipation is equal to
the product of the dissipation number and the convective heat flux (Howard 1963; Hewitt
et al. 1975). We express the total viscous dissipation as a fraction of the conduction heat
flux along the superadiabatic gradient and denote it Dν . In the fully compressible model
(FC), the integrated viscous dissipation divided by ∆Tsa has the following expression

Dν =
D

Rasa ε
〈ǫ̇ : τ〉 . (7.19)

In the approximated models (AA), (ALA) and (SCA), the expression is

Dν =
D

Rasa
〈ǫ̇ : τ〉 , (7.20)

because the dimensionless temperature is scaled using ∆Tsa for these models. Considering
the expressions for the Nusselt number in section 6, the ratio E of viscous dissipation to
the convective heat flux takes the same expression for all models

E = Dν/(Nu− 1). (7.21)

The classical Boussinesq result on dissipation comes from integrating the dot product of
Navier-Stokes with the velocity field. It follows that viscous dissipation is exactly equal
to the convective heat flux multiplied by the dissipation number (Howard 1963), hence
E = Dν/(Nu−1) = D in the Boussinesq limit. For this reason, we call the quantity E−D
the ratio of dissipation to convective flux in excess of D. It is zero in the Boussinesq case
and we compute it for compressible convection FC, AA, ALA and SCA.
The numerical results concerning viscous dissipation are shown in Fig. 9. For small

values of D, all results are close to 0, indicating that the Boussinesq results apply: dis-
sipation is equal to the product of the convective heat flux and the dissipation number.
When the dissipation number is increased, the simple compressible approximation model
(SCA) goes to slightly negative values, whereas all other models go to positive values.
So, for all models except (SCA), viscous dissipation becomes larger than predicted by
the Boussinesq approximation. That departure increases with the dissipation number D
and also with the superadiabatic Rayleigh number Rasa (better seen in Fig. 10).
Let us consider some limits to the dissipation results. First, we have rigorous upper

(and lower) bounds, since the papers of Backus (1975) and Hewitt et al. (1975). Taking
equation (3.37), dividing by Ta and integrating by parts leads to

Ds̃

Dt
−∇ ·

(

∇T̃

Ta

)

=
D

Rasa

ǫ̇ : τ

Ta
+

∇T̃ ·∇Ta

T 2
a

, (7.22)

where we recognize the positive sources of entropy due to irreversible viscous dissipation
and conduction on the right-hand side. The upper bound for total dissipation occurs
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Figure 9. Excess of the ratio of dissipation to convective heat flux relative to D, as a function
of D, for FC, AA, ALA, SCA models, α0T0 = 1, D in [0.25, 0.5, 0.75, 1.0, 1.25, 1.5], Rasa in
[103, 103.5, 104, 104.5, 105, 105.5, 106, 106.5].

Figure 10. Excess of the ratio of dissipation to convective heat flux relative to D, as a
function of Rasa (same values as in Fig. 9).
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for negligible conduction (as an entropy source) and in the case when dissipation takes
place at the largest possible temperature Ta = 1 + D/2, at the bottom of the domain.
Integrating (7.22) over the whole domain leads to

Dν

1 + D

2

< Nu

[

1

1− D

2

− 1

1 + D

2

]

, (7.23)

implying the upper bound

Dν

Nu− 1
< D +

D2

2−D , (7.24)

in the limit of a large Nusselt number Nu ≫ 1.
Another possible limit case will be shown to correspond to our numerical results at

large Rayleigh number in the next section 7.2. That limit is that of a vanishing contri-
bution of the G(z) component of the heat flux defined in equation (7.12) in the anelastic
approximation. It corresponds to the case when the heat flux is carried entirely by the
flux of entropy Tas̃uz (outside top and bottom conduction layers) while the energy dis-
sipation at each height is Ds̃uz, as can be seen from equations (7.13) and (7.14). Under
that assumption, the integral of energy dissipation is equal to

Dν = Nu

∫ 1/2

1/2

D
Ta

dz, (7.25)

leading to the expression

Dν

Nu− 1
= log

(

1 +D/2

1−D/2

)

, (7.26)

The expressions for the upper bound (7.24) and for the “entropy flux” model (7.26)
are plotted in Fig. 9. It can be seen that the upper bound curve (7.24) lies far above
the numerical results and that the ’entropy flux’ expression (7.26) seems to correspond
to the limit of the numerical results when the Rayleigh number is increased, for FC,
AA and ALA models. For small (supercritical) Rayleigh numbers, dissipation is close
to the ’Boussinesq’ limit. For the SCA model, the behaviour is different: starting from
negative values at small Rasa numbers, the ’Boussinesq’ limit is reached for large Rasa
numbers. However, from a fundamental perspective, the SCA model does not behave
differently from the other models if one considers the consequences of the ’entropy flux’
assumption, because of the different expressions for the flux and dissipation. From (7.17)
and (7.18), it is clear that the assumption of a negligible G contribution leads to the
usual ’Boussinesq’ limit for the SCA model, just because it is identical to the ’entropy
flux’ limit in that simple compressible approximation. Thus, in the limit of large Rasa,
when the contribution of G is small, it is expected that dissipation becomes close to the
product of the dissipation number and the convective heat flux. This is what we observe
on Figs. 9 and 10.
It is striking that in Fig. 10 at low Rayleigh number ALA, FC and AA results differ

significantly. Dissipation is smallest with AA, then FC and highest with ALA. Typically
AA excess dissipation goes to zero near the critical Rayleigh number, while ALA excess
dissipation shows an increase to some finite value. FC results are intermediate. When
the superadiabatic Rayleigh number becomes larger, the difference between AA, FC and
ALA tends to shrink until the predicted dissipation is the same above 105 or 106.

7.2. Convergence of heat flux and dissipation profiles

In this section, we focus on the convergence of the entropy heat flux and of the dissipa-
tion profiles towards universal limit profiles, when the superadiabatic Rayleigh number



28 T. Alboussière, J. Curbelo, F. Dubuffet, S. Labrosse and Y. Ricard

Figure 11. Entropy flux contribution for D equal to 0.8 (left) and 1.6 (right), for a
superadiabatic Rayleigh number up to 109 in the anelastic approximation and α0T0 = 1.

Figure 12. Dissipation profile for D equal to 0.8 (left) and 1.6 (right), α0T0 = 1, for a
superadiabatic Rayleigh number up to 109 in the anelastic approximation.

Figure 13. Relative distance (L1-norm) of the entropy to total heat flux profile (left) and of
the dissipation profile to the limit (C 6).
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Figure 14. Snapshot of the superadiabatic temperature field for a very small D = 0.05 (top),
moderate D = 0.4 (middle) to a large dissipation number D = 1.6 (bottom), for Rasa = 109,
in the anelastic approximation with α0T0 = 1. In the close-up views, the distribution of viscous
dissipation ǫ̇ : τ (left) and entropy flux s̃uz (right) are shown.

becomes large. We have restricted our analysis to a maximum value of Rasa = 109, so
that a spatial resolution of 512 vertical and 2048 horizontal modes was able to capture
thin plumes and boundary layers. For simplification and ease of calculation, we consider
the anelastic approximation AA only: from the previous section 7, we have seen that the
global amount of dissipation does not seem to depend on the model FC, AA or ALA, at
large Rasa numbers, so that we expect the same convergence for FC and ALA than that
from AA (SCA is different, as we have seen).
Figure 11 shows the ratio of the entropy heat flux Tas̃uz to the uniform total heat

flux QAA, see equation (7.13). For both values of the dissipation number D = 0.8 and
D = 1.6, the entropy heat flux profile converges (slowly) towards the uniform value 1,

except in thin boundary layers: their thickness is of order Ra
−1/3
sa and conduction is the

only way to transfer heat in the vicinity of the top and bottom boundaries. This implies
that the other flux contributions, called together G(z), see (7.12) and (7.13), become
more and more negligible as the superadiabatic Rayleigh number is increased.
As expected, as G(z) becomes small (and without variations at some small scale), so

does dG(z)/dz, implying that the profile of viscous dissipation becomes close to Ds̃uz, see
(7.14). As Tas̃uz is close to 1 at large Rasa, we have a dissipation profile close to 1/Ta(z)
(see appendix C for a general dimensional expression). Figure 12 shows the change in
dissipation profiles as the superadiabatic Rayleigh number increases from 104 to 109,
for two different values of the dissipation number, D = 0.8 and D = 1.6. As expected
from (7.14), the profile converges towards 1/Ta(z) in both cases, however the ”entropy”
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component of dissipation being multiplied by D, the convergence looks more obvious for
the larger value of D.
We give a quantitative measure of the convergence of the entropy flux contribution

(towards 1) and dissipation profiles (towards 1/Ta(z)) in Fig. 13. The measure is defined
in each case as the logarithm of the L1 distance. The larger the dissipation number, the
faster the convergence is.
In an attempt to understand how the heat flux contributions G(z) become negligible

as Rasa is increased, we plot a snapshot of the superadiabatic temperature field for
three different values of the dissipation number D = 0.05, 0.4 and 1.6 at Rasa = 109

in Fig. 14. At small D sparse plumes go from bottom to top or top to bottom and a
velocity field is generated with a length-scale comparable to the height of the cavity,
in the case considered here of infinite Prandtl number. At moderate D the top-bottom
asymmetry is strong, more plumes are present and smaller scales are visible. At the largest
D, numerous plumes exist and they cannot cross the whole height of the cell (not even
the descending ones) without their heads detaching from their tails and continue their
course as isolated blobs. The length-scale of typical distance between adjacent plumes l
is reduced significantly compared to the height H of the cavity. If U is a typical scale for
velocity, then we expect the local viscous dissipation ǫ̇ : τ to scale as U2/l2, while ujτzj
scales as U2/l. Once averaged in time and horizontally, that quantity depends smoothly
on z on the global scale H , so that d/dz(ujτzj) scales as U

2/(lH), i.e. l/H smaller than
viscous dissipation. Extending this result on deviatoric stress work to pressure work, this
explains that dG(z)/dz becomes negligible compared to dissipation, see (7.14).
In Fig. 15, we plot the energy spectrum of one component of the deformation rate

tensor, ∂uz/∂z, for a large Rayleigh number Ra = 109 and different dissipation numbers,
in the anelastic approximation (AA). As the dissipation number is increased, a shift of
the whole spectrum towards larger wavenumbers is observed. At small values of D, the
spectrum has a maximum around kx = 4, while at large D the maximum is close to
kx = 10. This indicates that for a given integral of viscous dissipation, the fraction of
heat flux carried by the work done by viscous stresses becomes smaller and smaller as
the dissipation number D is increased.
This idea of smaller scales for velocity gradients at larger superadiabatic Rayleigh

numbers can also give a hint on why AA, FC and ALA results converge at large Rasa, as
seen in Fig. 10. An estimate of pressure contributions to entropy fluctuations in Anufriev
et al. (2005) – obtained from the analysis of the order of magnitude of the forces in the
momentum equation – is adapted to a lengthscale of convection l: from Stokes’ equation,
an order of magnitude of pressure is αρg(δT )l and from ds = cp/TdT − α/ρdP , we
evaluate the ratio of pressure over temperature to be of order αTDl/H . In Anufriev et al.
(2005), the length-scale l is taken to be of order H and the condition of validity for the
ALA approximation is given as αTD ≪ 1. If however, a smaller lengthscale l prevails,
that estimate must be smaller proportionally to l/H making the ALA approximation
more valid.
At large dissipation number and large superadiabatic Rayleigh number – typically our

last case of Fig. 14 – we thus propose that the time and horizontal average of viscous
dissipation is linked to the time and horizontal average of the product s̃uz (see equation
(7.14) with negligible term dG/dz). However, both quantities ǫ̇ : τ and s̃uz are not
pointwise (and timewise) correlated. This is illustrated in the close-up views in Fig. 14
where ǫ̇ : τ and s̃uz are plotted in a small region of the fluid domain. The quantity s̃uz

(right close-up) represents well the plumes while dissipation ǫ̇ : τ (left close-up) looks
more like a halo around the plumes. This is also a consequence of the different symmetries
concerning each quantity: for a supposedly straight descending plume, s̃uz is maximum
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Figure 15. Energy spectrum of ∂uz/∂z: the Fourier coefficients of this component of the velocity
gradient are computed along the x direction and the square of their complex magnitude F(kx) is
plotted as a function of the wavenumber (kx = 1 corresponds to a signal of period L the length

of the domain along x, and for any value of kx the corresponding mode is eikx2πx/L). Those
Fourier coefficients are averaged over a central vertical extent from z = −0.11 to z = 0.11.

on the centerline of the plume, however dissipation must be zero on that centerline (where
vertical gradients are smaller than horizontal gradients, i.e. not ahead of the tip of the
plume).

8. Effect of confinement and inertia

Different results were obtained in Currie and Browning (2017), where a larger dissi-
pation than our limit (7.25) is obtained. There are actually several differences in the
configuration they have studied: i) they use an EoS of an ideal gas, ii) they model con-
duction using the gradient of entropy, iii) they use a boundary condition of a fixed flux
(bottom), iv) they consider inertia (Pr = 1 or 10), v) they have a square domain, vi)
they have non-penetrative conditions on lateral walls. In this section, we test changes in
our configuration regarding the last three points iv), v) and vi) that can be implemented
easily in our code. It turns out that we need to make all three changes to recover the
results of Currie and Browning (2017).
In the results presented here, we have kept the same equation of state as in the be-

ginning of the paper, with s = s(ρ). We have kept the same top and bottom boundary
conditions. We have included inertia with a Prandtl number equal to ten, Pr = 10.
We have changed the aspect ratio from 4

√
2 to 1 (square domain). Then, we consider

two cases, one with periodic lateral boundary conditions as before in this paper, one
with a non-penetrative boundary condition. That last case is that considered in Currie
and Browning (2017) and corresponds to a vanishing perpendicular velocity component
ux = 0 and no shear-stress ∂uz/∂x = 0. This is achieved numerically in dedalus by
choosing the so-called SinCos base of functions for horizontal decomposition, instead of
the complete Fourier base for periodic boundary conditions.
Figure 16, on the left-hand side, shows the averaged vertical profiles of different compo-



32 T. Alboussière, J. Curbelo, F. Dubuffet, S. Labrosse and Y. Ricard

Figure 16. Profiles of heat flux components from (C5) except conduction terms (left) and dis-
sipation profile (right), for an aspect ratio unity and a Prandtl number equal to 10, Rasa = 107,
D = 1.6. Comparison between a periodic boundary conditions (Square periodic, in green) and
horizontal confinement with no shear stress (Square SinCos, in red).

nents of the heat flux identified in (C 5): the entropy flux fraction of the heat flux ρaTauzs̃,

the kinetic energy flux 1/2ρau2uz, the viscous work −uiτiz and the pressure work P̃uz.
On the right-hand side of Fig. 16, the averaged profiles of viscous dissipation are plotted
for Pr = 10, Rasa = 107 and D = 1.6. With periodic boundary conditions, we observe
some departure from the results we had previously (without inertia and in a long cavity)
in the top half of the cavity, but this does not change the total dissipation significantly.
On the contrary, with the confined boundary condition on lateral boundaries (SinCos in
dedalus), the fraction of entropy heat flux exceeds 1 by 75% in the bottom half, and as
a consequence of (7.13) and (7.14), viscous dissipation reaches much larger values there.
This brings the total dissipation in the range of that obtained by Currie and Browning
(2017). Looking into more details, the flux of kinetic energy is very significantly negative
in the SinCos case, causing a significant increase of the entropy flux in the lower half of
the fluid domain. On Fig. 17, we compare a snapshot of the superadiabatic temperature
field in both cases (periodic or SinCos). We can see that the vertical ”walls” in the Sin-
Cos case – and inertia – are capable of channeling the descending plume that dissipates
its kinetic energy at the bottom. A large-scale circulation is created. Note that Tilgner
(2011) has led numerical simulations in the fully compressible case with explicit vertical
walls. In the periodic case however, descending plumes still cannot reach the bottom
(even with Pr = 10 instead of Pr = ∞) and finer scales develop. Another feature of the
periodic box is the large scale shear deformation, induced by Reynolds stresses (with a
finite Prandtl number), which is suppressed in the wall-bounded geometry.
So, it seems that there are two possible convection states. One that is dominated by

the entropy flux, where G(z) in the flux profile (7.13) and in the dissipation profile (7.14)
is negligible. The length scales of convection are small. In our work, this state is obtained
in the limit of large superadiabatic Rayleigh numbers, although that limit might be
difficult to reach for small dissipation numbers. A second state, observed by Currie and
Browning (2017), can be seen when inertia is introduced and when vertical walls are
present. Convection is large-scale, descending plumes are stuck to a wall (the left wall in
the particular snapshot in Fig. 17) and viscous dissipation is enhanced compared to the
first state. Our investigations concerning the effect of inertia and confinement have not
been systematic and complete and they only concern the anelastic approximation AA.
We have tested all combinations of two aspect ratios (our usual 4

√
2 and 1), two types

of boundary conditions in the horizontal direction (periodic or SinCos) and two values of
the Prandtl number (Pr = ∞ and Pr = 10). Yet, that second state was only seen when
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Figure 17. Snapshot of the superadiabatic temperature field for Pr = 10, Rasa = 107, D = 1.6,
α0T0 = 1, in a domain of aspect ratio unity. On the left-hand side, there are periodic boundary
conditions in the horizontal direction, while there are impermeable no-shear-stress walls for the
calculation on the right-hand side.

we had simultaneously vertical walls (SinCos boundary condition), inertia (Pr = 10) and
an aspect ratio equal to one. Incidentally, this configuration is that of most experiments
where the ‘ultimate’ regime of thermal convection is investigated, for instance in Roche
et al. (2002).

In their paper, Currie and Browning (2017) have tested the model (that we call ’en-
tropy flux’) leading to the global dissipation (7.26), but they discard it on the basis of
their numerical results. However, they write ”Often it is assumed that in the bulk of the

convection zone, the total heat flux is just equal to the convective flux...”, where they call
”convective flux” that part of flux we call here ”entropy flux”, Tas̃uz. This corresponds
precisely to the assumption of negligible contribution of G(z) to the heat flux in (7.13).
So the idea has been expressed already and is seemingly well accepted in astrophysics,
but we could not find a precise reference for it until now.

At this point, it is important to have in mind the specific nature of the present study.
The equation of state considered here is a peculiar one, a sort of limit case retaining the
thermal features of compressibility (adiabatic gradient, adiabatic cooling) but minimizing
the actual changes in density (nearly uniform density). Previous works on stellar or gas
planet convection with an ideal gas equation of state have mostly shown that the flux of
kinetic energy corresponds to a significant fraction of the total heat flow (Chan and Sofia
1989; Viallet et al. 2013; Featherstone and Hindman 2016; Käpylä et al. 2019). These
studies report the existence of deep convective plumes crossing the whole adiabatic layer.
The impact of density stratification in an adiabatic region is highlighted by Anders et al.
(2019) who point out its effect on descending plumes that can be sometimes compacted
and accelerated downward. However, their authors also insist on the gap between the
values of the stellar Rayleigh number and those actually accessible numerically. In their
three-dimensional calculations, the Rayleigh number based on the heat flux is restricted
to be less than RaF = 107.5 (under a classical scaling Nu ∼ Ra1/3, this corresponds

to a Rayleigh number based on a temperature difference of Ra = Ra
3/4
F = 105.625). In

these papers, it is also reported that the numerical models overestimate stellar convec-
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tive velocities compared to the observations: this might be related to the relative small
values of the numerically accessible Rayleigh numbers. For instance, Featherstone and
Hindman (2016) report a slow tendency of the spectrum of convection to shift to larger
wavenumbers as the Rayleigh number is increased. This is also something we observe
(see Fig. 15) and we associate this to a slow convergence toward a regime of heat flow
dominated by the entropy flux. In the context of the Boussinesq approximation, Goluskin
et al. (2014) show how shear flow is generated by convection in a periodic domain, leading
to a reduction of the vertical heat transfer. In their two-dimensional case, they can reach
Rayleigh numbers of 1010. In addition to the role of the equations of state, other features
of the model can potentially affect the final structure of the flow: imposed temperatures
versus imposed heat flux, sub-grid-scale models in particular under the form of a Fourier
heat flux proportional to the gradient of entropy... Finally, the very important effects of
rotation and magnetic field are not considered here: for instance, the dynamics of the
Earth’s core is dominated by the influence of the Coriolis force and one consequence is
that kinetic energy is negligible despite the small value of the Prandtl number (Schaeffer
et al. 2017).

9. Conclusions

In this paper, we have taken the limit case of a class of equations of state such that
entropy is a function of density. In the assumption of an infinite Prandtl number, we
have written the fully compressible governing equations of convection as well as anelas-
tic approximations of increasing simplification AA, ALA and SCA (anelastic, anelastic
liquid and simple compressible). Under that choice, a nearly uniform entropy field im-
plies that density is nearly uniform. A consequence is that, with a uniform (dynamic)
viscosity, we also have a nearly uniform kinematic viscosity and a uniform thermal dif-
fusivity. With such a class of equations of state, there is still an adiabatic temperature
gradient and its effect in heat transport is still present. The idea is to keep features of
compressible convection and to discard effects related to non-uniform fluid properties,
sometimes called non-Oberbeck-Boussinesq (NOB) effects. The anelastic approximation
AA is based on a linear expansion about a state of uniform entropy, in the anelastic
liquid approximation ALA pressure variations are neglected on all thermodynamic quan-
tities, and in our simple compressible approximation SCA even the adiabatic gradient of
temperature is eliminated. In that last approximation, thermodynamics is badly treated,
however adiabatic heating and cooling is retained and the mathematical structure of the
equations contains the key ingredients of compressible convection. It has the advantage
of simplicity with just two scalar parameters Rasa and D. There is no need to determine
a profile of adiabatic temperature. Applied mathematicians might want to play with that
system (see also appendix A.4) and determine fundamental properties of its solutions,
which might then have applications in the more physical models.
The genuine compressible effects are governed by the dissipation parameter D. Around

D = 0.1 (between 0.05 and 0.2), compressible effects create a top-bottom asymmetry.
Ascending plumes starting from the bottom thermal boundary layer do no longer reach
the top. This leads to a change in the temperature profile with the loss of the overshoot
near the top of the superadiabatic temperature profile. At larger values of the dissipation
number, the change in the global heat flux under a constant superadiabatic Rayleigh
number is compatible with the model of critical boundary layer of Malkus (1954). As
we have shown in section 6, increasing the dissipation number leads to an increase of
heat transfer owing to the asymmetry of heat transfer resistance of the top and bottom
thermal boundary layers.
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With significant compressible effect (D large enough) and in the limit of very large
superadiabatic Rayleigh numbers, we have shown that a state of ”local equilibrium” is
reached, where the heat flow due to the flux of entropy fluctuations is accompanied with
the corresponding viscous dissipation at the same height. This is a small-scale process
which is consistent with the observation that heat flux components such as shear-stress or
pressure fluxes are negligible. In that limit, we can predict the vertical profile of viscous
dissipation, as soon as the profile of α, g and cp are known from equation (C 6). A similar
process takes place in the simplest SCA model: however, due to its extreme simplicity, it
ignores the depth dependence of the expansion coefficient and a constant heat flux with
depth leads to a constant profile of viscous dissipation (see equations (7.17) and (7.18)).
Although the result is different – and certainly less relevant to geophysics and astrophysics
– it is still mathematically interesting to investigate the consequences of the SCA model
on dissipation distribution. It still contains viscous heating and adiabatic cooling in the
thermal equation. These terms – particularly at high superadiabatic Rayleigh numbers
– are capable to drive the system in a state of mesoscale equilibrium between themselves
and lead to a dominant mode of heat transfer due to the flux of entropy, while other
modes (kinetic energy flux, pressure and stress terms) become small. If this process
is understood in the simpler SCA model, then it could certainly help understand the
behaviour of the other models.

Other works, in particular in Currie and Browning (2017), find that a different type
of flows can exist, with large-scale circulation and more dissipation for the same heat
flux. In that case, the vertical profile of dissipation has larger values in the lower half of
the domain where temperature is large (and less in the upper half): this explains how
the entropy budget is balanced despite an increased global dissipation. We have observed
that this type of convection can be reached only when the Prandtl number is finite,
vertical walls are present and the aspect ratio of the domain is not large. In geophysical
or astrophysical contexts, vertical walls certainly do not exist and that second type of
flow appears unlikely to develop.

Regarding the different models, we find a good agreement between FC and AA, as
expected, except at large dissipation numbers and small superadiabatic Rayleigh numbers
(above threshold). We also find the ALA approximation to be good, especially for small
values of α0T0 (as expected again), and at large superadiabatic Rayleigh numbers: that
last feature may be due to the fact that we get solutions with small convective scales
(mesoscale equilibrium) for which pressure variations are small. The differences would be
larger in the case of large-scale circulations. The SCA model gives different results, but
there are good reasons for that. As explained above, this model is not meant to provide
realistic results. It should be seen as a simple set of equations where compressible effects
can still be studied.

In future works, it seems important to investigate precisely the conditions of existence
of both types of flow. The following features should be studied: realistic equations of state,
three-dimensional flows, electromagnetic forces, effect of rotation. If the flux of kinetic
energy or the Poynting flux cannot compete with the entropy flux, then it is likely that the
model of “local equilibrium” applies, embodied by the vertical distribution of dissipation
(C 6).

Appendix A. Equations for FC, AA, ALA and SCA models

The velocity boundary conditions are common to all models: stress-free, non-penetrative
conditions, with an additional constraint on the average horizontal velocity since Galilean
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invariance does not constrain it.

∂ux

∂z
= 0, when z = ±1

2
, (A 1)

uz = 0, when z = ±1

2
. (A 2)

∫ L/(2H)

−L/(2H)

ux

(

x, z =
1

2

)

dx = 0, (A 3)

The non-dimensional equations of the different models studied – fully compressible (FC),
anelastic approximation (AA), anelastic liquid approximation (ALA) and simple com-
pressible approximation model (SCA) – and other boundary conditions are as follows:

A.1. Fully compressible model FC

The governing equations are

Dρ

Dt
= −ρ∇ · u, (A 4)

0 = −Rasa(n+ 1)

ε

(

ρn

D [(n+ 1)T∇ρ+ ρ∇T ] + ρez

)

+∇
2u+

1

3
∇ (∇ · u) , (A 5)

0 = −(n+ 1)ρn+1T∇ · u+
εD
Rasa

ǫ̇ : τ +∇2T. (A 6)

Temperatures are imposed at the top and bottom

T = 1 +
D + ε

2
, when z = −1

2
, (A 7)

T = 1− D + ε

2
, when z =

1

2
. (A 8)

A.2. Anelastic Approximation AA

The governing equations are

∇ · u = 0, (A 9)

0 = −Rasa
D ∇P̃ +Rasa

(

T̃

Ta
− P̃

(n+ 1)Ta

)

êz +∇
2u, (A 10)

D

Dt

(

T̃ − P̃

n+ 1

)

= −Duz

(

T̃

Ta
− P̃

(n+ 1)Ta

)

+
D

Rasa
ǫ̇ : τ +∇2T̃ , (A 11)

and boundary conditions

T̃

(

z = ±1

2

)

= ∓1

2
. (A 12)

∫ L/H

0

P̃

(

x, z =
1

2

)

− P̃

(

x, z = −1

2

)

dx = 0, (A 13)
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A.3. Anelastic Liquid Approximation ALA

The governing equations are

∇ · u = 0, (A 14)

0 = −Rasa
D ∇P̃ +Rasa

T̃

Ta
êz +∇

2u, (A 15)

DT̃

Dt
= −Duz

T̃

Ta
+

D
Rasa

ǫ̇ : τ +∇2T̃ , (A 16)

and boundary conditions

∂T̃

∂x
= 0 z = ±1

2
, (A 17)

T̃

(

x, z = −1

2

)

− T̃

(

x, z =
1

2

)

= 1, (A 18)

∫ L/H

0

P̃

(

x, z = ±1

2

)

dx = 0. (A 19)

A.4. Simple Compressible Approximation SCA

The governing equations are

∇ · u = 0, (A 20)

0 = −Rasa
D ∇P̃ +RasaT̃ êz +∇

2u, (A 21)

DT̃

Dt
= −DuzT̃ +

D
Rasa

ǫ̇ : τ +∇2T̃ , (A 22)

and boundary conditions

∂T̃

∂x
= 0 z = ±1

2
, (A 23)

T̃

(

x, z = −1

2

)

− T̃

(

x, z =
1

2

)

= 1, (A 24)

∫ L/H

0

P̃

(

x, z = ±1

2

)

dx = 0. (A 25)

Appendix B. Tables of simulation parameters

The parameters of infinite Prandtl number, 4
√
2 aspect ratio, simulations are the

following
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Rasa D α0T0 ǫ nx nz model duration

12 runs 104 1.5 1.0/0.5 0.1 128 32 FC/AA 0.3

0.1 ALA/SCA

5 runs 106 0/0.05/0.1 1.0 256 64 AA 0.5

0.2/0.4

5 runs 108 0/0.05/0.1 1.0 512 128 AA 10−2

0.2/0.4

2 runs 107 0.05/0.2 1.0 256 64 AA 0.1

4 runs 3.0 × 105 1.2 1.0 0.1 256 64 FC/AA 0.5

ALA/SCA

192 runs 103/3.5/4/4.5 0.25/0.5/0.75 1.0 0.1 256 64 FC/AA 1.0

105/5.5/6/6.5 1.0/1.25/1.5 ALA/SCA

17 runs 107 0.001/0.01/0.02 1.0 512 128 AA 0.1

0.03/0.04/0.05

0.07/0.1/0.2/0.3

0.5/0.7/1.0/1.2

1.4/1.6/1.8

8 runs 108 0.05/0.1/0.2/0.4 1.0 1024 256 AA 0.03

0.8/1.2/1.6/1.8

8 runs 109 0.05/0.1/0.2/0.4 1.0 2048 512 AA 0.01

0.8/1.2/1.6/1.8

Two additional runs have been performed with a Prandlt number equal to 10 in a
cavity of aspect ratio 1, with the following parameters

Rasa D α0T0 nx nz model duration lateral
condition

1 run 107 1.6 1.0 512 128 AA 0.1 x-periodic
(Fourier)

1 run 107 1.6 1.0 512 128 AA 0.1 wall-bounded
(SinCos)

Appendix C. Dimensional anelastic heat flux and dissipation profiles

From the dimensional anelastic equations for a general equation of state, we derive
expressions for the horizontal and time average of the vertical heat flux and dissipation
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profile. The anelastic equations are

∇ · (ρau) = 0, (C 1)

ρa
Du

Dt
= −ρa∇

(

P̃

ρa

)

+
ρaαaTag

cpa
s̃êz +∇ · τ. (C 2)

ρa
D(Tas̃)

Dt
= −ρaαaTag

cpa
uzs̃+ ǫ̇ : τ −∇ ·

(

φa + φ̃
)

, (C 3)

where φa and φ̃ are the conduction heat flux along the adiabat and the superadiabatic
temperature, respectively. The scalar product of the Navier-Stokes equation is averaged
horizontally and temporally (denoted by an overline) in the assumption of a statistically
stationary flow, to obtain the dissipation profile (after integrating by parts the last term)

ǫ̇ : τ (z) =
ρaαaTag

cpa
uz s̃−

d

dz

[

ρa
u2

2
uz + P̃ uz − uiτiz

]

. (C 4)

Taking the horizontal and temporal average of the energy equation (C 3), eliminating ǫ̇ : τ
using (C 4), shows that the following function is independent of z while it is obviously
equal to the heat flux at the top and bottom

QAA(z) = ρaTauzs̃+

[

ρa
u2

2
uz + P̃ uz − uiτiz

]

+ φa + φ. (C 5)

If the heat flux components in brackets converge toward zero, for instance when the
Rayleigh number increases to large values, then the main part of the flux is carried by
the entropy flux ρaTauz s̃, except in small layers at the top and bottom where thermal
conduction can compete. In the statically stationary case, the heat flux is uniform along z.
From (C 4), it can be seen that the dissipation profile converges toward ρaαaTag/cpauzs̃,
so that the dissipation profile becomes a well-defined function of height

ǫ̇ : τ (z) ≃ αag

cpa
QAA, (C 6)

depending on the vertical profiles of αa, cpa and g.
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