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ABSTRACT 

 

Circadian clocks are cell-autonomous, molecular pacemakers regulating a wide variety of behavioural 

and physiological processes in accordance with the 24 h light/dark cycle. The retina contains a complex 

network of cell-specific clocks orchestrating many biochemical and cellular parameters to adapt retinal 

biology and visual function to daily changes in light intensity. The gene regulatory networks controlling 

proliferation, specification and differentiation of retinal precursors into the diverse retinal cell types 

are evolutionary conserved among vertebrates. However, how these mechanisms are interconnected 

with circadian clocks is not well-characterized. Here we explore the existing evidence for the regulation 

of retinal development by circadian clock-related pathways, throughout vertebrates. We provide 

evidence for the influence of clock genes, from early to final differentiation steps. In addition, we 

report that the clock, integrating environmental cues, modulates a number of pathological processes. 

We highlight its potential role in retinal diseases and its instructive function on eye growth and related 

disorders.  

 

 

Keywords: differentiation, photoreceptors, rhythms, eye, retinopathy  
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1. INTRODUCTION 

The evolutionary force exerted by the Earth’s 24-hour rotation is responsible for the development of 

circadian clocks in living organisms. It drives rhythms in physiology and behaviour with an approximate 

period (circa) of 24 h (Pittendrigh, 1993). These rhythms are endogenously generated by conserved 

cell-autonomous mechanisms occurring in virtually every life-form from algae to mammals. Their 

chronic disruption predisposes to the failure of optimum physiological functions across a wide range 

of organs (Takahashi et al., 2008).  

In mammals, the anticipation and response to light/dark (LD) and temperature cycles are regulated by 

daily rhythms in a variety of physiological functions including hormone levels and sleep (Roenneberg 

and Merrow, 2016). The 24 h rhythms are controlled by the hypothalamic structure named 

suprachiasmatic nuclei (SCN), acting as the central pacemaker for the whole body. These rhythms are 

retained in constant environmental conditions such as constant darkness (Hastings et al., 2018). The 

LD cycle is the most potent circadian synchroniser and acts via a unique light-sensing system located 

in the retina: the intrinsically photosensitive (melanopsin-expressing) retinal ganglion cells (ipRGC) 

transmit light-evoked neurochemical signals to the SCN and direct synchronization for peripheral 

(secondary) clocks. Indeed, cells of many different tissues and organs (skeletal muscle, heart, liver, 

kidney, bone/cartilage, among others) have such intrinsic secondary circadian clock (Albrecht, 2012). 

These drive many physiological functions, such as xenobiotic and endobiotic detoxification, 

carbohydrate and lipid metabolism, renal plasma flow and urine production, cardiovascular 

parameters, among others. Next to light, both food and body temperature are known to also 

synchronize circadian rhythms in peripheral tissues (Buhr et al., 2010; Damiola et al., 2000).  

1.1. The clock machinery  

Circadian clock organization at the cellular level is conserved across vertebrates (Bell-Pedersen et al., 

2005; Dunlap, 1999). The functioning of circadian clocks is directed by clock gene-encoded 
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transcription factors, mainly CLOCK, BMAL1, PER1, PER2, CRY1, CRY2. They interact closely in 

interlocked transcription/translation feedback loops. The CLOCK and BMAL1 proteins bind the E-box 

enhancer element of clock genes Period (Per) 1-2 (Shearman et al., 1997) and Cryptochrome 1–2 (Cry 

1–2) (Kume et al., 1999), as well as that of Clock-Controlled Genes (CCG) and stimulate their expression 

(Koike et al., 2012) (Figure1). The translocation of PER1-2 and CRY1-2 heterodimers back into the 

nucleus forms the primary core negative feedback loop, thus inhibiting CLOCK/BMAL1 transcriptional 

activity and hence the expression of Per and Cry genes [reviewed in (Takahashi, 2017)]. A second 

feedback loop involves the action of retinoic acid-related orphan nuclear receptor (ROR) and REV-ERB 

proteins, whose expression is also activated by CLOCK/BMAL1. ROR and REV-ERB factors in turn 

regulate transcription of Bmal1 and distribute rhythms to CCG via ROR binding elements (RORE) 

(Preitner et al., 2002; Sato et al., 2004). In summary, the generation of tissue-specific rhythmic gene 

expression programs involves a two-branched process: (1) direct transcriptional activation of CCG due 

to the cumulative response of clock factors and tissue-specific regulators, and (2) indirect effect 

originating from the transcription factors that are clock targets (Miller et al., 2007). In this complex 

clockwork, Bmal1 is the only canonical clock gene whose deletion or mutation causes a complete loss 

of circadian rhythmicity (Bunger et al., 2000). The circadian core clock machinery is very similar 

between SCN and secondary oscillators, with slight differences. Besides, it profoundly influences 

tissue-specific gene expression programs throughout the body. For instance, the diurnal gene 

expression profiles isolated from 64 different central and peripheral tissues (including the eye) in the 

young male baboon, established that up to 81.7% protein-encoding genes display daily rhythmic 

expression in at least one organ (Mure et al., 2018).  

Among targets of the molecular clock, genes related to cell cycle regulation have been particularly well 

documented (Hunt and Sassone-Corsi, 2007). An intimate connection between the circadian clock, the 

cell cycle, and developmental processes has been reported but this phenomenon remains only partially 

characterized [reviewed in (Brown, 2014)]. This question has been partly addressed in the vertebrate 
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retina, a tissue at the interface with the environment, in which the interaction between lighting 

conditions, clock function and development are particularly interesting to investigate.  

1.2. The circadian clock in the retina 

The neural retina is a fascinating heterogeneous tissue composed of a multitude of cell types, including 

glial cells and very specialized neurons such as the photoreceptors (PR). It is organized into three 

discreet cellular layers separated by synaptic (plexiform) layers and distinguished by the presence of 

specific cell types: the Outer Nuclear Layer (ONL) harbours the (cell bodies and nuclei of the) rod and 

cone PR; the Inner Nuclear Layer (INL) contains bipolar (BC), horizontal (HC), amacrine (AC), and 

(displaced) ganglion cells as well as nuclei of Müller glial cells (MGC) that stretch over several layers; 

and the Ganglion Cell Layer (GCL) contains large ganglion and (displaced) AC (Rodieck, 1973). At the 

back surface of the retina lies the Retinal Pigmented Epithelium (RPE) a non-neural layer of pigmented 

epithelial cells. All investigated retinal cells were shown to integrate and orchestrate circadian 

oscillations (Figure 2). Such organisation implicates the retina in anticipating the environmental 

dawn/dusk cycles. During the early 80s, the circadian clock was found in both frog and avian eye 

(Besharse and Iuvone, 1983; Underwood et al., 1990). This clock was later shown to be located into 

light responsive cells of the retina, namely PR, and to drive rhythms of melatonin production, the core 

hormone of circadian rhythms (Cahill and Besharse, 1993; Thomas et al., 1993). Later, an autonomous 

clock was also evidenced in chick early embryonic, post-mitotic RGC, based on their capacity to 

generate self-sustained rhythms in arylalkylamine N-acetyltransferase (AA-NAT: the enzyme catalysing 

the penultimate step in melatonin biosynthesis) expression (Garbarino-Pico et al., 2004b), metabolic 

labeling (Garbarino-Pico et al., 2004a) and melatonin (Contin et al., 2006).  

In mammals, the existence of an independent circadian clock in the retina was suggested by 

experiments in animals with SCN lesions or severed optic nerves (Reme et al., 1991; Terman et al., 

1993). The rhythm of melatonin release in cultured neural retinas of the golden hamster, and the 

functionalities of this rhythm finally established the mammalian retina as a bonafide circadian 

pacemaker: free-running in constant darkness, entrainment by light, and temperature compensation 
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(Tosini and Menaker, 1996, 1998). Data from the literature suggest that the retinal clock controls the 

timing of a broad range of essential physiological and metabolic functions in the mature retina, 

allowing adaptation of vision to the daily changes in light intensity [for review, see (Besharse and 

McMahon, 2016; Felder-Schmittbuhl et al., 2018)]. More precisely, 90% of the (2670) genes that are 

rhythmically expressed in mouse eyes under LD condition undergo an alteration of their rhythmic 

mRNA levels in the Bmal1 knock out (KO). These results indicate that even in the directly light-sensitive 

retinal tissue, the circadian clock mediates synchronization of gene expression programs by the LD 

cycle (Storch et al., 2007). Thus, the retina contains a unique combination of a circadian clock, light-

entrainment capacity and multiple clock target outputs. The cellular diversity of the mammalian retina, 

with significant dissimilarities in the clock gene expression patterns, phasing, and period between 

cells/layers, renders it challenging to assess the functioning of this network of circadian clocks at the 

whole tissue level. Kinetics of clock gene expression, at least in mice, showed that circadian rhythms 

are also generated in the retinal layers distinct from PR, including the retinal pigmented epithelium 

(RPE) (Baba et al., 2010; Dkhissi-Benyahya et al., 2013; Gekakis et al., 1998; Hwang et al., 2013; Jaeger 

et al., 2015; Liu et al., 2012; Milicevic et al., 2021; Miyamoto and Sancar, 1998; Ruan et al., 2008; Ruan 

et al., 2006; Witkovsky et al., 2003; Xu et al., 2016). However, if rhythms of clock gene expression in 

whole retinas were mainly retained in constant dark conditions, this was less systematic when pure 

photoreceptor preparations were studied (Hiragaki et al., 2014; Sandu et al., 2011; Schneider et al., 

2010; Tosini et al., 2007b). Nevertheless, rhythms in clock protein expression levels were found 

sustained in cones, in LD and constant darkness, contrasting with all other retinal cell types 

investigated in that study (Liu et al., 2012). Finally, it should be kept in mind that when comparing the 

distinct retinal layers, the more sustained clock gene oscillations appear to be generated in the inner 

retina  (comprising the GCL and INL) (Jaeger et al., 2015; Ruan et al., 2008). Another challenge in the 

field of retinal clocks has been the characterization of their light entrainment pathway. Initial studies 

by Ruan and coworkers established the importance of dopamine in the phase shifting effect of light 

(Ruan et al., 2008). Although the signalling pathways have not been completely clarified, it appears 
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that entrainment of the mouse retinal clock by light primarily involves rods (visible range) but also 

neuropsin-expressing ganglion cells (UV light) (Buhr et al., 2015; Calligaro et al., 2019). 

Hence, the retinal clock is a complex grid of circadian oscillators distinctly located in different cell layers 

and actively powered by synaptic connections and gap junctions (Jaeger et al., 2015). However, it is 

not yet known how such an oscillator network arises during retinal development. Conversely, the 

importance of clock genes and circadian clocks in retinal development has been rarely investigated. 

Here we provide first a summarized description of molecular mechanisms regulating retinal 

development, second an outline of relevant studies that have investigated how circadian clocks 

intermingle with gene expression and morphogenesis in the developing retina and eye, and finally 

experimental evidence for the association between clock dysfunction and eye pathology.  

 

2. Retinogenesis - an evolutionary perspective 

Eye development and retinogenesis involve complex gene regulatory networks (GRN) that were 

characterized thanks to the identification of distinct mutants (Figure 3). Multiple well-conserved 

transcription factors (TF) tightly regulate expansion and differentiation of neural progenitors during 

retinal neurogenesis until post-natal development (Heavner and Pevny, 2012; Vopalensky and Kozmik, 

2009). They cluster into two major classes providing combinatorial influence on cell-fate specification 

during retinogenesis: the homeobox-containing class (ex.: Crx, Otx2, Pax6, Rax, Six3/6, Vsx2) and the 

basic helix-loop-helix (bHLH) TF (ex.: Atoh7, Hes1, Hes5, Mitf, NeuroD). (i) TF from the homeobox-

containing class, whose mutation leads to absence of eyes (anophthalmia) or reduced eye size 

(microphthalmia) in human (Harding and Moosajee, 2019), control the specification of the optic 

primordium and regulation of cell proliferation and differentiation (Dyer, 2003; Zagozewski et al., 

2014b). For instance, pioneering studies from WJ Gehring and coworkers identified the master control 

gene Pax6, which when mutated leads to human Aniridia, mouse Small eye and Drosophila eyeless 

phenotypes (Quiring et al., 1994). (ii) The bHLH TF ensure, in association with other TF, the competence 
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states of progenitor cells [reviewed in (Hatakeyama and Kageyama, 2004)]. Additional control by Shh 

(Sonic Hedgehog) and Notch signalling specifies distinct cellular subtypes, through the symmetric vs. 

asymmetric division during the cell cycle [reviewed in (Agathocleous and Harris, 2009)].  

Although retinogenesis is highly similar during eye development in many organisms, including chick, 

mouse and human, the percentage of each cell type in the fully-differentiated retina varies from 

species to species, suggesting that retinal organization enables species-dependent visual adaptations 

[reviewed in (Lamb, 2009; Lamb et al., 2009)]. The present chapter describes principal steps leading to 

the determination of each cell type, based mainly on mouse model [reviewed in (Zagozewski et al., 

2014a; Zhang et al., 2011)], with the mention of alternative processes in distinct vertebrates, when 

applicable. The intermingled GRN of rods and cones will be discussed in a subsequent section. Figure 

4 summarizes the information contained in chapter 2. 

2.1. Towards mature retina: retinal cell fate determination  

The seven major retinal cell types are generated from common progenitors in an extensively conserved 

order, from ganglion cells (first) to MGC (last). The underlying genetic program is also well conserved 

among vertebrates and proceeds through a series of steps that increasingly restrict lineage choices 

and commit cells to a particular fate. One key event is the transition from the proliferating progenitors 

to cell fate specification. Especially, dynamics of variable Pax6 expression during the cell cycle appear 

to play an instructive role in these processes, thus suggesting the cellular diversity in the retina 

essentially results from the modulation of key TF by extrinsic signalling cues.  

The specification of retinal ganglion cells (RGCs) requires Pax6, Atoh7/Math5 signalling, Pou4f2/Brn3b 

and Isl1 activity (Marquardt et al., 2001; Pan et al., 2008; Riesenberg et al., 2009). Atoh7 turns on 

ganglion cell development, while repressing the other retinal cell fates through repression of other 

proneural genes (Math3, NeuroD, Ngn2) (Le et al., 2006; Mu et al., 2005; Stenkamp, 2007; Yang et al., 

2003). Pou4f2 and Isl1 together drive the ganglion cell differentiation program and also upregulate 

Shh, which maintains RPC proliferation in mice, in contrast with its pro-RGC differentiation effect in 
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zebrafish (Wang et al., 2005). RGC development also involves the Dlx1 and Dlx2 homeobox genes, since 

their absence leads to increased apoptosis of late born RGC (de Melo et al., 2005). Finally, Pou4f2 

promotes RGC development via an Atoh7-independent pathway and induces RGC maturation and 

survival in the mouse via Barhl2 activation (Ding et al., 2009).  

Horizontal cell (HC) specification depends on Foxn4 ((Li et al., 2004; Marquardt and Gruss, 2002) which 

provides RPC competence to become HC or AC. Downstream of Foxn4, Ptf1a and Hnf6/Oc1 (Onecut1) 

act together to specify the HC fate (Fujitani 2006, Li 2004, Wu 2013). HC specification also requires 

Prox1, a gene essential for cell cycle exit of early RPCs (Dyer et al., 2003). This followed from depletion 

of HCs in the Prox1-null mouse, and enhanced HC production when misexpressing Prox1 (Dyer et al., 

2003). Additional regulation by Lim1/Lhx1 appears to control HC positioning (Fujitani et al., 2006; Li et 

al., 2004; Poche et al., 2007). A similar cascade was reported in zebrafish (Jusuf et al., 2011), frog (Dullin 

et al., 2007) and chicken retina (Boije et al., 2013; Suga et al., 2009). In particular, the appropriate 

positioning of HC in the INL involves the Spalt family TF Sall3 (de Melo et al., 2011). 

The specification of amacrine cells (ACs) depends on Foxn4 and its downstream targets Math3 that 

works along with NeuroD (Li et al., 2004). Math3 and NeuroD are essential, yet not sufficient for AC 

induction (Inoue et al., 2002). Downstream of Foxn4 AC specification also involves Ptf1a (Fujitani et al., 

2006; Nakhai et al., 2007). AC differentiation is also regulated by Pax6 and its activator Sox2, which 

sustain early progenitor populations (Lin et al., 2009). Finally, differentiation of AC subpopulations 

involves notably Ptf1a and Barhl2 for GABA-ergic cells and glycinergic cells (Ding et al., 2009; Nakhai 

et al., 2007) and Isl1 for cholinergic cells (Elshatory et al., 2007).  

Specification of the late-born Bipolar Cells (BCs) requires both Mash1 and Math3 (Tomita et al., 2000). 

For the sake of completeness, it should be noted here that, before BC development, Mash1 interacts 

with Math3 in RPCs to control the neurogenic-gliogenic balance. In retinal explants, deletion of Mash1 

delays the production of BCs, rods and MGCs, and reduces the number of BCs at the expanse of MGCs 

(Tomita et al., 1996). Another factor playing a crucial role in BC differentiation is a target of Otx2 (Kim 

et al., 2008), Vsx2/Chx10, as shown by studies based on its mutation in mice (Burmeister et al., 1996; 
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Koike et al., 2007) and its down-regulation in zebrafish [reviewed in (Boije et al., 2015; Vitorino et al., 

2009)].  

The most numerous glial cells in the retina, Müller glial cells (MGC), arise from progenitor cells that 

followed the gliogenesis, not the neurogenesis pathway. A central cue in this process is Notch 

signalling, where Hes5 promotes glial cell production, whereas Hes1 maintains progenitor cell fate, 

notably by inhibiting the proneural Mash1 gene (Hojo et al., 2000; Takatsuka et al., 2004; Tomita et 

al., 1996). In addition, Notch and Hes1 are induced early in development by Rax, which controls early 

precursor proliferation and enables differentiation of late born cells (MGC, rods, BC) (Furukawa et al., 

2000; Rodgers et al., 2018). The hierarchy of events required for MGC production further involves Sox8 

and Sox9, being induced downstream of Notch signalling (Muto et al., 2009). Interestingly, MGC have 

the capacity to regenerate retinal neurons in amphibians and zebrafish [reviewed in (Hamon et al., 

2016)]. 

2.2. Photoreceptor differentiation 

Mature PR handle phototransduction, converting photons to electrical and subsequent neurochemical 

signals. The general morphology of PR includes the outer segment (OS), the inner segment (IS), the cell 

body, and the synaptic terminal. Rods and cones are named according to their OS morphology and 

differ in electrophysiological properties. Both express visual protein pigments, the opsins. Vertebrates 

have five classes of opsins, a single rod class (RH1) and four cone opsin classes (SWS1, SWS2, RHB/RH2, 

LWS) that are all expressed in fish and exist in all lineages [reviewed in (Davies et al., 2012)]. Rods are 

responsible for vision at low light levels/dim light (scotopic vision) and display low spatial acuity. On 

the contrary, cones are active at higher light intensities (photopic vision) and provide high spatial acuity 

and color vision. Devoid of red or L-cones, the mouse retina has 5% of “pure” S-cones distributed across 

the whole retina whereas 95% cones express both M- and S-opsin in a dorso-ventral gradient (primarily 

S-opsin in the ventral part and M-opsin in the dorsal one) (S, M and L account for Short, Middle and 

Long-wavelength-sensitive, respectively) (Applebury et al., 2000; Haverkamp et al., 2005).  
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Evolution has led to strong adaptations of vision. Especially, number, shape and size of PR sub-types, 

and molecular evolution of opsins differ among vertebrates, in line with the distinct demands of their 

operating environments. Hence, the timing of specification and differentiation, from PR precursors to 

distinct mature PR types, may slightly differ from species to species. In mice, cones are generated 

prenatally, peaking around E15. Rod generation takes place around birth (Brzezinski and Reh, 2015), 

their differentiation starting from postnatal stage 5 (P5), and rhodopsin expression increasing rapidly. 

At around P10 OS form and eyes open by P13, after which the retinal visual activity matures (Findlater 

et al., 1993; Shen and Colonnese, 2016). Despite the functional differences between rods and cones, 

they share TF and cofactors that mutually regulate each other during specification and differentiation 

(ex: NeuroD, Otx2, Crx, Nrl, Nr2e3, Nrl, retinoic acid and thyroid hormones). For that reason, this 

chapter is organized according to the different TF and cofactors involved in the specification of both 

PR subtypes (reported in Figure 4). 

TF1: Early bHLH gene NeuroD is required for both rods and cones development 

First involved in the neurogenic-gliogenic balance (Morrow et al., 1999), NeuroD is essential for rod 

development in the mouse, as shown by reduction of rods in NeuroD deficient mice and enhanced rod 

differentiation at the expense of BCs after misexpressing NeuroD (Morrow et al., 1999). NeuroD also 

regulates cone differentiation, especially by modulating expression of the TRβ2 (beta-2 subunit of 

thyroid receptor) encoding gene (see below) (Liu et al., 2008).  

TF2: Downstream of Otx2, the cone-rod homeobox gene, Crx, is central to PR differentiation 

Otx2 triggers PR specification and activates Crx that will drive the formation of OS and expression of 

both cone- and rod-specific genes (Furukawa et al., 1999; Livesey et al., 2000; Nishida et al., 2003). In 

particular, Crx activation triggers a transcriptional cascade with consecutive activation of Rorb 

(encoding RORβ), Nrl, and Nr2e3, which leads to rod production (Corbo and Cepko, 2005; Haider et al., 

2001; Jia et al., 2009; Kautzmann et al., 2011; Oh et al., 2007). Interestingly the development of the 

pineal gland, whose principal melatonin-synthetizing cells are very similar to retinal PR, also involves 

Otx2 and Crx, thus suggesting a common ancestral origin (Furukawa et al., 1999; Nishida et al., 2003). 
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Finally the stabilization of the (late-born) rod phenotype involves Prdm1, another downstream target 

of Otx2 (Brzezinski et al., 2010; Mills et al., 2017; Wang et al., 2014).  

TF3: Nrl, a rod specific gene with an evolutionary divergent role 

Nrl (neural retina leucine zipper) is a Maf family member that is fully rod-specific. In Nrl-deficient 

retinas prospective rods switch cell-fate to become S-cones  (Mears et al., 2001). Further studies have 

emphasized that Nrl is responsible for rhodopsin expression (Kumar et al., 1996; Rehemtulla et al., 

1996) and activates Nr2e3 to suppress the expression of cone-specific genes, promoting rod 

development (Mears et al., 2001; Oh et al., 2008). Unlike human NRL, Xenopus Nrl, and likely zebrafish 

Nrl, are responsible for lens development (Coolen et al., 2005; McIlvain and Knox, 2007). In the avian 

lineage Nrl has been lost, hence PR differentiation (at least in chicken) involves other members of the 

Maf family: MafA for the regulation of the opsin in rods and MafB for one of the avian green opsins 

(Enright et al., 2015). Finally, characterization of the Nrl KO mice showed a strong relationship between 

blue cones and rods specifically in mammals and suggested that Nrl evolution was instrumental in the 

advent of (nocturnal and rod-rich) mammals (Kim et al., 2016).   

TF4: Function of the nuclear receptor Nr2e3 in PR differentiation 

Rod differentiation relies on Nrl and its downstream target Nr2e3. Indeed, human Nr2e3 or Nrl induce 

the differentiation of PR into rods after in vivo transfection in Xenopus, maximal effect being reached 

upon co-expression of both factors (McIlvain and Knox, 2007). Some studies in mice reported also that 

the NR2E3-CRX complex activates rhodopsin, whereas Nr2e3 alone repressed cone-specific genes (for 

instance S-opsin) in rods (Chen et al., 2005; Peng et al., 2005). Accordingly, human NR2E3 mutation 

leads to enhanced S-cone syndrome (ESCS) associated with blue light hypersensitivity, early onset night 

blindness, varying degrees of L and M cone vision-loss and retinal degeneration (Haider et al., 2000). 

A similar phenotype was described in the rd7 mouse model with Nr2e3 deficiency: extra S-cones 

followed by degeneration of both cones and rods, plus other retinal abnormalities (Corbo and Cepko, 

2005; Haider et al., 2001).  

TF5-6: Regulation of PR development by Retinoic acid and Thyroid hormones 
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Precise timing of PR production and maturation is regulated by members of the nuclear receptor TF 

family, especially receptors for retinoids and thyroid hormones. 

Binding of retinoic acid (RA) to the RA nuclear receptor (RAR) triggers rod specification (Kelley et al., 

1994). Closely related to RAR, the orphan nuclear receptors of the ROR family also control PR 

development: RORα (encoded by Rora), synergistically with CRX, activates transcription of S-opsin 

gene (Fujieda et al., 2009); Rorb gene is required for rod differentiation and function since its absence 

led to complete rod depletion and over-production of S-cones (Jia et al., 2009). Rorb induces 

expression of Nrl, which in turn feeds back positively on Rorb (Fu et al., 2014), and expression of Prdm1 

(Wang et al., 2014). Rorc gene, as a target of Rev-Erbα/Nr1d1, is potentially involved in retinal 

differentiation at E18.5 in the mouse (Haider et al., 2009; Mollema et al., 2011).  

The thyroid hormone (TH) plays a crucial role during cone development, since the lack of TRβ2 in the 

mouse leads to depletion of M-opsin expression and concomitant widespread expression of S-opsin in 

cones (Ng et al., 2001). Hence, TH appears to activate the M-opsin gene and repress the S-opsin gene 

[as also does RXRγ (Roberts et al., 2005)]. In addition, the TH gradient occurring at the latest stages of 

cone development corresponds to the dorso-ventral gradient of M/S-opsins expression in cones 

(Roberts et al., 2006). Finally, M-cone development is also regulated by earlier activators of Thrb, such 

as NeuroD (Liu et al., 2008) or Otx2, which acts in combination with Hnf6/Oc1 (Emerson et al., 2013). 

However, the factor inducing cone fate, if any, remains to be identified.  

 

To conclude, retinogenesis is regulated through a finely tuned GRN that is based on an ON/OFF 

program of several growth factors, TF and hormone signalling pathways. The general mechanism is 

well conserved among vertebrates, but some features differ between species and reflect species-

specific development strategy, adaptations to environment and lifestyle, especially diurnal versus 

nocturnal animals. For example, AC subtypes are determined by BhlhB5, Isl1 and Barhl2 in Xenopus 

and mouse (Feng et al., 2006), whereas in human BHLHB5/BHLHE22 expression is associated with 

emergence of human BC, thus suggesting divergence of evolutionary pathways between tetrapods and 
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primates (Mellough et al., 2019). Furthermore, Nrl function is required for the development of 

mammalian rods, whereas it has been lost in the avian lineage and inversely Nrl is an important driver 

of ocular features in both Xenopus and zebrafish. Consequently, evolutionary divergence of molecular 

mechanisms exists during retinal cell differentiation and might be the result of circadian clock-related 

mechanisms, which are known to be involved in adaptation to environmental lighting conditions.  

 

3. Clock genes and clock-controlled genes (CCG) during retinal development 

Much is known presently about the functionality of circadian clocks during adult stem cell renewal, 

including neurogenesis (Terzibasi-Tozzini et al., 2017). However, when the circadian clock arises during 

development and how it acts have been long-standing questions (Agrawal et al., 2017; Landgraf et al., 

2014; Seron-Ferre et al., 2012; Umemura et al., 2017; Yagita et al., 2010). Clock gene transcripts were 

repeatedly shown to be maternally inherited but their levels were not rhythmic (Amano et al., 2009; 

Curran et al., 2008; Dekens and Whitmore, 2008; Hamatani et al., 2004; Johnson et al., 2002).  

In zebrafish, asynchronous, endogenously-driven cellular oscillations of the zygotic Per1 transcript 

were shown to start by 1 day post-fecondation (dpf). However, global rhythms of Per1 expression in 

embryos were only observed when they were exposed to (synchronizing) LD cycles (Dekens and 

Whitmore, 2008). At these developmental stages, the induction of Per1 rhythmicity required Clock 

gene, though Clock expression levels were constant (Dekens and Whitmore, 2008).  

During early stages of development in mice, clock gene expression data indicate that their expression 

products are not fully matured yet to form a functional circadian circuit (Amano et al., 2009; Dolatshad 

et al., 2010). Interestingly, in mouse embryonic stem cells (ESC), the all-trans retinoic acid induction 

towards a differentiated neural fate generates circadian oscillations. Conversely, loss of circadian 

oscillation is seen during the dedifferentiation of neural stem cells by the four major reprogramming 

factors (Oct3/4, Sox2, Klf4, and c-Myc) (Yagita et al., 2010). Thus, the current idea is that the functional 
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clockwork machinery begins to operate as soon as embryonic differentiation starts (Umemura et al., 

2017).  

Nevertheless, a bidirectional co-regulation of the cell cycle and the circadian clock has also been 

proposed (Feillet et al., 2015). Furthermore, several cell cycle regulators are well-known to be clock-

controlled: tumor suppressor p53, cyclins (such as Ccnd1 and Ccnd1b), oncogenes like c-Myc and 

Mdm2, and Sox9, Itga6, Wnt3, Smad7, Cdk4, Lhx2, Tcf4, β-catenin (Fu and Kettner, 2013). It was 

proposed in zebrafish that the early cycling of the circadian clock, synchronized by the LD cycle, 

controls the timing of cell division (for instance in the gut and skin (Dekens et al., 2003)). This is also 

likely mediated by the circadian clock control of cell cycle genes (such as p20 and p21 during the G1 

phase and genes expressed at G2/M checkpoint) [reviewed in (Brown, 2014; Laranjeiro and Whitmore, 

2014)]. Perhaps surprisingly, the link between cell proliferation and the clock during organ 

development has been rarely reported in mammals (Bagchi et al., 2020; Li et al., 2007). Hence, the 

exact mechanisms for clocks to start ticking in early life are yet to be unravelled and the question 

remains whether circadian clocks are simply an evolutionary or also a developmental process, or both 

(Brown, 2014; Vallone et al., 2007). 

Several cellular processes within the wild-type retina are regulated by clock genes (Figure 2) but the 

relevance of circadian rhythms during retinogenesis has only been rarely reported. Below we review 

the studies that have investigated the role of clock genes in the successive stages of retinal 

development in diverse vertebrates and the potential contribution of the circadian clock in generating 

the eye and retina.  

 

3.1. Clock and clock-controlled genes in retinal progenitors and during cell fate determination  

3.1.1. Clock in early eye development in Xenopus and zebrafish 

Insight into very early expression of clock factors has mainly been obtained in vertebrates with embryo 

transparency and external development such as amphibians and fish, and more recently in human 

thanks to the development of organoids (Sridhar et al., 2020; Wagstaff et al., 2021).  
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In Xenopus, expression of the XClock gene was detected early during gastrulation in the anterior neural 

plate. It was later found expressed in the neural tube, with highest expression in its anterior part, 

including developing eyes (Green et al., 2001). Expression of a dominant-negative mutant form of 

XClock during early development in Xenopus induced abnormal eye and head development, together 

with the down-regulation of Pax6 and Otx2, two (in-)direct transcriptional targets [(Morgan, 2002, 

2004) also reviewed in (Vallone et al., 2007)]. Conversely, the overexpression of XClock gene in this 

dominant negative XClock mutant rescued Otx2 levels and normal development (Morgan, 2002). 

Surprisingly, XClock expression is also directly upregulated by Otx2 in Xenopus embryos (Green et al., 

2001), suggesting a positive feedback loop between the two (Green et al., 2001; Morgan, 2002). 

Besides Clock, expression of Per genes was detected in the eye at the late Xenopus tailbud stage (stage 

31, production of AC and BC), and rhythmic expression of XBmal1 was determined at stage 41 (when 

the retina is differentiated and strong expression of rhodopsin is detected in PR layer) (Curran et al., 

2008). Whether the early expression of XClock in the anterior embryonic region of Xenopus helps to 

coordinate local ontogenesis of the circadian clock with neural patterning remains to be established.  

Intriguingly, (rhythmic) expression of clock genes Per3 and Rev-Erbα was also described in the anterior 

neural region of the zebrafish embryo including the retina, already during the second to fifth day post 

fecundation (dpf) (when pigments are produced in the RPE) (Delaunay et al., 2000). Similarly, highest 

expression of Clock1 and Per1 transcripts occurred in the anterior region of embryos on second dpf 

(Dekens and Whitmore, 2008). 

 

3.1.2. The clock during cell cycle and cell fate determination in the developing mouse retina 

In mouse eyes, expression of most clock genes has been detected as early as E13 and shows gene-

specific and temporal regulated expression throughout development, until adulthood (Bagchi et al., 

2020). Interestingly, in line with developmental events in zebrafish (described above), alteration of 

clock gene expression by knocking out Bmal1 and Per1/Per2 in genetically modified mice leads to cell 

cycle defects in the eye/retina (Bagchi et al., 2020; Sawant et al., 2019). Indeed, double mutation of 
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Per1 and Per2 genes decreases expression of cell cycle genes whereas it increases that of 

phototransduction genes at P3 (Bagchi et al., 2020). In contrast, retina-specific (driven by a Chx10-Cre) 

loss of Bmal1 during retinogenesis increased the number of cells entering the S-phase at E15 and 

reduced the number of cells exiting the cell-cycle (Sawant et al., 2019). This, most likely, underlies the 

observed reduction in early retinal (ganglion and amacrine) cell types observed in the same study (see 

below). This aspect was not specifically investigated in the Per1-/- Per2Brdm1mutant mice, but it is 

interesting to speculate that the observed increase of markers of late-born (rod) cells may be 

associated with a potential reduction in proliferative capacity (Bagchi et al., 2020). Taken together, the 

aforementioned studies suggest that the clock is important for the timing of cell division during mouse 

retinal development and, when this is not optimal, cell fate specification is disturbed. It is also 

noteworthy from these studies that impairment of Per1/Per2 vs Bmal1 genes in mouse retina likely 

exerts opposite effects on precursor proliferation (respectively, decrease vs increase) (Bagchi et al., 

2020; Sawant et al., 2019). In the molecular clockwork, Per1/Per2 and Bmal1 are involved in opposite 

regulatory arms and act, respectively, as repressors and activators of E box-containing promoters. 

Thus, it is possible that the effect on cell division is a result of opposite regulatory effects. Importantly, 

these data also suggest that a molecular clockwork involving negative feedback between PER1/PER2 

and BMAL1:CLOCK (or BMAL1:NPAS2) is already at play early in retinal development (Bagchi et al., 

2020; Sawant et al., 2019) (model proposed in Figure 5). We previously hypothesized that extinction 

of cell cycle genes in the Per1/Per2 mutant might be due to dysregulation of the Wnt and Hippo 

pathways (Bagchi et al., 2020). Although this link remains to be demonstrated in the retina, a strong 

interaction between Wnt signalling and the clock has been repeatedly documented, for instance in 

adipogenesis or myogenesis (Chatterjee et al., 2013; Chatterjee et al., 2019; Guo et al., 2012).  

As mentioned above, clock gene deletion affects cell fate determination in the early developing retina, 

an effect linked to disturbed precursor proliferation (Sawant et al., 2019). Indeed, Sawant and 

coworkers found reduced numbers of early-born cells in the Bmal1 KO, between the mouse E15 and 

P9 stages, namely Brn3b-expressing RGCs and a subset of ACs (Calretinin+ and Choline 
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acetyltransferase-ChAT+). Conversely, they observed increased numbers of late-born cells, such as 

(recoverin+) type II cone BCs and (Sox9+) MGCs. In addition, MGCs were partially mislocalized into the 

ONL, leading to lamination defects in the retina (Sawant et al., 2019). This lack of Bmal1 also leads to 

the abnormal presence of stunted dendritic processes of rod BCs already at 1 month, thus suggesting 

that clock dysfunction also alters rod BCs development (Baba et al., 2018a).  

 

3.2. Clock and clock-controlled genes during photoreceptor differentiation 

Lighting conditions are suggested to regulate the dynamics of rod differentiation. For instance, mice 

pups (P5, P10, P17, P24) raised in constant darkness show alteration of rod development, visual 

function, and TH-induced-rhodopsin expression. Thus, light exposure and, most likely, circadian 

regulation, are both important during PR development, as early as P5 (Sawant et al., 2015). Through 

several well-documented examples described below, we provide an overview of the accumulating 

evidence that both the central and the secondary regulatory loops of the molecular clock play a role in 

PR differentiation. 

 

3.2.1. The circadian clock regulates cone spectral identity in rodents  

In mice, several studies have shown that the circadian clock is involved in cone differentiation. For 

instance, in a PR-specific deletion of Bmal1 (Crx-Cre driven), S-opsin expression was abnormally 

distributed over the whole retina and the number of M-opsin expressing cones was significantly 

reduced (Sawant et al., 2017). Approximately the same patterning was seen in Clock KO mice (Sawant 

et al., 2017). Similarly, Per1-/- Per2Brdm1 mutant mice, that have a global clock defect with arrhythmicity 

in constant dark conditions (Zheng et al., 2001), are characterized by a number of developmental 

anatomical/histological eye defects. They display a reduced dorsal territory of blue cones, classically 

abundant in the ventral part of the retina. This is associated with reduced global mRNA expression of 

S- and M-opsin measured in whole retinas (Ait-Hmyed et al., 2013). Taken together, these data strongly 

suggest that the dorso-ventral distribution of cones is indeed regulated by the circadian clock. 
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Further experimentation, with KO mice and chromatin immunoprecipitation (ChIP), has suggested that 

Dio2 (the gene encoding TH-activating enzyme, type 2 iodothyronine deiodinase, which converts T3 to 

T4 form of TH) is the transcriptional target of BMAL1 during cone differentiation. Partial reversion of 

the Bmal1 KO phenotype by T3 supplementation further provided evidence that the clock might 

regulate the cone-opsin gradient through TH signalling (Sawant et al., 2017). In this hypothesis, the 

dorso-ventral gradient of T3, the active form of TH, would be further enhanced by the induction of 

Dio2 expression. No effect on Dio2 mRNA was observed in the transcriptome analysis of the Per1-/- 

Per2Brdm1 mutants, potentially because the study was performed (E15 to P3) before the induction of M-

opsin expression, by P5 (Bagchi et al., 2020). As the level of S-opsin expression appears to also be 

regulated by the Per2 gene (Sawant et al., 2017), it confirms the results in the Per1-/- Per2Brdm1mutants 

where retinal S-opsin mRNA levels are decreased (Ait-Hmyed et al., 2013) (model proposed Figure 5). 

3.2.2. Rev-Erbs and Rors are at the interface between circadian clock and PR differentiation 

In mammals, the main TF regulating the expression of PR genes are CRX, NRL, and NR2E3. A complex 

between NRL, NR2E3, CRX and REV-ERBα/NR1D1 has been shown to activate, in vitro, the expression 

of rod phototransduction genes, namely those coding for Rhodopsin (Opn2) and the alpha subunit of 

rod transducin Gnat1 (Cheng et al., 2004). Another example based on ChIP analysis from P2 and P21 

C57BL/6J mouse eyes provided evidence that Rev-Erbα/Nr1d1 is itself a direct target of NR2E3, 

suggesting that Rev-Erbα/Nr1d1 and Nr2e3 function in the same transcriptional network during PR 

development (Haider et al., 2009). Interestingly, in the degenerating retina of the Nr2e3-deficient rd7 

mouse, in vivo rescue experiments pointed to Rev-Erbα/Nr1d1 as a candidate modifier gene for Nr2e3 

(Cruz et al., 2014). Furthermore, during retinal development NR2E3 and REV-ERBα/NR1D1 co-target 

phototransduction genes, such as Recoverin (Rcvn), whose expression is rhythmic in LD and under 

constant dark conditions (Mollema et al., 2011; Storch et al., 2007). Knock down of Rev-Erbα/Nr1d1 

induces pan-retinal spotting of the fundus associated with reduced light response as measured by 

electroretinography, but no obvious alteration of PR (Mollema et al., 2011). Neither did Rev-
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Erbα/Nr1d1 KO mice show morphological PR defects, whereas they displayed altered light responses 

(Ait-Hmyed Hakkari et al., 2016). Another standing question is whether the Nr2e3/Rev-Erbα common 

signalling pathway has a link with a circadian clock controlling PR development. It is worth noting in 

this respect, that in fruit flies the orthologs of Nr2e3 and of Rev-Erbα/Nr1d1 together contribute to 

circadian clock function in the neuronal pacemaker, as shown in relevant fly mutants (Jaumouille et 

al., 2015). 

During retinal development, the ROR clock factors have also been described as early actors (described 

above). Loss of Rora and Rorb in mice leads to, respectively, defective cone differentiation and 

complete depletion of rods (Fujieda et al., 2009; Jia et al., 2009). Interestingly, Rorc gene is over-

expressed in the developing eyes of Per1-/-Per2Brdm1 mutants (Bagchi et al., 2020).  

 

Although precise mechanisms still need to be identified, the data described above suggest that clock 

genes control PR differentiation in mice. The clock might be involved in modulation of the balance 

between rod and S-cone genesis and the ratio of M-opsin vs S-opsin expression in cones. It has not 

been established whether these effects correlate with rhythmic expression of involved clock factors.  

 

3.3. Is transcriptional regulation of retinal development more generally under clock control ? 

It is possible that the circadian clock has a more widespread link with development of retinal cell types. 

This is suggested by a number of studies summarized below. Using Nr1d1 KO mice, Chavan and 

coworkers (Chavan et al., 2017) found that REV-ERBα/NR1D1 (that is abundantly expressed in the inner 

retina in addition to PR) can regulate transcription through interaction with other binding partners 

such as Hnf6/Oc1 that also controls HC fate (Wu et al., 2013). Other clock-related factors, such as the 

BHLHE40 and BHLHE41 TF, compete with BMAL1/CLOCK for binding to the E-box. Both Bhlhe40 and 

Bhlhe41 genes have been associated with the generation of RPE lineage cells derived from human iPSC 

and Bhlhe40 is an early marker of the presumptive RPE in zebrafish (Cechmanek and McFarlane, 2017; 

Chuang et al., 2018). A microarray analysis of the daily and circadian transcriptome conducted in larval 
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zebrafish at 5dpf allowed the identification of GRNs underlying developmental effects of the clock (Li 

et al., 2013). This study pointed to a series of phase-specific oscillating TF genes controlling retinal fate. 

A number of first examples are genes involved in the developing retina, such as Mitfa and its 

downstream targets Vsx1 and Six3 (Li et al., 2013). Regarding the regulation of PR development, TF 

genes with oscillating expression include Crx, Nr1d1, and Rorab, the orthologue of mammalian Rorb. 

Interestingly in the ONL of 3dpf and more mature zebrafish larvae, several TF regulating retinal 

development (Neurod followed by Nr2e3, and then Rx1 and Crx) are rhythmically expressed (Laranjeiro 

and Whitmore, 2014). This suggests that TF which regulate developmental PR differentiation are later 

re-activated by the circadian clock to control phototransduction over the 24 h cycle.  

 

Taken together, these data suggest a link between regulators of retinal development and the circadian 

clock. Furthermore, the clock might control retinal rhythmic physiology through these factors in the 

mature tissue. However, the exact relationship between circadian clock mechanisms, the LD cycle and 

retinal differentiation remains to be determined. A few data about light perception during 

differentiation provide some clues.  

 

3.4. Ontogeny of circadian rhythms in the retina 

3.4.1. Light perception and ontogeny of rhythms 

In rats, light responses in the retina are observed immediately after birth (Mateju et al., 2010) while 

only at P4 in mice (Munoz Llamosas et al., 2000). In parallel, it was observed that melanopsin is already 

light-sensitive during fetal development in the mouse and has significant impact on the development 

of eye vasculature (Rao et al., 2013). It is also worth noting that in chicken, mRNAs for different 

circadian markers (Bmal1, Clock, Per2, Cry1), for the AA-NAT enzyme involved in melatonin synthesis, 

as well as for melanopsin (Opn4), were found expressed in inner retinal cells as early as E8, when the 

distinct retinal layers are forming (Diaz et al., 2014). Furthermore, chick retinal cell cultures from E8 
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embryos are able to express 24 h rhythms in clock gene mRNAs, provided they have been exposed to 

daily LD cycle (Chaurasia et al., 2006; Lima et al., 2011). Taken together, these data suggest that cells 

are likely to acquire rather early the capacity to sense ambient lighting conditions and measure time. 

How this genetic effect gets harmonised with the synchronising effect of the LD cycle is presently 

unknown. However, data obtained in chicken with photoreceptor-enriched embryonic retina cultures 

or with cultures of embryonic RGC suggest that light sensitive oscillations of cAMP, interconnected 

with light affected Ca2+ levels might be the initial circadian regulators in the retina, that might prime 

the retina for clock-controlled gene regulations. Such model has been especially proposed for the 

regulation of rhythmic melatonin synthesis, that has been used since decades as a marker of rhythms 

in the circadian field.  

3.4.2. Development of the rhythm in melatonin synthesis 

Rhythmic synthesis of melatonin is one of the major functional outputs of the circadian clock in the 

vertebrate retina, especially in PR. In the PR, melatonin is primarily synthetized during darkness in most 

species (Cahill and Besharse, 1992; Tosini et al., 2007a; Zawilska and Iuvone, 1992). In addition to its 

role in controlling dark-adaptive retinal physiology, melatonin regulates cone viability (Gianesini et al., 

2016). This rhythm mainly involves cyclic activity of AA-NAT. Aanat expression is regulated by the LD 

cycle but also by the circadian clock (Fukuhara et al., 2004; Tosini and Fukuhara, 2002). In Xenopus, 

rhythmic production of melatonin was greatly altered when a dominant-negative CLOCK protein was 

expressed specifically in PR (Hayasaka et al., 2002).  

The onset of circadian rhythms in melatonin levels was first reported in chick retinas. Significant 

day/night differences in NAT activity emerged around E20, regulated by the LD cycle, to reach a 

maximum amplitude at post-hatch day 3 (3dph). A circadian rhythm in NAT activity also appeared 

around hatching, indicating its regulation by the clock developed in ovo (Iuvone, 1990). In Xenopus 

embryos, a functional, photo-responsive circadian clock was shown to develop in the eye within the 

first days of life (Green et al., 1999). Optic vesicles of young Xenopus laevis embryos cultured in vitro 
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slowly start releasing melatonin at developmental stage 26. The latter secretion becomes rhythmic in 

2-3 days if optic vesicles are exposed to LD cycle but stays at constitutively high levels under constant 

darkness. In older Xenopus embryos (stage 47), melatonin is rhythmically released in vitro in the 

cultured mature eye/retina and shows similar amplitude when maintained in cyclic light or under 

continuous dark conditions (Green et al., 1999). In embryonic zebrafish, it is suggested that the first 

circadian melatonin rhythms are not of retinal but of pineal gland origin (Kazimi and Cahill, 1999). 

Indeed, a functional and light-responsive circadian oscillator regulating melatonin synthesis in 

zebrafish becomes apparent just after 20-26 h post-fertilization, before retinal PR maturation (Kazimi 

and Cahill, 1999). More recently, the developmental rat retina expression pattern of Aanat mRNA was 

examined using Northern blot analysis (Sakamoto et al., 2002). The daily LD cycle-induced rhythmic 

changes in the Aanat mRNA levels began as early as P2. In contrast to LD, Aanat rhythms persisted for 

1 day in constant darkness only after P14 (Sakamoto et al., 2002). Another study in rats, showed that 

maternal entrainment of circadian rhythms in pups persists during the first postnatal week (Duncan et 

al., 1986). However, the required signals from the mother were not sufficient to induce rhythmic 

expression of retinal AA-NAT during this period (Duncan et al., 1986). This indicates that the rhythm 

observed at P2 was essentially driven by the LD cycle and that the latter was required for later 

maturation of the circadian retinal system. Whether rhythmic melatonin release itself played a role in 

this maturation remains to be established.  

 

In conclusion, circadian clock genes most likely fine tune retinal development at distinct steps, from 

very early progenitors to cell type-specific differentiation. These effects involve control of cell cycle, as 

well as direct control of target genes acting as regulators of patterning/differentiation, most of which 

have not yet been identified. It also remains to be determined when and how, within these processes, 

the retinal circadian clock starts ticking. Answering this long-standing question is hindered by the 

difficulty to track clock gene oscillations at the cellular level. Another question is how the clock in the 

developing retina gets synchronized by the LD cycle. In lower vertebrates such as zebrafish and 
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Xenopus, these events are likely to occur rather early, facilitated by the embryo transparency. The data 

presently available indicate that they take place later in mammals. Moreover, the phenotypes of clock 

mutants in mice support the notion that the circadian clock only modestly contributes to retinal 

development. However, examination of the more general effects of clock disturbance on retinal and 

ocular health in adulthood provide a more comprehensive idea of the importance of clock regulation 

in the retina.  

 

4. Circadian clocks and ocular health 

Visual perception and light have a profound influence on human physiology, well-being and quality of 

life. According to the World Health Organization (WHO), an estimated 36 million people worldwide 

had blindness in 2015, a scale-up of 217 million individuals with moderate to severe visual impairments 

(Bourne et al., 2017). The role of the circadian clock in retinal development has been discussed in 

chapter 3 and a number of target developmental genes were listed. Interestingly, some of these genes 

are also involved in early-onset retinal diseases; however, a potential link between these diseases and 

the circadian clock has not been documented yet. Conversely, due to their pervasive control of gene 

expression and to their role in homeostasis and long-term health, circadian clocks can possibly also 

modulate detrimental pathological effects of the aging retina. This can be illustrated by a number of 

examples from the literature: accelerated degeneration of (cone) photoreceptors has been reported 

upon aging in mice carrying Bmal1 deletion (Baba et al., 2018a; Baba et al., 2018b). Also, a rhythmic 

component in retinal sensitivity to phototoxicity has been reported in rats and, of note, retinas were 

much more vulnerable at night (Organisciak et al., 2000). Thus, clock dysfunction might constitute a 

risk factor for blinding diseases. However, besides a few examples, the (long term) effects of circadian 

misalignment on human retinal disease remain essentially to be explored.  

Below, we describe in more depth a few examples of a possible relationship between a disturbed 

circadian clock in the developing or aging eye and ocular defects, starting with the retina and extending 

to distinct eye compartments. 
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4.1. Clock dysfunction and retinal pathophysiology 

4.1.1. Glaucoma  

Glaucoma is a leading cause of irreversible blindness characterized by RGC degeneration resulting in 

visual field defects and optic nerve deterioration. Abnormal, high intraocular pressure (IOP) physically 

damaging the RGC is considered the main risk factor for glaucoma. The variation of IOP across the 

circadian cycle have been long recognized (Aihara et al., 2003; Lozano et al., 2015; Nickla et al., 1998; 

Read et al., 2008). IOP rhythm depends, at least in part, on the integrity of a circadian clock (Maeda et 

al., 2006). This rhythm derives notably from changes in the aqueous humor production by the ciliary 

body. Indeed, rhythmic expression of clock genes have been reported in the iris-ciliary body complex 

(Dalvin and Fautsch, 2015; Tsuchiya et al., 2017), and depends on signals from the SCN, likely through 

glucocorticoids and the sympathetic pathway activation (Ikegami et al., 2020). In humans, IOP is 

highest during the night  (Liu et al., 1998). 

It has been proposed that not the IOP alone, but the translaminar pressure over the optic nerve head 

determines RGC damage. This would explain the proportion of patients with a so-called normal-tension 

glaucoma. The translaminar pressure can then be defined as the difference of pressure between the 

IOP and the intracerebral pressure (ICP) (Janssen et al., 2013). Interestingly, not only IOP, but also ICP 

has been reported to be highest at night in rodents (Starcevic et al., 1988). Also, the choroid plexus, 

responsible for cerebrospinal fluid generation in the brain harbors a circadian clock (Myung et al., 

2018). Finally, unlike the IOP and ICP, systemic blood pressure is minimal during the night [reviewed in 

(Bowe et al., 2015)]. This might increase the risk for reduced perfusion of eye or brain tissues at night-

time and potentially contribute to the progression of glaucoma [reviewed in (Ciulla et al., 2020)]. 

Clearly, the relationship between circadian controlled fluid pressure in the relevant body 

compartments in the context of glaucoma development is complex and warrants further investigation. 

 

4.1.2. Diabetic retinopathy 
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Diabetic retinopathy (DR) is a complication of diabetes and considered a microvascular disease of the 

retina. Due to hyperglycemia, retinal vessels are damaged, leading to formation of ischemic zones and 

exudation from capillaries that contributes to macular edema. A strong link between DR and the 

circadian clock has been proposed in several studies. First, DR was associated with the reduction of 

clock gene expression in the rat retina (Busik et al., 2009). In 2013, Bhatwadekar and co-workers 

conversely showed in mice that circadian disruption by mutation of Per2 ininduced DR, likely through 

a retinal microvasculature phenotype (Bhatwadekar et al., 2013; Jadhav et al., 2016). Later, the same 

authors corroborated these findings: conditional deletion of Bmal1 in endothelial cells induces 

pathologic vascular and neuronal hallmarks of DR (Bhatwadekar et al., 2017). Finally, Vancura and 

coworkers found that, in mouse retina, disturbances in circadian and dopamine-directed regulation of  

fatty acid oxidation enzymes required for daily adaptation of energy metabolism, lead to DR pathology 

(Vancura et al., 2016). Unexpectedly, more recent data suggested that Bmal1 KO does not pose a risk, 

but rather protects against DR (Vancura et al., 2021). Thus, the link between the clock and DR remains 

to be clarified. 

 

4.1.3. Age-Related Macular Degeneration (AMD) 

AMD is a progressive chronic disease of the central retina. The disease affects 4% of the elderly, and 

no effective or patient-friendly cure exists. Subretinal drusen formation and neovascularisiation are 

clinical hallmarks of the disease (Bergen et al., 2019). AMD is caused by environmental and genetic 

factors. Mechanistically, the oxidative stress, the complement system, lipid metabolism and local 

extracellular matrix changes haven been implicated in the disease. So far, the potential role of the 

clock in AMD development has received little attention. However, because of the major importance of 

oxidative stress in AMD, and the fact that circadian clocks are major regulators of metabolism and 

cellular redox state, led to the hypothesis that clock dysfunction may contribute to AMD phenotypic 

variability (Fanjul-Moles and Lopez-Riquelme, 2016; Ruan et al., 2021). Also, biosynthesis and turnover 
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of the oxidative stress-protective melanin pigment in the RPE (the primary retinal layer implicated in 

the pathology of AMD) is under circadian cotrol (Bergen; personal communication). Genetic linkage, 

association and expression studies suggested the influence of genetic variation in the Rora clock gene 

on neovascular AMD (Jun et al., 2011; Silveira et al., 2010). Finally, it has been proposed that aberrant 

upregulation of the WNT/β-catenin signalling controlled by clock genes and involved in exudative AMD, 

might be due to a disrupted circadian clock (Guo et al., 2012) [reviewed in (Vallee et al., 2020)]. 

 

4.2. Effects of clock dysfunction on the anterior eye segment: lens and cornea 

Initial studies with Bmal1 and Clock KO mice reported development of cataract, an abnormally cloudy 

lens. This phenotype has been linked to accelerated aging in the case of Bmal1 KO (Dubrovsky et al., 

2010; Kondratov et al., 2006). More recently, it was shown that Bmal1 depletion induces a progressive 

decline of antioxidant-defence pathways in primary human lens epithelial cells and derived cell lines, 

making them vulnerable to reactive oxygen species (ROS) accumulation and apoptosis (Chhunchha et 

al., 2020). These processes might underlie the lens premature aging effect induced by Bmal1 KO. 

Whether alteration of the circadian clock might also affect lens development was investigated in a 

genetic study of congenital cataract families. However, no genetic variation in BMAL1 could be linked 

to the disease (Bagchi, 2019). 

The renewal and repair of the corneal epithelium are (also) influenced by the circadian clock (Lavker 

et al., 1991; Sandvig et al., 1994; Scheving and Pauly, 1967). Initial studies in mice showed that the 

ocular abnormalities induced by Bmal1 or Clock deficiency also include corneal inflammation 

(Dubrovsky et al., 2010; Kondratov et al., 2006; Yang et al., 2016). Indeed, the whole cornea expresses 

clock genes that invoke circadian rhythms (Xue et al., 2017; Yoo et al., 2004). These rhythms, measured 

in whole corneas, are entrained by signals from the retina. For example, melatonin (most likely 

secreted by the retinal PR) is able to entrain the PER2-luciferase circadian rhythms in the mouse cornea 

(Baba et al., 2015). When normal environmental lighting cycles are replaced with altered light 
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schedules (constant light, constant dark, reversed LD and jet-lag conditions), the homeostasis of the 

corneal epithelium, namely mitosis and wound healing, gets disturbed (Xue et al., 2017). Interestingly, 

analysis of the daily transcriptome in the mouse cornea showed significant enrichment in metabolic 

pathways and DNA replication during the day, consistent with the finding that corneal epithelial mitosis 

also peaks during the light phase (Jiao et al., 2019).  

 

4.3. The retinal clock in refractive development and myopia  

Myopia or near-sightedness is a prevalent vision disorder projected to affect 50% of the global 

population by 2050 (Holden et al., 2016). It is a complex disease caused by genetic and environmental 

factors. Myopia itself predisposes the eye to many other blinding conditions in adulthood. In the 19th 

century, inadequate lighting or insufficient exposure to the outdoors was suggested for the aetiology 

of myopia (Hobday, 2016). Indeed, outdoor or natural light exposure partially protected children to 

develop myopia in the early years of life (French et al., 2013). Today, it has become clear that light-

induced retinal (dopamergic) signalling is an important driver for refractive error in myopia (Tedja et 

al., 2018; Wallman and Winawer, 2004; Zhou et al., 2017). A recent meta-GWAS analysis confirmed 

that refractive errors are associated with the two Gene Ontology Terms “circadian rhythms” and 

“circadian regulation of gene expression” (Hysi et al., 2020). Indeed, artificial lightning during dark 

hours, prolonged computer use (indoors) and irregular lifestyle contribute to the development and 

progression of the disease (Chakraborty et al., 2018). 

Interestingly, eye dimensions undergo diurnal fluctuations both in humans (Burfield et al., 2018; 

Chakraborty et al., 2011; Stone et al., 2013) and in animal models [reviewed in (Nickla, 2013)]. The 

fluctuating ocular dimensions include axial length, vitreous chamber depth, and choroidal thickness 

(Chakraborty et al., 2018). Eye dimensions, and even their daily fluctuations, vary in response to 

imposed optical defocus (ie: artificially induced myopia or hyperopia) (Chakraborty et al., 2012; Nickla, 

2013). At the same time, imposed optical defocus also disrupts rhythmic expression patterns of some 
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clock genes in the retina/RPE and in the choroid (Stone et al., 2020). These data corroborate the 

potential link between refraction, circadian clock mechanisms, and the retina.  

 

This link may also be important for eye development. In the retina-specific Bmal1 KO mouse, the eyes 

developed longer axial length and an elongated vitreous chamber (Stone et al., 2019). Consequently, 

KO mice were significantly more myopic than control mice. Noteworthingly, similar anatomical 

changes were reported in chicks when reared under constant light, suggesting the need of a proper 

day/night rhythm for optimal eye growth (Stone et al., 1995). Interestingly, it was also reported that 

brief bright light inhibits the growth of myopic eyes in the chick, when exposure takes place at a specific 

time of day-in the evening (Sarfare et al., 2020). Taken together, these investigations support the idea 

that the effects of lighting on refractive development are linked to the circadian clock. 

 

5. Summary 

The studies presented above suggest that vertebrate eye development is, in part, under circadian 

control. Indeed, the circadian clock (or at least clock genes) affects a number of steps of eye 

development, from the anterior neural tube to the optic cup and PR differentiation. Interestingly, in 

the same developmental timeframe, expression of cell cycle genes and S phase entry are also 

controlled by (mouse) clock genes. Moreover, in fish, where embryonic development occurs in 

transparent eggs (thus exposed to light), experimental results indicate that eye formation and 

circadian rhythms are settled synchronously and could influence each other. However, in higher 

vertebrates, besides proliferation of early precursors, solely PR differentiation appears to be regulated 

by the circadian clock, especially in mammalian cones (summarized in Figure 5). We also report 

evidence that the clock, integrating environmental cues, modulates a number of pathological 

processes, not only in the retina, but also in other ocular compartments, suggesting that proper clock 

function may positively influence eye pathology. 
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6. Conclusions and perspectives 

During retina embryonic and postnatal development, the circadian clock acts as a modulator of both 

precursor proliferation and differentiation, likely by defining the appropriate timing for these 

processes to occur. The results presented in this review suggest that the clock plays an important role 

in (24 hr) eye physiology and homeostasis. Disruption of the clock most likely enhances eye pathology. 

These data also designate the eye as a perfect clock model to study these processes, both at the 

cellular, tissue and functional level.  

Further research in understanding the role of circadian clocks in retinal development, disease and 

therapeutics may include (1) a better understanding of the contribution of individual cell-specific clocks 

to retinal differentiation (2) a more thorough analysis of the clock in models for retinal disease, and (3) 

better understanding of a potential role of the clock in therapies for retinal disease. These therapeutic 

studies may include natural history studies in patients, time restricted application of drugs, and, more 

fundamentally, the role of the clock in stem cell development and cell replacement therapy. 
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FIGURE LEGENDS 

Figure 1. The circadian clock machinery.  

The endogenous molecular mechanism generating circadian rhythms is based on two main 

transcriptional–translational feedback loops involving clock genes. The CLOCK/BMAL1 heterodimer 

binds to an enhancer box (E-box) and drives the transcription of the clock genes Period (Per1-2), 

Cryptochrome (Cry1-2), Rora-c, and Rev-Erbα-β. PER and CRY (phosphorylated) proteins in turn inhibit 

CLOCK/BMAL1 transcriptional activity. By competitive binding to retinoid-related orphan receptors 

response elements (RORE) sites, the REVERB and ROR proteins repress and activate Bmal1 

transcription, respectively. The clock machinery modulates cell-specific gene expression via two 

transcriptional processes (direct and indirect), thus leading to 24 h rhythms in tissues [adapted from 

(Felder-Schmittbuhl et al., 2017)]. 

Figure 2. Rhythmic functions in the distinct retinal layers 

A schematic transversal section through retinal layers and cell types is shown with the three main 

oscillators previously identified (Jaeger et al., 2015). Exemples of mostly documented rhythmic, clock-

controlled processes are listed on the right in RGC, INL, ONL and RPE [references in (Besharse and 

McMahon, 2016; Felder-Schmittbuhl et al., 2017; Felder-Schmittbuhl et al., 2018)]. R, RGC; A, AC; B, 

BC; H, HC; M, MGC, R, rods; C, cones.  

Figure 3. The genetic signalling in the optic vesicle and optic cup.  

A) Diagram depicting the optic vesicle (OV) and the optic cup (left) with their corresponding Gene 

Regulatory Networks. B) Genes which alteration has dramatic consequences in early development of 

the vertebrate eye [adapted from (Garita-Hernandez et al., 2016; Harding and Moosajee, 2019)]. KO: 

Knock Out; LP: Lens Placode; NR: Neural retina; OV: Optic Vesicle; RPE: Retinal Pigmented Epithelium. 
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Figure 4. A network of genes essential for the development of retinal cell types in the mouse retina.  

Among photoreceptors, cones and rods GRN are described in separate colored hemispheres: grey for 

rods and multicolored (blue, green) for cones. Proportion of the seven retinal cell types are indicated 

[adapted from (Harada et al., 2007; Hughes et al., 2017)]. 

Dotted lines indicate indirect or poorly characterized gene relationships. Large colored arrows indicate 

that the TF directly activates generation of the cell type. AC: amacrine cells; BC: bipolar cells; HC: 

horizontal cells; MGC: Müller glial cells; RGC: retinal ganglion cells [adapted from (Boije et al., 2015; 

Brzezinski and Reh, 2015; Ivanov, 2019; Zagozewski et al., 2014a; Zhang et al., 2011)]. Prepared with 

elements from Servier Medical Art https://smart.servier.com/. 

 

Figure 5. Schematic of the retinal developmental processes regulated by circadian clock (genes) 

The model proposes that the circadian clock, or at least the action of BMAL1 (transcriptional activator) 

or PER1, 2 (transcriptional inhibitors), regulates the balance between proliferation and cell cycle exit 

in early retinal progenitors (around E15), the expression of S-opsin (effect specifically observed in the 

absence of Per2 or of both Per1 and Per2) and the dorso-ventral patterning of M/S-opsin expression, 

by enhancing conversion of T4 (inactive) to T3 (active) versions of TH. After the data from (Ait-Hmyed 

et al., 2013; Bagchi et al., 2020; Sawant et al., 2017; Sawant et al., 2019). 
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