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Introduction

Monte Carlo simulations are widely used in many scientific fields especially in ionizing particle track structure and radiation physics simulations. The Geant4 Monte-Carlo simulation using the Geant4 toolkit [START_REF] Agostinelli | Geant4-a simulation toolkit[END_REF][START_REF] Allison | Geant4 developments and applications[END_REF][START_REF] Allison | Recent developments in Geant4[END_REF] and the Geant4-DNA processes on CPU, hereafter referred to as Geant4-DNA processes, offers a wide range of applications from high energy physics to low energies and Geant4-DNA processes [START_REF] Incerti | THE GEANT4-DNA PROJECT[END_REF][START_REF] Incerti | Comparison of GEANT4 very low energy cross section models with experimental data in water[END_REF][START_REF] Bernal | Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit[END_REF][START_REF] Incerti | Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project[END_REF] were developed specifically for micrometric scale simulations, particularly useful in radiobiology and microdosimetry fields [START_REF] Fang | Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units[END_REF][START_REF] Chouin | Evidence of Extranuclear Cell Sensitivity to Alpha-Particle Radiation Using a Microdosi Metric Model. I. Presentation and Validation of a Microdosimetric Model[END_REF][10][11].

Studying the effects of radiation on living cells is important for the understanding of damage induction processes and this is a topic of interest in a wide range of applications, e.g., radiation therapy, medical imaging dosimetry, radiobiology, and radiation protection and risk assessment for space missions. The macroscopic results are easily identified, like living tissue alteration and cell survival quantifications. However, other stochastic effects are still nowadays an open field of research, like DNA scale damage, risks of mutation, mitochondrial damage and other radio induced end-effects problems. The challenge is that these radiation small-scale effects are difficult to quantify by experiment. Therefore, Monte-Carlo (MC) simulations are used to generate particle tracks in specific volume shapes representing the irradiated targets. Using simulations, we can assess the detailed energy deposition distribution in the irradiated medium with a high level of details.

In the last decade, many MC tools were developed for radiobiology purposes, e.g., Geant4-DNA [START_REF] Incerti | THE GEANT4-DNA PROJECT[END_REF], Partrac [12,[START_REF] Friedland | Comprehensive trackstructure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping[END_REF] , and RITRACKS NASA software [START_REF]RITRACKS: A software for simulation of stochastic radiation track structure, micro-and nanodosimetry, radiation chemistry and DNA damage by heavy ions[END_REF]. These types of simulations are computationally intensive and consequently time consuming. To improve the computational efficiency, parallel computing is a viable solution. Many available technologies provide different ways for parallelization like Grid computers and the use of Graphical Processing Units known as GPUs. This implies that users should have access to relatively large computing facilities and should have strong programming skills in order to carry out complex technical simulations. At the same time, it is difficult to predict the best technology to use for a simulation, as this would depend on many parameters and mainly on the solution's algorithm. In a specific scenario, one technology can achieve a better result; however, this might vary for different configurations.

Many research groups ported simulations on GPUs and proved a significant speedup over CPU [START_REF] Kirk | Programming Massively Parallel Processors, 2nd Edition: A Hands-on Approach[END_REF][START_REF] Hofinger | GPU-accelerated computation of electron transfer[END_REF][START_REF] Bert | Geant4-based Monte Carlo simulations on GPU for medical applications[END_REF][START_REF] Tian | Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU[END_REF]. In our case we are interested in comparing the computing performance between CPU, GPU, and Grid computing using France Grilles [19]. In this study, we focus on electrons tracks simulation, using the MC method for simulating the transport and energy deposition in liquid water. We followed a step-by-step tracking approach, since this method is convenient for nm-scale radiation biology simulations. Electrons should be taken into account in any ionizing radiation modelling since they are the most abundant secondary particles issued from charged particles collisions.

For the sake of comparison, we developed a CPU version of the code using the C++ language, and we validated the results with those obtained with Geant4-DNA. The same CPU code is compatible with France Grilles computing grid and thus can be used for performance comparisons.

We also ported our code on GPU using the CUDA C language [START_REF] Cheng | Professional CUDA C Programming[END_REF] which allowed us to extend our comparison of computing time results. Therefore, we are comparing our CPU code running on a desktop machine and on computing grids, the GPU version and the Geant4-DNA processes (on CPU).

In order to make our tool easy to use, we developed a graphical user interface using the framework Qt [START_REF]The Qt Framework[END_REF]. This framework offers cross-platform solution for different programming languages like C++, Python and can be interfaced with other languages like CUDA.

Materials and methods

Hardware Specifications

The characteristics of the CPU used in our simulations are presented in The grid is heterogenous by nature and nodes can be added, removed or modified at any time, therefore the hardware specifications are not constant and therefore cannot be presented here. Besides every simulation job sent to the grid is assigned to available nodes, even consecutive jobs with same number of computing nodes can be executed on different nodes with different specifications.

CPU algorithm

Our simulations are a step-by-step path tracking of a single electron that are repeated N times. All electrons have the same initial energy, coordinates and direction. The processes that an electron undergoes are elastic collisions, molecular vibrational excitation, electronic excitation, and ionization. All processes are limited to tracking in liquid water, this limitation arises from theoretical models of cross sections that are available for this type of studies.

For each step, the electron can go through one interaction process that is chosen using a random sampling taking into account the respective total cross sections of each process. The free path which is the distance to the next collision is calculated using the following formula:
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where ε is a uniform random value between 0 and 1, and Σ is the sum of the 4 processes macroscopic cross sections.

Elastic collisions

The elastic collision angular and total cross sections are based on the Brenner and Zaider [START_REF] Brenner | A computationally convenient parameterisation of experimental angular distributions of low energy electrons elastically scattered off water vapour[END_REF] semi empirical approach for energies below 200 eV, and we used the Rutherford formula for higher incident energies [START_REF] Bransden | Atomic Collision Theory[END_REF][START_REF] Emfietzoglou | A Monte Carlo track structure code for electrons (approximately 10 eV-10 keV) and protons (approximately 0.3-10 MeV) in water: partitioning of energy and collision events[END_REF]. This method works well for electrons with non-relativistic energy, however it doesn't impose any limit for high energy simulations because in the relativistic range all the interactions become highly dominated by ionization.

The direction vector after an elastic collision is calculated using the following expressions: where 𝑉 ( , 𝑉 + 𝑎𝑛𝑑 𝑉 * are the components of the electron's direction vector before the collision. The azimuthal angle ϕ is randomly chosen between 0 and 2π and the polar angle θ is obtained using a random sampling taking into account the differential cross sections from Brenner and Zaider [START_REF] Brenner | A computationally convenient parameterisation of experimental angular distributions of low energy electrons elastically scattered off water vapour[END_REF].
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Vibrational excitations

Due to the lack of theoretical models characterizing energy loss through vibrational excitations, we used interpolated experimental data of Michaud and Sanche [START_REF] Michaud | Total cross sections for slow-electron (1-20 eV) scattering in solid H2O[END_REF][START_REF] Michaud | Cross Sections for Low-Energy (1-100 eV) Electron Elastic and Inelastic Scattering in Amorphous Ice[END_REF]. Vibrational excitations become increasingly important for low energies and mostly for subexcitational energies below ~8 eV because in this range they are the only process involved in the electron's energy loss. The data of Michaud and Sanche [START_REF] Michaud | Total cross sections for slow-electron (1-20 eV) scattering in solid H2O[END_REF][START_REF] Michaud | Cross Sections for Low-Energy (1-100 eV) Electron Elastic and Inelastic Scattering in Amorphous Ice[END_REF] cover energies between 1 eV and 100 eV. Direction change is not taken into account after a vibrational interaction and the energy loss is randomly sampled taking into account the different vibrational levels. The energy lost by the electron is saved as a local energy deposition in the medium.

Inelastic collisions

Inelastic collisions including electronic excitation and ionization were described using the First Born Approximation theory as detailed by Emfietzoglou [START_REF] Emfietzoglou | Monte Carlo simulation of the energy loss of low-energy electrons in liquid water[END_REF]. We calculated the single differential cross sections and the integrated total cross sections for different electrons incident energies, and the computed numerical tables were implemented in our code. The specific cross section values are obtained during the simulation process using a linear interpolation between the precomputed values. This method avoids using the theoretical formulas during the simulation process which can have a large effect on the simulation time. After excitation interactions the electron loses part of its energy without changing direction. After an ionization the incident electron loses part of its energy that is distributed between a local energy loss deposited in the medium, the electron binding energy, and the kinetic energy that is communicated to a secondary electron. The energy transferred to the secondary electron is randomly sampled using the precomputed differential cross sections. The direction of the secondary ejected electron is randomly sampled with respect to models published by Grosswendt et al. [START_REF] Grosswendt | Transport of low energy electrons in nitrogen and air[END_REF]. The new direction of the primary electron is calculated taking into account the momentum conservation law with respect to the secondary electron ejection momentum. The binding energy of the ejected secondary electron is considered locally deposited in the medium. Secondary electrons are then tracked just like any primary electron, depositing energies and creating other secondary electrons.

Technically the position, energy, and direction of each secondary electron are firstly stored in a queue to be used later on when the primary electron tracking is finished. A cut-off energy limit is set, if the electron's energy drops below this limit, the electron is forced to deposit all its remaining kinetic energy in its current position and the tracking is ended. In our, simulations this limit was set to 8.22 eV which corresponds to the lowest water excitation energy.

All the calculations use extensively random values generation. Therefore, the use of a robust Random Number Generator (RNG) is key factor of the simulations results. In our CPU simulations we use the Mersenne-Twister RNG [START_REF] Matsumoto | Mersenne twister[END_REF] because it provides a large period of random numbers, it's a validated model and it's widely used in Monte Carlo simulations. Moreover, it is now part of the C++ 11 standard library [30].

The algorithm diagram for the CPU version of our code is summarized in figure 1. First the primary electron's energy, position, and initial direction are set, then as long as the kinetic energy of the electron is above our cut-off threshold the tracking process is carried out and energy deposition data is saved in a text file. The whole process is repeated to simulate a fixed number of electron tracks. In fact, since the approach is stochastic, a large number of primary electrons is needed so that the results analysis of energy depositions in a limited volume will converge to an average value. 

GPU algorithm

GPU processing enables us to launch multithreaded tasks on a large number of cores. Therefore, the stepby-step path tracking of N electrons can be carried out simultaneously. We used the Compute Unified Device Architecture (CUDA), as the language for our GPU code. The algorithm is hybrid, it is launched from the Host in a loop until all electrons' calculation carried out on the Device are completed.

The GPU simulation follows the same steps described in the previous section for CPU. First, we calculate processes cross sections, then the free path distance of the electron to the next collision, the deposited energy, the electrons' new direction and, for ionization interactions, the energy transferred to the secondary electron and its direction. The secondary electron's information is saved in a queue on the host memory and its simulation starts as soon as a thread is free and ready to start with a new electron tracking.

We always keep the maximum number of threads busy to have the best performance results.

Cross section tables used for different processes are copied to the device global memory before starting the simulation. Although, the shared memory is usually a faster alternative, in our case it would require replicating these tables for each block which would consume a large memory space, moreover, shared memory is smaller in size and its content is reset at the end of the block execution [START_REF] Cheng | Professional CUDA C Programming[END_REF]. The different electron variables are stored in the local memory.

At each step the position and the amount of deposited energy are written in a text file, which can only be done from the host memory. Therefore, all the energy deposition data was transferred from the device to the host after each step.

A CUDA stream encapsulates data transfer and kernel launch [START_REF] Cheng | Professional CUDA C Programming[END_REF][START_REF]CUDA Toolkit[END_REF]. Our workload can be equally split into up to 8 streams, based on our hardware capacity, in this way we can overlap data transfer and device calculation which leads to better performance. Our code implementation allows the user to choose the number of threads per block (T) and the number of blocks (B) as well as the number of streams (S). So, we can launch N = T x B x S electron tracks simulation in parallel.

The cuRAND library provides different random number generators [START_REF]cuRAND (The API reference guide for cuRAND, the CUDA random number generation library[END_REF]. The MTGP32 generator is an adaptation of the Mersenne-Twister developed at Hiroshima University [START_REF] Saito | Variants of Mersenne twister suitable for graphic processors[END_REF], but it does not scale enough for our simulations; 200 sequences with 256 threads per block at most [START_REF]CUDA Toolkit[END_REF]. We used the Philox_4x32_10 generator that has 2 64 subsequences each with a period of 2 128 which yield good results. We also tried the Thrust library [START_REF]The API reference guide for Thrust, the CUDA C++ template library[END_REF] random number generator which also led to satisfactory results.

Grid Parallel Computing

The grid concept was formulated in 1999 by Ian Foster and Carl Kesselman [START_REF] Foster | The Grid: Blueprint for a New Computing Infrastructure[END_REF]. The French national grid is France Grilles [19] and is a part of the European Grid Infrastructure federation (EGI) [START_REF] Egi | Advanced computing for research[END_REF]. To be able to access the grid you need an X509 certificate for authentication delivered by a trusted organization, in our case it's RENATER [START_REF]Portail des services RENATER[END_REF], and you need to be part of a Virtual Organization (VO) to have permission to use the resources, in our case we were part of the "grand-est" VO.

The grid infrastructure is best suited for jobs that can be parallelized with no need for communication between the jobs. In our case each electron simulation is completely independent from the others, and we used K nodes for the simulation of N electrons, therefore, the workload of each node is N/K.

On the grid, we should take special care of the random number generation. Using a different seed value on each computing node may result in overlapping value sequences leading to repeated results. Another approach is to use the same seed on all computing nodes, but instead of using the random values in sequence, we skip ahead k values each time [START_REF] Haramoto | A Fast Jump Ahead Algorithm for Linear Recurrences in a Polynomial Space[END_REF]. This way, the simulation algorithm used on the grid is the same used on the CPU of a single machine. The only change is in the random number generation, a skip ahead instruction is added to the algorithm. For each job we start by a p skip ahead, where p is the position of this job with respect to the total number of jobs. Subsequently a k jump ahead is used for every random value generation, where k is the total number of jobs on the grid.

Sending jobs to the grid and getting back the results requires a special set of command packaged in software framework DIRAC (Distributed Infrastructure with Remote Agent Control) [39]. The jobs sent to the grid go through the following major values of status: Waiting (Job is accepted for DIRAC Workload Management System), Scheduled (Job is assigned to a Site), Running (the job is executing on the Computing Element), Done (Job finished successfully), Failed (Job finished with errors), Deleted (Job deleted by the user) and Killed (Job killed by the user). We used python scripts with a set of DIRAC commands, to send our simulation jobs to the grid, and get the jobs logs and results.

We launched all our simulations on the grid two times, the first time using 10 nodes and the second time 100 nodes. This choice helped us to highlight the impact of the waiting time in grid simulation and the total simulation time.

Results and Discussion

Track structure simulations of electrons with energies 100 eV, 1 keV, and 10keV were carried out in infinite volume of water and electrons were followed until their kinetic energy dropped below the 8. as well as 5 ionization values (above 10 eV). The results obtained using both the CPU and GPU running versions, were compared with the same simulation conditions using Geant4-DNA track structure processes [START_REF] Incerti | THE GEANT4-DNA PROJECT[END_REF][START_REF] Incerti | Comparison of GEANT4 very low energy cross section models with experimental data in water[END_REF][START_REF] Bernal | Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit[END_REF][START_REF] Incerti | Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project[END_REF]. A good agreement is obtained between the spatial coordinates' components along the 3 axis directions. Also, the energy deposition frequencies were compared showing good agreement with the results of Geant4-DNA.

Geant4 simulations were carried out using Geant4-DNA physics processes, for 4 different interactions; ionization, electronic excitation, elastic scattering and vibration and rotation excitations. The processes rely on the First Born Approximation for inelastic collisions [START_REF] Emfietzoglou | Monte Carlo simulation of the energy loss of low-energy electrons in liquid water[END_REF] such as ionization and electronic excitation. The elastic scattering process uses the Rutherford elastic model [START_REF] Bransden | Atomic Collision Theory[END_REF][START_REF] Emfietzoglou | A Monte Carlo track structure code for electrons (approximately 10 eV-10 keV) and protons (approximately 0.3-10 MeV) in water: partitioning of energy and collision events[END_REF], and the vibration and rotation excitations cross sections are based on interpolations of experimental data of Michaud and Sanche [START_REF] Michaud | Total cross sections for slow-electron (1-20 eV) scattering in solid H2O[END_REF][START_REF] Michaud | Cross Sections for Low-Energy (1-100 eV) Electron Elastic and Inelastic Scattering in Amorphous Ice[END_REF]. The electron source is placed at the center of the reference and the initial direction of the electrons is directed along the x axis. Simulations were carried out on an Intel I9 CPU with a clock speed of 3.10 GHz, 32 GB of RAM and a Nvidia Quadro P4000 GPU. CPU and Geant4 simulations were single threaded. For GPU simulations, we used a configuration of 512 block, 32 thread by block and 8 streams for information transfer between the host and the device. For simulations on the computing grid "France Grilles", we used 10 and 100 calculation nodes. Simulation times were measured for the same number of incident electrons and for different electron energies, 100 eV, 500 eV, 1 keV, 10 keV, 100 keV, 500 keV and 1 MeV. Results are reported in Figure 6 for 4 different energies. The figure shows calculation time versus the number of initial electrons for different incident energies (100 eV, 500 eV, 1 keV and 10 keV). The results include CPU and GPU versions of our code, the Geant4-DNA processes, and Grid calculations using 10 and 100 nodes.
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The results show a linear increase of computing time for CPU and Geant4-DNA simulations. GPU computing time shows slower performance for low electron number simulations and a faster performance for high numbers of electrons, e.g., above 10 4 electrons for 100 eV energies, 10 3 electrons for 10 keV electrons. This is due to the fact that GPU clock frequency is generally slower than CPU frequency and low electrons numbers do not occupy the total resources of the GPU until a certain number of electrons is reached where multithreading becomes more rewarding. Once the total capacity of the GPU is being used, its best performance is reached, and the computing time increases linearly with the number of initial electrons. Our GPU acceleration results are in agreement with other published studies [START_REF] Tsai | A new open-source GPU-based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation ---Part I: Core algorithm and validation[END_REF]. The GPU performance is highly affected by data transfer between the GPU, the host system and the local hard drive for final results, which slows down the simulation process. Also, conditions branching contribute to slowing the GPU computing process. Therefore, depending on the volume of the data to be extracted and saved on the local hard drive, we might get different acceleration ratios with different simulations.

The performance of the CPU version is comparable to Geant4-DNA, while the GPU brings an advantage above 10 4 events and reaches a maximum ratio of 10 for higher numbers.

Electrons initial energy 100 eV Electrons initial energy 500 eV Electrons initial energy 1keV

Electrons initial energy 10 keV The simulation time on the grid is the time that separates the reception of the first job in the queue manager and the time the last job is finished. The grid results are greatly influenced by the waiting time in the queue manager, caused by the number of jobs that are scheduled by all users of the grid. Therefore, the waiting time becomes negligible for long computing time simulations. Also, the calculation time is not the same on all the grid's nodes because the hardware is not the same, therefore, the simulation might be partially slowed down by one slow hardware. Figure 7 shows the variations of the simulation total time (A), waiting time (B) and CPU time (C), for the initial electrons' energy of 1 keV simulation, on 100 nodes.

Comparing the total simulation time and the waiting time suggests that this latter has the higher influence on measured performances. Note that this is only true for simulations where CPU time is of the same order of waiting time, and this influence becomes increasingly negligible for larger simulations requiring longer CPU time. Figure 7 (C) shows a linear increase of CPU time with increasing number of electrons, however there is no clear trend for the waiting time as shown on Figure 7 (B).

We assume that the grid becomes increasingly advantageous when the simulation computing time exceeds the queuing time. For our simulations on 10 nodes configuration, the threshold is attained with 10 6 electrons of 10 keV energy where the simulation time was about ~16000 seconds and the queuing time was over ~8000 seconds. For lower number of electrons or lower incident energies the overall time is dominated by the queuing component. While on 100 nodes configuration this threshold is attained for 1000 of 500 keV energy. The simulation becomes increasingly demanding for higher energies and the queuing time increases with required nodes as well, therefore higher nodes configurations are only advantageous for CPU demanding simulations.

Queuing time is a random parameter that depends on the grid state and users' number. Figure 8 shows the waiting time distribution for jobs sent on 10 and 100 nodes. We can notice that 75% of all jobs have a waiting time less than 3000 seconds using 10 nodes and less than 4000 seconds for 100 nodes jobs. Thus, simulations requiring CPU time above these queuing time thresholds can be accelerated using the grid facility.

Total simulation time variation on 100 nodes Waiting time variation on 100 nodes CPU time variation on 100 nodes Figure 7: Grid 1 KeV electron initial energy simulation, total, waiting, and CPU time 

Conclusion

In this work, we have presented a comparison between 3 technical approaches for Monte-Carlo ionizing track structure simulations. A GPU version of track structure processes was developed with a user-friendly graphical interface. Comparison with CPU simulations showed a clear advantage of GPU multicore usage. Also, comparisons with Geant4 simulations on CPU using a single thread showed that GPU had an advantage for high events simulations with an acceleration reaching 8 times faster. The Geant4 simulations were carried out using one thread to compare with our CPU single threaded performance. Multithreading both Geant4 and our CPU code would simply divide the computing time by the number of threads and the computing time is linearly scalable. However, taking into account that Geant4 has a multithreading enabled version and considering that the simulation time decreases linearly with increasing number of available threads, multithreaded Geant4 simulations can accelerate the computing time by a factor of ~28 for example on a I9-7940X. Using a large computing grid is not practical for simulations requiring less than few hours CPU time, mainly because of the technical complexity of submitting jobs and queuing times that might be lengthy depending on the grid's workload. However, for large number of electrons and higher initial energies, simulations require more than 2~3 hours of CPU time, grid usage becomes more advantageous than GPU. Therefore, depending on the availability of the hardware, GPUs present a cheap and practical solution for simulations of up to 2~3 hours. Along with multithreaded CPU calculations, GPU can be an adapted alternative to large computing grids which might not be easily accessible at times, or access protocol complexity might slow down the overall process. Finally, the choice of cross sections was solely based on comparison requirements with the Geant4-DNA package. Hence, the cross sections integrated in our GPU simulation tool are the same as in Geant4-DNA. However, both the inelastic and the elastic cross sections models become inaccurate for low energies, thus increasing the results uncertainty. In the future, the Rutherford model can be replaced with the partial wave expansion to improve the elastic scattering collisions, in fact recent studies showed the importance of elastic scattering models and their effect on numerical simulations [START_REF] Taioli | Relative role of physical mechanisms on complex biodamage induced by carbon irradiation[END_REF][START_REF] De Vera | Energy Deposition around Swift Carbon-Ion Tracks in Liquid Water[END_REF].
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 1 Figure 1: The algorithm pseudocode used for our CPU version.

  start for i = 1 to N end Initialize electron position, energy and direction while energy is above Cutoff energy and electron is inside simulation volume Calculate Mean Free Path Choose process Calculate deposited energy Calculate new position(x,y,z) Calculate new direction (Vx, Vy, Vz) If a secondary electron is produced save it to the queue Write position and energy deposition to file Write the position and the remaining energy of the electron in file If queue not empty get energy, position and direction of the electron

  22 eV cutoff. All electrons start from the origin in the positive direction of the x axis. Energy deposition positions in the volume were saved, and their coordinates are shown in figures 2, 3 and 4. Coordinates are plotted into a histogram for each spatial component (figures A, B and C). Also, the energy deposition distribution is represented showing the occurrences of energy loss values in the medium (figure D) for different interaction types. Figures D reveal the 9 energy depositions coming from vibrational and rotational excitations of the water molecules (below 1 eV) and 5 electronic excitation values (between 8 and 14 eV)
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 2 Figure 2 : Energy deposition coordinates (A, B, and C) and frequencies (D) for 100 eV electrons in liquid water. Results were obtained using CPU and GPU versions of our software and compared with Geant4-DNA simulations.
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 34 Figure 3 : Energy deposition coordinates (A, B, and C) and frequencies (D) for 1 keV electrons in liquid water. Results were obtained using CPU and GPU versions of our software and compared with Geant4-DNA simulations.
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 56 Figure 5: Simulation time comparison for electrons of different energies, using different simulation tools: CPU and GPU versions of this work, Geant4-DNA processes and France Grille computing grid using 10 and 100 nodes.
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 8 Figure 8 : Queuing time distribution for 10 and 100 nodes configurations using the computing grid.
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 1 table 1 and the GPU characteristics are presented in table 2. CPU characteristics

	Family	Model	Frequency	Number of	Number of	Memory
		number		Cores	threads	Types
	Intel Core i-9	i9-7940X	3.1 GHz	14	28	DDR4-2666
	Name		Memory size Memory Bandwidth Nvidia CUDA Cores
	Nvidia Quadro P4000 8GB	Up to 243 GB/s	1792	

Table 2 :

 2 GPU characteristics

Table 3 :

 3 acceleration ratios for 100 eV electrons with respect to Geant4-DNA. Different numbers of incident electrons are used on CPU, GPU and computing grid configurations using 10 and 100 nodes.

	Number of electrons FS-CPU	FS-GPU	Grid 10 nodes	Grid 100 nodes
	10 2	1.9021	0.1082	0.0002	0.0001
	10 3	2.1784	0.5618	0.0007	0.0006
	10 4	1.9871	2.6426	0.0225	0.0301
	10 5	1.9178	5.9677	0.0941	0.1501
	10 6	1.9047	7.1713	1.3232	0.3224
	10 7	1.8520	7.0275	5.5347	2.6683
	Number of electrons FS-CPU	FS-GPU	Grid 10 nodes	Grid 100 nodes
	10 2	2.0256	0.3093	0.0012	0.0003
	10 3	1.9580	1.4795	0.0058	0.0020
	10 4	1.9632	4.4576	0.0454	0.0302
	10 5	1.9281	7.5066	1.4316	0.2566
	10 6	1.8363	7.7547	5.4212	4.5349

Table 4 :

 4 acceleration ratios for 500 eV electrons with respect to Geant4-DNA. Different numbers of incident electrons are used on CPU, GPU and computing grid configurations using 10 and 100 nodes.

	Number of electrons	FS-CPU	FS-GPU	Grid 10 nodes	Grid 100 nodes
	10 2	2.3437	0.4842	0.0039	0.0010
	10 3	2.1676	2.2699	0.0311	0.0082
	10 4	2.1516	5.7060	0.0700	0.1149
	10 5	2.1249	7.9430	4.1537	3.2121
	10 6	2.1680	7.2607	4.4688	2.7344

Table 5 :

 5 acceleration ratios for 1 KeV electrons with respect to Geant4-DNA. Different numbers of incident electrons are used on CPU, GPU and computing grid configurations using 10 and 100 nodes.

	Number of electrons	FS-CPU	FS-GPU	Grid 10 nodes	Grid 100 nodes
	10 2	1.9447	0.5227	0.0064	0.0078
	10 3	1.9384	2.5626	0.1163	0.1383
	10 4	1.9288	5.9233	4.3653	3.3943
	10 5	1.8221	6.3610	5.1831	4.7183
	10 6	1.9710	3.3474	7.5245	13.1163

Table 6 :

 6 acceleration ratios for 10 KeV electrons with respect to Geant4-DNA. Different numbers of incident electrons are used on CPU, GPU and computing grid configurations using 10 and 100 nodes.
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