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Abstract 
Purpose 
We explored different technologies to minimize simulation time of the Monte-Carlo method for track 
generation following the Geant4-DNA processes for electrons in water. 
Methods 
A GPU software tool is developed for electron track simulations. A similar CPU version is also developed 
using the same collision models. CPU simulations were carried out on a single user desktop computer and 
on the computing grid France Grilles using 10 and 100 computing nodes. Computing time results for CPU, 
GPU, and grid simulations are compared with those using Geant4-DNA processes. 
Results 
The CPU simulations better performs when the number of electrons is less than 104 with 100eV initial 
energy, this number decreases as the energy increases. The GPU simulations gives better results when 
the number of electrons is more than 104 with initial energy of 100eV, this number decreases to 103 for 
electrons with 10KeV and increases back with higher energy. The use of the grid introduces an additional 
queuing time which slows down the overall simulation performance. Thus, the Grid gives better 
performance when the number of electrons is over 105 with initial energy of 10KeV, and this number 
decreases as the energy increases. 
Conclusions 
The CPU is best suited for small numbers of primary incident electrons. The GPU is best suited when the 
number of primary incident particles occupies sufficient resources on GPU card in order to get an 
important computing power. The grid is best suited for simulations with high number of primary incident 
electrons with high initial energy.  
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Introduction 
Monte Carlo simulations are widely used in many scientific fields especially in ionizing particle track 
structure and radiation physics simulations. The Geant4 Monte-Carlo simulation using the Geant4 toolkit 
[1-3] and the Geant4-DNA processes on CPU, hereafter referred to as Geant4-DNA processes, offers a 
wide range of applications from high energy physics to low energies and Geant4-DNA processes  [4-7] 
were developed specifically for micrometric scale simulations, particularly useful in radiobiology and 
microdosimetry fields [8-11]. 

Studying the effects of radiation on living cells is important for the understanding of damage induction 
processes and this is a topic of interest in a wide range of applications, e.g., radiation therapy, medical 
imaging dosimetry, radiobiology, and radiation protection and risk assessment for space missions.  The 
macroscopic results are easily identified, like living tissue alteration and cell survival quantifications. 
However, other stochastic effects are still nowadays an open field of research, like DNA scale damage, 
risks of mutation, mitochondrial damage and other radio induced end-effects problems. The challenge is 
that these radiation small-scale effects are difficult to quantify by experiment. Therefore, Monte-Carlo 
(MC) simulations are used to generate particle tracks in specific volume shapes representing the irradiated 
targets. Using simulations, we can assess the detailed energy deposition distribution in the irradiated 
medium with a high level of details.  

In the last decade, many MC tools were developed for radiobiology purposes, e.g., Geant4-DNA[4], Partrac 
[12, 13] , and RITRACKS NASA software [14]. These types of simulations are computationally intensive and 
consequently time consuming. To improve the computational efficiency, parallel computing is a viable 
solution. Many available technologies provide different ways for parallelization like Grid computers and 
the use of Graphical Processing Units known as GPUs. This implies that users should have access to 
relatively large computing facilities and should have strong programming skills in order to carry out 
complex technical simulations. At the same time, it is difficult to predict the best technology to use for a 
simulation, as this would depend on many parameters and mainly on the solution’s algorithm. In a specific 
scenario, one technology can achieve a better result; however, this might vary for different configurations.  

Many research groups ported simulations on GPUs and proved a significant speedup over CPU [15-18]. In 
our case we are interested in comparing the computing performance between CPU, GPU, and Grid 
computing using France Grilles [19]. In this study, we focus on electrons tracks simulation, using the MC 
method for simulating the transport and energy deposition in liquid water. We followed a step-by-step 
tracking approach, since this method is convenient for nm-scale radiation biology simulations. Electrons 
should be taken into account in any ionizing radiation modelling since they are the most abundant 
secondary particles issued from charged particles collisions. 

For the sake of comparison, we developed a CPU version of the code using the C++ language, and we 
validated the results with those obtained with Geant4-DNA. The same CPU code is compatible with France 
Grilles computing grid and thus can be used for performance comparisons. 
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We also ported our code on GPU using the CUDA C language [20] which allowed us to extend our 
comparison of computing time results. Therefore, we are comparing our CPU code running on a desktop 
machine and on computing grids, the GPU version and the Geant4-DNA processes (on CPU). 

In order to make our tool easy to use, we developed a graphical user interface using the framework Qt 
[21]. This framework offers cross-platform solution for different programming languages like C++, Python 
and can be interfaced with other languages like CUDA. 

Materials and methods 
Hardware Specifications 
The characteristics of the CPU used in our simulations are presented in table 1 and the GPU characteristics 
are presented in table 2. 

Family Model 
number 

Frequency Number of 
Cores 

Number of 
threads 

Memory 
Types 

Intel Core i-9 i9-7940X 3.1 GHz 14 28 DDR4-2666 
 Table 1 : CPU characteristics 

Name Memory size Memory Bandwidth Nvidia CUDA Cores 
Nvidia Quadro P4000 8GB Up to 243 GB/s 1792 

Table 2 : GPU characteristics 

The grid is heterogenous by nature and nodes can be added, removed or modified at any time, therefore 
the hardware specifications are not constant and therefore cannot be presented here. Besides every 
simulation job sent to the grid is assigned to available nodes, even consecutive jobs with same number of 
computing nodes can be executed on different nodes with different specifications. 

CPU algorithm 
Our simulations are a step-by-step path tracking of a single electron that are repeated N times. All 
electrons have the same initial energy, coordinates and direction. The processes that an electron 
undergoes are elastic collisions, molecular vibrational excitation, electronic excitation, and ionization. All 
processes are limited to tracking in liquid water, this limitation arises from theoretical models of cross 
sections that are available for this type of studies. 

For each step, the electron can go through one interaction process that is chosen using a random sampling 
taking into account the respective total cross sections of each process. The free path which is the distance 

to the next collision is calculated using the following formula: 𝜆 = 	! "#(%)
'

	 where ε is a uniform random 
value between 0 and 1, and Σ is the sum of the 4 processes macroscopic cross sections. 

Elastic collisions 

The elastic collision angular and total cross sections are based on the Brenner and Zaider [22] semi 
empirical approach for energies below 200 eV, and we used the Rutherford formula for higher incident 
energies [23, 24]. This method works well for electrons with non-relativistic energy, however it doesn’t 
impose any limit for high energy simulations because in the relativistic range all the interactions become 
highly dominated by ionization. 
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The direction vector after an elastic collision is calculated using the following expressions: 

𝑈 = 𝑉( cos(𝜃) +	
.1 −	cos(𝜃)) 1𝑉(𝑉* cos(𝜑) − 𝑉+ sin(𝜑)5

61 − 𝑉*)
 

𝑉 = 𝑉+ cos(𝜃) +	
.1 −	cos(𝜃)) (𝑉+𝑉* cos(𝜑) − 𝑉( sin(𝜑))

61 − 𝑉*)
 

𝑊 = 𝑉* cos(𝜃) − .1 − cos(𝜃))61 − 𝑉*)cos	(𝜑) 

where 𝑉( , 𝑉+	𝑎𝑛𝑑	𝑉* are the components of the electron’s direction vector before the collision. The 
azimuthal angle ϕ is randomly chosen between 0 and 2π and the polar angle θ is obtained using a random 
sampling taking into account the differential cross sections from  Brenner and Zaider [22]. 

Vibrational excitations 

Due to the lack of theoretical models characterizing energy loss through vibrational excitations, we used 
interpolated experimental data of Michaud and Sanche [25, 26]. Vibrational excitations become 
increasingly important for low energies and mostly for subexcitational energies below ~8 eV because in 
this range they are the only process involved in the electron’s energy loss. The data of Michaud and Sanche 
[25, 26] cover energies between 1 eV and 100 eV. Direction change is not taken into account after a 
vibrational interaction and the energy loss is randomly sampled taking into account the different 
vibrational levels. The energy lost by the electron is saved as a local energy deposition in the medium. 

Inelastic collisions 

Inelastic collisions including electronic excitation and ionization were described using the First Born 
Approximation theory as detailed by Emfietzoglou [27]. We calculated the single differential cross sections 
and the integrated total cross sections for different electrons incident energies, and the computed 
numerical tables were implemented in our code. The specific cross section values are obtained during the 
simulation process using a linear interpolation between the precomputed values. This method avoids 
using the theoretical formulas during the simulation process which can have a large effect on the 
simulation time. After excitation interactions the electron loses part of its energy without changing 
direction. After an ionization the incident electron loses part of its energy that is distributed between a 
local energy loss deposited in the medium, the electron binding energy, and the kinetic energy that is 
communicated to a secondary electron. The energy transferred to the secondary electron is randomly 
sampled using the precomputed differential cross sections. The direction of the secondary ejected 
electron is randomly sampled with respect to models published by Grosswendt et al. [28]. The new 
direction of the primary electron is calculated taking into account the momentum conservation law with 
respect to the secondary electron ejection momentum. The binding energy of the ejected secondary 
electron is considered locally deposited in the medium. Secondary electrons are then tracked just like any 
primary electron, depositing energies and creating other secondary electrons. 

Technically the position, energy, and direction of each secondary electron are firstly stored in a queue to 
be used later on when the primary electron tracking is finished. A cut-off energy limit is set, if the 
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electron’s energy drops below this limit, the electron is forced to deposit all its remaining kinetic energy 
in its current position and the tracking is ended. In our, simulations this limit was set to 8.22 eV which 
corresponds to the lowest water excitation energy. 

All the calculations use extensively random values generation. Therefore, the use of a robust Random 
Number Generator (RNG) is key factor of the simulations results. In our CPU simulations we use the 
Mersenne-Twister RNG [29] because it provides a large period of random numbers, it’s a validated model 
and it’s widely used in Monte Carlo simulations. Moreover, it is now part of the C++ 11 standard library 
[30]. 

The algorithm diagram for the CPU version of our code is summarized in figure 1. First the primary 
electron’s energy, position, and initial direction are set, then as long as the kinetic energy of the electron 
is above our cut-off threshold the tracking process is carried out and energy deposition data is saved in a 
text file. The whole process is repeated to simulate a fixed number of electron tracks. In fact, since the 
approach is stochastic, a large number of primary electrons is needed so that the results analysis of energy 
depositions in a limited volume will converge to an average value.  

 



6 
 

 

Figure 1: The algorithm pseudocode used for our CPU version. 

 GPU algorithm 

GPU processing enables us to launch multithreaded tasks on a large number of cores. Therefore, the step-
by-step path tracking of N electrons can be carried out simultaneously.  

start

for i = 1 to N

end

Initialize electron position, energy and direction

while energy is above Cutoff energy and 
electron is inside simulation volume

Calculate Mean Free Path
Choose process
Calculate deposited energy
Calculate new position(x,y,z)
Calculate new direction (Vx, Vy, Vz)
If a secondary electron is produced save it to the queue
Write position and energy deposition to file

Write the position and the remaining energy of the electron in file
If queue not empty get energy, position and direction of the electron
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We used the Compute Unified Device Architecture (CUDA), as the language for our GPU code. The 
algorithm is hybrid, it is launched from the Host in a loop until all electrons’ calculation carried out on the 
Device are completed. 

The GPU simulation follows the same steps described in the previous section for CPU. First, we calculate 
processes cross sections, then the free path distance of the electron to the next collision, the deposited 
energy, the electrons’ new direction and, for ionization interactions, the energy transferred to the 
secondary electron and its direction. The secondary electron’s information is saved in a queue on the host 
memory and its simulation starts as soon as a thread is free and ready to start with a new electron tracking. 
We always keep the maximum number of threads busy to have the best performance results. 

Cross section tables used for different processes are copied to the device global memory before starting 
the simulation. Although, the shared memory is usually a faster alternative, in our case it would require 
replicating these tables for each block which would consume a large memory space, moreover, shared 
memory is smaller in size and its content is reset at the end of the block execution [20]. The different 
electron variables are stored in the local memory. 

At each step the position and the amount of deposited energy are written in a text file, which can only be 
done from the host memory. Therefore, all the energy deposition data was transferred from the device 
to the host after each step. 

A CUDA stream encapsulates data transfer and kernel launch[20, 31]. Our workload can be equally split 
into up to 8 streams, based on our hardware capacity, in this way we can overlap data transfer and device 
calculation which leads to better performance.  Our code implementation allows the user to choose the 
number of threads per block (T) and the number of blocks (B) as well as the number of streams (S). So, we 
can launch N = T x B x S electron tracks simulation in parallel. 

The cuRAND library provides different random number generators [32]. The MTGP32 generator is an 
adaptation of the Mersenne-Twister  developed at Hiroshima University [33], but it does not scale enough 
for our simulations; 200 sequences with 256 threads per block at most [31]. We used the Philox_4x32_10 
generator that has 264 subsequences each with a period of 2128 which yield good results. We also tried the 
Thrust library [34] random number generator which also led to satisfactory results. 

 

Grid Parallel Computing 
The grid concept was formulated in 1999 by Ian Foster and Carl Kesselman [35].  The French national grid 
is France Grilles [19] and is a part of the European Grid Infrastructure federation (EGI) [36]. To be able to 
access the grid you need an X509 certificate for authentication delivered by a trusted organization, in our 
case it’s RENATER [37], and you need to be part of a Virtual Organization (VO) to have permission to use 
the resources, in our case we were part of the “grand-est” VO.  

The grid infrastructure is best suited for jobs that can be parallelized with no need for communication 
between the jobs. In our case each electron simulation is completely independent from the others, and 
we used K nodes for the simulation of N electrons, therefore, the workload of each node is N/K.  

On the grid, we should take special care of the random number generation. Using a different seed value 
on each computing node may result in overlapping value sequences leading to repeated results. Another 
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approach is to use the same seed on all computing nodes, but instead of using the random values in 
sequence, we skip ahead k values each time [38]. This way, the simulation algorithm used on the grid is 
the same used on the CPU of a single machine. The only change is in the random number generation, a 
skip ahead instruction is added to the algorithm. For each job we start by a p skip ahead, where p is the 
position of this job with respect to the total number of jobs. Subsequently a k jump ahead is used for every 
random value generation, where k is the total number of jobs on the grid. 

Sending jobs to the grid and getting back the results requires a special set of command packaged in 
software framework DIRAC (Distributed Infrastructure with Remote Agent Control) [39]. The jobs sent to 
the grid go through the following major values of status: Waiting (Job is accepted for DIRAC Workload 
Management System), Scheduled (Job is assigned to a Site), Running (the job is executing on the 
Computing Element), Done (Job finished successfully), Failed (Job finished with errors), Deleted (Job 
deleted by the user) and Killed (Job killed by the user). We used python scripts with a set of DIRAC 
commands, to send our simulation jobs to the grid, and get the jobs logs and results.  

We launched all our simulations on the grid two times, the first time using 10 nodes and the second time 
100 nodes. This choice helped us to highlight the impact of the waiting time in grid simulation and the 
total simulation time. 

 

Results and Discussion 
Track structure simulations of electrons with energies 100 eV, 1 keV, and 10keV were carried out in infinite 
volume of water and electrons were followed until their kinetic energy dropped below the 8.22 eV cut-
off. All electrons start from the origin in the positive direction of the x axis. Energy deposition positions in 
the volume were saved, and their coordinates are shown in figures 2, 3 and 4. Coordinates are plotted 
into a histogram for each spatial component (figures A, B and C). Also, the energy deposition distribution 
is represented showing the occurrences of energy loss values in the medium (figure D) for different 
interaction types. Figures D reveal the 9 energy depositions coming from vibrational and rotational 
excitations of the water molecules (below 1 eV) and 5 electronic excitation values (between 8 and 14 eV) 
as well as 5 ionization values (above 10 eV). The results obtained using both the CPU and GPU running 
versions, were compared with the same simulation conditions using Geant4-DNA track structure 
processes [4-7]. A good agreement is obtained between the spatial coordinates’ components along the 3 
axis directions. Also, the energy deposition frequencies were compared showing good agreement with 
the results of Geant4-DNA. 

Geant4 simulations were carried out using Geant4-DNA physics processes, for 4 different interactions; 
ionization, electronic excitation, elastic scattering and vibration and rotation excitations. The processes 
rely on the First Born Approximation for inelastic collisions [27] such as ionization and electronic 
excitation. The elastic scattering process uses the Rutherford elastic model [23, 24], and the vibration and 
rotation excitations cross sections are based on interpolations of experimental data of Michaud and 
Sanche [25, 26]. The electron source is placed at the center of the reference and the initial direction of 
the electrons is directed along the x axis. 
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Histogram of X-axis positions Histogram of Y-axis positions 

  

   
Histogram of Z-axis positions Histogram of energy depositions 

Figure 2 : Energy deposition coordinates (A, B, and C) and frequencies (D) for 100 eV electrons in liquid water. Results were 
obtained using CPU and GPU versions of our software and compared with Geant4-DNA simulations. 

 

  
Histogram of X-axis positions Histogram of Y-axis positions 
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Histogram of Z-axis positions Histogram of energy depositions 

Figure 3 : Energy deposition coordinates (A, B, and C) and frequencies (D) for 1 keV electrons in liquid water. Results were 
obtained using CPU and GPU versions of our software and compared with Geant4-DNA simulations. 

 

  
Histogram of X-axis positions Histogram of Y-axis positions 

  

  
Histogram of Z-axis positions Histogram of energy depositions 

Figure 4 : Energy deposition coordinates (A, B, and C) and frequencies (D) for 10 keV electrons in liquid water. Results were 
obtained using CPU and GPU versions of our software and compared with Geant4-DNA simulations. 
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Simulations were carried out on an Intel I9 CPU with a clock speed of 3.10 GHz, 32 GB of RAM and a Nvidia 
Quadro P4000 GPU. CPU and Geant4 simulations were single threaded. For GPU simulations, we used a 
configuration of 512 block, 32 thread by block and 8 streams for information transfer between the host 
and the device. For simulations on the computing grid “France Grilles”, we used 10 and 100 calculation 
nodes. Simulation times were measured for the same number of incident electrons and for different 
electron energies, 100 eV, 500 eV, 1 keV, 10 keV, 100 keV, 500 keV and 1 MeV. Results are reported in 
Figure 6 for 4 different energies. The figure shows calculation time versus the number of initial electrons 
for different incident energies (100 eV, 500 eV, 1 keV and 10 keV). The results include CPU and GPU 
versions of our code, the Geant4-DNA processes, and Grid calculations using 10 and 100 nodes. 

The results show a linear increase of computing time for CPU and Geant4-DNA simulations. GPU 
computing time shows slower performance for low electron number simulations and a faster performance 
for high numbers of electrons, e.g., above 104 electrons for 100 eV energies, 103 electrons for 10 keV 
electrons. This is due to the fact that GPU clock frequency is generally slower than CPU frequency and low 
electrons numbers do not occupy the total resources of the GPU until a certain number of electrons is 
reached where multithreading becomes more rewarding. Once the total capacity of the GPU is being used, 
its best performance is reached, and the computing time increases linearly with the number of initial 
electrons. Our GPU acceleration results are in agreement with other published studies [40]. The GPU 
performance is highly affected by data transfer between the GPU, the host system and the local hard drive 
for final results, which slows down the simulation process. Also, conditions branching contribute to 
slowing the GPU computing process. Therefore, depending on the volume of the data to be extracted and 
saved on the local hard drive, we might get different acceleration ratios with different simulations. 

The performance of the CPU version is comparable to Geant4-DNA, while the GPU brings an advantage 
above 104 events and reaches a maximum ratio of 10 for higher numbers.  

 

  

Electrons initial energy 100 eV Electrons initial energy 500 eV 
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Electrons initial energy 1keV Electrons initial energy 10 keV 

Figure 5: Simulation time comparison for electrons of different energies, using different simulation tools: CPU and GPU versions 
of this work, Geant4-DNA processes and France Grille computing grid using 10 and 100 nodes. 

  

Electrons initial energy 100 eV Electrons initial energy 500 eV 

  

Electrons initial energy 1 keV Electrons' initial energy 10 keV 

Figure 6: Acceleration ratios with respect to Geant4-DNA 
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Number of electrons FS-CPU FS-GPU Grid 10 nodes Grid 100 nodes 
102 1.9021 0.1082 0.0002 0.0001 
103 2.1784 0.5618 0.0007 0.0006 
104 1.9871 2.6426 0.0225 0.0301 
105 1.9178 5.9677 0.0941 0.1501 
106 1.9047 7.1713 1.3232 0.3224 
107 1.8520 7.0275 5.5347 2.6683 
Table 3: acceleration ratios for 100 eV electrons with respect to Geant4-DNA. Different numbers of incident electrons are used 

on CPU, GPU and computing grid configurations using 10 and 100 nodes. 

Number of electrons FS-CPU FS-GPU Grid 10 nodes Grid 100 nodes 
102 2.0256 0.3093 0.0012 0.0003 
103 1.9580 1.4795 0.0058 0.0020 
104 1.9632 4.4576 0.0454 0.0302 
105 1.9281 7.5066 1.4316 0.2566 
106 1.8363 7.7547 5.4212 4.5349 
Table 4: acceleration ratios for 500 eV electrons with respect to Geant4-DNA. Different numbers of incident electrons are used 

on CPU, GPU and computing grid configurations using 10 and 100 nodes. 

Number of electrons FS-CPU FS-GPU Grid 10 nodes Grid 100 nodes 
102 2.3437 0.4842 0.0039 0.0010 
103 2.1676 2.2699 0.0311 0.0082 
104 2.1516 5.7060 0.0700 0.1149 
105 2.1249 7.9430 4.1537 3.2121 
106 2.1680 7.2607 4.4688 2.7344 

Table 5: acceleration ratios for 1 KeV electrons with respect to Geant4-DNA. Different numbers of incident electrons are used on 
CPU, GPU and computing grid configurations using 10 and 100 nodes. 

Number of electrons FS-CPU FS-GPU Grid 10 nodes Grid 100 nodes 
102 1.9447 0.5227 0.0064 0.0078 
103 1.9384 2.5626 0.1163 0.1383 
104 1.9288 5.9233 4.3653 3.3943 
105 1.8221 6.3610 5.1831 4.7183 
106 1.9710 3.3474 7.5245 13.1163 
Table 6: acceleration ratios for 10 KeV electrons with respect to Geant4-DNA. Different numbers of incident electrons are used 

on CPU, GPU and computing grid configurations using 10 and 100 nodes. 

The simulation time on the grid is the time that separates the reception of the first job in the queue 
manager and the time the last job is finished. The grid results are greatly influenced by the waiting time 
in the queue manager, caused by the number of jobs that are scheduled by all users of the grid. Therefore, 
the waiting time becomes negligible for long computing time simulations. Also, the calculation time is not 
the same on all the grid’s nodes because the hardware is not the same, therefore, the simulation might 
be partially slowed down by one slow hardware. Figure 7 shows the variations of the simulation total time 
(A), waiting time (B) and CPU time (C), for the initial electrons’ energy of 1 keV simulation, on 100 nodes. 
Comparing the total simulation time and the waiting time suggests that this latter has the higher influence 
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on measured performances. Note that this is only true for simulations where CPU time is of the same 
order of waiting time, and this influence becomes increasingly negligible for larger simulations requiring 
longer CPU time. Figure 7 (C) shows a linear increase of CPU time with increasing number of electrons, 
however there is no clear trend for the waiting time as shown on Figure 7 (B). 

We assume that the grid becomes increasingly advantageous when the simulation computing time 
exceeds the queuing time. For our simulations on 10 nodes configuration, the threshold is attained with 
106 electrons of 10 keV energy where the simulation time was about ~16000 seconds and the queuing 
time was over ~8000 seconds. For lower number of electrons or lower incident energies the overall time 
is dominated by the queuing component. While on 100 nodes configuration this threshold is attained for 
1000 electrons of 500 keV energy. The simulation becomes increasingly demanding for higher energies 
and the queuing time increases with required nodes as well, therefore higher nodes configurations are 
only advantageous for CPU demanding simulations. 

Queuing time is a random parameter that depends on the grid state and users’ number. Figure 8 shows 
the waiting time distribution for jobs sent on 10 and 100 nodes. We can notice that 75% of all jobs have a 
waiting time less than 3000 seconds using 10 nodes and less than 4000 seconds for 100 nodes jobs. Thus, 
simulations requiring CPU time above these queuing time thresholds can be accelerated using the grid 
facility. 

  
Total simulation time variation on 100 nodes Waiting time variation on 100 nodes 

 
CPU time variation on 100 nodes 

Figure 7: Grid 1 KeV electron initial energy simulation, total, waiting, and CPU time 
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Figure 8 : Queuing time distribution for 10 and 100 nodes configurations using the computing grid. 

 

Conclusion 
In this work, we have presented a comparison between 3 technical approaches for Monte-Carlo ionizing 
track structure simulations. A GPU version of track structure processes was developed with a user-friendly 
graphical interface. Comparison with CPU simulations showed a clear advantage of GPU multicore usage. 
Also, comparisons with Geant4 simulations on CPU using a single thread showed that GPU had an 
advantage for high events simulations with an acceleration reaching 8 times faster. The Geant4 
simulations were carried out using one thread to compare with our CPU single threaded performance. 
Multithreading both Geant4 and our CPU code would simply divide the computing time by the number of 
threads and the computing time is linearly scalable. However, taking into account that Geant4 has a 
multithreading enabled version and considering that the simulation time decreases linearly with 
increasing number of available threads, multithreaded Geant4 simulations can accelerate the computing 
time by a factor of ~28 for example on a I9-7940X. Using a large computing grid is not practical for 
simulations requiring less than few hours CPU time, mainly because of the technical complexity of 
submitting jobs and queuing times that might be lengthy depending on the grid’s workload. However, for 
large number of electrons and higher initial energies, simulations require more than 2~3 hours of CPU 
time, grid usage becomes more advantageous than GPU. Therefore, depending on the availability of the 
hardware, GPUs present a cheap and practical solution for simulations of up to 2~3 hours. Along with 
multithreaded CPU calculations, GPU can be an adapted alternative to large computing grids which might 
not be easily accessible at times, or access protocol complexity might slow down the overall process. 
Finally, the choice of cross sections was solely based on comparison requirements with the Geant4-DNA 
package. Hence, the cross sections integrated in our GPU simulation tool are the same as in Geant4-DNA. 
However, both the inelastic and the elastic cross sections models become inaccurate for low energies, 
thus increasing the results uncertainty. In the future, the Rutherford model can be replaced with the 
partial wave expansion to improve the elastic scattering collisions, in fact recent studies showed the 
importance of elastic scattering models and their effect on numerical simulations [41, 42]. 
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