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Foliated affine and projective structures

Bertrand Deroin and Adolfo Guillot

Abstract

We formalize the concepts of holomorphic affine and projective structures along the
leaves of holomorphic foliations by curves on complex manifolds. We show that many
foliations admit such structures, we provide local normal forms for them at singular
points of the foliation, and we prove some index formulae in the case where the ambient
manifold is compact. As a consequence of these, we establish that a regular foliation
of general type on a compact algebraic manifold of even dimension does not admit a
foliated projective structure. Finally, we classify foliated affine and projective structures
along regular foliations on compact complex surfaces.

1. Introduction

For a one-dimensional holomorphic foliation on a complex manifold, a foliated projective structure
is a family of complex projective structures along the leaves of the foliation that vary holomor-
phically in the transverse direction. Particular cases of such structures are foliated translation
structures, corresponding to global holomorphic vector fields tangent to the foliation and van-
ishing only at its singular points, and foliated affine structures, which are a key tool in the study
of holomorphic vector fields without multivalued solutions carried out in [GR12]. Some interest-
ing families of foliated projective structures are the isomonodromic foliations on moduli spaces
of branched projective structures [Vee93, McM14, CDF14, GP17]; foliated projective structures
also appear prominently in Zhao’s classification of birational Kleinian groups [Zha21]. As we will
see, there are plenty more of examples, and it seems that a theory deserves to be developed. The
aim of this article is to begin a systematic study both of these structures and of the closely re-
lated affine ones. It concerns chiefly the problems of the existence of such structures on compact
foliated manifolds, of their local description at the singular points of the foliation, and of the
relations of their local invariants with the global topology of the foliation and the manifold.

On a manifold of dimension n, a foliation F , in a neighborhood of a singular point p, may
be defined by a vector field Z with singular set of codimension at least two, unique up to
multiplication by a nonvanishing holomorphic function; the projectivization of the linear part of
Z at p is a local invariant of F , but the linear part in itself is not. In the presence of a generic
foliated projective structure, a distinguished linear part of a vector field tangent to F at p may be
defined up to sign: the eigenvalues of this linear part become the ramification indices ν1, . . . , νn of
the structure at p (Section 3.2.2); they are well-defined up to ordering and up to a simultaneous
change of sign (the ambiguity of the sign can be lifted for foliated affine structures). When the
vector field is nondegenerate and linearizable with semisimple linear part, these indices encode
the “cone angles” induced by the foliated projective structure on each one of the n separatrices.
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In Theorem 3.7 we prove that, generically, a foliated projective structure in the neighborhood of
a singular point is determined by these indices.

Our main result is an index theorem which concerns the global properties of foliated projective
structures, assuming that the ambient manifold M is compact and that the foliated projective
structure satisfies a nondegeneracy condition at the singular points. Theorem 5.1 affirms that,
given a symmetric homogeneous polynomial ϕ(x1, . . . , xn+1) of degree n+ 1, if ϕodd denotes the
odd part of ϕ in the variable xn+1, the quantity∑

p∈Sing(F)

ϕodd(ν1, . . . , νn, 1)

ν1 . . . νn

can be expressed as an explicit polynomial in the Chern classes of TM and of the tangent bundle
of the foliation, TF . Some instances of our result are the following ones (Examples 5.2 and 5.3):
if n, the dimension of M , is odd, n = 2k + 1,∑

p∈Sing(F)

ν1 + · · ·+ νn
ν1 · · · νn

= c2k1 (TF )c1(TM − TF ); (1.1)

and if it is even, ∑
p∈Sing(F)

1

ν1 · · · νn
= cn1 (TF ). (1.2)

This last formula only makes sense if n is even, but if the projective structure reduces to an
affine one, it is also valid for n odd (Theorem 4.1). As usual, in these formulae, the left hand
side vanishes if the singular set is empty.

For all this to be of interest, we need to have a good knowledge of the foliations which admit
foliated affine and projective structures.

Foliated affine structures are quite common. Some foliations can be shown to admit them
almost by construction (like for the “evident” foliations on Inoue or Hopf surfaces, see Ex-
amples 2.5 and 2.6), or because they admit a description that makes this patent, like elliptic
fibrations (Example 2.8) or foliations on complex projective spaces (Example 2.4). In general,
on the manifold M , for a foliation F with canonical bundle KF , there corresponds a class αF
in H1(M,KF ) that measures the obstruction for F to admit a foliated affine structure (Sec-
tion 2.1.3). There are situations where this cohomology group is altogether trivial; this allows,
for instance, to prove that all foliations whose “canonical bundle of the space of leaves” is am-
ple carry a foliated affine structure (Lemma 2.9; by adjunction, given a sufficiently positive line
bundle on the manifold M , every foliation on M having it for its cotangent bundle supports a
foliated affine structure). Further instances of foliated affine structures may be given by con-
structing foliated connections on some line bundles, and propagating them to the tangent bundle
of the foliation (Section 2.1.4). Following this strategy, we will prove that any foliation on a
Calabi-Yau manifold (Corollary 2.11) or on a generic hypersurface of P3 (Example 2.13) admits
a foliated affine structure.

Foliated projective structures can be directly shown to exist in some cases, like on Hilbert
foliations, suspensions and turbulent foliations (Examples 2.16 and 2.17). In a way similar to the
affine one, for a given foliation F there is a class βF in H1(M,K2

F ) which vanishes if and only if
it admits a foliated projective structure. This obstruction may be calculated in some cases, and,
by doing so, we show that every foliation in the product of a curve with P1 admits a foliated
projective structure, while not always a foliated affine one (Proposition 2.20).
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Despite these positive results, there exist foliations that do not support any foliated projective
structure. For instance, Zhao proved that no Kodaira fibration (considered as a foliation) carries
such a structure [Zha19]. A consequence of our index formulae is that if a compact complex
surface has a regular foliation admitting a foliated projective structure, its signature vanishes
(Corollary 6.1), giving an alternative proof of Zhao’s result (yet another one has been recently
given in [EWF21]). More generally, our index theorem implies that, in even dimensions, regular
foliations of general type do not support foliated projective structures (Proposition 6.3).

These results allow us to fully classify foliated affine and projective structures along regular
foliations on surfaces (Corollary 6.2, Section 6.2). For example, from Brunella’s classification of
regular foliations on surfaces [Bru97] and the previously mentioned Corollary 6.1, if a regular
foliation on a surface of general type which is not a fibration admits a foliated projective structure,
the surface is a quotient of the bidisk, with the foliation being either the vertical or horizontal
one. (On its turn, this last result of ours constitutes a key ingredient in Zhao’s classification of
birational Kleinian groups in dimension two [Zha21].)

There are some situations that are closely related to the ones discussed here, but which do
not fall within the scope of this article. The structures we consider are defined on the actual man-
ifold, and not on an infinite cover of it, as in Griffith’s work on the uniformization of Zariski open
subsets of algebraic varieties [Gri71] (which uses foliated projective structures along a covering
of a pencil) or in the “covering tubes” of a foliation, as in Ilyashenko’s notion of simultaneous
uniformization (see [Il’06] and references therein). Holomorphic foliations by curves which are
hyperbolic as Riemann surfaces carry naturally a leafwise hyperbolic (hence projective) struc-
ture; the hyperbolic metric varies continuously in the transverse direction [Ver87] (even in the
presence of singular points [LN94, CGM95]) and, moreover, plurisubharmonically [Bru03], but
the leafwise hyperbolic geometry will very seldomly give a foliated projective structure in the
sense we consider here. In the real setting, objects related to the ones here studied have been
considered, for instance, in [IM93] and [Mal02].

We assume that the reader is familiar with both the local and global theory of foliations by
curves on complex manifolds, like the material covered in the first chapters of [Bru04].

2. Definitions and the problem of existence

We recall the notions of affine and projective structures on curves, and define similar notions for
singular holomorphic foliations by curves. We also give various existence criteria showing that
many foliations carry such structures, and examples of foliations that do not.

2.1 Foliated affine structures

An affine structure on a curve is an atlas for its complex structure taking values in C whose
changes of coordinates lie within the affine group {z 7→ az + b}.

The affine distortion of a local biholomorphism between open subsets of C is the operator

L(f) :=
f ′′

f ′
dz,

which plays a fundamental role in the study of affine structures. It vanishes precisely when
f is an affine map. A simple computation shows that, for the composition of two germs of
biholomorphisms between open sets of C,

L(f ◦ g) = L(g) + g∗L(f). (2.1)
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Hence, the affine distortion of a biholomorphism between open subsets of curves equipped with
affine structures does not depend on the chosen affine charts. Given two affine structures on a
curve C, the affine distortion of the identity map measured in the corresponding affine charts,
namely the one-form L(ψ ◦ φ−1) for φ a chart of the first affine structure and ψ a chart of
the second, gives a globally well-defined one-form on C which vanishes if and only if the affine
structures agree. Reciprocally, given an affine structure and a one-form α on C, if α reads
a(z)dz in some affine chart of the affine structure, the maps given in this chart by the solutions
ψ of ψ′′ = aψ′ give a second globally-defined affine structure on C. An easy consequence of
equation (2.1) is that this provides the moduli space of affine structures on C with the structure
of an affine space directed by the vector space of holomorphic one-forms on C (see also [Gun66,
§9]).

Given an affine structure on a curve, the family of vector fields which are constant in the
coordinates of the affine structure is well-defined. Such a family is the one of flat sections of a
holomorphic connection on the tangent bundle of C. Reciprocally, given a holomorphic connection
on the tangent bundle of the curve, one can define the atlas of charts where the flat sections of the
connection are constant vector fields. A change of coordinates of this atlas maps a constant vector
field to another constant vector field, and hence it belongs to the affine group, thus retrieving
an affine complex structure on the curve. We deduce that there is a canonical correspondence
between affine structures on a curve and connections on its tangent bundle. In particular, the
only compact curves admitting affine structures are elliptic ones (see [Ben60], or Theorem 4.1 in
Section 4). On such a curve, there is a canonical affine structure coming from its uniformization
by C, or, equivalently, by the integration of a non-identically-zero holomorphic one-form.

We will adopt both points of view in order to extend the definition of affine structures on
curves to the context of unidimensional singular holomorphic foliations on complex manifolds.

2.1.1 The foliated setting Let us begin by recalling that a singular holomorphic foliation
F of dimension one on a complex manifold M is defined by the data of a cover by open sets
{Ui}i∈I of M and a family {Zi}i∈I of holomorphic vector fields Zi on Ui, such that the vanishing
locus of Zi in Ui has codimension at least two, and that on the intersection Ui ∩ Uj of two open
sets of the cover, the vector fields Zi and Zj are proportional, namely, Zi = gijZj for a function
gij : Ui ∩ Uj → C∗. The set where the vector fields vanish is the singular set of the foliation,
denoted by Sing(F). When defined in this way, two foliations are regarded as equivalent if the
subsheafs of the sheaf of sections of the tangent bundle TM of M generated by the vector fields
Zi are the same. This subsheaf is called the tangent sheaf of the foliation; it is locally free,
and corresponds to the sheaf of sections of a holomorphic line bundle, the tangent bundle of
the foliation, that we will denote by TF . We then have a morphism TF → TM , which vanishes
only over the singular set of F . This map completely characterizes F , and can be used as an
alternative definition of a foliation. The canonical bundle of the foliation is the bundle KF := T ∗F .

A first definition of a foliated affine structure is the following.

Definition 2.1. Let M be a complex manifold and F a singular holomorphic foliation by curves
on M . A holomorphic foliated affine structure on F is an open cover {Ui} of M \ Sing(F) and
submersions φi : Ui → C transverse to F such that, in restriction to a leaf L of F , (φi|L)◦(φj |L)−1

is an affine map of C.

No condition is explicitly imposed on the singular set of the foliation, but some Hartog’s-like
phenomena will implicitly do so. The affine geometry of the leaves as they approach the singular
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set will be studied in Section 3.

Remark 2.2. If nonempty, the set of foliated affine structures on the foliation F on the manifold
M is an affine space directed by the vector space H0(KF ). By considering a foliated version of the
construction described at the beginning of Section 2.1, on the restriction of F to M \ Sing(F),
the difference between two foliated affine structures is a family of holomorphic one-forms along
the leaves of F varying holomorphically in the transverse direction, this is, a section of KF
over M \ Sing(F), vanishing identically if and only if the affine structures coincide. By Hartog’s
theorem, this section of KF over M \Sing(F) extends holomorphically to a section of KF over M .

There are foliations without any foliated affine structure, e.g., those having a compact leaf
of genus different from one. Notwithstanding, and in contrast with the scarcity of curves having
affine structures, there are many foliations that support them.

Example 2.3. A holomorphic vector field with isolated singularities on a manifold of dimension
at least two, e.g. a holomorphic vector field on a compact Kähler manifold [Kob72], induces
a foliated affine structure whose changes of coordinates are not only affine but are actually
translations (we will call these foliated translation structures).

Example 2.4. The orbits of a homogeneous polynomial vector field on Cn+1 are preserved by
homotheties, and the vector field defines a foliation on Pn. Not only does the vector field define a
foliation; it also endows it with a foliated affine structure: the homogeneous vector field induces
a translation structure along its phase curves, and the homotheties of Cn+1 act affinely in the
translation charts. For the vector field X on Cn+1, homogeneous of degree d+ 1 (d > 0), and for
the radial vector field R =

∑
i zi∂/∂zi, as the polynomial P varies among the homogeneous ones

of degree d, the vector fields X + PR induce the same foliation on Pn, but the foliated affine
structure varies with P . One can show that any foliation on Pn and any foliated affine structure
on it are obtained in this way.

Example 2.5 (Inoue surfaces). The Inoue surfaces SM , S
(+)
N and S

(−)
N are compact complex non-

Kähler surfaces which are quotients of H×C by groups of affine transformations of C2 [Ino74].
For the surfaces SM , the associated action preserves the two foliations of H × C and is affine
on the leaves of both of them (with respect to the tautological affine structure on C, to the one
inherited from the inclusion H ⊂ C for H). The two foliations induced in SM admit thus foliated

affine structures. For the surfaces S
(+)
N and S

(−)
N , the action on H × C preserves the foliation

given by the fibers of the first factor, and acts affinely upon its leaves. The induced foliations are
also endowed with foliated affine structures.

Example 2.6 (Hopf surfaces). Hopf surfaces are compact complex surfaces whose universal cov-
ering is biholomorphic to C2 \ {0} [BHPV04, Ch. V, Section 18]. Primary ones are quotients of
C2 \ {0} by contractions of the form

(x, y) 7→ (αx+ λyn, βy), (2.2)

with n > 1 and λ = 0 if α 6= βn. In the elliptic case (when α = βn and λ = 0), when x and y
are respectively given weights n and 1, every quasihomogeneous polynomial vector field on C2

is preserved by the contraction up to a constant factor. The associated foliations on the Hopf
surface have thus a foliated affine structure (which may be a translation one in particular cases).
In the general (nonelliptic) case, the linear diagonal vector fields Ax∂/∂x + By∂/∂y (AB 6= 0)
if λ = 0, or the “Poincaré-Dulac” ones (nx+ µyn)∂/∂x+ y∂/∂y (µ ∈ C) if λ 6= 0 are preserved
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by the contraction, and induce nowhere vanishing vector fields on the Hopf surface. Further, the
coordinate vector field ∂/∂x is preserved up to a constant factor, and the foliation it induces has
a natural foliated affine structure. By Brunella’s classification [Bru97, Section 5], there are no
further foliations on primary Hopf surfaces: every foliation on a primary Hopf surface supports
a foliated affine structure.

2.1.2 Foliated connections Let us now turn to a more intrinsic equivalent definition of a
foliated affine structure in terms of the notion of foliated connection, which will enable the
construction of more examples.

Given a foliation F and a sheaf S of OS-modules, a foliated connection on S relative to F is
a differential operator ∇ : S → O(KF )⊗ S which, away from the singular points of F , satisfies
the Leibniz rule

∇(fs) = dFf ⊗ s+ f∇s,
for every f ∈ O and every s ∈ S, where dF stands for the differential along the leaves of F . (In
general, we will consider F as fixed, and omit it from the discussion.) A foliated connection on
a holomorphic vector bundle is a foliated connection on its sheaf of sections. Foliated connec-
tions appear in the work of Baum and Bott under the name of partial connections (see [BB70,
Section 3]).

In particular, after extending to the singularities of F via Hartog’s theorem, a foliated con-
nection on TF is a map ∇ : TF → TF ⊗KF = OM which to a vector field Z tangent to F assigns
a holomorphic function ∇(Z), its Christoffel symbol, satisfying the Leibniz rule

∇(fZ) = Zf + f∇(Z). (2.3)

Let us see that such a connection is equivalent to a foliated affine structure.

Given a foliated connection ∇ on TF and p /∈ Sing(F), if Z is a vector field tangent to F
that does not vanish at p and such that ∇(Z) ≡ 0 (if Z is parallel), if φ is a function such that
dφ(Z) ≡ 1, φ is part of an atlas of a foliated affine structure that depends only on ∇ (it is not
difficult to see that such a Z and such a φ always exist).

For the other direction, let F be a foliation endowed with a foliated affine structure σ0. Let Z
be a vector field defined on the open set U ⊂M , tangent to F (with a singular set of codimension
two), and denote by σZ the foliated affine structure induced by Z on U . As in Remark 2.2, the
difference σZ − σ0 is a section α of KF over U . Consider the holomorphic function α(Z) on U ,
and define a foliated connection ∇ on TF by setting ∇(Z) = α(Z). Let us verify that Leibniz’s
rule (2.3) takes place. We will do so locally in a curve, in a coordinate z where Z = ∂/∂z. A
chart for the affine structure induced by f(z)∂/∂z is

∫ z
dξ/f(ξ), and thus σZ − σfZ = −f ′/fdz.

Hence, the contraction of σfZ −σ0 with fZ yields Zf + fα(Z), in agreement with formula (2.3).

Observe that the definition of foliated affine structures via foliated connections has the ad-
vantage of not needing to distinguish between regular and singular points of the foliation.

Lemma 2.7 (Extension Lemma [GR12, Prop. 8]). Let M be a manifold, F a foliation on M ,
p ∈M . Let X be a meromorphic vector field defined in a neighborhood of p whose divisor of zeros
and poles D is invariant by F and which is tangent to F away from it. Then, in a neighborhood
of p, the foliated affine structure induced by X away from D extends to D in a unique way.

Proof. Let Z be a nonvanishing holomorphic vector field defining F in a neighborhood of p. Let
X = fn1

1 · · · f
nk
k Z, for ni ∈ Z and reduced holomorphic functions fi such that Zfi divides fi,
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say Zfi = hifi for some holomorphic function hi. In the complement of the divisor of zeros and
poles of X, X induces a foliated connection ∇ such that ∇(X) ≡ 0, for which

∇(Z) = ∇
((∏

f−ni
i

)
X
)

=
(∏

fni
i

)
Z
(∏

f−ni
i

)
= −

k∑
i=1

ni
fi
Zfi = −

k∑
i=1

nihi,

and ∇ extends holomorphically to a full neighborhood of p.

Let us see how one can concretely apply this lemma to produce foliated affine structures.

Example 2.8 (Elliptic fibrations). Let F be an elliptic fibration. There is a natural foliated affine
structure in the complement of the singular fibers: a smooth elliptic curve carries a canonical
affine structure—given by the integration of any nowhere-vanishing holomorphic form—which
varies holomorphically with the curve. (For the universal elliptic curve, the existence of a foliated
affine structure is just a corollary of the fact that the Hodge bundle of abelian differentials on
the fibers exists [Zvo12]; the fact that the Chern class of this bundle does not vanish shows that
one cannot reduce this affine structure to a translation one.) This structure can be extended
to the singular fibers as follows. First, build a non-identically-zero meromorphic section of TF
whose divisor of zeros and poles is supported on a union of fibers. (To do so, one can apply
Corollary 12.3 in [BHPV04, Ch. V] to get a meromorphic volume form ω on the total space
whose divisor of zeros and poles is supported on a finite union of fibers, the desired section of
TF being the symplectic gradient of a meromorphic function defined on the base with respect
to ω.) On the fibers on which this vector field is regular, it induces the canonical affine structure.
Lemma 2.7 then shows that this foliated affine structure extends to the whole surface.

2.1.3 A cohomological obstruction For general fibered spaces, there is a classical cohomo-
logical obstruction for the existence of a connection. In our setting, there is a natural class αF
in H1(M,KF ), whose vanishing is equivalent to the existence of a foliated connection on TF ,
or, equivalently, of a foliated affine structure on F . Let us recall this construction in our case.
Observe that, locally, foliated affine structures exist, e.g. the translation structures associated to
vector fields generating F . Let {Ui}i∈I be a cover by open sets of M so that a foliated connection
on TF , ∇i, is defined on each Ui. In the intersection Ui∩Uj , the difference ∇i−∇j is a section αij
of KF on Ui ∩ Uj . Moreover, (αij)ij is a cocycle. It is easy to see that the cohomology class αF
in H1(M,KF ) induced by (αij)ij does not depend on the choices made. To construct a globally
defined connection, we need to modify each affine connection ∇i on Ui by the addition of a sec-
tion αi of KF , ∇′i = ∇i +αi, so that the ∇′i’s coincide on the intersection of their domains. This
means that on Ui ∩Uj , αi−αj = αij , which amounts to saying that the class αF in H1(M,KF )
is trivial. Hence, a foliated affine structure exists if and only if the class αF vanishes.

We next derive a criterion for the existence of foliated affine structures. For a manifold M of
dimension n and a foliation by curves F on M , let KM/F denote the line bundle on M whose
sections are the (n−1)-forms that vanish along the foliation. We will call it the canonical bundle
of the space of leaves by a slight abuse of both notation and terminology inspired by [McQ05,
Section IV].

Lemma 2.9. Assume that F is a singular holomorphic foliation by curves on a compact manifold
M of dimension n > 1. If KM/F is ample, F carries a holomorphic foliated affine structure.

Proof. Notice that since M has an ample line bundle, it is projective. Recall the Kodaira vanish-
ing theorem: given an ample divisor D on M , Hq(KM +D) = 0 for any q > 0. By the adjunction
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formula, KM = KM/F + KF , where, as usual, KM is the canonical bundle of M , so if KM/F is
ample, H1(KF ) = 0, which implies that F admits a foliated affine structure.

2.1.4 More on foliated connections For the problem of establishing the existence of foliated
connections on the tangent bundle of a foliation F , investigating the existence of foliated con-
nections on other line bundles might prove rewarding, since the set of isomorphism classes of
line bundles admitting foliated connections forms a group and is closed under the operations of
taking powers and extracting roots: foliated connections on other line bundles might propagate
up to TF . An interesting problem is thus that of determining, for a singular holomorphic foliation
on a complex manifold, which are the holomorphic line bundles having foliated connections.

A fundamental example of a foliated connection is the Bott connection [Bot72] on KM/F : it
is defined through the exterior derivative operator

d : KM/F → O(KM ) ' O(KF )⊗KM/F ,

where the last isomorphism is given by adjunction.

On a closed Kähler manifold, every holomorphic line bundle with trivial first Chern class
carries a flat unitary connection, which, by restriction, induces a foliated connection. Hence,
in this setting, the problem consists in determining which are the Chern classes of line bundles
which carry foliated connections. This set is a subgroup of the Néron-Severi group which contains
all the torsion points. As we have seen, it contains the first Chern class of KM/F , but, in general,
it seems difficult to say more. There are, however, situations where this point of view permits to
prove the existence of foliated affine structures. Let us give some examples:

Lemma 2.10. On a compact Kähler manifold with vanishing first Chern class, any singular
holomorphic foliation carries a foliated affine structure.

Proof. Since the manifold has vanishing first Chern class, its canonical bundle has a unitary
flat connection. By the adjunction formula, the tensor product of this connection with the Bott
connection produces a flat connection on the cotangent bundle of the foliation, and hence, by
duality, a foliated affine structure.

Corollary 2.11. Any foliation on a Calabi-Yau manifold has a foliated affine structure.

Lemma 2.12. If the Picard number of a compact Kähler manifold M is one, then

– if the first Chern class of KM/F is not a torsion element in the Néron-Severi group, there is
a foliated affine structure;

– otherwise, F has a transverse invariant pluriharmonic form.

Proof. If the first Chern class of KM/F is not a torsion element in the Néron-Severi group, then
any line bundle over S has a foliated connection; this is due to the fact that having a foliated
connection is stable under taking power or roots. In particular, the tangent bundle carries a
foliated affine structure. If not, KM/F carries a unitary flat connection over S. Given a flat
section ω, naturally considered as a holomorphic form of degree n − 1, the product ω ∧ ω is a
well-defined pluriharmonic form on S which vanishes on the foliation F . Such a form is closed
because S is Kähler, and hence defines a family of transverse pluriharmonic forms.

Example 2.13 (Hypersurfaces of P3). Well-known examples of surfaces having Picard number
one are generic hypersurfaces of P3 of degree at least four, by a theorem of Noether, see [Del73].
These are simply connected by the hyperplane section theorem of Lefschetz, and in particular
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it is impossible in this case for the normal bundle to a foliation to have a torsion first Chern
class. Indeed, if it were the case, the normal bundle would be holomorphically trivial, and so
would be its dual, and consequently we would have a holomorphic form on the surface vanishing
on the foliation. However, such a form does not exist since the surface has a vanishing first
Betti number. In other words, we have proved that on a generic surface in P3, every singular
holomorphic foliation carries a foliated affine structure. Notice that this property holds on the
explicit examples produced in [Shi81], namely the surfaces defined in homogeneous coordinates
by wm + xym−1 + yzm−1 + zxm−1 = 0 for m > 5 a prime number.

2.2 Foliated projective structures

A projective structure on a curve is an atlas for its complex structure taking values in P1 whose
changes of coordinates lie within the group of projective transformations {z 7→ (az+b)/(cz+d)}.
In this case, the Schwarzian derivative

{f(x), x} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

=

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

, (2.4)

plays a role analogous to the one played by the affine distortion in the context of affine structures.

Given two projective structures on a curve C with charts {(Ui, φi)} and {(Vj , ψj)}, the
quadratic form on Ui ∩ Vj given by

{f(z), z}dz2, (2.5)

for f = ψj ◦ φ−1i , gives a globally well-defined quadratic form on C, which vanishes if and only
if the projective structures coincide. This is due to the fact that the operator (2.5) satisfies

{f ◦ g, z}dz2 = {g, z}dz2 + g∗({f, w}dw2).

Reciprocally, given a projective structure with charts {(Ui, φi)} and a quadratic form β on C,
if β reads βi(z)dz

2 in Ui, the charts locally given by the solutions of the Schwarzian differential
equation {f, z} = βi give a globally well-defined projective structure on C. In this way, on a
curve, the projective structures form an affine space directed by the vector space of holomorphic
quadratic differentials.

Projective structures are much more flexible than affine ones: they exist on any curve, and,
for instance, for curves of genus g > 2, their moduli is an affine space of dimension 3g − 3.
Projective structures associated to particular geometries (spherical for genus zero, Euclidean in
the case of genus one, and hyperbolic for genus at least two) are given by the Uniformization
Theorem [dSG10]. Nevertheless, the existence of unrestricted projective structures can be very
easily established independently from it, as Poincaré was well aware of; see [Gun66, §9] for a
modern presentation.

Definition 2.14. Let M be a complex manifold, F a singular holomorphic foliation by curves on
M . A holomorphic foliated projective structure on M over F is an open cover {Ui} of M \Sing(F)
and submersions φi : Ui → P1 transverse to F such that, in restriction to a leaf L of F ,
(φi|L) ◦ (φj |L)−1 belongs to PSL(2,C).

Remark 2.15. In a way analogous to Remark 2.2, if not empty, the moduli space of foliated
projective structures on a given singular holomorphic foliation F is an affine space directed by
the vector space H0(K2

F ). The difference between two foliated projective structures gives, on
M \ Sing(F), a family of quadratic differentials along the leaves of F varying holomorphically in
the transverse direction, a section of K2

F over M \Sing(F) that extends, by Hartog’s theorem, to

9
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all of M , and which vanishes identically if and only if the foliated projective structures coincide.

Foliated projective structures may also be defined in terms of foliated projective connections: a
foliated projective connection (on TF ) is a map Ξ : TF → O(M) that to a vector field Z tangent to
F associates a holomorphic function Ξ(Z), its Christoffel symbol, satisfying the modified Leibniz
rule

Ξ(fZ) = f2Ξ(Z) + fZ2(f)− 1

2
(Zf)2. (2.6)

(When restricted to curves, this definition is equivalent to the ones found in [Tyu78, Def. 1.3.1]
and [Gun67, Section 4].)

For instance, if ∇ : TF → O(M) is a foliated connection on TF , the associated foliated
projective connection Ξ is

Ξ(Z) = −1

2
(∇(Z))2 + Z(∇(Z)). (2.7)

Let us see that a foliated projective structure is equivalent to a foliated projective connection.
Let F be a foliation endowed with a foliated projective structure ρ0. Let Z be a vector field
tangent to F with singular set of codimension at least two, and consider the foliated projective
structure ρZ that it defines. From Remark 2.15, the difference ρZ−ρ0 is a section α of K2

F . Define
Ξ(Z) as α(Z⊗2). Let us prove that it satisfies condition (2.6). As before, it is sufficient to do so
locally in a curve. Consider a curve endowed with a projective structure ρ0, Z a holomorphic
vector field and z a local coordinate in which Z = ∂/∂z. Let α(z)dz2 be the quadratic form ρZ−ρ0.
The projective structure defined by fZ has

∫ z
dξ/f(ξ) as a chart and thus

ρZ − ρfZ =

(
1

2

(
f ′

f

)2

− f ′′

f

)
dz2.

Hence, the contraction of ρfZ−ρ0 with (fZ)⊗2 gives f2α(Z⊗2)+Z2f− 1
2(Zf)2, establishing (2.6).

Reciprocally, if Ξ is a foliated projective connection, p /∈ Sing(F) and Z is a holomorphic vector
field tangent to F that does not vanish at p, and such that Ξ(Z) ≡ 0, if φ is a function defined
in a neighborhood of p such that dφ(Z) ≡ 1, φ defines a foliated projective structure in the sense
of Definition 2.14 that depends only on Ξ.

Example 2.16 (Suspensions). A nonsingular foliation by curves F on a compact surface S is a
suspension if there exists a fibration onto a curve π : S → C which is everywhere transverse
to F . On a suspension, every foliated projective structure is the pull-back of a projective structure
on the base. In fact, if ΞF is a foliated projective connection and Z is a nonvanishing vector field
defined in an open subset U of C, if π∗FZ denotes the pull-back of Z tangent to F then since
ΞF (π∗FZ) is a holomorphic function, it is constant along the fibers of π. In this way, the projective
structure on C given by ΞC(Z) := ΞF (π∗FZ) is well-defined; the foliated one is its pull-back.

Example 2.17 (Turbulent foliations). Let S be a compact surface, π : S → C an elliptic fibration,
F a turbulent foliation on S adapted to π, i.e., almost every fiber of π is everywhere transverse
to F . We refer the reader to [BHPV04, Ch. 5, §7] and [Bru04, Ch. 4, Section 3] for facts around
elliptic fibrations and turbulent foliations that we will use leisurely. We will restrict to the cases
where π is relatively minimal, and show that F admits a foliated projective structure.

Let us begin with the case where F is regular and where the fibers of π are simple. This
implies that, as a foliation, the fibration is also regular, and, in particular, that it does not
have singular fibers. Let C0 ⊂ C be the subset above which π and F are transverse. By the
arguments in Example 2.16, the projective structures on C0 and the foliated ones on π−1(C0)

10
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are in correspondence. We will establish a condition on the projective structure on the base that
guarantees that the foliated one extends to the invariant fibers. Let F be a fiber such that, for
p = π(F ), p /∈ C0. The fibration around F is given by the projection π : D×C/Λ→ D for some
elliptic curve C/Λ. For some local coordinates z and w in D and C/Λ centered at p, F is given
by the nonvanishing holomorphic vector field Z = zn∂/∂z + B(z)∂/∂w, with B a holomorphic
nonvanishing function, and where n is the multiplicity with which F appears in the tangency
divisor between F and the fibration. Let Ξ0 be a projective connection on D \ {0}, and let Ξ be
the corresponding foliated projective connection on π−1(D \ {0}). In the spirit of Lemma 2.7, by
formula (2.6), since π∗Z = zn∂/∂z,

Ξ(Z) = Ξ0

(
zn

∂

∂z

)
= z2nΞ0

(
∂

∂z

)
+

1

2
n(n− 2)z2(n−1). (2.8)

If this expression is holomorphic (in particular, if the projective structure on C0 extends as a
regular one to p), the foliated projective structure extends to F ; this extension is unique.

If Γ is a finite group acting on S with isolated fixed points, preserving the fibration, the
foliation and the foliated projective structure, it induces a foliated projective structure on the
nonsingular part of S/Γ. Let us prove that the foliated projective structure extends to the
minimal resolution of the singular points. Let q ∈ S be a point with nontrivial stabilizer. In a
neighborhood of q, this stabilizer is a cyclic group 〈g〉 of order m of biholomorphisms fixing q such
that the derivative of g at q has as eigenvalues two primitive m-th roots of unity. Suppose that,
in a neighborhood of q, the nonvanishing vector field Z gives both the foliation and its projective
structure, and choose local coordinates where Z = ∂/∂x. The action of g on the leaf space of
Z may be linearized while preserving the expression of Z, and we may suppose that it is given
by y 7→ ωy for a primitive m-th root of unity ω. Since the foliation induced by Z is preserved,
the action of g on Z must consist in multiplying it by a function f such that fm ≡ 1, and thus
f ≡ ωn for some n < m, (m,n) = 1. In particular, the vector field ym−nZ, which by the Leibniz
formula (2.3) induces the same affine structure than Z away from y = 0, is preserved by g. It
induces a vector field on the quotient as well as in its minimal resolution. Since in this resolution
the divisor contracting to the singular point is invariant by the foliation coming from Z, the
affine structure extends to this divisor by Lemma 2.7.

All turbulent foliations adapted to relatively minimal elliptic fibrations are constructed through
such a process of taking quotients and resolving singularities. Thus, by suitably choosing a pos-
sibly singular projective structure on the base of the associated minimal elliptic fibration, we
obtain a foliated projective structure: every turbulent foliation adapted to a relatively minimal
elliptic fibration admits a foliated projective structure.

Not all foliations support foliated projective structures. As we mentioned in the introduction,
by the work of Zhao [Zha19], no Kodaira fibration admits one (we will give another proof of
this fact through Corollary 6.1; yet one more has recently appeared in [EWF21]). Despite the
generality of this result, we thought it worthwhile to include a concrete, hands-on, self-contained
instance of it:

Example 2.18 (An explicit Kodaira fibration without a foliated projective structure). Recall
that a Kodaira fibration is a smooth holomorphic fibration S → B from a complex surface over
a curve which is not a holomorphic fiber bundle (Kodaira gave the first examples of such fibra-
tions [Kod67], see also [BHPV04, p. 220]). Through a construction close to Atiyah’s one [Ati69],
we here construct an explicit Kodaira fibration with fibers of genus six which does not support
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a foliated projective structure, i.e. such that there is no family of projective structures on the
fibers varying holomorphically.

Start with a curve C of genus two, and let π : C ′ → C be a connected nonramified double
covering (C ′ has genus three). For every x ∈ C, we construct 64 curves of genus six: the ramified
double coverings C ′′ → C ′ ramified over π−1(x). Such a covering is determined by a morphism
from H1(C

′ \ π−1(x),Z) to Z/2Z that maps the peripheral cycles around each one of the two
punctures to 1; the number of such coverings is 64. Construct the Kodaira fibration F : S → B
by putting all these surfaces over the point x ∈ C, and taking a connected component—we don’t
know in general if the resulting surface is connected, a case that would lead to a genus 65 base B.
Hence, a point y in B is the data of a point x ∈ C and of a double covering δy : F−1(y) → C ′

ramified over π−1(x). Let d be the degree of the covering B → C.

We claim that this fibration does not carry a foliated projective structure. Assume by con-
tradiction that there exists a family of projective structures {σy}y∈B on the fibers of F that vary
holomorphically with y. Introduce a family of branched projective structures {βy}y∈B on the
fibers F−1(y), βy being the pull-back of a (nonbranched) projective structure ν on C ′ by δy. The
Schwarzian derivative of βy in the charts given by σy gives a family of meromorphic quadratic
differentials on F−1(y) that vary holomorphically with the y parameter, and which have poles
of order two located at the points δ−1y (π−1(x)), with residue −3/2 (as quadratic differentials).
Indeed, if u, v are charts of σ and β at such a point, we have v = c2u

2 + . . . where c2 6= 0, hence
{v, u} = −3

2u
−2 + . . .. We denote by Qy the quadratic differential on F−1(y).

For each y in B, we denote by iy the involution on F−1(y) that exchanges the points in
the fiber of δy, and we define Ry = Qy + i∗yQy. This is an iy-invariant meromorphic quadratic
differential on F−1(y) having poles at δ−1y (π−1(x)) of order two and residues −3. Hence, there is
a meromorphic quadratic differential Sy on C ′ such that Ry = δ∗ySy. This differential has poles
on the set π−1(x), and is holomorphic elsewhere. We claim that the poles on π−1(x) are of order
two, and that the residues are −3/4. To see this, take coordinates v, w in F−1(y) and in C ′

respectively such that δy is the map v 7→ w = v2. The quadratic differential Ry is expressed in
the v-coordinates by Ry = (−3v−2 + c0 + c2v

2 + . . .)dv2, since it is invariant by the involution
v 7→ −v. Hence, Sy = 1

4(−3w−2 + c0w
−1 + c2w + . . .)dw2, proving the claim.

We now define, for x ∈ C, the meromorphic quadratic differential Tx on C ′ by Tx =
∑
Sy

for all the coverings y ∈ B corresponding to the point x. We see that Tx has poles only at
π−1(x), that these are of order two and that the residues are −3d/4. Let j the involution on
C ′ which exchanges the fibers of π, and let Ux be the meromorphic quadratic differential on C
which satisfies π∗Ux = Tx + j∗Tx. The family {Ux}x∈C is a holomorphic family of meromorphic
quadratic differentials on C having a unique pole on C at x of order two and of residue −3d/2.

We claim that such a family of meromorphic quadratic differentials cannot exist. Indeed,
choose a point x0 in C which is not fixed by any nontrivial involution and such that there
exists a holomorphic quadratic differential µ on C that does not vanish at x0. Consider the
holomorphic function f : C \ {x0} → C given at x by the evaluation of Ux/µ at x0. It extends
meromorphically to x0, having there a pole of order two, because for a local coordinate z centered
at x0, Ux/µ = −3

2(z − x)−2 + . . .. Hence, f extends to a ramified double covering from C to P1,
and the involution exchanging its fibers fixes x0. But this is a contradiction.

The existence of a foliated projective structure is equivalent to the vanishing of a class βF
in H1(M,K2

F ) whose definition mimics the definition of the class αF introduced in the context
of foliated affine structures. Namely, take a covering of M by open sets Ui on which we have

12
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foliated projective connections Ξi, and consider the cocycle β = (βij)ij , where βij = Ξi −Ξj is a
section of K2

F over Ui ∩ Uj . Its cohomology class βF ∈ H1(M,K2
F ) is well-defined. To construct

a globally defined foliated projective connection, one needs to modify each Ξi in Ui by adding
some section βi of K2

F , in such a way that the resulting connections on the Ui’s coincide in the
intersection of their domains. This is equivalent to solving the equation βi − βj = βij , so there
exists a foliated projective structure if and only if βF = 0.

If M is a curve and F is the foliation whose only leaf is M then by Serre duality h1(M,K2
M ) =

h0(M,TM), and we recover the fact that every compact curve of higher genus has a projective
structure. Notice, however, that this argument does not allow to conclude that rational and
elliptic curves have such structures.

Despite Example 2.18, it is quite common for a singular holomorphic foliation to carry a foli-
ated projective structure. The following criteria is a consequence of Kodaira’s vanishing theorem:

Lemma 2.19. Let M be a compact manifold of dimension n > 1, F a foliation by curves on M
such that K2

F ⊗K∗M is ample. Then, there exists a foliated projective structure on F .

Proof. Under the assumption, M is projective, and by Kodaira’s vanishing theorem, H1(K2
F ) =

0, so βF vanishes and the claim follows.

Let us illustrate the use of this lemma.

Proposition 2.20. Any singular holomorphic foliation on the product of a curve with the
projective line carries a foliated projective structure.

Proof. Let C be a curve of genus g, S = C × P1, and let F be a foliation on S. Curves of the
form {∗} × P1 will be called vertical ; those of the form C × {∗}, horizontal. Let V ∈ H2(S,Z)
be the Poincaré dual of a vertical curve, H ∈ H2(S,Z) that of a horizontal one. These generate
H2(S,Z). If F is either the vertical or the horizontal foliation, the proposition follows from the
existence of projective structures on curves, so we will suppose that we are in neither case. Let us
denote by nh (resp. nv) the number of tangencies of F with a generic horizontal (resp. vertical)
curve. We call nh the horizontal degree and nv the vertical one. They are both nonnegative. We
claim that

nh > 2g − 2. (2.9)

The foliation F is defined by a morphism i : TF → TS that vanishes on the singular set of F (a
finite number of points). Since TS = pr∗1(TC) ⊕ pr∗2(TP1), the morphism i is given by sections
of KF ⊗ pr∗1(TC) and of KF ⊗ pr∗2(TP1) that vanish simultaneously on a finite set. Since the
foliation is not the vertical one, the first section does not vanish identically. Since KF = KS⊗NF ,
c1(KF ⊗ pr∗1(TC)) = nvH + (nh − 2g + 2)V , and such a section can only exist if both nv > 0
and nh − 2g + 2 > 0, proving the claim.

Since KS = pr∗1(KC)⊗pr∗2(KP1), c1(KS) = (2g− 2)V − 2H. Let c1(NF ) = aH + bV for some
a, b ∈ Z. On a horizontal curve that is not invariant by F , a meromorphic section of N∗F induces
a meromorphic one-form having nh− (aH+bV ) ·H zeros, so nh−b = 2g−2. The same reasoning
shows that nv − a = −2. To sum up,

c1(NF ) = (nv + 2)H + (nh − 2g + 2)V.

From KF = KS ⊗NF , c1(KF ) = nvH + nhV , so

c1(K
2
F ⊗K∗S) = (2nv + 2)H + (2nh − (2g − 2))V. (2.10)
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If g 6= 1 or nh > 0, we infer from (2.9) and (2.10) that K2
F ⊗ K∗S intersects positively

H and V , and hence every algebraic curve in S. This implies, by Nakai’s criterion [BHPV04,
Ch. IV, Cor. 6.4], that it is ample, and, by the previous lemma, F admits a foliated projective
structure.

Finally, if g = 1 and nh = 0, the foliation is a turbulent one, adapted to a nonsingular elliptic
fibration. We have already shown in Example 2.17 that these foliations admit foliated projective
structures as well.

Remark 2.21. It would be interesting to investigate the existence of foliated projective structures
on general foliated ruled surfaces (the work of Gómez-Mont [GM89] seems a natural starting
point). Most foliations on these seem to have foliated affine structures. For instance, we leave to
the reader the following: a more detailed inspection of the proof of Proposition 2.20, together
with the use of Lemma 2.9, shows that, apart from suspensions (vanishing vertical degree) and
eventually foliations of horizontal degree 2g − 2 (the lower bound for the horizontal degree of a
nonvertical foliation), foliations on a product with a rational curve carry foliated affine structures.
We have not been able to decide whether the foliations of horizontal degree 2g − 2 carry or not
such structures.

3. Local normal forms

At a nonsingular point of a foliation, there are no local invariants neither for affine nor for pro-
jective foliated structures. There are indeed local invariants at the singular points, beginning
with those of the foliation itself. The main results of this section, Theorems 3.2 and 3.7, give
local normal forms for generic foliated affine and projective structures on generic foliations. We
prove that, in all dimensions, in the neighborhood of a generic singular point of a foliation, a
generic foliated projective structure is induced by an affine one, and that a generic foliated affine
structure is given by a linear vector field having a constant Christoffel symbol. In particular, we
prove that the spaces of generic foliated affine and projective structures over a generic germ of
singular foliation have both dimension one. We also introduce the affine and projective ramifi-
cation indices, the main local invariants of foliated affine and projective structures at singular
points of foliations, in terms of which the results of the following sections will be stated.

3.1 The affine case

3.1.1 Affine structures with singularities on curves Let U ⊂ C be a neighborhood of 0,
U∗ = U \ {0} and consider an affine structure on U∗. Let α be the one-form in U∗ measuring
the difference from an auxiliary affine structure on U to the original one. We say that 0 is
a singularity for the affine structure if α does not extend holomorphically to 0 (if α extends
holomorphically to 0, so does the affine structure), and that it is a Fuchsian one if α has a simple
pole at 0. In this case, the residue of α at 0 does not depend on the choice of the auxiliary affine
structure on U . The (normalized) affine angle at 0 of the affine structure with singularities,
](0) ∈ C, is ](0) = Res(α, p) + 1. The normalized affine angle of a nonsingular point is 1. The
normalized affine angle of the affine structure with developing map z 7→ zθ is θ; that of the
one with developing map z 7→ log(z) vanishes. Following [GR12, Def. 4], we define the (affine)
ramification index of a singular affine structure as the reciprocal of the normalized affine angle.

We have a classification of germs of singular affine structures with Fuchsian singularities on
curves, which may be attributed to Fuchs. It implies that, generically, the affine angle determines
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the singular affine structure.

Proposition 3.1. Consider an affine structure on a neighborhood of 0 in C having a Fuchsian
singularity at 0 with normalized affine angle θ ∈ C. There exists a coordinate z around 0 where
the affine structure has as developing map

– log(z) if θ = 0;

– z 7→ zθ if θ /∈ Z−;

– either z 7→ zθ or z 7→ zθ + log(z) if θ ∈ Z−.

Proof. From the affine structure induced by a local coordinate z, the difference with the singular
affine structure has the form ((θ−1)/z+A(z))dz for some holomorphic function A. The developing
map of the affine structure is thus a nonconstant solution of zf ′′ − ((θ − 1) + zA)f ′ = 0. The
homogenized equation zf ′′ − (θ − 1)f ′ has the solutions z0 and zθ (the original equation has
indices 0 and θ). According to Fuchs’s theorem [Inc44, §15.3], if θ is neither zero nor a negative
integer, there is a solution of the form zθh(z) with h(z) holomorphic and nonzero at 0. In this
case, in the coordinate w = zh1/θ(z), the developing map is wθ. If θ is zero or a strictly negative
integer, Fuchs’s theorem affirms that there is a solution (in our setting, a developing map) of
the form c log(z) + zθh(z), for some holomorphic function h taking the value 1 at 0 and some
constant c (nonzero if θ = 0). If c = 0 we are in a case identical to the previous one. Otherwise, if
q(z) is such that q(0) = 0 and eθq(z) + cz−θq(z)−h(z) = 0, then in the coordinate w = zeq(z) the
developing map reads c log(w) +wθ (the existence of such a q follows from the Implicit Function
Theorem). By conveniently scaling w and normalizing the developing map by post-composition
by an affine map, we get the desired result.

3.1.2 The foliated case Let F be a foliation defined on a neighborhood of 0 in Cn and
endowed with a foliated affine structure induced by the foliated connection ∇. Let Z be a vector
field tangent to F and γ = ∇(Z) its Christoffel symbol, as defined in Section 2.1, and recall that
γ is a holomorphic function at 0. It follows from (2.3) that if λ1, . . . , λn are the eigenvalues of Z
at 0, the ratio [λ1 : · · · : λn : γ(0)] is an invariant of the foliated affine structure.

In dimension one, this invariant may be expressed in terms of the previously defined affine
ramification index. Consider a singular affine structure on a neighborhood of 0 in C given by the
connection ∇. Let γ = ∇(λz∂/∂z). The difference between the affine structure induced by the
coordinate z and the first one is (γ(z)/λ − 1)dz/z and thus, for the ramification index ν of the
original affine structure,

ν =
λ

γ(0)
. (3.1)

In the foliated case in (Cn, 0), if the eigenvalues at 0 of the vector field are λ1, . . . , λn and its
Christoffel symbol γ does not vanish at 0 we will say that νi = λi/γ(0) is a principal ramification
index. From (3.1),

[λ1 : · · · : λn : γ(0)] = [ν1 : · · · : νn : 1]. (3.2)

In the generic nondegenerate case there will be n curves C1, . . . , Cn through 0, invariant by F ,
pairwise transverse, and tangent to the eigenspaces of the linear part of the vector field, and νi
will be the ramification index of the affine structure on Ci at 0.

Generically, the ratio (3.2) determines the foliated affine structure:

Theorem 3.2. Let F be a foliation on a neighborhood of 0 in Cn, with a singularity at 0,
tangent to a nondegenerate vector field Z satisfying Brjuno’s condition (ω). For a generic foliated
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connection ∇ on TF , there exist coordinates around 0 where F is tangent to a linear vector field
Z ′ whose Christoffel symbol ∇(Z ′) is constant.

We refer the reader to [Arn80, Ch. 5] for details on Brjuno’s condition (ω), and only mention
that it is satisfied by generic (in a measure-theoretic sense) linear parts. The genericity of the
affine structure will be made precise further on. Notice that this theorem introduces a notion of
equivalence that is different from that of having the same foliated atlas (Remark 2.2), in which
no change of coordinates is involved. The proof of our theorem will be an application of the
following general result.

Theorem 3.3 (Brjuno, Pöschel). Let Z =
∑

i λizi∂/∂zi be a linear vector field on (Cn, 0). Let F
be a holomorphic function defined in the neighborhood of (0, 0) in C×Cn such that F (0, 0) = 0,
and consider the differential equation Zf = F (f, z) subject to the condition f(0) = 0. Let
µ = ∂F/∂f |(0,0) and suppose that µ 6= 〈K,λ〉 for every K ∈ (Z>0)

n with |K| > 2. Let

ω′(m) = min
26|K|6m

|〈K,λ〉 − µ|.

Then, if

−
∑
ν>0

2−ν logω′(2ν+1) <∞, (3.3)

the equation has a holomorphic solution (which is, moreover, unique).

In this theorem, the function f will be a solution of the differential equation if and only if the
vector field Z ⊕F (ζ, z)∂/∂ζ, defined in a neighborhood of the origin of Cn×C, has ζ = f(z) as
an invariant manifold. The condition µ 6= 〈K,λ〉 guarantees the existence of a formal solution,
and (3.3) guarantees its convergence. For n = 1, the hypothesis on (ω′) is a superfluous one, and
the result reduces to Briot and Bouquet’s theorem [Inc44, §12.6].

Theorem 3.3 does not exactly appear in the literature in the above formulation. Brjuno’s
announcement [Brj74] gives a similar statement, and we can find in [Pös86] an analogous result
in the context of invariant manifolds for germs of diffeomorphisms; the proof of the latter may
be adapted in a straightforward way to give a complete proof of the above theorem. (For the
case where the λi’s belong to the Poincaré domain, see also [Kap79], [CS14]; see [Cha88, §IX] for
an analogous result under Siegel-type Diophantine conditions.)

Proof of Theorem 3.2. Since Z satisfies Brjuno’s condition (ω), it is linearizable, so we may
suppose that it is already linear. Suppose that f is a function such that

Zf = γ(0)− fγ, f(0) = 1. (3.4)

The existence of such a function follows, generically, from Theorem 3.3, which we may apply to
equation (3.4). In terms of the statement of Theorem 3.3, µ = −γ(0); generically, µ 6=

∑
imiλi,

and condition (3.3) is satisfied. The Christoffel symbol of the vector field Z ′ = fZ, is, by con-
struction, the constant γ(0). It remains constant in the coordinates where Z ′ is linear.

Notice that the condition −γ(0) 6=
∑

imiλi may be expressed solely in terms of the principal
affine ramification indices.

3.2 The projective case

3.2.1 Projective structures with singularities on curves Let U ⊂ C be a neighborhood of 0,
U∗ = U \ {0}, and consider a projective structure on U∗. Let β be the quadratic form in U∗
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measuring the difference from an auxiliary projective structure on U to this one. We say that 0 is
a singularity for the projective structure if β does not extend holomorphically to 0. A singularity
of a projective structure is said to be Fuchsian if β has at most a double pole at 0. The quadratic
residue Q(β, 0) of the quadratic form β at 0, Q((r/z2 + . . .)dz2, 0) = r, does not depend on the
choice of the auxiliary projective structure. In this case, we define the (normalized) projective
angle at 0 of the projective structure with singularities as ](0) =

√
1− 2Q(β, 0). It is only well-

defined up to sign. The normalized projective angle of the projective structure with developing
map z 7→ zθ is ±θ. We define the projective ramification index at 0 as the reciprocal of the
normalized projective angle. Again, it is only well-defined up to sign.

We also have a local classification of projective structures with Fuchsian singularities in
dimension one.

Proposition 3.4. Consider a projective structure on a neighborhood of 0 in C having a Fuchsian
singularity at 0 with normalized projective angle θ ∈ C. Then, there exists a singular affine
Fuchsian structure in its class. In particular, there exists a coordinate z around 0 where the
developing map is given as in Proposition 3.1.

Proof. The difference from the projective structure induced by a local coordinate z to the singular
one has the form S(z)dz2, S(z) = 1

2(1−θ2)z−2+. . .. From (2.4), the affine structure with invariant
g(z)dz is in the projective class of the original projective structure if g is a solution to the Riccati
equation g′ = S + 1

2g
2 (if there is some f for which f ′′/f ′ = g and {f, z} = S). For u = zg, this

equation reads

zu′ = z2S(z) + u+
1

2
u2. (3.5)

Let θ be a root of θ2 that is not a strictly positive integer. By the theorem of Briot and Bouquet
[Inc44, §12.6], equation (3.5) has a holomorphic solution u(z) with u(0) = θ − 1. The affine
structure induced by gdz = udz/z is thus Fuchsian and induces the original projective structure.

3.2.2 The foliated case Let F be a foliation tangent to a nondegenerate vector field defined
in a neighborhood of 0 in Cn and endowed with a foliated projective structure induced by the
projective connection Ξ. Let Z be a vector field tangent to F and ρ = Ξ(Z) its Christoffel
symbol, as defined in Section 2.2. From (2.6), if λ1, . . . , λn are the eigenvalues of Z at 0, in the
weighted projective space P(1, . . . , 1, 2), the ratio [λ1 : · · · : λn : ρ(0)] is an invariant of the
foliated projective structure. Let us relate this invariant, in dimension one, to the previously
defined projective ramification index. Consider a singular projective structure on (C, 0) and let
ρ = Ξ(λz∂/∂z). The difference of the projective structure with coordinate z and the singular
one is 1

2(1 + 2ρ/λ2)dz2/z2, and thus, for the projective ramification index ν, ν2 = −1
2λ

2/ρ(0). In
particular,

[λ1 : · · · : λn : −2ρ(0)] = [ν1 : · · · : νn : 1] in P(1, . . . , 1, 2). (3.6)

The numbers νi are said to be the principal projective ramification indices of the foliated projec-
tive structure at 0.

Remark 3.5. The individual principal projective ramification indices are only well-defined up to
sign. More generally, only their even functions are well-defined.

Remark 3.6. If a foliated affine structure is considered as a projective one, its affine and projective
ramification indices coincide (within the limitations given by the previous remark).

17



Bertrand Deroin and Adolfo Guillot

The analogue of Theorem 3.2 for foliated projective structures is the following one:

Theorem 3.7. Let F be a foliation on a neighborhood of 0 in Cn, with a singularity at 0,
generated by a nondegenerate vector field Z satisfying Brjuno’s condition (ω). For a generic
foliated projective structure on F ,

– there exists a foliated affine structure in its class, and

– there exist coordinates where F is tangent to a linear vector field having a constant Christof-
fel symbol.

Proof. Let F be a foliation endowed with a foliated projective structure with foliated projective
connection Ξ. Let Z be a vector field tangent to F , and suppose that it is linear. Let ρ = Ξ(Z)
be its Christoffel symbol. From formula (2.7), if γ is a function such that Zγ = 1

2γ
2 + ρ, there

exists, like in Proposition 3.4, a foliated affine structure inducing the given projective one, with
connection ∇, such that ∇(Z) = γ. We may resort to Theorem 3.3 to establish the existence of
a solution to this equation with one of the initial conditions γ(0) such that γ2(0) + 2ρ(0) = 0.
For the hypothesis of the theorem, µ = γ(0), and according to it, we have solutions to the
equation whenever γ(0) 6=

∑
imiλi and condition (3.3) is satisfied. Theorem 3.2 and formula

(2.7) establish the second part of our claim.

4. An index theorem for foliated affine structures

The existence of an affine structure on a curve imposes topological restrictions on it, and the
only compact curves admitting them are elliptic ones. Similarly, the existence of a foliated affine
structure imposes topological restrictions on both the foliation and the ambient manifold, and
conditions the local behavior of the foliated affine structure at its singular points.

We will make this precise through an index theorem relating the affine ramification indices
defined in the previous section with some topological data depending only on the foliation. Some
index theorems of the like follow directly from Baum and Bott’s one [BB70] since, generically,
from (3.2), the ratios of the eigenvalues of a vector field tangent to a foliation at a singular point
(in terms of which the Baum-Bott index theorem is expressed in many situations) are the ratios
of the principal affine ramification indices. We are nevertheless interested in results that truly
depend on the foliated affine structure and not just on the foliation that supports it:

Theorem 4.1. Let M be a compact complex manifold of dimension n, F a holomorphic foliation
by curves on M having only isolated nondegenerate singularities p1, . . . , pk. Consider a foliated
affine structure subordinate to F having at each one of the singularities a nonvanishing Christoffel

symbol, and let ν
(i)
1 , . . . , ν

(i)
n be the principal affine ramification indices at pi. Then,

(−1)n
k∑
i=1

1

ν
(i)
1 · · · ν

(i)
n

= cn1 (TF ).

Here, c1(TF ) ∈ H2(M,Z) is the first Chern class of TF , cn1 (TF ) ∈ H2n(M,Z), and, as usual,
we have identified cohomology classes of top degree with their evaluations on the fundamental
class. For instance, if F is a foliation of degree d on Pn, cn1 (TF ) = (1 − d)n. In the case where
M is a curve (n = 1), there are no singularities (k = 0) and TF = TM : the result reduces
to c1(TM) = 0, and implies that M is an elliptic curve.

A foliated affine structure along the foliation F defines naturally a geodesic vector field on TF .
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Theorem 4.1 will follow from applying Lehmann’s index theorem [Leh91] to the foliation induced
by this vector field relative to the zero section.

4.1 The geodesic vector field

Consider a foliated affine structure along the foliation F . For every v ∈ TF such that π(v) is
not a singular point of F , for some U ⊂ C, with 0 ∈ U , there is a geodesic of the associated
connection, c : (U, 0) → (M,π(v)), tangent to F , such that c′(0) = v (the germ of c at 0 is
unique). The derivative gives a lift c̃ : U → TF with π(c̃(t)) = c(t) and c̃(t) = c′(t). The vector
field on TF \π−1(Sing(F)) that has this curve as its integral one through v extends, by Hartog’s
theorem, to all of TF . This is the geodesic vector field of the foliated affine structure.

Local expressions may be given as follows. Let {Ui}i∈I be a cover of M by open subsets such
that, in Uj , F is given by the vector field Zj . If Ui∩Uj 6= ∅, let gij : Ui∩Uj → C∗ be the function
such that Zi = gijZj . The line bundle TF is obtained by gluing the sets in {Ui×C}i∈I by means
of the identification

(u, ζj) = (u, gijζi) (4.1)

if Ui ∩ Uj 6= ∅.
Let now the foliated affine structure come into play. Let γj : Uj → C be the Christoffel

symbol ∇(Zj). Consider, in Uj ×C, the vector field

Xj = ζjZj − γjζ2j
∂

∂ζj
. (4.2)

In (Ui×C)∩ (Uj×C), under (4.1), this vector field reads gijζiZj− (gijγj +Zjgij)ζ
2
i ∂/∂ζi, which,

by Leibniz’s rule (2.3), equals Xi. This shows that (4.2) defines a global holomorphic vector field
X on the total space of TF . We will establish that this is the geodesic vector field of ∇.

The vector field H on TF given by ζj∂/∂ζj in Uj ×C is globally well-defined. We have the
relation [H,X] = X. In its integral form, it implies that if (z(t), ζj(t)) is a solution to Xj then
(z(at + b), aζj(at + b)) is also a solution. Since all the solutions above a given point may be
constructed in this way, the vector field X gives a class of parametrizations of the leaves of F
that is invariant under precompositions by affine maps. The inverses of these parametrizations
form the atlas of charts of a foliated affine structure.

Let us prove that the foliated affine structure associated to X is exactly the one we started
with, that the parametrized solutions of X project onto the geodesics of our original foliated
affine structure. If the vector field Zj is such that ∇(Zj) vanishes identically then, on the one
hand, the geodesics of ∇ are the integral curves of Zj (with their natural parametrization) and
its constant multiples; on the other, Xj reduces to ζjZj (ζj is a first integral), and the integral
curves of the latter project also onto the integral curves of the constant multiples of Zj . We
conclude that X is the geodesic vector field of ∇.

Remark 4.2. This gives yet another definition of a foliated affine structure: a vector field X on
TF projecting onto F such that [H,X] = X. The projections of the solutions of such a vector
field induce an affine structure along the leaves of F . Further, it has local expressions of the
form (4.2), and the foliated connection ∇ : TF → O(M) locally defined by ∇(Zj) = γj gives a
globally well-defined connection.

Remark 4.3. The geodesic vector field X is a quasihomogeneous one, for [H,X] = X. The
singularities of F are in correspondence with the fibers of TF along which H ∧X = 0; those with
nonvanishing Christoffel symbols correspond to the fibers where X does not vanish identically.
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Let p ∈ Sing(F) be one of these, and let ν1, . . . , νn be its principal ramification indices. For the
solution of X contained in the fiber above p, one can define its Kowalevsky exponents, complex
numbers that localize some integrability properties of X. In our case, with the normalizations
found in [Gor00], these are −1, ν1, . . . , νn.

The vector field X induces a foliation by curves G on TF that leaves the zero section invariant.
This is exactly the setting of Lehmann’s theorem.

4.2 Lehmann’s theorem

For the proof of Theorem 4.1, we will use an index theorem due to Lehmann which generalizes
the Camacho-Sad index theorem to higher dimensions [Leh91]. Let us recall it in the generality
that will suit our needs. We follow the normalizations and sign conventions found in [Suw98].

Let V be a manifold of dimension n+1, M ⊂ V a codimension one smooth compact subman-
ifold with normal bundle NM , and G a foliation by curves on V leaving M invariant. Suppose
that the singularities of the foliation induced by G on M are isolated. For such a singularity p,
in coordinates (z1, . . . , zn, w) centered at p, where M is given by w = 0 and G is induced by
X =

∑n
i=1 ai(z, w)∂/∂zi + wb(z, w)∂/∂w, define

ResG(cn1 ,M, p) = (−1)n
(
i

2π

)n ∫
T

bn(z, 0)∏n
i=1 ai(z, 0)

dz1 ∧ · · · ∧ dzn,

with T = {w = 0} ∩ (∩ni=1{‖ai(z, 0)‖ = ε}) for some sufficiently small ε. (This number is well-
defined.) Lehmann’s theorem affirms that∑

p∈Sing(G|M )

ResG(cn1 ,M, p) = cn1 (NM ),

where c1(NM ) ∈ H2(M,Z) denotes the first Chern class of NM .

If the restriction of X to w = 0 is nondegenerate at p and the eigenvalues of the linear part
of this restriction are λ1, . . . , λn, we have that ResG(cn1 ,M, p) = bn(0)(λ1 · · ·λn)−1.

Proof of Theorem 4.1. Let G be the foliation on TF induced by the geodesic vector field X. It
leaves the zero section M invariant. If F is generated by Z =

∑
i ai(z)∂/∂zi in a neighborhood

of p, G is, in a neighborhood of p in TF , tangent to the vector field
∑n

i=1 ai(z)∂/∂zi−ζγ(z)∂/∂ζ.
If γ(0) 6= 0 and ν1, . . . , νn are the principal affine ramification indices of the foliated affine
structure at p, then, by (3.1),

ResG(cn1 ,M, p) =
(−γ(0))n

λ1 · · ·λn
=

(−1)n

ν1 · · · νn
.

On the other hand, by construction,NM is exactly TF . A straightforward application of Lehmann’s
theorem yields Theorem 4.1.

5. An index theorem for foliated projective structures

Every compact curve admits a projective structure but, as we have seen, not every foliation in
a surface admits a foliated one. When foliated projective structures do exist, the foliation and
the ambient manifold impose conditions on the behavior of the structure at the singular points
of the foliation. The results in this section will cast these in a precise form.

The Baum and Bott index theorem [BB70] will be behind the formulation and the proof of
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our result, and we begin by recalling some of the notions and terms that appear in its statement,
which will be briefly recalled in Section 5.3.

Let ϕ(x1, . . . , xk) be a symmetric homogeneous polynomial of degree k with complex co-
efficients. Define the polynomial ϕ̃ through the equality ϕ̃(σ1, . . . , σk) = ϕ(x1, . . . , xk), where
σi =

∑
j1<...<ji

xj1 . . . xji is the i-th elementary symmetric polynomial in x1, . . . , xk. For a vector
bundle V on the manifold N , let ci(V ) denote the i-th Chern class of V , c(V ) its total Chern
class, and let ϕ(c(V )) ∈ H2k(N,Z) be given by ϕ̃(c1(V ), . . . , ck(V )). This definition extends to
the context of virtual vector bundles, elements of the K-theory of N . We refer the reader to
[Bot69] for facts around virtual vector bundles and their Chern classes.

Let ϕ(x1, . . . , xn+1) be a symmetric homogeneous polynomial of degree n+ 1. We will distin-
guish the variable xn+1. For i = 0, . . . , n + 1, define the symmetric homogeneous polynomial of
degree i in n variables ϕ̂i through the equality

ϕ(x1, . . . , xn, xn+1) =

n+1∑
i=0

xn+1−i
n+1 ϕ̂i(x1, . . . , xn). (5.1)

In particular, for the odd part (with respect to xn+1) ϕodd of ϕ,

ϕodd(x1, . . . , xn, xn+1) =

bn/2c∑
j=0

x2j+1
n+1 ϕ̂n−2j(x1, . . . , xn).

Theorem 5.1. Let M be a compact complex manifold of dimension n, F a holomorphic fo-
liation by curves on M having only isolated nondegenerate singularities p1, . . . , pk. Consider a
holomorphic foliated projective structure subordinate to F for which the Christoffel symbols

do not vanish at the singularities, and let ν
(i)
1 , . . . , ν

(i)
n be the principal projective ramification

indices at pi. Let ϕ(x1, . . . , xn+1) be a symmetric homogeneous polynomial of degree n+1. Then,
with the previous notations,

k∑
i=1

ϕodd(ν
(i)
1 , · · · , ν(i)n , 1)

ν
(i)
1 · · · ν

(i)
n

=

bn/2c∑
j=0

c2j1 (TF )ϕ̂n−2j(c(TM − TF )). (5.2)

The summands in the left-hand side of (5.2) are, in agreement with Remark 3.5, well-defined.

Example 5.2. If n is even, for ϕ =
∑n+1

i=1 x
n+1
i , ϕodd(x1, . . . , xn+1) = xn+1

n+1, and (5.2) becomes
simply formula (1.2).

Example 5.3. If n is odd, n = 2m+1, for ϕ =
∑

i 6=j x
n
i xj , ϕodd = xnn+1

∑n
i=1 xi+xn+1ψ(x1, . . . , xn)

for ψ(x1, . . . , xn) =
∑n

i=1 x
n
i , and (5.2) becomes

k∑
i=1

ν
(i)
1 + · · ·+ ν

(i)
n

ν
(i)
1 · · · ν

(i)
n

+

k∑
i=1

(
ν
(i)
1

)n
+ · · ·+

(
ν
(i)
n

)n
ν
(i)
1 · · · ν

(i)
n

= c2m1 (TF )c1(TM − TF ) + ψ(TM − TF ).

The Baum-Bott index theorem (see Section 5.3) implies that the second summands in each side
are equal, and the equality reduces to (1.1).

In particular, in even dimensions, with Remark 3.6 taken into account, Theorem 5.1 extends
Theorem 4.1 to the projective setting. (In odd dimensions, Theorem 4.1 is exclusively affine since,
to begin with, from Remark 3.5, its statement does not make sense in the projective case.)
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Example 5.4. Let F be the foliation on P2 given by the pencil of conics through four points
in general position. There are three singular conics, pairs of lines associated to the three ways
in which the four points in the base can be taken in pairs; these degenerations correspond to
the “pinching” of a loop. Beyond the four base points of the pencil, F has three other singular
points, those where the lines in each pair intersect (all of them are nondegenerate). Fix a foliated
projective structure on F . For a nonsingular conic in the pencil, the base points give four Fuchsian
singularities of the projective structure (as defined in Section 3.2), with ramification indices ν1,
. . . , ν4, which are independent of the conic. In a degenerate conic in the pencil the pinched loop
produces, in each one of its lines, a Fuchsian singular point of the projective structure having a
ramification index µi, independent of the line. Theorem 5.1 in the instance of Example 5.2 gives
that

1

ν21
+

1

ν22
+

1

ν23
+

1

ν24
− 1

µ21
− 1

µ22
− 1

µ23
= 1,

and, in particular, that the three degenerations are not independent.

Remark 5.5. The canonical bundle of a foliation of degree two on P2 is O(1), its square O(2),
and the dimension of the affine space of foliated projective structures is six. For such a foliation,
the rational map that to each foliated projective structure subordinate to it associates the seven

expressions ν
(i)
1 ν

(i)
2 takes values in the six-dimensional variety given by (1.2). A calculation we

have made with a computer algebra system shows that, at a generic foliated projective structure
subordinate to the foliation of the previous example, the differential of this map has full rank.
In particular, together with Corollary 3.3 in [Gui06], this implies that in the space of foliations
of degree two of P2 endowed with a foliated projective structure, the projective ramification in-
dices determine a generic element (both the foliation and the projective structure) up to a finite
indeterminacy.

Remark 5.6. In Theorem 5.1, singularities of F with vanishing Christoffel symbols may be con-
sidered (still under the hypothesis of nondegeneracy). The contribution to the left-hand side
of (5.2) of such a singularity reduces to its Baum-Bott index associated to ϕ̂n. Details will be
left to the reader.

For the proof of Theorem 5.1, we will construct a geodesic vector field for the foliated pro-
jective structure and apply the Baum-Bott index theorem to a foliation associated to it. It will
be defined in the total space of a particular vector bundle which we will now describe.

5.1 Some foliated jet bundles

From a vector bundle over a manifold V →M , one may construct the vector bundle JkV →M
of k-jets of sections of V (see, for instance, [KS72]). In the presence of a singular foliation by
curves F on M , we may consider the bundle JkFV of k-jets of sections of V “along the leaves
of F ,” which exists, at least, away from the singularities of F . The bundle need not extend to
the singular points of the foliation, but if it does, this extension is unique. (See Theorem 1 and
Proposition 7 in [Ser66].)

For V = TF , the bundle JkFTF can be defined as a vector bundle (of rank k+ 1) on the whole
of M . Let us show this concretely by exhibiting explicit local trivializations. Let Z be a vector
field tangent to F defined on an open set U ⊂M , which vanishes only on the singular set of F ,
and let A =

∑ 1
l!alz

l ∈ C[z] be a polynomial of degree at most k. Build a holomorphic section
σ(Z,A) of JkFTF over U in the following way: at a regular point p of F in U , for the vector field
fZ such that Z l(f)|p = al for l = 0, . . . , k, σ(Z,A)(p) is the k-jet along F at p of the vector
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field fZ. The section σ(Z, 1) is the one obtained by taking the k-jet of the vector field Z itself. By
construction, the sections σ(Z, 1), σ(Z, z), . . . , σ(Z, zk) are linearly independent at every regular
point of F in U , so they induce a trivialization of JkFTF on U \ Sing(F). The existence of these
local trivializations suffices to show that the bundle JkFTF can be extended over the singular set
in a unique way, since the cocycle that expresses one trivialization in terms of the other consists
of holomorphic functions U \ Sing(F)→ GL(k + 1,C) that, by Hartog’s theorem, extend to the
singular set as functions taking values in the set of invertible matrices (the determinant cannot
vanish only on a set of codimension two or more). We thus construct JkFTF → M , the vector
bundle of k-jets of TF along F . We have the linear projections jk−i : JkFTF → Jk−iF TF , and,
naturally, J0

FTF = J0TF = TF .

We will be interested in the case k = 1, for which it will be useful to have an explicit
expression for the cocycle defined above. Let {Ui}i∈I be a cover of M by open subsets such that
F is generated by the holomorphic vector field Zi in Ui. Let gij : Ui ∩ Uj → C∗ be such that
Zi = gijZj ; it is the cocycle associated to TF . Let p ∈ U \ Sing(F), and let z be a coordinate
along the leaf L of F through p, centered at p, where the restriction of Zj to L reads ∂/∂t. In
restriction to L, Zi = gij(z)∂/∂z, and thus, along L,

Zi =

∞∑
l=0

1

l!

(
dl

dζ l
gij(ζ)

∣∣∣∣
ζ=0

)
zl
∂

∂z
=

∞∑
l=0

1

l!
Z lj(gij)|pzl

∂

∂z
.

On the other hand, σ(Z, z) is independent of Z: if a vector X field tangent to F vanishes at a
nonsingular point p in the leaf L of F , its first jet along F at p is the eigenvalue of the linear
part at p of its restriction to L. From these facts, on Ui ∩ Uj ,(

σ(Zi, 1)
σ(Zi, z)

)
=

(
gij Zj(gij)
0 1

)(
σ(Zj , 1)
σ(Zj , z)

)
.

Summing up, J1
FTF can be obtained by gluing the sets in {Ui ×C2}i∈I through the identifi-

cations (
ζj
ξj

)
=

(
gij 0

Zj(gij) 1

)(
ζi
ξi

)
, (5.3)

with (ζi, ξi) linear coordinates on C2. In these, the section of J1
FTF over Ui generated by fZi is

given by

fZi 7→ (f, Zi(f)). (5.4)

The projections (ζi, ξi) 7→ ζi glue into the natural linear projection j0 : J1
FTF → TF . The line

subbundle ker(j0) is trivial.

5.2 The geodesic vector field and its projectivization

If F is endowed with a foliated projective structure and p ∈ M \ Sing(F), a geodesic through
p is a parametrized curve f : (U, 0) → (M,p), U ⊂ C, 0 ∈ U , which is tangent to F and
which induces the given projective structure on the leaf of F through p (which is the inverse of
a projective chart). For the tautological projective structure on P1, in the affine chart [z : 1],
the geodesics through 0 are those of the form t 7→ at/(1 − bt) with a ∈ C∗, b ∈ C. Their
corresponding velocity vector fields are a−1(a+ bz)2∂/∂z. Each one of them is characterized by
its 1-jet at 0. Furthermore, every 1-jet of vector field with a nonvanishing 0-jet is realized by
the velocity vector field of a geodesic. In this way, above the regular part of F , the geodesics of
a foliated projective structure lift into J1

FTF \ ker(j0) through their velocity vector fields, and
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there is a lift of a unique geodesic through every point in J1
FTF \ ker(j0). There is thus a natural

vector field on J1
FTF \ ker(j0) associated to a foliated projective structure. This is its geodesic

vector field.

If f : U → M is a geodesic defined in a neighborhood of t = 0 and

(
a b
c d

)
∈ SL(2,C) is

sufficiently close to the identity, f

(
at+ b

ct+ d

)
is also a geodesic: we have a local action of SL(2,C)

on J1
FTF \ ker(j0) induced by the foliated projective structure. Let us restrict this action to the

one-parameter subgroups of the standard basis of sl(2,C). The vector fields on J1
FTF associated

to these will satisfy the same Lie-algebraic relations. Let f : U → M be a geodesic. That the

action via reparametrization of the one-parameter subgroup

(
1 s
0 1

)
preserves geodesics is

equivalent to the fact that if f(t) is a parameterized geodesic, so is f(t+ s) for every (sufficiently
small) fixed s. This reparametrization comes thus from the flow of the geodesic vector field. The

one induced by the one-parameter subgroup

(
es/2 0

0 e−s/2

)
yields the geodesic t 7→ f(est).

It multiplies the velocity vector field of f by the factor es. In coordinates, it multiplies each
one of the two components of (5.4) by es, and is thus induced by the vector field H on J1

FTF
that, in Uj × C2, reads ζj∂/∂ζj ⊕ ξj∂/∂ξj (it retains its expression in the other charts and
is globally well-defined). Let us now consider the more interesting case of the one-parameter

subgroup

(
1 0
−s 1

)
. Let us suppose that we are on a curve where we have a local coordinate z

and that f(0) = 0. The reparametrization gives the geodesic f

(
t

1− st

)
, whose velocity vector

field is (1 + sf−1(z))f ′(f−1(z))∂/∂z. With respect to the vector field Z = v(z)∂/∂z, the 1-jet of
its velocity vector field, as in (5.4), is(

f(0)

v(0)
,−v

′(0)

v(0)
+
f ′′(0)

f ′(0)
+ 2s

)
.

The action of this one-parameter subgroup induces the vector field Y on J1
FTF that reads 2∂/∂ξj

on Uj ×C2. As expected, [H,Y ] = −Y .

If X is a vector field on J1
FTF giving the geodesic vector field of a foliated projective structure,

its integral curves project to curves of F and, together with the vector fields H and Y , satisfies
the sl(2,C) relations

[Y,X] = 2H, [H,X] = X, [H,Y ] = −Y. (5.5)

The integral form of these relations gives the reparametrization of the geodesics on J1
FTF : if

(z(t), ζj(t), ξj(t)) is a solution of Xj and

(
a b
c d

)
∈ SL(2,C) is sufficiently close to the identity,(

z

(
at+ b

ct+ d

)
,

1

(ct+ d)2
ζj

(
at+ b

ct+ d

)
,

1

(ct+ d)2
ξj

(
at+ b

ct+ d

)
− 2c

ct+ d

)
is also a solution of X.

Remark 5.7. The above formula is similar to the “invariance condition” enjoyed by Halphen’s
system [Hal81]. This is not surprising, since the latter is essentially an extension to the punc-
tures of the geodesic flow of the projective structure on the thrice-puncture sphere given by
uniformization; see [Gui07, Section 3].
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Let us explicitly construct the vector field X associated to a foliated projective connection
Ξ : TF → OM . Let ρi : Ui → C be the Christoffel symbol Ξ(Zi) of Zi. Consider, on Uj ×C2, the
vector field

Xj = ζjZj ⊕ ζjξj
∂

∂ζj
⊕
(

1

2
ξ2j − ρjζ2j

)
∂

∂ξj
.

In (Ui ×C2) ∩ (Uj ×C2), under (5.3), Xj reads

gijζiZj ⊕ ζiξi
∂

∂ζi
⊕
(

1

2
ξ2i −

[
g2ijρj + gijZ

2
j gij −

1

2
(Zjgij)

2

]
ζ2i

)
∂

∂ξi
,

which, by the Leibniz rule (2.6), is exactly Xi. Thus, these vector fields glue into a globally-
defined holomorphic vector field X on J1

FTF . It satisfies the relations (5.5); since the projections
of its integral curves onto M differ by precompositions with fractional linear transformations, it
induces a foliated projective structure.

Let us identify the foliated projective structure induced by the vector field X just defined.
Let us do so in dimension one, in a coordinate z where Z is ∂/∂z, this is, for the vector field
X = ζ∂/∂z + ζξ∂/∂ζ + (12ξ

2 − ρζ2)∂/∂ξ and π̂(z, ζ, ξ) = z. Let (z(t), ζ(t), ξ(t)) be a solution
to X. Comparing the projective structures induced by z and t on the base, we have

{t, z(t)} = − 1

(z′(t))2
{z(t), t} = ρ(z).

It follows from this formula that for the projective structure induced by X, the Christoffel symbol
of ∂/∂z is ρ, and coincides, as we sought to establish, with the one induced by the projective
connection Ξ.

Notice that X is defined as a holomorphic vector field on all of J1
FTF and that it is transverse

to π over M \ Sing(F) away from ker(j0).

Remark 5.8. The conditions (5.5) that the geodesic vector field of a foliated projective structure
must satisfy are also sufficient ones. From this, we have an equivalent formulation for our defi-
nition: a foliated projective structure subordinate to F is a vector field X on J1

FTF that projects
onto F and that satisfies the relations (5.5) with the vector fields H and Y .

Let π : P(J1
FTF )→M be the projectivization of J1

FTF . The foliation by curves induced by X
on J1

FTF is invariant by the flow of H and, thus, the total space of P(J1
FTF ) inherits a foliation

by curves G that projects onto F . This will be the main object in the proof of Theorem 5.1.

For the expression of G in local coordinates, cover Uj × P1 by charts U+
j = Uj × C and

U−j = Uj ×C, where, in U+
j (resp. U−j ), an affine coordinate uj (resp. vj) for the second factor

is given by [uj : 1] = [ξj : ζj ] (resp. [1 : vj ] = [ξj : ζj ]). In U+
j , G is tangent to the vector field

Zj −
(

1

2
u2j + ρj

)
∂

∂uj
(5.6)

and, in U−j , to Zj +(12 +ρjv
2
j )∂/∂vj . These last two glue together into a vector field with isolated

singularities on U+
i ∪ U

−
i and, from (5.3), in U+

j ∩ U
+
i , gijuj = ui + Zj(gij).

These calculations show that TG = π∗TF . They also exhibit the fact that, even if X is not
transverse to π along ker(j0), G is transverse to π above M \ Sing(F).

For an integral curve C of F , the restriction of G to π−1(C) is a Riccati foliation with
respect to the rational fibration π|C . There is a section σ : M → P(J1

FTF ) of π given by the
projectivization of the subbundle ker(j0), which is everywhere transverse to G and which inherits,
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in consequence, a foliated projective structure subordinate to F . We claim that this projective
structure is the one we started with. Let us prove this in dimension one, in a coordinate where
Z is ∂/∂z, where G is generated by ∂/∂z − (12ρ(z) + ũ2)∂/∂ũ for ũ = 1

2u. The charts of the
projective structure induced on the line ũ =∞ by the orbits of this vector field are the solutions
h of the Schwarzian equation {h, z} = ρ(z) [LMP09, Prop. 2.1]. This proves our claim.

Remark 5.9. For a projective structure on a curve, the triple (P(J1
FTF ),G, σ) gives the graph of

the projective structure (see [LMP09, Section 1.5]). Our construction gives actually more: since
G comes from the quotient of X, it is naturally endowed with a foliated affine structure in the
complement of the image of ker(j0), and π identifies the projective classes of the foliated affine
structures with the foliated projective structure of F .

5.3 Proof of Theorem 5.1

Let us briefly recall Baum and Bott’s index theorem in the generality that we will need. Let
N be a compact complex manifold of dimension m, H a holomorphic foliation by curves on N
having only finitely many singularities, all of them nondegenerate. We will use the terminology
around symmetric polynomials introduced at the beginning of Section 5. For p ∈ Sing(H), let Ap
be the linear part at p of a vector field generating H in a neighborhood of p. Define σi(Ap) by
det(I + tAp) =

∑m
i=0 σi(A)ti and, for a homogeneous symmetric polynomial ϕ(x1, . . . , xm) of

degree m, let ϕ(Ap) = ϕ̃(σ1(Ap), . . . , σm(Ap)).

Baum and Bott’s index theorem [BB70] affirms that∑
p∈Sing(H)

ϕ(Ap)

det(Ap)
= ϕ(TN − TH). (5.7)

Theorem 5.1 will follow from applying it to the foliation G on P(J1
FTF ), for the same ϕ

appearing in its statement.

We begin by calculating the left-hand side of (5.7) for the foliation G on P(J1
FTF ). Let p ∈ Uj

be a singular point of F , Z a vector field generating F in a neighborhood of p, ρ = Ξ(Z) the
Christoffel symbol of Z, which, by hypothesis, does not vanish at p. In P(J1

FTF ), above p, there
are two singular points of G. At these, from (5.6), the ratios of the eigenvalues of a vector field
tangent to G are [λ1 : · · · : λn :

√
−2ρ(p)] and [λ1 : · · · : λn : −

√
−2ρ(p)]. The sum of the

contributions of these two points to the left-hand side of (5.7) is

ϕ(λ1, . . . , λn,
√
−2ρ(p))

λ1 · · ·λn
√
−2ρ(p)

−
ϕ(λ1, . . . , λn,−

√
−2ρ(p))

λ1 · · ·λn
√
−2ρ(p)

=

=
ϕ(ν1, . . . , νn, 1)− ϕ(ν1, . . . , νn,−1)

ν1 · · · νn
= 2

ϕodd(ν1, . . . , νn, 1)

ν1 · · · νn
,

where ν1, . . . , νn are the principal projective ramification indices of the foliated projective struc-
ture at p, and where the first equality follows from (3.6). This last expression is well-defined
(Remark 3.5). Since there are no further singular points of G, the sum of these terms over the
singular points of F gives twice the total sum in the left-hand side of (5.2).

Let us now come to the right-hand side of (5.7) for the foliation G on P(J1
FTF ). In order to

express this right-hand side in terms of data in M , we need a better understanding of the Chern
classes of P(J1

FTF ). Grothendieck’s approach [Gro58] is particularly well adapted to the study
of Chern classes of projective bundles.

Let π̃ : V →M be a rank-two vector bundle, π : P(V )→M the associated projective bundle.
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We denote by L→ P(V ) the dual of the tautological bundle, and by ζ ∈ H2(P(V ),Z) the Chern
class of L. By Grothendieck’s definition of Chern classes,

ζ2 + π∗c1(V )ζ + π∗c2(V ) = 0, (5.8)

where ck(V ) ∈ H2k(M,Z) is the k-th Chern class of V . From the short exact sequence

0→ ker(Dπ) −→ TP(V )
Dπ−→ π∗TM → 0,

for the total Chern classes we have

c(TP(V )) = c(ker(Dπ))c(π∗TM).

Proposition 5.10. We have an isomorphism ker(Dπ) ' L⊗2⊗det(V ). In particular, c(kerDπ) =
1 + 2ζ + c1(det(V )).

Proof. We have the following canonical isomorphism: given x ∈M and l ∈ P(Vx) (a line in Vx)
we have

TlP(Vx) ' Hom(l, Vx/l). (5.9)

Indeed, the derivative of the projectivization p : Vx \ {0} → P(Vx) induces for each u ∈ l an
isomorphism Dpu : Vx/l→ TxP(Vx) that satisfies

λDpλu = Dpu for any u ∈ l and λ ∈ C, (5.10)

since p is invariant by multiplication by λ ∈ C. The isomorphism (5.9) is then defined by the
formula

v ∈ TlP(Vx) corresponds to u ∈ l ϕv−→ (Dpu)−1(v) ∈ Vx/l,
and equation (5.10) shows that v 7→ ϕv is linear.

Given ω ∈ ∧2V ∗x (a dual of the determinant bundle) and ψ ∈ Hom(l, Vx/l) we can form
the quadratic polynomial ϕ on l (an element of L⊗2) by the formula ϕ(u) = ω(u, ψ(u)). This
operation produces the desired isomorphism of line bundles over P(V ).

Associated to π : P(V ) → M we have the integration along the fibers (or transfer) map
π! : H l(P(V ),Z)→ H l−2(M,Z) [Dol80, Ch. VIII]. It satisfies the product formula π!(α · π∗β) =
π!α · β as well as the Fubini relation 〈α, [P(V )]〉 = 〈π!α, [M ]〉 (here, 〈, 〉 denotes the cohomology-
homology pairing and [·] the fundamental class). We have π!ζ = 1. In particular,

〈ζ · π∗β, [P(V )]〉 = 〈π!(ζ · π∗β), [M ]〉 = 〈π!ζ · β, [M ]〉 = 〈β, [M ]〉. (5.11)

In our setting, J1
FTF is an extension of TF by the trivial bundle, so det(J1

FTF ) ' TF and,
for the total Chern class, c(J1

FTF ) = c(TF ), this is, c1(J
1
FTF ) = c1(TF ) and c2(J

1
FTF ) = 0.

From (5.8), for V = J1
FTF , ζ2 = −π∗c1(TF )ζ, and, for all k > 1,

ζk = (−π∗c1(TF ))k−1ζ. (5.12)

From the previously established identification TG = π∗TF ,

c(TP(J1
FTF )− TG) =

c(TP(J1
FTF ))

c(TG)
=
c(ker(Dπ))c(π∗TM)

c(π∗TF )

= (1 + c1(ker(Dπ)))π∗c(TM − TF ). (5.13)
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If, as in (5.1), ϕ(x1, . . . , xn+1) =
∑n+1

i=0 x
i
n+1ϕ̂n+1−i(x1, . . . , xn), from (5.13) we have, denoting

c1(ker(Dπ)) by κ,

ϕ(c(TP(J1
FTF )− TG)) =

n+1∑
i=0

κi · ϕ̂n+1−i(π
∗c(TM − TF )). (5.14)

From the equality κ = 2ζ + π∗c1(TF ) established in Proposition 5.10 and from (5.12), κ2 =
π∗c21(TF ), and thus

κi =

{
π∗ci1(TF ) + 2ζ · π∗ci−11 (TF ) if i is odd,

π∗ci1(TF ) if i is even.

Hence, (5.14) equals

π∗
n+1∑
i=0

ci1(TF )ϕ̂n+1−i(c(TM − TF )) + 2ζ · π∗
bn/2c∑
j=0

c2j1 (TF )ϕ̂n−2j(c(TM − TF )),

but the first summand is trivial, since it is the pull-back of classes in M whose degree exceeds
the dimension of M . We conclude that, on P(J1

FTF ),

ϕ(c(TP(J1
FTF )− TG)) = 2ζ · π∗

bn/2c∑
j=0

c2j1 (TF )ϕ̂n−2j(c(TM − TF )).

By (5.11), this expression equals twice the right-hand side of (5.2). This finishes the proof of
Theorem 5.1.

Remark 5.11. Another approach, likely leading to relations like those in Theorem 5.1, would
consist in constructing an Atiyah algebroid associated to a foliated projective structure (like
the one described for manifolds in [BD19] and extended to geometries transverse to a foliation
in [BD18]), and then adapting the methods of Bruzzo and Rubstov [BR12] to its study. We ignore
if this could lead to new relations, and/or if all of our relations can be obtained in this way.

6. Regular foliations

The index theorems of the previous sections impose severe restrictions on foliated affine and
projective structures along regular foliations. On surfaces, they make possible a full classification
of these structures.

6.1 Some consequences of the index theorems

For a compact surface, the existence of a regular foliation supporting a foliated projective struc-
ture greatly limits its topology:

Corollary 6.1. A compact complex surface admitting a regular foliation that supports a foli-
ated projective structure has vanishing signature.

Proof. If M is a compact complex surface that admits a regular foliation F , a consequence
of the Baum-Bott index theorem is that c21(TF ) = c21(M) − 2c2(M) [Bru97, Section 2]. (From
Hirzebruch’s formula, the signature τ(M) equals 1

3(c21(M)−2c2(M)) [BHPV04, Ch. I, §3].) If such
an F supports a foliated projective structure, from the instance of Theorem 5.1 in Example 5.2,
c21(TF ) = 0, and the signature of M vanishes.
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Since Kodaira fibrations have nonvanishing signature [BHPV04, Ch. V, §14], this gives an-
other proof of the fact that they do not support foliated projective structures.

This obstruction, together with the classification of regular foliations on surfaces provided
by Brunella [Bru97], permits to list all the regular foliations on complex surfaces that admit
foliated projective structures. (In section 6.2 we will give a classification of the foliated affine and
projective structures on them.)

Corollary 6.2. The regular foliations on compact complex surfaces that admit foliated projec-
tive structures are: isotrivial fibrations, suspensions, linear foliations on tori, turbulent foliations,
evident foliations on Hopf or Inoue surfaces, and evident foliations in quotients of the bidisk.

Proof. Regular foliations on surfaces were classified by Brunella [Bru97, Thm. 2]. Other than
the ones in the previous list, there are nonisotrivial fibrations and some transversely hyperbolic
foliations with dense leaves. But nonisotrivial fibrations are necessarily Kodaira ones, since reg-
ular elliptic fibrations are necessarily isotrivial, and among the transversely hyperbolic foliations
with dense leaves, those supported on surfaces of vanishing signature are quotients of the bidisk
(see the closing remarks in [Bru97]).

There remains to exhibit foliated projective structures for all the foliations in the above list.
Linear foliations on tori are tangent to holomorphic vector fields, and have a foliated transla-
tion structure. Rational fibrations have foliated projective structures (say, by Savel’ev’s theo-
rem [Sav82], the fibration is locally holomorphically trivial), elliptic ones carry foliated affine
structures by the results in Example 2.8, and fibrations of higher genus supporting foliated pro-
jective structures are isotrivial, and hence have foliated projective structures (e.g. the complete
hyperbolic ones along the fibers). The existence of foliated affine or projective structures for
suspensions, elliptic fibrations, turbulent foliations, and foliations on Inoue and primary Hopf
surfaces has already been addressed in Examples 2.16, 2.17, 2.5 and 2.6. In Section 6.2.7 we will
see that all foliations on secondary Hopf surfaces admit foliated affine structures.

Corollary 6.2 shows that a regular foliation on an algebraic compact complex surface carries
a foliated projective structure if and only if it is not a foliation of general type. One direction
can be directly proved, more generally, for all manifolds of even dimension:

Proposition 6.3. On a compact algebraic manifold of even dimension, a regular foliation of
general type cannot support a foliated projective structure.

Proof. Let M be the manifold, n its dimension, F the foliation. The general type assumption on
F says that KF is big, namely

lim sup
m→∞

log h0(K⊗mF )

logm
= n.

By [McQ00, Theorem 2, p. 51], KF is also nef. A nef and big line bundle L on an algebraic
variety of dimension n satisfies cn1 (L) > 0; this can be deduced from the asymptotic Riemann-
Roch formula, stating that for a nef line bundle L,

h0(Lm) =
1

n!
cn1 (L)mn +O(mn−1),

see for example [Laz04, Corollary 1.4.41]. Applying this to L = KF gives (−1)ncn1 (TF ) =
cn1 (KF ) > 0. On the other hand, if the manifold has even dimension and admits a foliated projec-
tive structure, by the particular case of Theorem 5.1 described in Example 5.2, cn1 (TF ) = 0.
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In higher dimensions, there are regular foliations which are not of general type, but which do
not support foliated projective structures. Take for instance the product of a Kodaira fibration
on a surface by a curve, producing a fibration which is not of general type (as a foliation), but
which does not have any foliated projective structure.

We do not know if Proposition 6.3 holds true in odd dimensions. We have nevertheless the
following weak version of it.

Proposition 6.4. On a compact algebraic manifold, a regular foliation of general type cannot
support a foliated affine structure.

Proof. In the presence of a foliated affine structure, it follows from Theorem 4.1 that cn1 (TF ) = 0,
the left hand side vanishing by the absence of singular points. The arguments in the proof of
Proposition 6.3 allow to conclude.

Many families of regular foliations are given by characteristic foliations on hypersurfaces of
general type in compact symplectic manifolds. They are those generated by the distribution given
by the kernel of the restriction of the symplectic form to the hypersurface, see [HV10]. By the
adjunction formula and the fact that the canonical of the leaf space of the foliation is trivial, the
canonical bundle of such a foliation is isomorphic to the canonical bundle of the hypersurface,
so the characteristic foliation is of general type, and does not carry a foliated affine structure
by Proposition 6.4. We do not know if these foliations admit foliated projective structures; our
index formulae do not give any obstructions whatsoever in this case (we leave to the reader to
check that, for all these foliations and in all instances of Theorem 5.1, the right-hand side gives
always zero).

These last foliations occur in odd dimensions. In even ones, beyond the case of surfaces, we
do not know the extent to which our index formulae give relevant obstructions for the existence
of foliated projective structures. We do not seem to have enough examples of regular foliations
on manifolds of even dimension.

6.2 A classification for regular foliations on surfaces

We will now classify the foliated affine and projective structures for the foliations appearing in
Corollary 6.2. We begin with the following Lemma.

Lemma 6.5. Let M be a compact manifold, X a nowhere vanishing vector field on M , F the
regular foliation induced by X.

– The spaces of foliated affine and projective structures of F are both one-dimensional.

– Let σ : M →M be a fixed-point-free involution such that Dσ(X) = −X, let N = M/σ and
let G be the foliation on N induced by X. Then the space of foliated projective structures
on G is one-dimensional, and the only foliated affine structure on G is the one induced by X.

Proof. A foliated translation structure along F is induced by X: both the space of foliated affine
and projective ones are nonempty. Since any section of KF (resp. K2

F ) is determined by the
constant value it takes on X (resp. X⊗2), H0(KF ) (resp. H0(K2

F )) is one-dimensional. For the
second part, notice that the foliated affine structure induced by X on F is invariant by σ, and
descends to a foliated affine structure on G. The sections of KG (resp. K2

G) are in correspondence
with the invariant sections of KF (resp. K2

F ). All sections of K2
F are invariant, but only the zero

section of KF is.

Let us now come to the classification.
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6.2.1 Linear foliations on tori Foliated affine and projective structures are induced by
nowhere vanishing vector fields and are covered by the first part of Lemma 6.5.

6.2.2 Suspensions As we have shown in Example 2.16, foliated affine (resp. projective) struc-
tures on suspensions are in a one-to-one correspondence with affine (resp. projective) structures
on the base.

6.2.3 Inoue surfaces The existence of foliated affine structures on these surfaces was dis-
cussed in Example 2.5.

Consider an Inoue surface SM [Ino74, §2]. It is the quotient of H × C under the action of
a semidirect product Z n Γ; let π : H × C → SM denote the quotient map. Let F be either
the vertical or the horizontal foliation on SM . Let i ∈ {1, 2} and let ω be a section of Ki

F . The
preimage of F in H × C is generated by a coordinate vector field X. The contraction of X⊗i

with π∗ω gives a holomorphic function on H ×C which is invariant under the action of Γ and
which, by [Ino74, Lemma 3], is constant. In particular, the function π∗ω(X⊗i) descends to SM .
If it were not the zero constant, X⊗i would descend to SM as well, but SM has no holomorphic
vector fields [Ino74, Prop. 2] and neither do its double covers, which are Inoue surfaces of the
same kind. We conclude that ω vanishes identically, that Ki

F has no nonzero sections, and that
the natural foliated affine structures are rigid both as affine and as projective ones.

Consider now an Inoue surface S(+) [Ino74, §3]. It is the quotient of H×C under the action
of a group that preserves the coordinate vector field on the second factor, and which induces a
nowhere-vanishing vector field X on S(+). The foliated affine and projective structures on the
induced foliation are described by the first part of Lemma 6.5.

Lastly, consider an Inoue surface S(−) [Ino74, §4]. It has an Inoue surface of type S(+) as an
unramified double cover ρ : S(+) → S(−) induced by a fixed-point free involution of S(+) acting
upon X by changing its sign. The second part of Lemma 6.5 classifies the foliated structures on
the associated foliation.

By the results in [Bru97], these foliations are the only ones on Inoue surfaces, and the above
arguments give a complete classification of foliated affine and projective structures on them.

6.2.4 Quotients of the bidisk In the quotient of D × D under the action of a lattice in
Aut(D×D) which is not virtually a product, the vertical (or horizontal) foliation F carries, by
construction, a foliated projective structure which is not affine. For this foliation, kod(F) = −∞
[Bru04, Ch. 9, Section 5], and, in particular, h0(K2

F ) = 0: the foliated projective structure is a
rigid one.

6.2.5 Turbulent foliations In this case, the results of Example 2.17 already give a classifi-
cation of foliated projective structures on them. For instance, in a regular turbulent foliation
adapted to a fibration with simple fibers where in the tangency divisor of the foliation and the
fibration the nontransverse fibers appear simply, the foliated projective structures are in corre-
spondence with the projective structures on the base which are either regular or have Fuchsian
singularities at the points corresponding to the nontransverse fibers.

These arguments and results easily adapt to foliated affine structures. For instance, if in
Example 2.17 we had chosen an affine partial connection ∇0 instead of the projective one Ξ0,
formula (2.8) would read ∇(Z) = zn∇0(∂/∂z) + nzn−1. This implies, for the existence problem,
that elliptic fibrations without singular fibers that are not suspensions support foliated affine
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structures, and allows to go from foliated affine structures to some singular affine structures on
the base and back.

6.2.6 Isotrivial fibrations Let π : S → C be a regular isotrivial fibration of with typical
(nonrational) fiber F . There exists a ramified Galois cover C ′ → C with Galois group Γ and an
action of Γ on F such that S is given by the quotient of F × C ′ under the diagonal action of Γ,
π by the projection to C ′/Γ (see [Ser96]). By pull-back, we obtain a foliated projective structure
on F × C ′. Since, on a product, foliated projective structures are constant (such a structure is
given by a map from the base of the fibration to the moduli of projective structures on a fixed
curve, which is affine), the foliated projective structures on the fibration are in correspondence
with the projective structures on F invariant by Γ.

6.2.7 (Nonelliptic) Hopf surfaces Following Brunella’s classification, every regular foliation
on an elliptic surface is either the elliptic fibration or a turbulent foliation adapted to it. Having
already discussed the foliated structures on these, we will restrict to Hopf surfaces which are not
elliptic, this is, whose group contains a contraction of the form (2.2) with either λ 6= 0 or α 6= βn

(otherwise, the map (x, y) 7→ [x : yn] induces an elliptic fibration). The existence of foliated affine
structures for foliations on primary Hopf surfaces has already been discussed in Example 2.6.

Secondary Hopf surfaces are unramified quotients of primary ones, quotients of C2 \ {0}
under the action of the semidirect product of the infinite cyclic group G generating the associated
primary surface and a finite group H that normalizes it. Foliations on secondary Hopf surfaces are
induced by foliations on the associated primary ones, and we will establish that every foliation on
a secondary Hopf surface has a foliated affine structure. We owe a classification of Hopf surfaces
and their groups to Kato [Kat75, Kat89], and will rely on it for the discussion that follows.

For foliations on Hopf surfaces induced by a linear or “Poincaré-Dulac” vector field on C2,
the contraction (2.2) preserves the vector field. Kato’s classification shows that the action of
H must also preserve it, inducing a nowhere zero vector field tangent to foliation on the Hopf
surface, and thus endowing it with a translation structure. For these foliations, the first part of
Lemma 6.5 describes the foliated structures along them.

Consider now a foliation F on the primary Hopf surface S induced by ∂/∂x. If λ = 0, the
vector field x∂/∂x is invariant by g, and if λ 6= 0, the vector field yn∂/∂x does: in all cases,
we have a vector field tangent to F invariant by the contraction inducing a holomorphic vector
field X on S with nonempty zero set. Let i ∈ {1, 2}. Let ω be a section of Ki

F . The holomorphic
function on S given by ω(X⊗i) is constant and vanishes along the zero set of X, and is thus
identically zero. This proves that h0(Ki

F ) = 0: the foliated affine structure induced by ∂/∂x is
rigid both as an affine and as a projective one. For the associated secondary Hopf surfaces, Kato’s
classification shows that the corresponding action on C2 \ {0} preserves ∂/∂x up to constant
factors, thus inducing a foliated affine structure. The rigidity of the foliated structures on the
primary Hopf surfaces passes down to the secondary ones.
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