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 30 
STATEMENT OF SIGNIFICANCE 31 
The Fezouata Shale (Morocco) is one of the rare sites preserving a diverse fossil assemblage 32 
with soft parts in the Ordovician. Fe played a role in the preservation of these labile 33 
anatomies. Here, it is shown that this Fe had a continental origin highlighting the importance 34 
of continental Fe fluxes in the preservation of soft parts during the initial stages of the 35 
Ordovician Radiation.  36 
 37 
ABSTRACT 38 
The Fezouata Shale in Morocco is the most diverse Lower Ordovician unit yielding soft-39 
tissue preservation. Iron played a crucial role in the preservation of soft parts in this formation 40 
through the damage of bacterial membranes under oxic conditions and the pyritization of soft 41 
parts under the activity of bacterial sulfate reduction. However, the origin of Fe in this 42 
formation remains largely speculative. Herein, trace and rare earth elements were investigated 43 
in drilled-core sediments from the Fezouata Shale. It is shown that a correlation exists 44 
between Fe and Al suggesting that most Fe has a detrital source. Elemental concentrations in 45 
the Fezouata Shale are most comparable to rivers and are the least similar to loess and 46 
sediments deposited near active island arcs. In this sense, continental weathering and its 47 
related Fe in river fluxes dictated occurrences of exceptional fossil preservation in the 48 
Fezouata Shale.  49 

50 
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INTRODUCTION  51 
Exceptional fossil preservation, consisting of the preservation of soft anatomies in the rock 52 
record, is crucial to reconstruct accurate pictures of ancient ecosystems (Butterfield, 1995; 53 
Hou et al., 2004; Van Roy et al., 2010; Fu et al., 2020; Nanglu et al., 2020; Saleh et al., 54 
2020a, 2021a). The Fezouata Shale discovered in Morocco is an Early Ordovician deposit 55 
bearing a large number of taxa that were previously unknown from this time interval (Van 56 
Roy et al., 2010, 2015; Martin et al. 2016). Exceptionally preserved fossils in the Fezouata 57 
Shale are discovered in levels that are relatively rich in iron (Saleh et al., 2019). It has been 58 
experimentally shown that Fe among other cations and Fe-rich clay minerals slow down the 59 
activity of decaying bacteria under oxic conditions through the destruction of bacterial 60 
membranes (Imlay et al., 1988; Butterfield, 1990; Guida et al., 1991; Kapoor and Arora, 61 
1998; Petrovich, 2001; Amonette et al., 2003; Wilson and Butterfield, 2014; McMahon et al., 62 
2016). In this sense, Fe availability in specific levels within the Fezouata Shale prevented the 63 
complete loss of labile anatomies (Saleh et al., 2020b, c). Moreover, Fe plays a major role in 64 
the fossilization of soft parts when bacterial-sulfate reduction (BSR) conditions are 65 
established (Raiswell et al., 1993; Gabbott et al., 2004; Saleh et al., 2020b, c). Under BSR 66 
conditions, Fe reacts with H2S produced through the decay of organic material to form pyrite 67 
crystals replicating in fine detail the anatomy of soft parts that can be otherwise lost (Raiswell 68 
et al., 1993; Gabbott et al., 2004; Saleh et al., 2020b). Biogenic iron, from the decaying tissue, 69 
is one possible source, initiating the mineralization process by forming pyrite nuclei (Saleh et 70 
al., 2020c). However, abiotic Fe from sediments remains the main source for pyrite growth 71 
(Saleh et al., 2020c). Although abiotic Fe was pivotal for soft-tissue preservation under oxic 72 
and BSR conditions in the Fezouata Shale, the origin of this element remains speculative 73 
(Gaines et al., 2012; Saleh et al., 2019). This study investigates the concentrations of trace and 74 
rare earth elements in the Fezouata Shale aiming to answer the following questions: are 75 
elemental sources (including Fe) authigenic or detrital? What are these sources (e.g., eolian, 76 
volcanic, continental weathering)? Answering these questions will help to decipher the natural 77 
processes that dictated soft-part preservation in the Fezouata Shale.  78 
 79 
MATERIAL AND METHODS 80 
Geochemical protocol 81 
Two ~6.5m cores from the Fezouata Shale (check Appendix 1 information for stratigraphic 82 
positions) were cut and scanned for their elemental composition using an Avaatech X-Ray 83 
Fluorescence (XRF) Scanner at IFREMER laboratory, Plouzané, France. XRF data was 84 
acquired with the precision of 1 analysis every 0.5cm and at 10kV. Considering that XRF data 85 
is only semi-quantitative, the concentrations of Fe, Al, trace, and rare earth elements were 86 
further explored using an HR-ICP-MS Element XR (Thermo Fisher Scientific) at the Pôle-87 
Spectrométrie-Océan (PSO, IUEM/Ifremer, Brest, France). 154 samples were taken from the 88 
cores, one every 5 to 10cm. Then, powders were analyzed following a similar protocol to 89 
Wilmeth et al. (2020). An expanded version of this protocol is presented in Appendix 1. 90 
 91 
Data visualization and analyses 92 
In order to determine if a correlation exists between Fe and Al their XRF data were plotted. 93 
The degree of correlation between Fe and Al was confirmed by plotting ICP-MS data for 94 
these elements and the Fe/Al ratio was calculated. In order to see if this value is impacted by 95 
modern weathering, Fe and Al results were separated into two sets according to the degree of 96 
modern weathering the samples encountered (see Appendix 1 for information on how modern 97 
weathering was constrained). The newly obtained data were box-plotted and new Fe/Al ratios 98 
were obtained. Fe and Al concentrations were also represented as box plots for levels with 99 
and without exceptional fossil preservation. To further constrain modern weathering, the 100 
concentrations of all measured elements from the two separate sample sets were plotted and 101 
compared. Co/Th and La/Sc values were calculated and compared to data from McLennan et 102 
al. (1983) (original diagram in Appendix 1) in order to test if there is a detrital, volcanic 103 
source for Fe. A volcanic source was further investigated by comparing the concentration of 104 
Sc, V, Cr, Co, Ni, Rb, Zr, Nb, Cs, La, Hf, Ta, Pb, and Th between the Fezouata Shale and 105 
sediments deposited near active island arcs (McLennan, 2001). Furthermore, other potential 106 
sources for Fe, including modern rivers, and loess were investigated following the same 107 
comparative approach (McLennan, 2001). To quantify the dissimilarity between the Fezouata 108 
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Shale and these sources, a total dissimilarity index TDissindex was developed. This index can be 109 
obtained by calculating the average of each elemental dissimilarity EDissindex between the 110 
Fezouata Shale and the investigated sources according to the following equation (C is for 111 
concentration, E is for element, and Ni is used as an example). 112 
 113 

(E)diss!"#$% = 1−  
C(E)!"#$%&!'(&$) !"#$%&

C E !"#$%&'& !"#$%
 ;    Ni diss!"#$% =  1−  
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C Ni !"#$%&'& !"#$%
 

 114 
Note that this is a semi-quantitative index that is different from classical significance tests. 115 
High index values mark a large heterogeneity between one source and the Fezouata Shale 116 
without necessarily investigating if this difference is significant or not. The raw data are 117 
provided in the Appendix 2.  118 
 119 
RESULTS 120 
XRF analyses show a relatively good correlation between Fe and Al (R2=0.6, N=2100; Fig. 121 
1A). This correlation is improved when using ICP-MS data (R2=0.68, N=154; Fig. 1B). The 122 
mean ratio of Fe/Al is equal to 0.32 ± 0.01 (Fig. 1B). This ratio did not change significantly 123 
(t-test; p= 0.7064 > 0.05) when separating non-modernly weathered (Fe/Al= 0.34 ± 0.02, 124 
N=80) from modernly-weathered sediments (Fe/Al= 0.32 ± 0.004, N=74) (Fig. 2A). Both Fe 125 
and Al are more enriched in levels with soft-part preservation (Fe= 6.6 ± 0.27%, N=29; Al= 126 
21.45 ± 1%; N= 29) than in levels without exceptional preservation (Fe= 5.89 ± 0.12%, 127 
N=125; Al= 18.35 ± 0.41%; N= 125) (Fig. 2B). The difference between intervals with and 128 
without exceptional fossil preservation (as indicated in Appendix 2) is significant for both Fe 129 
(t-test; p= 0.0162 < 0.05) and Al (t-test; p= 0.0023 < 0.05). 130 
In a similar way to iron, the concentrations of other elements (e.g., Cs, Sr, V) did not change 131 
between weathered (N=74) and non-weathered sediments (N=80) except for some very minor 132 
drifts in Zn and Pb concentrations (Fig. 3). The Co/Th ratio is generally less than 3, with a 133 
mean of 1.07 ± 0.03 (N=154; Fig. 4), and the La/Sc ratio is generally between 1.2 and 3.6, 134 
with a mean of 2.54 ± 0.03 (N=154; Fig. 4). Furthermore, the geochemical signature of the 135 
Fezouata Shale is the most similar to modern rivers (TDiss = 0.31 ± 0.06) and less comparable 136 
to the continental crust (TDiss = 0.49 ± 0.06), sediments deposited near active island arcs 137 
(TDiss = 0.55 ± 0.07), and loess (TDiss = 0.71 ± 0.04) respectively (Fig. 5). 138 
 139 
 140 
DISCUSSION 141 
Al and Fe are well correlated in the Fezouata Shale (Fig. 1A, B). A similar correlation can 142 
reflect (1) a detrital signal (Tribovillard et al., 2006), (2) an authigenic signal if the latter is 143 
derived from a detrital source in what is effectively an isochemical system, or (3) an 144 
authigenic signal in euxinic waters similar to the Black Sea (Dekov et al., 2020). In the 145 
Fezouata Shale, the water column was dominantly oxic (Saleh et al., 2021b), favoring a 146 
primary detrital source (either scenario 1 or 2). The non-intercepted correlation between Al 147 
and Fe [in red; Fig. 1B (y = 2.8709x + 1.621)] is close to the intercepted trendline that passes 148 
through the origin {in black, Fig. 1B (y = 3.1255x)], indicating that in the absence of Al, only 149 
20% of Fe can be found. Moreover, Fe/Al is low (i.e., ~ 0.32), only 2/3 of the average shale 150 
value of this ratio at ~ 0.5 (Lyons and Severmann, 2006). It is worth noting here that the low 151 
ratio in the Fezouata Shale likely represents a local signal and does not necessarily reflect a 152 
global value of Early Ordovician rocks. This ratio may reflect the original chemistry of the 153 
basin, result from diagenesis, metamorphism, or even modern weathering, although the 154 
Fezouata Shale was not affected by deep diagenesis and metamorphism (Saleh et al., 2020b, 155 
c, 2021b). Moreover, both Fe and Al show no major difference between modernly weathered 156 
and non-recently weathered sediments in the Fezouata Shale (Fig. 2A) with non-significantly 157 
different Fe/Al values. The minimal impact of modern weathering on Al and Fe 158 
concentrations is also evidenced for other elements (Fig. 3). These findings align with the 159 
results of previous studies showing that the main difference between non-modernly weathered 160 
and modernly weathered sediments in the Fezouata Shale is limited to the leaching of Ca, S, 161 
and C from altered sediments (Appendix 1; Saleh et al., 2020b, 2021b). In the absence of 162 
metamorphism, pronounced diagenesis, and modern weathering, it is most likely that the low 163 
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Fe/Al reflects the original signal in the basin. The significant enrichment of Fe in levels with 164 
exceptional preservation when compared to levels with no exceptional preservation (Fig. 2B), 165 
and the correlation of this enrichment with significantly higher Al values (Fig. 2B) indicate 166 
that detrital Fe was fluctuating in the Fezouata shale. This validates the findings of previous 167 
studies showing that the probability of exceptional fossil preservation to occur in the Fezouata 168 
Shale was augmented in specific levels in which Fe was present in the matrix (e.g., Saleh et 169 
al., 2019). 170 
Co/Th and La/Sc plots indicate that the previously suggested volcanic origin for detrital Fe in 171 
the Fezouata Shale (Gaines, et al., 2012) is a minor source of chemical elements possibly 172 
accounting for 20% of Fe in the formation (Fig. 4). For instance, detrital Co/Th is 173 
considerably higher in sediments near volcanoes (i.e., Co/Th ~ 30; McLennan et al., 1983) 174 
than it is in the Fezouata Shale (i.e., Co/Th <3 except one point; Fig. 4). Furthermore, an 175 
aeolian source for Fe can be rejected because numerous elements show that the Fezouata 176 
Shale is most comparable to rivers, followed by the average surface continental crust (Fig. 5). 177 
The Fezouata Shale is almost twice more similar to rivers (smallest Tdiss index) than to 178 
siliciclastic sediments deposited near active island arcs (Tdissarcs is slightly less than double 179 
Tdissrivers), and is least similar to aeolian sediments (Tdissloess is higher than double Tdissrivers). All 180 
previous findings highlight that the source for Fe in the Fezouata Shale, is detrital, limited and 181 
fluctuating, and resulting from surface continental weathering through precipitations, and 182 
river inputs to the sea. 183 
The positive impact of continental weathering on soft-tissue preservation may not have been 184 
limited to the Ordovician. It has been recently documented that kaolinite correlates with 185 
Cambrian and Precambrian soft-tissue preservation (Anderson et al., 2020, 2021). Kaolinite 186 
damages bacterial membranes and slows down oxic decay (in a similar way to Fe, and Fe-rich 187 
clay minerals; McMahon et al., 2016), and can even replicate labile anatomies in minute 188 
details (Anderson et al., 2021). Moreover, it has been argued that the importance of kaolinite 189 
in preserving soft-anatomies in the Cambrian can be further highlighted by the correlation of 190 
this type of preservation with tropical settings, where kaolinite is typically formed (Anderson 191 
et al., 2018; 2021). Kaolinite transport from the continents, where it is formed, to the sea must 192 
have occurred through continental weathering. Kaolinite is not evidenced in the Fezouata 193 
Shale and the primary clay precursor that aided the formation of Fe-rich clay minerals in this 194 
formation is yet to be identified (Saleh et al., 2019). The lack of kaolinite can be attributed to 195 
the deposition of the Fezouata Shale in polar settings. Regardless of the absence of kaolinite 196 
in the Fezouata Shale, and its presence in many other sites with soft-tissue preservation (e.g., 197 
Anderson et al., 2020, 2021) it appears that continental weathering is a unifying process that 198 
aided soft-part preservation through either Fe or kaolinite fluxes to the sea. In this sense, the 199 
Cambrian–Ordovician world with elevated atmospheric CO2 (Trotter et al., 2008) and intense 200 
continental weathering might have favored soft-tissue preservation, which explains the 201 
dominance of exceptional preservation during that time frame. A corollary of this finding is 202 
that it is now possible to develop predictive approaches for the discovery of exceptionally 203 
preserved fossils in Early Paleozoic rocks based on geochemical proxies quantifying the 204 
magnitude of continental weathering.  205 
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 321 
FIGURE CAPTIONS 322 
 323 
Figure 1.  (A) XRF Al-Fe correlation in the Fezouata Shale (blue dots, and red trendline). 324 
(B) ICP-MS Al-Fe correlation (blue dots, and red trendline). The black lines in (A) and (B) 325 
represent intercepted trends for this correlation passing through the origin (0 value).  326 
 327 
Figure 2.  (A) Fe and Al differences between modernly weathered and non-modernly 328 
weathered sediments. (B) Fe and Al differences between levels with and without 329 
exceptionally preserved fossils.  330 
 331 
Figure 3.  Trace and rare earth elements differences between modernly weathered and non-332 
modernly weathered facies.  333 
 334 
Figure 4.  Co/Th and La/Sc ratios in the Fezouata Shale plotted on the McLennan et al. 335 
(1983) diagram.  336 
 337 
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Figure 5.  Chemical signature for the Fezouata Shale plotted against elemental data from 338 
modern rivers, average surface continental crust, loess, and siliciclastic sediments near active 339 
island arcs.  340 
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