N
N

N

HAL

open science

Toledo invariants of Topological Quantum Field Theories

Bertrand Deroin, Julien Marché

» To cite this version:

Bertrand Deroin, Julien Marché. Toledo invariants of Topological Quantum Field Theories. 2022.

hal-03852379

HAL Id: hal-03852379
https://hal.science/hal-03852379

Preprint submitted on 15 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03852379
https://hal.archives-ouvertes.fr

Toledo invariants of Topological Quantum Field
Theories

Bertrand Deroin and Julien Marché

Abstract

We prove that the Fibonacci quantum representations pg,, : Modg, —
PU(p, q) for (g,n) € {(0,4),(0,5),(1,2),(1,3),(2,1)} are holonomy represen-
tations of complex hyperbolic structures on some compactifications of the
corresponding moduli spaces M, ,,. As a corollary, the forgetful map be-
tween the corresponding compactifications of M; 3 and M 2 is a surjective
holomorphic map between compact complex hyperbolic orbifolds of different
dimensions higher than one, giving an answer to a problem raised by Siu.

The proof consists in computing their Toledo invariants: we put this
computation in a broader context, replacing the Fibonacci representations
with any Hermitian modular functor and extending the Toledo invariant to
a full series of cohomological invariants beginning with the signature p — ¢.

We prove that these invariants satisfy the axioms of a Cohomological Field
Theory and compute the R-matrix at first order (hence the usual Toledo
invariants) in the case of the SU3/SO3-quantum representations at any level.

1 Introduction

1.1 Motivation

The moduli spaces My, of genus g curves with n marked points, do not
seem to have geometric structures in general, nor their partial compactifica-
tions. However, some very interesting curiosities happen in particular cases;
leading examples of this kind are the compact type partial compactification
of M3 and M3 that carry structures locally modelled on Siegel spaces (via
the Jacobian of the curve), or the examples of complex hyperbolic structures
on certain partial compactifications of My, with n < 8, using hypergeo-
metric integrals (see [16, 42] and [33] for further developments and a nice
historical treatment to this topic). In all these examples, a key role is played
by the holonomy of the geometric structure: a linear representation of the
corresponding mapping class group Mod, ;,.

The original motivation of this work, that emerged while the second au-
thor lectured on TQFT in Bordeaux and Paris, see [30], is to investigate
whether quantum representations provide interesting geometric structures
on moduli spaces and/or their partial compactifications: those are repre-
sentations of the mapping class groups with values in the projective linear
group of vector spaces called spaces of conformal blocks. They are asso-
ciated to the data of a simple compact Lie group G, a level ¢ (a positive
integer), and some finite set A of irreducible representations of G (depending



on ¢). This theory is extremely rich and have various aspects, one is analyti-
cal, based on quantization of character varieties of surface groups, the other
one is combinatorial/topological, based on a modular category (constructed
from the representation theory of quantum groups or from the Kauffman
bracket), we refer to [6] for a general overview. While the two points of view
are equivalent, as shown by Andersen and Ueno in [3], we will follow the
combinatorial /topological road here.

A crucial property, which has been made explicit using the topological
viewpoint as in [10] is that the space of conformal blocks is defined over a
cyclotomic field & of order £ and the image of a quantum representation takes
values in the group of projective transformations that preserves a pseudo-
hermitian form on the space of conformal blocks defined over k (they also
preserve an integral structure, hence taking values in an arithmetic group,
as was proved by Gilmer and Masbaum in [23]). An interesting consequence
is that when we fix an embedding ¢ : kK — C, the representation gives rise to
a representation

p;,n()‘l’ ..., An) : Mody , = PU(p, q) (1)

where A1, ..., A, € A and p, ¢ are the integers (depending highly on all data)
so that d = p + ¢ is the dimension of the space of conformal blocks and
0 = p — q is the signature of the hermitian form.

Denote by HP¢ the Hermitian symmetric space associated to PU(p, q).
The question that motivates this work is: does M, ,,, or a partial compactifi-
cation of it, carries a HP-¢-structure whose holonomy is given by the quantum
representation (1)? The existence of geometric structures modelled on other
homogeneous spaces of PU(p, q) is not addressed here but is certainly very
interesting.

It turns out that in general the dimension of HP9, which is equal to the
product pg, is much larger than the dimension of the moduli space M, ,,
which is 3¢ — 3 + n. To our knowledge, the only quantum representations
where the coincidence of dimension

pg=39g—3+n>1

holds are Fibonacci representations: the quantum representations associated
to the compact Lie group SO(3), with level £ = 5. Notice that we do not use
the specific definition of level from conformal field theory: for us it will simply
denote the order of the root of unity necessary to carry over the construction.

Later in the introduction, we provide an elementary construction of Fi-
bonacci representations for the reader which is not familiar with TQFT,
but before doing so, we present the main result of the article, namely the
computation of Toledo invariants of quantum representations, which can be
performed for any Hermitian modular functor. The computation of these
invariants in the perspective of geometrization of quantum representations
is our fundamental tool, and in some special cases permits, thanks to Siu’s
rigidity theory, to overcome the lack of naturally defined period maps asso-
ciated to quantum representations.

1.2 Toledo invariants of Hermitian modular functors

A fundamental property of quantum representations of level £ is that they
map any Dehn twist to an element of order ¢ in the group PU(p, ¢). So they



can be thought of as representations defined on the quotient Modfm of the

mapping class group by the group generated by ¢-th powers of Dehn twists.
This group is the orbifold fundamental group of the compact orbifold ﬂé’n

obtained from Deligne-Mumford compactification My, of moduli space by
twisting the complex structure along the boundary divisors of M, ,,, namely

the map ﬂz,n — ﬂg,n is a set-theoretic bijection but in orbifold charts, it
ramifies at order £ on the boundary divisors. In terms of stacks, this is the
{-root stack ramifying along the boundary divisors : it has already been con-
sidered in the context of TQFT [19] and in the context of r-spin structures,
see [14] Section 2.1. From all this, we can see quantum representations as

representations defined on the fundamental group m (M, ,,).

The main topological information that detects whether a representation
p: m1(X) — PU(p, q) defined on the fundamental group of a compact com-
plex manifold is or isn’t the holonomy of a HP-¢-structure, is contained in a
characteristic class belonging to the second rational cohomology of the mani-
fold, called the Toledo invariant. This class is the degree two part of a higher
cohomology class that is defined in the following way: suppose p lifts to a
representation with values in U(p, ¢), and take a decomposition of &£, the flat
CP»%-bundle over X with monodromy p as an orthogonal sum £ = E¥TGE™ of
a positive rank p subbundle £ and a negative rank ¢ subbundle £~. Then
the higher cohomology class is defined by

sch(p) :=ch(E') —ch(£7) € H*(X,Q)

where ch is the Chern character and sch stands for super/signed Chern char-
acter. These invariants have been introduced in the context of Hermitian
K-theory with applications to algebraic topology, see [34]. If X is an orb-
ifold, we can still define a higher Toledo class in the cohomology of the
underlying topological space of X with rational coefficients. In the case of

. —
a quantum representation p : 7r1(/\/lg’n) — PU(p, q), we thus have a class

sch(p) € H* (Mg, Q) = H*(M, ., Q).

Recall that the representation p depends on g,n of course, but also on
the particular embedding ¢ : K — C and the colors Ay, ..., A, attached to the
marked points. Setting V' = Q[A], we define a multilinear map wy,, : V" —

H*(Mgn,Q) by putting
Wy n(A1s. s An) = sch(p;’n()\l, cey An))-

Theorem. For any Hermitian modular functor, the family wgy, defined
above satisfies the axioms of a Cohomological Field Theory (CohFT).

A particular interesting instance of this is that the degree 0 part of this
CohFT, namely the signature o, defines on V' a structure of Frobenius algebra
which have not been studied before as far as we know. We prove that for the
SU5/SO3-TQFTs at any level, these Q-algebras are semi-simple.

To illustrate this theorem, consider the example of the Fibonacci repre-
sentation where k& = Q(q) and ¢° = 1. In this case, A has two elements
called the trivial color and the non-trivial color and V' = Q[A] is a quadratic
number field.

When i(q) = e*™/5  the representation p;’n becomes unitary, hence the
higher cohomological invariants vanish: we have sch(p;n) = dgy n, the dimen-
sion of the representation. Then V = Q(y) as an algebra where p = —g—q~!



is the golden ratio and
dg.n = Trg) (¢ (2+9)?7).

When i(q) = e?™/5 the representation P;,n is no longer unitary. We
have in this case V = Q(j) where j2 + j + 1 = 0 and the signature of the
representation is

0gm = Tro)/(i™ (2 +5)"71).

We collect in the following table the complete signature p|q of (V, h) where
all marked points are non-trivially colored.

n=0|n=1|n=2|n=3|n=4|n=5| n=6
g=20 110 0l0 0|1 110 11 1]2 3|2
g=1 2(0 01 1]2 3|1 3|4 5|6 1018
g=2 41 1]4 5|5 9|6 1114 | 20]20 34|31
g=3 9|6 7|13 | 19]16 | 29|26 | 42|48 | 74|71 | 119|116

This table makes clearer the terminology Fibonacci. We will provide
explicit formulas for the three Frobenius algebras arising at level 7. At prime
level £, these algebras seem to be particularly interesting number fields and
deserve a further study. They also provide a conceptual explanation to a
phenomenon observed by Funar, Pitsch and Costantino see [21].

The general theorem opens the door to a computation of the cohomologi-
cal invariants using the Givental-Teleman classification theorem, see [36]. In
particular, we give in this article an algorithm for computing the R-matrix
at first order that we implemented with Sage. The computation in the Fi-
bonacci case (¢ = 5) can be performed by hand and is already much more
complicated when ¢ = 7.

The computation of this R-matrix reduces to the computation of Toledo
invariants of representations of triangle groups in PU(p,q). We provide in
Appendix A a formula generalizing Meyer’s formula for the signature of 4-
manifolds which reduces the computation to the signature of some explicit
Hermitian matrices.

These CohFTs look particularly interesting: it seems difficult to compute
the R-matrices at higher order or to find the spectral curve encoding it
through Topological Recursion. Notice that CohFTs already appeared in the
context of modular functors in [31, 2] where the authors computed the Chern
character of the vector bundle of conformal blocks over M, . We stress
that our construction is indeed different as it highly relies on the Hermitian
structure, which plays no role in the aforementioned articles.

1.3 Interlude: a quick construction of Fibonacci repre-
sentations

We sketch here a construction which is detailed in [30] for the case of SUj-
modular functors. The Fibonacci case which is treated here is indeed differ-
ent, but the proofs are similar. We include it so that the unfamiliar reader
get a flavour of it: we refer to [10] for a full account of these constructions.

Let S be a surface of genus g and P C S be a finite subset of punctures.
We set k = Q(q) to be the cyclotomic field of order 5 where ¢° = 1 and define
the elements ¢ = —q — ¢~ and A = —¢3 (chosen so that A? = q).



We define A(S, P) as the k-vector space generated by isotopy classes of
finite graphs G embedded in S\ P (or equivalently 1-dimensional sub-cell-
complexes) up to the following five local moves.

1. Contraction-Deletion relation: [G/e] = [G] + [G \ €].

Gle G G\e

Figure 1: Bridge and loop relations.

4. Boundary relation: v = 1 — ¢ for all curves v surrounding a puncture
x € P, that is v = dD? where D? C S and D*N P = {z}.

One can easily prove that this vector space is finite dimensional and carries an
action of the mapping class group Mod(S, P) by the formula [f].[G] = [f(G)].

Even more, A(S, P) has an algebra structure given by “stacking” and
which is formally defined in the following way. Let G1,G2 be two graphs
embedded in S\ P. We can ensure by an isotopy that they intersect tran-
versally in a finite number of points. For any £ : G; N Go — {£1} we define
the smoothing G1 Ug G2 by replacing the neighborhood of each intersection
point p € G; NGy by a diagram where G; turns lefts to G at p if £(p) = 1,
right if £(p) = —1. We set then

[GlHG2] = Z AZ” £(r) [Gl Ug GQ].
£:G1NGa—{£1}

One can then prove that this product induces a well-defined structure of
algebra on A(S, P) which is preserved by Mod(S, P).

Traditionally, this algebra structure is described with skein modules: we
put G “above” G2 and apply at each crossing the Kauffman relation [G.] =



AN
AlG)] + A7 G<] where G, = /\ . The construction of the Fibonacci
representation reduces to the following structure theorem:

Theorem. The algebra A(S, P) is isomorphic to End(V) for some finite
dimensional k-vector space V.

Let @ : A(S,P) — End(V) be such an (non canonical) isomorphism. As
Mod(S, P) acts on A(S, P) by algebra automorphisms, the Skolem-Noether
theorem implies that this action is given through ® by a conjugation, hence
defining the Fibonacci representation p : Mod(S, P) — PGL(V) such that

O(f ) = p(£)®(@)p(f)~ Vf € Mod(S, P),¥a € A(S, P).

Finally, let  — Z be the involution of k satisfying § = ¢~'. This extends
uniquely to an anti-involution of A(S, P) given by A[G] — A[G] for any
embedded graph G C S\ P. This anti-involution corresponds through ®
to the adjunction with respect to a Hermitian form h on V preserved by
Mod(S, P). In formulas, h(®(x)v,w) = h(v, ®(T)w) for all v,w € V.

The involution being preserved by Mod(S, P), the Fibonacci representa-
tion is promoted to a representation p : Mod(S, P) — PU(V).

To actually work with this construction, we need to find an explicit model
for V: it can be constructed in a way similar to A(S, P) from a handlebody
bounding the surface S, we refer to [30] for details.

1.4 Geometrization: cabinet de curiosités

As the reader can check in the signature table of Fibonacci representations,
the coincidence of dimension pg = 3g — 3 + n happens only in few cases that
we list here

(9:n) €{(0,4), (0,5), (1,2), (1,3), (2,1)} (2)

We prove that each of these coincidences correspond to a genuine complex
hyperbolic structure on some compactification of the corresponding moduli
space.

It turns out that in the Fibonacci case £ = 5, there exists an orbifold
gn — ﬂjm, which contracts the boundary divisor consist-
ing of stable nodal curves having at least one elliptic tail. This contrac-
tion was already considered in the PhD dissertation of Livne [28] in the
case of (g,n) = (1,2), but we provide a generalization of this result for any
(g,n) # (2,0), see 2.3.1 (in the case (g,n) = (2,0), the contraction leads to a
quadratic singularity that will be studied in a forthcoming paper). This el-
liptic contraction, which might be interesting in its own, is very well adapted

. —5
contraction M

. . . . ——€
to the study of Fibonacci representations, since m (M, ,,) ~ 71 (M, ). We
prove (see the combination of Propositions 9, 10, 11 and 12).

.. . . —-—&
Theorem. In each of the cases (2), the elliptic tail contraction M, ad-
mits a complex hyperbolic structure whose holonomy s the corresponding
Fibonacci quantum representation.

This theorem implies that in those cases, the image of the quantum repre-
sentation pg ., : Modg ,, — PU(p, ¢) is an arithmetic lattice, commensurable
to those described by Gilmer and Masbaum in [23].



The uniformization of ﬂfm by the complex hyperbolic plane has been
made explicit by Deligne and Mostow in [16], with the use of hypergeometric
integrals. Together with Theorem 1.4 this gives a proof that the quantum
representation p8,5 is the monodromy of the hypergeometric function

Flow) = [ 0= 1) )= ) du.
1

Hirzebruch gave an alternative more abstract argument, by computing the
Ch9rn numbers of a convenient finite abelian smooth covering of the orbifold
ﬂ;},g) and showed that they satisfy the equality ¢ = 3co, leading to the
conclusion, thanks to Yau's theorem (solution to the Calabi’s conjecture),

that ﬂg’g) has a complex hyperbolic structure. This relation of Hirzebruch

complex hyperbolic orbifold with that of the orbifold Mg,s has been noticed
by Eyssidieux and Funar, see [19, Example 2.7].

Analogously, the construction of the elliptic tail contraction together with
its complex hyperbolic structure was discovered in the PhD’s dissertation of
Livne, [28]. What theorem 1.4 says in that case is that the holonomy of this
structure is in fact the corresponding Fibonacci representation.

A nice unexpected consequence of Theorem 1.4 is that it provides the
solution of a problem raised by Siu in the survey paper [41, Problem (a), p.
182]. We prove

Corollary. There exists a surjective holomorphic map between connected
compact complex hyperbolic manifolds, the domain and target being respec-
tively of dimension 3 and 2.

This map is obtained by lifting the forgetful map ﬂ‘; — MiQ to finite
smooth coverings. Using forgetful maps to approach Siu’s problem was al-
ready investigated in the context of Deligne-Mostow orbifolds in the work of
Deraux [17], although the conclusion was opposite. We notice that Koziarz
and Mok proved that such a surjective map between complex hyperbolic
manifolds of different dimensions cannot be a submersion, see [27].

Acknowledgments: We are indebted to many persons for numerous
conversations and advices around this work, including Martin Deraux, Pascal
Dingoyan, Philippe Eyssidieux, Elisha Falbel, Louis Funar, Selim Ghazouani,
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Nicolas Tholozan and Dimitri Zvonkine.
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2 Twisted orbifold structures on M,

In the context of algebraic geometry, the moduli space M, , and its com-
pactification ﬂg,n are Deligne-Mumford stacks, a notion invented specially
for them. The twisted version dealed with in this article has already been
introduced in the context of TQFT in [19] and in the context of r-spin struc-
tures, see [14] Section 2.1. This notion is not very accessible, at least to the
authors of this article, and is not strictly necessary for our purposes. For
these reasons we define here these compactifications in an independent way.
We present both the orbifold and orbispace viewpoints. Even though we
will concretely mostly use the first one, the second will be useful to keep in
mind for those having a more topological background/affinities. Most of the
material of this section is classical, apart in the last subsection where a new
construction of a particular contraction of the twisted orbifold structure of
My, in the level £ = 5 case is described: the elliptic tail contraction.

2.1 Preliminary remarks on orbifolds

2.1.1 Orbifold versus orbispaces

In this article, we oscillate between two points of view on orbifolds. The
first one is the usual concept of orbifold in the realm of differential complex
geometry, the other one is the notion of orbispace which belongs to homotopy
theory. Both are well-known, we refer to [24] for a nice discussion about their
interplay. For the benefit of the reader, let us recall what these structures
mean in the case of a developable orbifold, i.e a space of the form X/G
where X is a complex variety and G is a discrete group acting properly and
holomorphically on X.



An orbifold chart of X/G around [z] is obtained by linearizing the action
of Stab(z) in a neighborhood U of € X. This open set is projected to a
neighborhood of [x] € X/G, providing the orbifold atlas of X/G. A map
f: X/G — Y/H between two developable orbifolds is an orbifold map if it
can be lifted to a map f: X — Y which is equivariant with respect to a
morphism G — H.

The emblematic example that will be considered here is the moduli space
My of algebraic curves of genus g with n marked points, assuming that the
stability condition 3g — 3 +n > 0 holds. This space is the quotient of the
Teichmiiller space 7y, by the action of the mapping class group Mod . We
recall (see e.g. [9]) that 7, , has a structure of smooth complex manifold of
dimension 3g —34n and that the action of Mod, ,, is properly discontinuous,
so My n = Tg.n/Mody ,, has a natural structure of developable orbifold.

Another fundamental example is the Deligne-Mumford compactification
My, of M., We refer to [26], [5] or [46] for its definition as an orbifold, and
provide a review of its construction in Section 2.2. Contrary to Mg ., ﬂg,n
is not developable. However, we will work with alternative compactifications,
twisted versions of Mg,n, which are developable, see section 2.2.

This point of view is well-adapted for most geometric constructions in-
volving for instance the integration of differential forms. However, the alge-
braic topology of X/G is partially lost in the underlying topological space
and not so easy to capture from the system of orbifold charts, as for instance
the orbifold fundamental group.

For this reason, what we call the orbispace is, in this case, the homotopical
quotient, that is the space X = EG x X/G where EG is a contractible space
with a free and proper action of G. The action of G is diagonal so that we
have a natural projection p : X¢ — X/G. In the case when G is a finite group
acting trivially on a point *, this gives *¢ = EG/G = BG, the classifying
space of G. We observe that in general, the preimage p~!([z]) is a classifying
space for the finite group Stab(z). We refer to [24] for a general definition of
orbispace and for the construction of the orbispace associated to an orbifold.

The advantage of this second definition is that the orbifold fundamental
group of X/G is the usual fundamental group of X and more generally, all
invariants of X/G coming from algebraic topology will be, by definition, the
usual invariants of the homotopical quotient X¢.

To sum up, an orbifold is a topological space M endowed with a system
of orbifold charts that we denote by M°. It can be converted into a (infi-
nite dimensional) cell-complex M" by gluing the homotopical quotients of
the charts. This latter space comes with a map p : M" — M such that
p1({z}) ~ Bstab(z)- When no confusion is possible, the three structures
M, Me°, M" will be denoted simply by M.

In paragraphs 2.1.3 and 2.1.4, we describe the twisted orbifold and or-
bispace structure ﬂ?l in details, for the benefit of the reader who is not
familiar with these notions.

2.1.2 Euler characteristic

If a topological space A is homeomorphic to the complement of a closed
subcomplex F' of a finite complex X, we set x(A) = x(X) — x(F). This
quantity satisfies the identity x(A) + x(B) = x(AU B) + x(A N B) when it
makes sense and gives rise to an Eulerian integral so that x(X) = [ + dx, see

10



for instance [15] for a full account.
If X — X is a finite covering of degree d of finite CW-complexes, one

has x(X) = dx(X). As EG — BG is a covering of degree |G| and EG is
contractible, it is natural to set x(BG) = 1/|G]|.
Finally, by integrating the Euler characteristic along the fibers of the map

p: MM — M, we are led to define

o dx ()
X(M) = /M [Stab(a)]

2.1.3 The orbifold structure of ﬂi,l

Consider first M ;, the moduli space of elliptic curves with one marked
point. As any pointed elliptic curve has the form E, = (C/Z & 7Z,0) for

some 7 € H, two such curve E, and E,. being biholomorphic iff 7/ = Z:is
where (Z Z) € SL(2,Z), we have M; 1 = H/SLy(Z) where the quotient

is understood in the orbifold sense. The underlying topological space is a
complex plane where the generic point has a stabilizer of order 2 and two
special points have order 4 and 6. This gives y(M1,1) = — 5.

In order to compactify M; 1, we add all rational points to the boundary
of H to define H = HUP!(Q) and set My ; = H/SL2(Z). As these rational
points form a single orbit, we have set theoretically ﬂl,l = M1 U{co}.

As H is no longer a complex variety, we need to explain how are defined
the orbifold charts around the point co. The stabilizer of co € H is the group
Z of translations by 1: for r > 1, the open set U, = {z € H,Im z > r} U {oo}
induces a homeomorphism U,./Z — M 1 onto a neighborhood V of the point
at infinity. We fix now £ a positive integer and identify U, /¢Z with the disc
D of radius e~2™"/¢ by mapping z to e*7%/¢. By construction, there is a map
D —V C M;,; which induces a homeomorphism D/p, ~ V where py is the
group of /-th roots of unity.

Definition 1. The orbifold structure on ﬂil is the unique orbifold structure
on ﬂl,l which extends the orbifold structure on My, and such that the
orbifold chart around the point at infinity is given by the action of the group
e X Z/2Z on D where the second factor acts trivially.

By construction, the isotropy group at infinity is Z/¢Z x Z/2Z which gives
in particular X(Mf’l) = % - 1—12 Its fundamental group is a double cover
of the triangular group A(2,3,4) = (a, B,7|a? = 2 = v* = afBy = 1). It is
well-known that this orbifold is developable, its universal covering being the
hyperbolic plane H if ¢ > 6, the complex plane C if { = 6 and the Riemann
sphere P! if ¢ < 6. Notice that in the case £ = 5, the fundamental group
of ﬂf,l is the binary icosahedral group 12 C SU(2). This orbifold plays a
fundamental role in the article, notably in section 2.3.1.

. . - .
We also observe that the topological space underlying M, ; is homeo-

—¢ —
morphic to S%. As the map p :" M, ; — M, ; induces an isomorphism in
rational (co-)homology and cohomology (as shown by the spectral sequence

of equivariant (co-)homology), we get H* (M?D Q) ~ H*(S%,Q).
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2.1.4 The orbispace ﬂi,l as a classifying space

Recall that the classifying space of a category is a simplicial set whose ver-
tices are the objects of the category and n-simplices are parametrized by
chains of maps Cy — -+ — Cy,. We refer to [39] for this notion and recall
the two following basic facts. Two equivalent categories have homotopically
equivalent classifying spaces and the classifying space of the category with
one object * with Hom(x, x) = G is the classifying space BG.

Consider a category SC, whose objects consists in pairs (.5, y) where S is
a closed surface of genus 1 and -y is an essential simple closed curve, possibly
empty.

Denote by T'y(S,v) the group of homeomorphisms of S preserving v and
isotopic to some power of T’ f , where T, denotes the Dehn twist along v. A
morphism f : (S,7y) = (5,7) is a homeomorphism such that f(v) C 4 with
the relation that f ~ ¢’ o f oy for any ¢ € T'y(S,7) and ¢’ € T'x(S,7).

The classsifying space of this category is precisely the space Wfl. The
classifying space of the subcategory of pairs of the form (.5, 0) is the space
Bgt,,(z) which is homotopic to h/\/lm. The classifying space of the subcategory
of pairs of the form (S,~) with v # () is the space By 2zx2/02-

This construction is a ¢-twisted version of the construction given in [13].

2.2 Construction of the twisted compactification M;,n

2.2.1 The orbifold structure ﬂ;,n

We review an analytic construction of a twisted version of Deligne-Mumford’s
orbifold, which was considered in the work of Eyssidieux and Funar [19]. Our
point of view is slightly different, and instead of using the stack road, we use
the augmented Teichmiiller space.

Fix integers g,n > 0, £ > 1, such that 29 —2 4+ n > 0, and let S be a
reference oriented closed surface of genus g with a subset P C S of cardinality
n. We denote by 7 (S, P) the augmented Teichmiiller space, namely the set
of equivalence classes of couples (C, f) where C' is a stable nodal curve of

genus g and f: S — C is a pinching map, which means

1. f: S — C is a continuous map such that f(P) N SingC = () where
Sing(C) is the set of nodes of C.

2. For all z € SingC, a, = f~!(z) is a simple curve and, setting o =
f~1Sing(C), f induces a homeomorphism from S\ a to C'\ Sing(C).

The isotopy class of a will be referred to as the pinched set of f. The stability
condition is that each component of C'\ Sing C' U f(P) has negative Euler
characteristic. Finally, two pairs (C, f) and (C”, f’) are equivalent if there
exists a biholomorphism ¢ : C — C” such that ¢ o f and f’ are isotopic.
The augmented Teichmiiller space is not a manifold, but it carries a nat-
ural stratification by sets having a complex manifold structure. Given an
isotopy class of one dimensional submanifold a C S\ P whose complemen-
tary regions have negative Euler characteristic, let B, be the stratum cor-
responding to curves whose pinched set is a. Each stratum B, is naturally
identified with a product of usual Teichmiiller spaces, and acquires a struc-
ture of complex manifold. For instance, the strata of maximal dimension By
is identified with the usual Teichmiiller space 7 (S, P). For the topology on
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T (S, P) we refer to [1, 9] (see also the more recent treatments [5] and [26]).
The naive quotient M(S, P) = T(S, P)/ Mod(S, P) of the augmented Te-
ichmiiller space by the modular group is a compact space homeomorphic to
the underlying topological space of Deligne-Mumford compactification ﬂg,n
of the moduli space of curves, see [25].

We now review the complex orbifold structures on M(S, P) inherited
from Deligne-Mumford, and its twisted versions. Let 'y C Mod(S, P) be
the subgroup generated by the Dehn twists along the components of o, and
by Mod(S, P,a) C Mod(S, P) the subgroup of elements that fix a (the com-
ponents might be permuted). Notice that T',, is a free abelian group of rank
||, the number of components of «. We have an exact sequence

0—T, — Mod(S, P,a) = Mod(S/a, P) = 0

where S/« is obtained from S by collapsing each connected component of
a to a point. If (C, f) is an element of 7 (S, P) whose pinched set is a, we
define Aut(C, f) so that it fits in the following exact sequence

0— T, — Stab(C, f) = Aut(C, f) = 0

Let U, be the open subset of 7 (S, P) formed by stable marked curves
whose pinched set is contained in « up to isotopy. We denote by V,, the quo-
tient of U, by I',. The following result allows to define an orbifold structure
on the quotient M(S, P) which recovers Deligne-Mumford’s orbifold M, ,,
see [26]:

Theorem 1. 1. V, has a unique structure of complex manifold so that
the natural map T (S, P) — V,, is holomorphic.

2. The projections in V,, of the strata By, with o/ describing the compo-
nents of a, is a family of normal crossing divisors.

3. The natural projection Vo, — M(S, P) has, locally around the class of
(C, f) in Vy, fibers given by the orbits of the group Aut(C, f).

4. These charts provide an orbifold structure on M(S, P) which is biholo-
morphic to Deligne-Mumford’s orbifold Mg, .

We now define, for any ¢ > 1, a twisted orbifold structure MZ(S, pP)
which recovers the previous one when ¢ = 1 and share the same underlying
topological space. We define, for any (C, f) € T (S, P) whose pinched set is
a, the group Aut’(C, f) = Stab(C, f)/fT'4; this group is a central extension

0 — Dy /ITo — Aut’(C, f) — Aut(C, f) — 0. (3)

Corollary 1. 1. There is a unique complex manifold structure on V! =
U /IT,, such that the ramified covering VX — V,, of group T'o /(T is
holomorphic.

2. The projection of the strata By in V(f is a normal crossing family of
divisors.

8. For any (C, f) € T (S, P) whose pinched set is o, the natural quotient
map V. — M(S, P) has local fibers around the class of (C,f) € VY
given by the orbits of the group AutZ(C’, -

4. These charts provide an orbifold structure MZ(S, P) which is biholo-
morphic to the construction given by Eyssidieuz and Funar in [19].
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2.2.2 The orbifold M, is uniformizable for £> 5 odd

n
We recall that an orbifold is uniformizable if it carries a finite orbifold cov-
ering which is smooth, in the sense that the isotropy groups are trivial. This
is equivalent to saying that the orbifold is the quotient of a smooth manifold
by a finite group acting by biholomorphisms. Eyssidieux and Funar proved
that the orbifold Mﬁ,n is uniformizable, at least if £ > 5 is an odd integer,
see [19, Proposition 4.10] (In the case n = 0, this is a consequence of Pikaart
and de Jong’s work [37]: the smooth covering is a moduli space of curves
with nilpotent level structures.). They notice that the SO(3)-quantum rep-
resentations of level ¢ with all colors equal to 1 are injective in restriction
to the isotropy groups Aut’(C, f) of the orbifold ﬂz,n, defined in (3), hence
this is a consequence of Selberg’s lemma applied to the image of the relevant
quantum representation.

2.2.3 Forgetful map

—4 ——t . .
Lemma 1. The natural forgetful map M, ., — M, , is a holomorphic

g,n
orbifold map.

Proof. Given g,n with 2g—2+n > 0, we fix asubset P = {z1,...,Zp11} C Yy
and define a continuous forgetful map (see [5])

Tg,n-&-l - 7dg,n (4)

which assigns to a marked stable curve of genus g with n + 1 marked num-
bered points, (C, f,Q = f(P)), the curve (C’, f’, Q') where (C',Q’) is the
stabilization of the curve (C,{f(z1),..., f(zn)}), and f’ is the composition
of f with the stabilisation map (C, Q) — (C’,Q’). The map (4) is equivariant
with respect to the morphism

Modg 41 — Mody ,, (5)
which sends the subgroup Ff;,n 11 C Mody 41 generated by the f-powers

of Dehn twists in Modg 41 to the corresponding subgroup Ff;,n C Mody .
Hence, denoting ﬁ’n :=Tgn/T% n, the map (4) induces a map

f;,nqtl - ﬁ,n

which is holomorphic with respect to the smooth complex structures on
77'3” 41 and Tf;m given by Corollary 1; indeed, it is continuous and holo-

morphic in restriction to 7;,”+1/ Modg n+1, which is Zariski dense in Tfmﬂ,
so this is a consequence of Riemann’s extension theorem. We deduce that
the forgetful map

Wi = 1 Wi F 0
Mg7n+1 = Tz,n+1/MOdg,n+1 — Mg,n = 7-lg,n/l\/IOdg,n

is a holomorphic orbifold map as we wanted to prove. O

2.2.4 The /(-twisted compactification as a classifying space

. . Wi Ly
We present here a construction of the homotopical version of M, which is
purely topological and makes clear the formal properties of these spaces. It is
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sufficient for defining the higher Toledo invariants of quantum representations
and showing that they satisfy the axioms of a CohFT.

Let SCy be the category whose objects are triples (S, P, «) where S is a
closed oriented surface of genus g, P C S a finite set of cardinality n and
a C S\ P a collection of disjoint simple curves such that each component of
S\ (PU«) has negative Euler characteristic. We denote by I'% (S, P) the group
of homeomorphisms of S fixing P, preserving o and generated up to isotopy
by ¢-th powers of Dehn twists along the components of «. Finally we define
a morphism (S1, Pi,a1) — (Sa, P2, a2) as a homeomorphism f : S; — S
mapping P, to P, and a7 into asg, up to the relation f ~ o o f o ¢y for
;€T (Si, Py).

Proposition 1. The classifying space of the category SCy is the orbispace
associated to the orbifold MK(S, P).

Proof. This is a direct adaptation of Theorem 6.1.1 in [13]. O

2.3 The elliptic tail contraction

An alternative compactification of the moduli space will be useful to study
the Fibonacci quantum representations, namely those corresponding to the
group SO(3) and the level £ = 5: it is obtained from ﬂfm by contracting
the elliptic tail divisor 5 . This divisor is made of nodal curves having at
least one singular point separatlng the curve into two components, one of
which being an elliptic curve without marked point. The main property of
this compactification is that it still has a natural orbifold structure. In this
section we provide the construction of this compactification, prove that it
has some good functoriality properties with respect to forgetful maps, and
finally we compute the first Chern class of its canonical bundle.

2.3.1 The construction

Theorem 2. For (g,n) # (2,0), there exists an orbzfold /\/lg » and an orb-
- M

ifold holomorphic (contraction) map c : ./\/lg n g.n Whose fibers consist
of equivalence classes of stable curves that are isomorphic after taking out
the elliptic tails while keeping their attaching points. The map c induces an

isomorphism at the fundamental group level.

The space /\/lg n, as a set, might be identified with the set of stable nodal
curves of genus g — k with n 4+ k& marked points (k < g), n of which (the
marked points) being numbered, not the k remaining ones (the tail points).
The map ./\/l ~ Mgy, — M‘j » @ssociates to a stable nodal curve of genus
g with n numbered marked points, having k elliptic tails, the curve obtained
by contracting each of its elliptic tails to a tail point.

Remark 1. In the case (g,n) = (2,0), the elliptic tail divisor is still con-
tractible, but its contraction leads to a quadratic singularity. This will be
investigated in a forthcoming work.

It will be convenient to use an appropriate smooth finite orbifold Galois

covering of M g,n» and to construct the contraction in an equivariant way
with respect to the Galois group:
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Lemma 2. There exists a finite Galois orbifold covering X — M;n having
the property that X is smooth, and that the preimage in X of the elliptic tail
divisor 5?7@ is a normal crossing divisor 5ff@ whose irreducible components
are smooth hypersurfaces.

Proof. Let p : m(M,,) — G be a morphism to a finite group having the
5
g’

see section 2.2.2 for its existence, and p’ : m (ﬂgn) — Aut(H1(S,Z/5Z)) be
the morphism induced by the action on the homology of S modulo 5 (it is
a priori defined on the mapping class group; the fact that it descends to a

property that it is injective in restriction to the isotropy groups of M

morphism defined on 71 (M ) comes from that Dehn twists are mapped to
elements of order 1 or 5 in Aut(H1(S,Z/5Z))).

Let X be the covering of ﬂ5 corresponding to the morphism p x p :

g,n
m (Min) — G x Sp(2¢,7Z/5Z). Since p x p' is injective on isotropy groups
of ﬂz’n, the covering X is a smooth orbifold. In particular, denoting by

T X — Mz’n the natural projection map, the second item of Corollary 1
tells us that the preimage 5ff@ = w‘l(éi”’@) C X is a normal crossing divisor.

Any point x € X corresponds to an equivalence class of pinching maps f :
S — C,. Denote by f, := fi: H1(S,Z/5Z) — H,(C,Z/5Z) the map induced
by the pinching map. As X is the quotient of the augmented Teichmiiller
space by the kernel of the morphism p x p’, the map f, is well-defined since
the kernel of p x p’ contains the kernel of p’.

For any symplectic subspace E C Hy(S,Z/5Z) of dimension 2, denote by
Hpg C X the set of elements x € X so that C, is a nodal curve having an
elliptic tail whose first homology modulo 5 is the subspace f,(E); the union
of all Hg’s is the divisor 550). So it suffices to prove that Hg is a smooth
hypersurface to conclude the proof of the lemma.

The preimage of Hg in the augmented Teichmiiller space is the union of
all strata B, where some component 3 of « is a simple closed curve that
separates S in two components, one of which being homeomorphic to a torus
minus a disc T3 C .S whose homology modulo 5 maps via inclusion onto the
subspace E. We denote by Cg the set of all these a’s. The closure of By, is
the union of strata B, where o/ contains an element « € Cg up to isotopy.
Hence it suffices to prove that two non isotopic simple closed curves 3, 8’ € Cg
cannot be components of a same a € Cg, or which is equivalent, that 8 and
B’ intersect. Suppose by contradiction that this happens. Then 3 being
separating and not isotopic to § it cannot be contained in Ts. Reversing the
role of 8 and 3’ shows that T3 and T are disjoint; in particular the image of
their homology group in H;(S,Z/5Z) are orthogonal, which is contradictory
to the fact that they are both equal to E. O

The elliptic tail divisor 5{’ ¢ is parametrized in a natural way by the moduli

space Mi xﬂ;,l,n 41 via an attaching map. Although this parametrization
is not injective as soon as g > 2, and so cannot be inverted at the level of
6?@ - ﬂ;m it can be done at the level of Hg C X in the following sense:
one has a natural covering map rg : Hg — ﬂil X ﬂi_l,nﬂ, which assigns
to an element of Hg the unique elliptic tail whose homology modulo 5 is
E as the first coordinates in MTJ, and the contraction of this latter as the

. . o5 : . —5 .
second coordinates in M,_; .. ;. Since the unique smooth cover of M, ; is
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its universal cover which is biholomorphic to the Riemann sphere, this equip
each (smooth) hypersurface Hg of 5f(® with a locally trivial fibration

M, ~P' - Hp 8 Ky (6)

over a smooth manifold Kz. The fibers of fr are the connected components
1,550
of rg (./\/ll)l x {*}).

Those fibrations on different Hg’s are compatible in the following sense:

Lemma 3. Given FEq, ..., E,. a collection of symplectic 2-dimensional sub-

spaces of H1(S,Z/5Z), the intersection Hg, . g, := Hg,N...NHg,_ (it is not

empty if and only if the E;’s are orthogonal wrt the intersection form), there

is a fibration of Hg, N...N Hg, by (PY)" (with a natural identification of the
—_—T

fibers with ﬂil up to the action of m (Hi’,l)ﬁ in particular the monodromy
does not permute the P1-factors) so that the i-th P*-subfibration corresponds
to the fibration fg, of Hp, restricted to the intersection Hg, N...N HE,..

: : ——5 —5
Proof. The intersection Hg, . g, has a natural map to (M )" x M _. ...,

whose first r coordinates are given by the elliptic tails corresponding to each
E;’s, and the last one is the contraction of those elliptic tails. This map is an
orbifold covering map, and since Hg, ... g, is smooth, and the unique smooth

covering of (ﬂil)T is its universal cover biholomorphic to the r-power of the
Riemann sphere, the lift of the fibration of (Mil)r X ME*T1H+T by (ﬂil)r
defines a fibration of Hp, g, whose fibers hare naturally universal covers

of (ﬂil)r. The last statement of the lemma is then obvious. O
Lemma 4. For any fiber F of the fibration (6), we have Hg - F = —1.

Proof. Although this lemma is true in general, we explain the proof only
when (g,n) # (2,0). In the case where (g,n) = (1,2), this result can be
found in Livne’s PhD dissertation [28], but for completeness we recall the

proof here. The preimage (5{{@ of (5?’@ ~ Mj, in X is a finite union of
rational curves in this case, the stabilizer of each of those being a subgroup
of H isomorphic to m1(V), where V is a small tubular neighborhood V of
(5{’7@. Notice that the fundamental group of V is a Z/5Z-extension of the

fundamental group of 5? ¢» Which is the binary icosahedral group 12 C SU(2),
see Subsection 2.1.3. Denoting by R a component of 5%, we then have

[R]? =5 x |12| x [6?79,]2.

But [67 o] = £01,9, so [07 )7 = 25[01,0]> = — 5215, see [46, Part 2.2.2], and
finally we find [R]?> = —1 as claimed since |I2| = 120.

Remark 2. Using Castelnuovo’s contraction theorem, one can deduce from
this computation that the neighborhood of the divisor 5?70) mn ﬂiQ 18 150-
morphic as an orbifold to the neighborhood of the exceptional divisor in the
quotient of the blow-up of C? at the origin by the group generated by multi-
plication by psId and by the binary icosahedral group 12 C SU(2). We leave
the details for the reader.
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Let us now consider the general case. First notice that if g = 0 there is
nothing to prove since 6?0) is empty. So in the sequel we suppose that g > 1.
The strategy is to construct a complex surface S C X which intersects Hg
transversally in a curve whose components are fibers F' of fg. Then the
statement of the lemma is equivalent to saying that F is a (—1)-rational
curve in S.

The construction of S depends on (g,n). In the sequel we assume that
(g:n) ¢ {(1,1),(1,2), (2,0)}.

If n > 1, fix an element Cy € Mz,l,n (notice that the stability condition
2(g — 1) — 2+ n > 0 is satisfied by our assumptions), and define S as being
the pull-back in X of the submanifold R C ﬂ;n formed by nodal curves
obtained by attaching a curve C' € ﬂiQ to Cp by identifying fixed marked
points. Then R is isomorphic to M?,Q, and under this identification, its

¢.n 1s the elliptic tail divisor of ﬂ?z. Hence,
the intersection of S with Hg are made of fibers F of fg, and the previous
considerations in the particular case (g,n) = (1,2) show that in S those F’s
are (—1)-curves. Hence we are done in that case.

If n =0and g > 3. Fix smooth curves C; € szl,l and Cy € Mil, and
let R C m;n be the surface formed by nodal curves obtained by attaching

C1 and Cy to a curve C € Mig. Let now S C X be the set of curves that
project to a curve of R, in such a way that the homology of the component

. ) . —5
intersection with 6?0 c M

. . . vl s .
C modulo 5 is equal to E. Then S is a covering of M, ,, and its intersection

with Hp is the pull back of the tail divisor of Mi?. Hence the lemma is
proved in that case too. O

Proof of Theorem 2. Suppose that we have a smooth compact complex man-

ifold Y, a finite family of normal crossing smooth hypersurfaces H; C Y, and

for any subset of indices J C I, fibrations (P!)) — H; := (| H; 4 Ky, in
JjeJ

such a way that

1. the monodromy of f; does not exchange the factors of the fibers ~
(P1)/, so given any J' C J, the J'-coordinate part of the fibration f;
is a well-defined (P')” -fibration ,

2. given disjoint subsets Ji, JJo C I the intersection Hy, 5, = Hj, N Hy, is
invariant by the fibration f;, (resp. fj,), and its restriction to Hy, j,
is the Ji-coordinate part (resp. the Jy-coordinate part) of the fibration

fn oz
3. for any ¢ € I, and any fiber F' = f[l(*) C H;, we have H; - FF = —1.
Choose such a data and enumerate I = {i1,...,i.}. By [35] and its

supplement [22], we can find a contraction map ¢; : ¥ — Y7 to a smooth
complex compact manifold, which has the property that it maps H;, to a
codimension two submanifold of Y7, contracting each fibers of f;, to a point
and not more. The c;-images of the hypersurfaces H;, for k£ > 2 form a
smooth family of normal crossing hypersurfaces in Y7, and their intersections
are naturally endowed with fibrations that satisfy all the previous properties
1., 2. and 3.. We can then define inductively smooth compact complex
spaces Y}, and contractions ¢ : Yy_1 — Y} that contract the P'-fibration of
the hypersurface c;_1 0...0c¢1(H;, ). At the end we obtain a space Y; which
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is topologically the quotient of Y by the equivalence class given by = ~ y iff
for each i we have that f;(z) = fi(y) as soon as both x,y € H;. This space
does not depend on the enumeration of I that we have chosen; indeed, this is
clear at the topological level, and at the analytical one this is a consequence
of Riemann’s extension theorem and of the fact that the map ¢,.o...0¢q is
injective apart from a codimension one analytic set.

Applying this to the covering X of /\/l . constructed before, together
with the family of smooth hypersurfaces H g and the fibrations of their in-
tersections given by Lemma 3, we find a contraction map ¢: X — Z to a
smooth space Z, which by the aforementioned unicity is equivariant with

respect to a morphism Gal(X — ﬂin) — Aut(Z). The quotient of Z by

. . L . . -5
the image of the previous morphism is the desired quotient of M .. O

2.3.2 Forgetful map between Fibonacci elliptic tail contrac-
tions

In the Fibonacci case £ = 5, this enables to construct natural forgetful maps
between the elliptic tail contractions.

Lemma 5. The forgetful map of Lemma 1 induces an orbifold holomorphic
map

—& —&
Mg,n+1 - Mg,n (7)

which is onto.

Proof. We consider the finite Galois orbifold coverings Xg 41 — ﬂ;n 11

and Xy, — /\/l g.n constructed in subsection 2.3.1, with smooth underly-
ing spaces Xgyn+1 and Xg,. As in Lemma 2, we choose the coverings in

such a way that that they cover the covering of ./\/l n+1 OF ./\/lg », made of
pointed curves whose underlying curve is marked by Hy(S,Z/5Z). In par-
ticular the pull back of the elliptic tail divisor is the union of hypersurfaces

Hy,, = UgHEg 4, with E varying over the set of symplectic dimension two

symplectic submodules of Hy (S, Z/5Z), with Hg, 4 , being the subset of ﬂ;n
having an elliptic tail whose homology group maps onto E by inclusion.
Up to taking a larger covering of X, ,,11 if necessary, we can assume that

the forgetful map M g1 = M;n (constructed in 2.2.3) lifts to a holomor-
phic map h : Xgnt1 = Xgn equivariant wrt to the actions of the Galois

groups of the coverings X, 41 — Mq ni1 and Xg o — ./\/lg . By con-
struction, the map h maps Hg g n+1 to Hg g4, sending the P'_fibration of
Hg gn+t1 to the one of Hg 4 ,,. So it induces a continuous (and hence holo-
morphic by Riemann’s extension theorem) map from the contraction Z 1
of the Hg 4.n+1’s to the contraction an of Hg 4,n. Reasoning inductlvely as
in the proof of Theorem 2 shows that the map h induces a holomorphic map
from the contraction Z 41 of all Hg 4,41 to the corresponding space Z ,,.
This map is equivariant with respect to the natural actions of the Galois
group of Xg n41 — Mz’nﬂ (resp. of Xy, — Mzn) acting on Zg ,, 11 (resp.
Zgn). This ends the proof of the lemma. O

Remark 3. The kernel of the forgetful morphism (5) is isomorphic to the
fundamental group Fg,, =1 (S\{z1,...,2n}) of the genus g surface minus
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n points, by Birman’s exact sequence. So the kernel of the £-twisted forgetful
morphism
¢ ¢
Mod,, ,,; — Mod, ,, (8)

is the quotient of Fy , by the group generated by {-powers of elements freely
homotopic to simple closed curves. It would be interestz'ng to compute this
group for (g,n) = (1,2) (in this case Mg ni1 and M are both complex
hyperbolic orbifolds of respective dimension 3 and 2, and the forgetful map
answers in the negative Siu’s problem [41, Problem (a)/, see Corollary 1.4).

2.4 The canonical bundles of Mz,n and M;n

We recall that the second cohomology group of M, , with rational coef-
ficients is generated by the i-classes v¢;, ¢ = 1,...,n, the class k1, and
the classes of the boundary divisors: &, and 4.4, where 0 < a < g
and A C P is a subset satisfying the inequalities 2a — 2 4+ |A| > 0 and
2(g —a) =2+ (n—|A]) 2 0 (see [4]).

In the sequel we denote by d the sum of all boundary divisors and by
1 =), 1; the sum of ¢)-classes. It will be convenient for us to introduce the
class

K1 =K1 — 1

since the Toledo invariants of quantum representations are better expressed
in the basis formed by 1-classes, boundary classes, and k1.

Lemma 6. ngm = g’gl + ( %) 5+
Proof. Harris and Mumford proved that (see [5, Theorem 7.15])
Kﬂg C=1BM Y -2

where \; is the first Chern class of the Hodge bundle, and this latter is
expressed in our basis by the formula (see [5, Theorem 7.6]).

FL=12\, — 6.

So we have: 13 1
Ko =R — =8+
My = oM T 20 FY

Now, the natural map M‘;yn — Mg’n is holomorphic and ramifies on the
boundary divisors at the order £, so we get
Kipe = Kﬂw +(1- 2)6

g,n

and the result follows. O

Lemma 7. For (g,n) # (2,0), denote by c : M;n — ﬂin the blow-down
(see Theorem 2). We have

* 5
C ij = K g . — 61’(2)
s0 its first Chern class in H*(M 7 n,(@) H?(M, ,, Q) satisfies
(¢ Kge ) = er(Kge )= 59
ci(c*K—e V=ci(K—5 )— =
1 M;n 1 Mz,n 5 1,0
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Proof. If Y is a smooth complex analytic space, with P!-fibered hypersurfaces
H; as in the proof of Theorem 2, we have ¢j(Ky,) = Ky —H;. By induction, if
we denote Z =Y,., H =U;H;, and ¢ = ¢,0---0c¢y : Y — Z the composition of
all contractions, we get ¢* K, = Ky —H. If Y, H and the P'-fibrations on the
H;’s are invariant by a finite group G C Aut(Y’), denoting by G’ C Aut(Z2)
the image of the action of G on the quotient Z (which is unique), we then
have
Kyg=c" Kz — H/G,

which implies the lemma by construction of the elliptic contraction. O

2.5 The Euler characteristic of Mf;n

Let z = (C, f) be a stable curve of genus g with n marked points that we
think as a point in M, ,,. We define | Sing(x)| to be the number of nodal

. . . 4
points of z and | Stab®(z)| to be the size of the isotropy group of z in Mg,

(set Stab! = Stab). From the exact sequence (3), we get |Stab’(z)| =
¢15g(@)l| Stab(z)|. This suggest to define the polynomial

B x| Sing ()]
Xg,n("f) = /Mg’n mdx(x) € Q[x]

——t
so that x(M, ,,) = X,..()- This polynomial satisfies the following quadratic
recursion relation which allows to compute it effectively, see [44] Theorem
3.6 and the formulas following the theorem (notice that they use instead

%g’n = Y‘g,n/n!):

_ s n\_  _
Xgn = / (Xg—lm-l-? + Z nin2 ( )Xm,m X.qz,nz)d"<C + X(Mg.n).
0

ni
g=g1+g2
n¥2=nq+ng

This formula, together with Harer-Zagier formula

(29 - 1)329

(29 +n —3)!

allows to compute the Euler characteristic of ﬂz,n. We find for instance
Xo.5(k) = 2 — 10 + 15k? hence X(Mg,s) =2

3 Hermitian cohomological invariants

Let V be a finite dimensional complex vector space endowed with a non-

degenerate Hermitian form h of signature (p,¢). This means that there are
coordinates (z1,...,%p,Y1,...,Yq) such that

P q
h=Y "l = lyl* 9)
i=1 j=1

For simplicity, we will often remove h from the notation. Depending on the
purpose, we will denote by PU(V) or PU(p, ¢) the group of projective unitary
transformations of V. We will also write d(V) =p+q and o(V) =p —q.
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3.1 Definition of the invariants

Let X be a connected topological space endowed with a representation p :
m1(X) — PU(p,q). The purpose of this section is to define a family

sch(p) = Zschk(p) € H 0% (Xx,Q)

k>0 k>0

which is natural in the sense that whenever there is f : X — Y and p :
m1(Y) = PU(p, q) then sch(p o f.) = f*sch(p).

One may think of p as the holonomy of a flat PU(p, ¢)-principal bundle
over X. By forgetting the flat structure, this bundle is obtained by pulling
back a universal PU(p, ¢)-principal bundle EPU(p, ¢) — BPU(p, ¢) by a map
f X — BPU(p, q), well-defined up to homotopy. We are then reduced to
defining a class sch € H*(BPU(p, ¢), Q) and set sch(p) = f* sch.

Recall that the natural map « : SU(p, q) — PU(p, ¢) fits into the following
central exact sequence

0 = tp+q — SUD, q) = PU(p,q) = 0

where 1,44 C C* is the group of roots of unity of order p + ¢. This exact
sequence gives rise to a fibration Bu,+, — BSU(p,q) — BPU(p,q). As
Hk(B/Lp+q,@) = 0 for £ > 0, a usual argument involving the Leray-Serre
spectral sequence gives that the map

7 . H*(BPU(p,q),Q) — H*(BSU(p, q),Q)

is an isomorphism. Hence it is sufficient to define sch € H*(BSU(p, q), Q).
Consider P — X a principal SU(p, ¢)-bundle and form the Hermitian
bundle £ — X associated to the tautological action of SU(p,q) on V. We
can find an orthogonal decomposition £ = £T @ £~ such that the restriction
of the Hermitian structure to €T (resp. £7) is positive (resp. negative).
Then we set
sch(p) = ch(ET) — ch(£7)

where ch denotes the Chern character. In particular, we have scho(p) =
scho(P) = p—q = o(V). We also observe that if ¢ = 0 then & = £*. If this
bundle is constructed from a representation, it has a flat connection, giving
sch(p) = d(V). The same argument works if p = 0, giving sch(p) = —d(V).
Hence in the sequel, we suppose that pg > 0.

Denote by H(V) = HP'? the space of orthogonal decompositions V' =
V*+ @ V™. It is the symmetric space associated to PU(p, q), in particular it
is contractible. Given P, one can form the bundle H — X associated to the
action of SU(p, q) on HP?. The decompositions & = ET G E~ are in bijection
with the sections of H, hence are unique up to homotopy. This shows that
the class sch(p) is well-defined.

Notice that in order to compute the higher Toledo invariants, we need to
linearize the representation p : m(X) — PU(p, q), i.e. to lift it to SU(p, q).
In the cases we will encounter, this is not possible unless we modify the space
X. However, in some cases handled in the following proposition, we can find
a short-cut.

Proposition 2. Let £ — X be a Hermitian bundle endowed with a projec-
tively flat connexion with holonomy p : m(X) — PU(p,q). Then, given a
decomposition £ = ET ®© £~ as before, we have:

c1(&)

sch(p) = (ch(ET) — ch(E7))e™ »ta .
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We can check that this quantity does not change if we replace €& by £ ® L
for some Hermitian line bundle L. In particular, if the representation lifts
to U(p, q), and we take £ to be the associated flat bundle, then ¢;(£) = 0
and the two formulas coincide. We insist on a crucial property: sch(p) is
independent of the lift.

Proof of Proposition 2. Let £ — X be as in the proposition. In order to
compute sch(p), we need to linearize p, which is generally impossible. How-
ever we can look for a map f : X — X such that f*HY(X,Q) — H*()Z',Q)
is an isomorphism and such that there is a diagram

1 (X) —2> SU(p, )

.

) —"=PU(p,q)

1
Suppose first that we have solved this problem. The naturality of the con-
struction gives sch(p) = f*sch(p). Hence we are reduced to the case when
p takes its values in SU(p,q). In that case, we may compare the projec-
tively flat bundle £ with the flat Hermitian bundle £, associated to p. The
corresponding projective bundles are isomorphic: this implies that there is
a Hermitian line bundle L such that £, = € ® L. As ¢i1(€,) = 0, we get

—_a®
Cl(L) piq
We check that sch(&,) = ch(€)) —ch(€,) =ch(Et @ L) —ch(6~ ® L) =
(ch(ET) — ch(€7)) ch(L). This coincides with the formula of Proposition 2.
We now prove the existence of f : X — X with a twist: we will replace
X by a space homotopically equivalent to it. Recall that the obstruction of
lifting p : m1(X) — PU(p,q) is a class o(p) € H?(X, pptq), represented by
amap f: X — K(2,tpte). Replacing X by the (homotopically equivalent)
mapping path space

Ef = {(x,’y),x €X,y: [0’ 1] - K(27:U’P+q)”7(0) = f(x)}7

themap g : Ef — K (2, fip+q) given by g(x,7v) = v(1) is a fibration homotopic
to f. Its fiber I solves the problem. Indeed, the composition F' — Ey —
K (2, tptq) is constant, meaning that the obstruction o(p) vanishes on F.
Moreover, as the rational cohomology of K (2, ip+4) is trivial, the inclusion
F C Ef ~ X induces an isomorphism in rational cohomology (from the
Leray-Serre spectral sequence). O

For the sake of completeness, we study the problem of realizing a projec-
tive representation as the holonomy of a projectively flat bundle.

Lemma 8. Given any representation p : 71(X) — PU(p,q), there exists a
Hermitian complezx bundle € — X endowed with a projectively flat connection
whose monodromy is conjugate to p if and only if some obstruction class in
H?(X,7Z) vanishes.

Proof. Recall that the representation p : m(X) — PU(p, q) gives rise to a
flat PU(p, ¢)-bundle P — X. Consider a good open covering (U;);er of X
with trivializations of P|y,. The transition functions are constant maps g;; :
U;NU; — PU(p, q) satisfying a cocycle condition. A Hermitian bundle £ may
be constructed by taking continuous maps h,; : U; N U; — U(p, q) satisfing
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the same cocycle condition. The condition that £ has a projectively flat
connection with monodromy p means that 7 o h;; = g;; where 7 : U(p, q) —
PU(p, q) is the obvious projection.

As U; N Uj is contractible, one can find such a map h;; independently for
all i # j. The cocycle condition gives a map U; NU; N Uy, — U(1) = kerm
which has to vanish in order to prove the lemma. This defines a class in
H?(X,Cx(U(1))) where for any topological abelian group G, Cx (G) denotes
the sheaf of continuous G-valued functions. From the exact sequence of
sheaves 0 — Cx(Z) — Cx(R) — Cx(U(1)) — 0 and the vanishing of
H*(X,Cx(R)), we find an obstruction in H*(X,Cx(Z)) = H*(X,Z). O

3.2 Compatibility with operations

Let V and W be two finite dimensional Hermitian spaces. If we have two
representations py : m(X) — PU(V), pw : m(X) — PU(W), we cannot
make sense of their sum but we can make sense of their tensor product
pv Q pw - 7T1(X) — PU(V ® W)

Proposition 3. Given two projective representations as above we have

sch(py ® pw) = sch(py) — sch(pw) € H* (X, Q).

Proof. As explained in the previous section, one can suppose that the rep-
resentations are linearized in the sense that py : m(X) — SU(V), pw :
m(X) — SU(W). One may form the associated bundle Eygw of py ® pw
by taking the tensor product of &, and £y, the Hermitian bundles associ-
ated respectively to py and py,. Taking a decomposition &y = 5‘*/' ® &, and
Ew =&} @ &y, we get a decomposition

Evew = (8¢®8V+V@8; ®5;V) ® (5¢ ®Ey ®Ey ®SJV>.

From the properties of the Chern character, we readily get ch(é‘d; ® EJV @
£y ®Ey) - ch(Ef © &y D E; ®EY) = (ch(€) — ch(€y ) (ch(E5)) — ch(E )
from which the result follows. O

Let us now deal with the more subtle sum of two Hermitian spaces V'
and W. We set PU(V,W) = P(U(V) x U(W)). There are two natural
projections py : PU(V,W) — PU(V), pw : PU(V,W) — PU(W) and an
inclusion i : PU(V, W) — PU(V @ W).

Proposition 4. Given a representation p : m1(X) — PU(V, W), we have
SCh(pV @] p) + SCh(pW o) p) = SCh(i o p)

Proof. Again we can suppose that p takes its values in SU(V, W). Its associ-
ated bundle is the sum &y @ &y of the bundle associated to the projections
py : SUV,W) = UV), pw : SUV,W) — U(W). We may decompose
the bundles €y and &y as usual: this gives sch(i o p) = ch(&}) + ch(&) —
ch(&;,) —ch(&;y). From Proposition 2 and the fact that £y and Ey are flat,
we get sch(py o p) = ch(&}) — ch(&;,) and the same for W, showing the
result. O
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3.3 A differential definition of the super Chern charac-
ter

In this subsection, we give an alternative definition of the super Chern char-
acter having a differential flavour, in the case of a representation defined on
the fundamental group of a smooth orbifold.

Recall that for a Hermitian vector space V' of signature (p, ¢) we denoted
by HP+? the space of either, positive p-dimensional subspaces V', negative g-
dimensional subspaces V ~, or orthogonal decompositions V = VT®V ™. The
group PU(p, ¢) acts transitively on these decompositions and the stabilizer of
V+ @V~ is the maximal compact subgroup PU(V*, V™) = P(U(p) x U(q)),
showing that HP-? is the symetric space of PU(p, q).

Let us define a family of PU(p, ¢)-invariant differential forms wy, of degree
2k on HP4. The tangent space of HP¢ at a point VT is naturally identified
with the space Hom(V ™, V™) and the complex structure on this space induces
a complex structure on HP'?: together with wy, this gives the Kahler structure
on HP¢. The adjonction map a — «* gives an anti-linear isomorphism
Hom(V*+, V=) ~ Hom(V~—,V+).

Remark 4. It is also possible to identify T(y+ v HP9 with Hom(V~, V),
but it gives the opposite complex structure on HP9. This also corresponds to
changing the Hermitian form h to its opposite, or said informally, exchanging

p and q. We have to take great care of this subtlety which occurs everywhere
in the article.

For any family &1,. .., &y € Hom(VT, V™), we set:

21—k: k . .
wi &1y -0 Gok) = WTT > o]l (50(21;1)50(21') - 50(22')50(273—1))-
" o€Sy i=1
In this formula Sa, is the group of permutations of {1,...,2k} and (o) is

the signature of o € Say.

Lemma 9. Assume that X is a developable orbifold and p : m(X) —
SU(p, q) is a morphism. Then, for any smooth p-equivariant map f : X —
HP-9, the form f*wy, which is invariant by m1(X) and thus descends to a
differential form of degree 2k on X, is a De Rham representative of schy(p)
in H?* (X, R).

Proof. Recall that by assumption, the orbifold universal cover X of X is
smooth. By [45, Theorem 2.4], there exists smooth p-equivariant maps f :
X — HP? and those are unique up to homotopy.

Let £ — HPY be the rank p positive tautological vector bundle, whose
fiber over the point (V*,V ™) is the subspace V. We observe that £t is
naturally a sub-bundle of the trivial bundle ¥V = V x HP'? and denote by
m:V — ET the orthogonal projection with respect to the Hermitian form.
We use the trivial connection D on V to define a connection V on £1 by

Ves = mDgs,

where s is any smooth section of £ and ¢ any vector field on HP9. A
painful but elementary computation shows that the curvature Qv (&,n) =
VeV =V Ve — Vg ) of this connection is given by the simple formula

QV(fﬂ?) =n"{—&,
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where as before £, 7 are considered as elements of Hom (€T, 7). Notice that

—Qv 1
Trexp (2“1_) = 5 ZWk

k>0

hence by Chern-Weil theory, the forms %wk represent the Chern character of

ET on HP4. Consider a smooth p-equivariant map f : X — HPa, Pulling
back £F gives rise to orthogonal sub-bundles 5} of the flat hermitian bundle
&, of fiber V and monodromy p over X. We have ch(€)+ch(E, ) = ch(&,) =
p+ g so schy(p) = chg(Ef) — chi(E,) = 2f* chi(EF) for & > 0. We then
deduce the result from the fact that the pull-back of the connection V to £ ;‘
defines a connection whose curvature is f*Qy. O

It would be interesting to give an analogous geometric construction in the
projective case, the following section gives one possible way.

3.4 Relation to the tangent bundle of the symmetric
space

Let X be a connected topological space and p : 7m1(X) — PU(p,q) be a
representation. We choose f : X — HP9, a continuous p-equivariant map.

We form the complex vector bundle F over X defined as the quotient of
f*THP-? by the action of 71(X) given by

for any z € )N(, any & € Ty HP?, and any v € 71(X). The map f is well-
defined up to p-equivariant homotopy, so the complex vector bundle F is
well-defined.

Lemma 10. For odd k, we have schy(p) = p;_f(]chk(f).

In particular & +2q)k! schy(p) is an integral class. For even k and p # ¢,

we can also express schy as a polynomial in the Chern character of F. For
instance

] =2 1 o

bChQ(p) P—gq (Chg(]:) (p+q)2 Ch1(]:) > .
Proof. The construction being natural in X, we can suppose as in the proof of
Proposition 2 that the representation p lifts to SU(p, ¢). We can then define
the two associated bundles £F so that 7 = Hom(£5,&,) = (£7)* @ &, .
The proof follows by inspection of the following identities; sch(p) = ch(&,") —
Ch(gp_)7 Ch(c‘:;') + Ch(gp)_ =p+q and

ch(F) = (p—Ch1(5;r) +chy (1) — ...)(q+ch1(5,;)+ch2(s;) +)
]

This lemma has the following important consequence:

Corollary 2. Suppose that a complex orbifold X is locally modeled on the
symmetric space HP9 and let p : 71 (X) — PU(p, q) be its monodromy repre-
sentation. Then, denoting by Kx the canonical bundle of X, we have

2

schy (p) =
o) = =

Cl(Kx).
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In particular, the holonomy of a H''!-structure on a closed oriented sur-
face S of genus g > 2 satisfies fs schy(p) = 2g — 2.

Remark 5. Corollary 2 gives a necessary condition for the uniformization
of a representation p : w1 (X) — PU(p,q) by a HP1-structure which is almost
sufficient, thanks to Siu’s rigidity theory (see Lemma 14).

3.5 The Toledo class as an obstruction class

The purpose of this section is to identify the Toledo class schy(p) with an
obstruction class.

For any connected Lie group G, we derive from the homotopy sequence
of the fibration G — EG — BG that m,(BG) = m,_1(G), in particular BG
is simply connected and from the Hurewicz theorem, we get Ho(BG,Z) =
m2(BG) = 71(G). The universal coefficient theorem gives the isomorphism
H?(BG,Q) = Hom(m(G),Q). Taking G = PU(p,q), the class sch; €
H?(PU(p, q), Q) corresponds to a map ¢ : 71 (PU(p, q)) — Q.

Recall that the maximal compact subgroup of PU(p, q) is P(U(p) x U(q))
and have the same fundamental group. The exact sequence of the fibration
U(1) = U(p) x U(q) — P(U(p) x U(q)) gives the description 71 (PU(p, q)) =
72/(p,q)Z.

Lemma 11. The map ¢ : m(PU(p, q)) = Z2/(p, q)Z — Q associated to sch;
by the above procedure is

2
e(x,y) = ——(xq — py).
@.9) = =
This lemma tells that schy (p) can be computed by the following construc-
tive procedure. Consider the central extension

0 — 71 (PU(p, q)) — PU(p, q) — PU(p,q) — 0.

The obstruction of lifting p : 71 (X) — PU(p, ¢) to ﬁfj(p, q) is a class o(p) €
H?(m1(X), 71 (PU(p, q)) that we can map to H?(X,m1(PU(p,q))) (using a
map f : X — Bm(X) inducing the identity on fundamental groups). The
lemma claims that one has

schi(p) = @« (o(p))-

Proof. As m1(PU(p,q)) ® Q has dimension 1, this is just a question of nor-
malization. Consider first the case p = ¢ = 1. Then m(PU(1,1)) = Z and
@ : Z — Q is the standard inclusion. We have to take care of the orientation
here: the loop v(0) = (e?,1) € PU(1, 1) corresponds to the positive genera-
tor. Recall that H"! = {[v] € PV, h(v) > 0} is a hyperbolic disc, naturally
oriented by its complex structure: we check that v(6) acts by rotation of
angle —# on H!: the two orientations disagree.

We take a surface S of genus g with a H':!-structure and holonomy repre-
sentation p : m1(S) — PU(1,1). The obstruction of lifting it to the universal
cover is the Euler class, which in this case is known to be equal to the Euler
characteristic 2 — 2g. By Corollary 2, we have fs schi(p) = 2g — 2. The
change of sign observed in the previous paragraph makes this formula agree:
we have in this case sch; = —eu.

In the general case, we consider a decomposition V & W where V has
signature (1,1) and a representation p : w1 (X) — SU(V), trivially extended
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to SU(V @ W). The additivity formula of Proposition 4 gives schy (pyew) =
schy (py). It suffices to check that the following diagram commutes.

m1SU(1,1) —— mSU(p, q)

lé@l,l l‘ﬂp,q

Q—< 0@

To check it, consider an element (z,—z) € mSU(1,1). We compute
¢1,1(z, —x) = 22. When mapping SU(1,1) to SU(p, ¢) as above, the element
(x, —x) stays equal. This time we compute ¢, 4(z, —z) = p—iq(qx —p(—x)) =

2z. This proves the result. O

4 Hermitian modular functors

4.1 Marked surfaces
A marked surface is a triple (S, ¢, L) where

1. S is a compact oriented surface whose boundary is the disjoint union
of the components 9,5 for i € m(95),

2. ¢ is a collection of homeomorphisms preserving the orientation ¢; :
Sl — @S for 7 € WQ(@S)

3. L is a split Lagrangian in Hy(S,Q). This means that L = @iEﬂ'o(S) L;,
where L; is a Lagrangian in H;(S;,Q) and S; is the i-th connected

component of S where each boundary curve has been collapsed to a
point.

Frequently, we will denote only by S the marked surface (S, ¢, L). A mor-
phism (S, ¢, L) — (5,¢', L") is a pair (f,s) where f : S — S’ is a homeo-
morphism preserving the orientation and satisfying ¢ = ¢’ o f and s € Z is
an integer. The composition of (f,s): S1 — Sz and (g,t) : So — S5 is

(g o .f7 s+t— MaSIOV((gf)*Llag*LQa L3))

We can define three operations on marked surfaces: the disjoint union, the
change of orientation and the gluing operation. Only the third one deserves
an explanation. Pick 015 and 0_S two components of 9S. We define Sy to
be the result of identifying ¢ (z) and _ (%) for any z € S'. Denote by S the
surface obtained from S by collapsing 95, and dS_ to a point. There are
natural maps S — S < S;. We define Ly to be the preimage in H,(S+,Q)
of the image of L in H;(S, Q). The triple (S, ¢, L+) is the gluing of S along
0+S.

4.2 Hermitian modular functor

Let A be a finite set endowed with an involution A — A* and a unit 0 € A
satisfying 0* = 0. A A-coloring of a surface S is a map A : m(9S) — A.
A Hermitian modular functor is a functor V from the category of A-colored
marked surfaces to the category of Hermitian vector spaces satisfying the
following axioms.
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MF1: Monoidality (simplified). There are compatible isomorphisms
V((S,\)IT (S, \) = V(S,\) @ V(S', \)

MF2: Gluing: there is a natural isomorphism

V(Si, ) > @ VS, 1™, N) @ V(S?, p, 1)
HEA

MF3: Change of orientation. There is a natural perfect pairing
V(S,\) x V(=S,\*) = C
MF4: Sphere with 1 point.
dim V(S% \) = 1 if A = 0,0 otherwise.
MF5: Sphere with 2 points.
dim V(S?, A\, 1) = 1 if A = p*, 0 otherwise.

In these axioms, we make several shortcuts in the notation to keep it
light. When we add A to a marked surface, it means either that we color by
A part or all of the boundary components or even that we create a boundary
component that we color with A\, depending on the context. Let us name
some important constants associated to a Hermitian modular functor.

1. For any (Hermitian) modular functor, any morphism of the form (Id, 1)
acts on V(S, A\) multiplying by ¢ € C*. One can prove from the axioms
that this number is independent on S and A and is called the central
charge of the modular functor.

2. On V(S2, )\, \*) acts the Dehn twist T5 along a simple curve separating
z and y. As this space is 1-dimensional, (T5,0) acts multiplying by
ryn = ra € C*. We will call these constants the multipliers associated
to the colors.

3. On this latter space which is 1-dimensional, the Hermitian form is def-
inite. We denote by ey = e~ its sign.

It is known that ¢ and r) are always roots of unity.

Definition 2. The level of a modular functor V is an integer ¢ such that
r$ =1 for all A € A.

Our main example is the Fibonacci TQFT for which we have ¢ = 5.
We warn the reader that there is a shift with the level commonly used in
Conformal Field Theory.

4.3 The associated cohomological field theory
We set V = Q[A]. We first define for all g,n > 0,

Wg,n € Hom(V®"™ H* (M, ., Q)).

It reduces to define for every genus g and for any A1,..., A\, € A a class

Wgn(A1,y .y An) € H¥ (Mg, Q).

29



Let S be a surface with genus g and n boundary components. We recall
that Mod(.S) is the group of isotopy classes of homeomorphisms of S fixing
the boundary pointwise. Pick a marking ¢ of the boundary of S and a
coloring A : mp(0S) — A. The automorphism group of S in the category
of marked surface is a central extension of Mod(S) (its class is given by
A1 € H?(Mod(S),Z) but it does not matter here). As the modular functor
is Hermitian and sends the central element to cId, we get a representation

px : Mod(S) — PU(V(S,\))

Let 0 be a simple curve parallel to a boundary component of S colored by
p. From the axioms, the Dehn twist Ts acts by multiplication by r,, hence
trivially in the projective unitary group. This means that the representation
px factors trough the group Mod(S, P) where S is the surface obtained by
collapsing each boundary component of S to a point, and P is the set of
resulting marked points.

Finally, the axiom MF2 shows that every Dehn twist T is diagonalizable
with eigenvalues r, for i € A. In particular T¥ acts trivially, hence py factors
through a representation

px : Mod" (S, P) — PU(V(S, \))

where Mod*($, P) is the quotient of the mapping class group Mod(S, P) by
the (normal) subgroup generated by ¢-th powers of Dehn twists.

As we showed in Section 2 that (MZ(S’, P)) = Mod‘($, P), the con-
struction of Section 3 defines a class

wem(N) = sch(py) € H*(M' (S, P),Q) = H* (M., Q)

The last equality is due to the fact that the orbifolds ﬂz(s ,P) and M, ,
have the same underlying topological space, hence the same rational coho-
mology.

4.4 Proof of the CohFT axioms

We define on V the bilinear form n(\, u) = signV(S%,\, u). By MF5,
N\, p) = ex if A = p* and 0 otherwise. We refer to [36] for details on
the axioms of a CohFT, here we recall them at the same time that we prove
them. The first one is a compatibility of the construction with the action
of the symmetric groups permuting the colors and the marked point. It is
satisfied by construction.

We recall that the product on V' is defined by the formula wq 3(\, p, v) =
n(A - u,v). It follows from the axioms of a Hermitian modular functor that
the unit 1 € V corresponds to the color 0 € A. We will try not to confuse
the reader using both notations.

4.4.1 Forgetting a point

Let 7 : ﬂg,nﬂ — ﬂg,n the map which forgets the last marked point. One
needs to check

w*wg,n()\l,...,)\n) :wg’n+1()\1,...,)\n,0). (10)
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Let S be a marked surface and S° be the result of removing a disc in
the interior of S. Corresponding to 7, there is a morphism p : Mod(S°) —
Mod(S) obtained by gluing back the disc. This morphism p induces a map
Mod‘(Sy.nt1) — Mod(S,.,,) which is the morphism induced on the funda-
mental groups by the map 7 : ﬂg,n“ — ﬂim.

From the axioms of the modular functor, there is a p-equivariant isomor-
phism V(5°,\,0) = V(S, A) which fits in the following commutative diagram:

PX,0

MM, iy — Mod (S 11) —> PU(V(S, A, 0))

U

PX

MM, — > Mod"(S,,,) —2—>PU(V(S,\))
Equation (10) hence follows from the naturality of the class sch.

4.4.2 Non-separating gluing

Let  : Myni2 — Myi1,, the map which glue the two last points. The
second axiom of a CohFT to be checked is

7T*w9+1’n(>\1, ey )\n) = Z 5;ng,n+2()\17 ey >\n7 25 ,U,*) (11)
HEA

We consider this time a marked surface S = (5, ¢, L) with two special
boundary components 945 and _S. As in Section 4.2, we denote by Sy the
result of gluing these components using their parametrization. Again, there
is a natural morphism p : Mod(S) — Mod(S4+) which induces a morphism
P Mode(Sg’nJrQ) — Modg(S’gH,n). This morphism is the one induced by

e thn 10— ﬂfy +1,,, on fundamental groups. We get hence a picture very
similar to the preceding section.

The main difference is that axiom MF2 gives a decomposition of V(S41, A)
which is preserved by the action of Mod(S4, ) = p(Mod(Sg,n+2)) where § is
the common image of the glued boundaries. This decomposition corresponds
to the eigenspace decomposition of the Dehn twist Ts. The situation is better
visualized in the following diagram:

7r1ﬂ§,n+2 — Modp(sg,n+2) - PU(V(S’ As Hy “*)“GA)

ZPA,N‘M*

My, ) —>Mod?(Sy11,,) ———=PU(V(SL,\))

The formula (11) follows then from the additivity formula of Proposition 4,
taking into account that each factor V(S \, u, u*) appears tensored by the
one-dimensional space V(S?, u, u*) which has sign €y This factor acts on
the class sch by the global sign ¢,, (as a consequence of the multiplicativity

property).

31



4.5 Separating gluing

Let m: Mg, i1 X Mgy o1 = Mg, 4go.n14+n, the map obtained by gluing
the last points. This time we must check that

T wg,n (A1, A2) = Z i ,ny+1(A1s 1) ® Wgy o1 (A2, 17). (12)
HEA

Here the tensor product makes sense using the Kiinneth formula.

Again, consider two marked surfaces Sy, Ss with respective genus g1, go
and respectively n; + 1 and ny 4+ 1 boundary components. The operation of
gluing the last components produces a surface S of genus g = g1 +g2 and n =
n1+mns boundary components together with a map p : Mod(.S1) x Mod(S3) —
Mod(S) inducing a map Mod*(S,, n,+1) X Mod*(Sgy.nps1) — Mod*(Sy.,).
The situation is very similar to the one of the previous section: this time the
group ModZ(S’g,n, 0) which is the image of p preserves the decomposition

V(S7>\17)\2) = @V(Sh)‘la,u) ® V(527>\27M*) & V(SQ,/L,,LL*)
nEA

As in the previous section, and using this time the multiplicative property
of sch given in Proposition 3, we obtain a proof of Equation (12), which ends
the proof that wy , satisfies the axioms of a CohFT.

5 Computation of the CohFT associated to
the SU,/SO3-modular functors

The purpose of this section is to give some detail on two interesting families
for which the construction of the preceding section applies. The degree 0
part of those CohFTs (usually called Topological Field Theories or Frobenius
algebras) are already interesting and new as they provide formulas for the
signatures of TQFT as investigated in [21].

5.1 Semi-simplicity of the Frobenius algebras

5.1.1 Generalities on Frobenius algebras

Let us start with generalities about Frobenius Q-algebras. They are by def-
inition finite dimensional commutative Q-algebras V endowed with a linear
form e : V' — Q such that the bilinear form n(z,y) = e(zy) is non-degenerate.

Consider its inverse n~! € V ® V : composing with the multiplication
m: V@V — V, we get an element Q = m(n~!) € V. It is well-known
and easy to check that any TFT w,, with underlying Frobenius algebra V
satisfies

Wen(V1,...,0n) = e(v1 -+ v, 09)

In particular, the signature of the Hermitian vector space associated to a
genus g surface by a modular functor of Frobenius algebra V is wy o = £(€29).
This is a generalization of the Verlinde formula.

A crucial property of a Frobenius algebra is its semi-simplicity, holding
if and only if it is isomorphic to a product of number fields. Denote by
M, € End(V) the operator of multiplication by € V and by Try : V — Q

32



the trace form given by Try (z) = Tr(M,). A property equivalent to semi-
simplicity is that the bilinear pairing (z,y) — Try (zy) is non-degenerate.

Hence a Frobenius structure on a semi-simple commutatibe algebra is
given by an invertible element « € V* satisfying e(x) = Try (az). It looks
like in the most interesting cases of SOz-modular functors of prime level, the
algebra V' is a number field.

Lemma 12. IfV is a semi-simple Frobenius algebra associated to o € V>
then Q = o~ L. In particular,

Wy n (V1. .., 0n) = Try (v - - vpatTY).

Proof. By Artin-Wedderburn theorem, we can reduce to the case when V
is a number field. The computation of  can be done in V' ® C which is
isomorphic to C™ via the map = — (¢1(x),...,pn(x)) where ¢1,...,¢p
denote the embeddings V' < C. The linear form ¢ on the i-th factor is the
multiplication by ¢;(«), hence the element € on the i-th factor is ¢;(a™1),
proving the lemma. O

A nice example is given by the celebrated Verlinde formula which compute
the dimension of the modular functors. In the next sections, considering the
SO(3)-modular functor associated to a specific root of unity ¢ of prime order,
we will find a unitary modular functor whose CohF'T reduces to its degree 0
part. In that case, V is the subfield of Q(¢)T fixed by the involution ¢ ~ ¢!
and a = —7(4_44 1)2.

Using the formula Try (z) = > p;(x), we get the Verlinde formula:
i=1

£—1

aimVi(sy) = (£) 3 s (22T
m=1

We will get similar formulas for the signatures with the twist that the con-
jugates ¢;(«) will no longer have an explicit expression.

5.1.2 The SUs-modular functor

We set r > 2 and choose A to be a primitive 4r-th root of unity. The
construction in [10] produces a Hermitian modular functor V4 from this
data.

The set of colors is A = {0,1,...,r — 2} with the trivial involution. The
multiplicators are r; = (—1)*A**2) and the signs are &; = sign((—1)*[i + 1])
where [n] = %. The level of this theory in our sense is £ = 4r.

In the sequel, we denote by V4 = Qeq@- - - $Qe,_o the Frobenius algebra
underlying the CohFT associated to V4.

Recall that the bilinear form 7 is diagonal in this basis and satisfies
n(ei, e;) = ;. As in any Frobenius algebra the product is given by

n(eiej, ex) = woz(es, ej, ex) = sign Va (52,4, 4, k).

The space V(S2, 1,7, k) is one dimensional if one can write i = b+ ¢, j =
a+ ¢,k = a+ b for some integers a,b,c € N and 0 if we cannot. In the first
case, we find in [10, Lemma 4.2] the formula wq 3(¢, j, k) = sign(i, j, k) where

atbrela+ b+ c+ 1] a]'[b]![c]!

= QIR
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Here we used the quantum factorial [n]! = [1][2] - - - [n].
Proposition 5 (SU; case). For any 4r-th root of unity A, V4 is semi-simple.

Proof. We check from the above formulas that eje; = Ei"lei,l + ejyq if

we set e_1 = e,._1 = 0. This proves that e; generates V4 as an algebra
and hence the natural surjection Q[t]/P(t) — V4 is an isomorphism where
P(t) = det(M,, — t1Id) and M., is the matrix of the multiplication by e; on
V4. This matrix has the simple form

0 51/60 0 0 0

1 0 52/61 0 0
Me,={: & 0

0 0 1 0 57“—2/&“—3

0 0 0 1 0

It is an exercise, left to the reader, that these kind of Jacobi matrices have a
simple spectrum, which implies that the algebra V4 is semi-simple. O

When A = +e? we get g; = (—1)" and wo 3(e;, e, ex) = (—1)FHHk)/2
when it is non zero. In this case the modular functor is Hermitian in the
standard sense (the Hermitian form is definite) and the CohFT constructed
above reduces to its degree 0 part. The Frobenius algebra we thus obtained
is the Verlinde fusion algebra, described in many places, see [7, 10].

It would be interesting to investigate the properties of these Frobenius al-
gebras. Here, we directly skip to the SO3-case which gives lower dimensional
and often simple Frobenius algebras. Moreover the corresponding represen-
tations of the mapping class group are irreducible, have good arithmetic
properties if the level is prime, and contain the main example of this article,
Fibonacci modular functor.

5.1.3 The SOs-modular functor

We choose A to be a primitive 2¢-th root of unity where, this time, ¢ is
odd. This corresponds in [10] to a modular functor with group SOs and
our main example concerns the case when ¢ = 5. In this case, the set of
colors is A = {0,2,...,¢ — 3}, the involution is trivial and the multiplicators
and the signs are given by the same formulas as above. Precisely, we have
£9; = [2i + 1] and pg; = A%+ and we check that u; = 1 for all i so that
£ is the level of this theory.

Set ¢ = A? and Ve = Qep®Qe1 @ - -®Qer—s where e; represents the color
2i. This time, the Frobenius algebra dependszonly on ¢, hence the notation.
We have wo 3(e;, €5, er) = sign(2i, 25, 2k) if 4, j, k satisfy

i<jtkj<itk k<itjandi+j+k<li-1 (T)

and 0 otherwise. The root giving a Hermitian theory is ¢ = T We
claim that Proposition 5 also holds when ¢ is odd.

Proposition 6 (SO3 case). For any {-th root of unity g, Vy is semi-simple.

Proof. We compute this time that

[2i + 1])62_71 e ([m +2]

2i— 1] A2 Jei + €isa.

ei1e; = sign (
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This shows that the matrix of multiplication by e; is tridiagonal with non-
zero entries. Hence the argument of the preceding proof repeats, showing
that Vj is semi-simple for any root ¢ of odd order. O

We have no proof for the following properties that we checked numerically
for £ < 100 prime and ¢ = 1.

1. V; is a number field.

2. The fields associated to ¢ = exp(2ink/f) and ¢ = exp(2irk’/l) are
isomorphic if and only if kk’ = £p’ where p’ = pTH if p = —1[4] and
p = % if p = 1[4]. We say that ¢ and ¢’ are conjugate.

3. The ring linearly generated by eq,...,e_3)/2 is equal to the ring of
integers of V except possibly for one pair of conjugate ¢-th roots.

We will describe all Frobenius algebras of level 5 and 7 in Sections 5.3 and
5.4.

5.2 Degree 2 of a CohFT and the R;-matrix

5.2.1 Consequences of the Givental-Teleman theorem

Suppose we have a semi-simple CohFT w,, : V¥ — H*(M,,, Q). We
denote by 7 its non-degenerate bilinear form and by 1 its unit. We recall the
formula wo 3(v1, v2, v3) = N(v1v2, v3).

Denote by o and 7 the degree 0 and 2 terms of w. This notation is sug-
gested by our examples where they correspond respectively to the signature
and the Toledo invariant of the Hermitian modular functor.

The celebrated Givental-Teleman classification theorem says that the Co-
hFT wy,, can be reconstructed from the degree 0 part o and a R-matrix
R € End(V)[[z]] that we write R(z) = Id+zR; + o(z). In this article, we
will use it only to express 7 in terms of ¢ and R; so that we recall only the
parts of the theorem necessary for our purposes. We refer to [36] for the full
statement.

The R-matrix satisfies the so-called symplectic condition R(z)R*(—z) =
Id where A* is the adjoint of A with respect to the bilinear form 7. This con-
dition implies in degree 1 that R; satisfies R} = R; or matricially, n~'R¥ =
Rin~!. We also set T'(2) = 2z(1 — R(2)1) = —22Ry(1) + o(2%) € V[[z]].
Givental-Teleman’s theorem state that R and T act on CohFTs in such a
way that one has

w = RTo.

Compute first To at first order, denoting by p1 = M 11 — M, the
forgetful map and setting k1 = (pl)*zlzZH, we get from Definition 6 of [36]:

(TU)g,n(Uh B vn)|deg:2 = _wg,nJrl(Ub <oy Un,y Rl(l))"ﬁl-

Then from the definition of Ro (Equation (2) in [36]) we get, writing the
symmetric form Rin™' =>"r, pno@veVeV:
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n
(RO’)gm(Ul, e ,Un)|deg=2 = Zagm(vl, e ,Rl(vi), sy Un)¢z
i=1

- § rp,,llo’gfl,nJr?(Ul; vy Uny Uy V)(Sirr

v

- E : E :rml/ogl,m-i-l(vh 3oy Vi s M)ngmz-i-l (Uju w0 Vg V)(Sghf
* QU

In this last formula, the sum X, is over decompositions g = g1 + g» and

partitions I I1 J = {1,...,n} where I = {i1,...,4n, t and J = {J1,. .., Jn, }-
Using the Frobenius algebra structure, we recast this formula in the case

when (g,n) = (0,4) or (1,1) in the following proposition.

Proposition 7. Let w =0 + 7+ (deg > 2) be a semi-simple CohFT and Ry

be its R-matrix at first order. We have

4
70401, va) = Y n(Ruvi, [ [ oj)wi — n(vrvavsva, Ri(1))r
i—1 A
— n(R1(v1v2), v304)012 — n(R1(v1v3), v2v4)013 — N(R1(v104), V203)d14.
Tl,l(’U) = ’I](Q, R1 (’U))’l[)l — U(Q, URl(l))Hl — TI‘(RlMU)(Sirr.

In this formula, Q) € V is the value of the punctured torus: it equals Q) =
ST w2 for any orthonormal basis vy, . ..,v, of V ®C.

i=1"1

We simplify further these formulas by observing that H ?(Mo,4, Q) and
H 2(/\/11’1, Q) are 1-dimensional. Hence, we can replace the classes with their

integrals, using
[ 7/’2’:/7 111:/7 0y =1
Mo,4 Mo,4 Mo,a

1 1
= = 5 d 6irr =3
Miq /wl /Ml,l " 24 o /Ml,l 2

5.2.2 A decomposition of the R;-matrix

Let S(V) = {A € End(V), A* = A} be the space of rational endomorphisms
of V, symmetric with respect to 1. From the axioms of Frobenius algebras,
the map v — M, embeds V into S(V).

We endow S(V) with the bilinear form (A, B) = Tr(AB): by semi-
simplicity, its restriction to V' is non-degenerate, hence we have a decom-
position S(V) = V @ V+ which allows to decompose any R;-matrix in the
form

and

Ri=M, +R),, meV, R ev™

Plugging this decomposition into the formula of Proposition 7, we observe
that the contribution of r1 in 794 cancels: knowing 794 is equivalent to
knowing R}. A standard way to do so is to decompose the matrix into the
idempotent basis but it seems to be more efficient to use a fixed element w,
that we will call the pivot, and try to extract R] from the endomorphism A,,
defined for all u,v € V by

7'0’4(’LU, w, u, 'U) = n(Aw(u)’ 'U).
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A computation using Proposition 7 gives

Ay (v) 2R (w)wv + Ry (w*)v + w? R} (v)
—Ri(D)w?v — Ry (w?)v — 2wR} (wv)

= [[Ry, My], My](v) — [[Ry, M), My](1)v (13)
This shows that if M, is semi-simple, we can indeed extract R from A,,.

If we decompose R; in the formula expressing 7 1(v) we get from the
equality Tr(R; M, ) = Tr(M,, M,) = Try (r1v) the expression:

2;[4 TrV(R1 ('U) — Rl(l)v) - %TrV(Tl'U)

= 2—14 Try (R (v) — Ri(1)v) — %Trv(rlv).

Tl’l(U)

This last equation shows how to compute 71 from R} and 7 ;.

5.2.3 The computation of R} for SO3-modular functors

Let ¢ be a primitive root of unity of order £ = 2r 4+ 1 and V, be the as-
sociated modular functor. We recall that its Frobenius algebra has basis

1 =-ep,€1,...,6,—1 = w. From the formulas of Section 5.1.3, the pivot w
acts by
. ([2i+2]) g ([2i+1})
we; = sign er_1—; — sign €r_;
% g [2] 1—2 g [2] 4

from which it follows that e; = w? + 1. As e; has a simple spectrum, the
same is true for w and the strategy of the preceding section works for w.

Remark 6. Specialists in TQFT may notice that w corresponds to the color
1 in the basis of “small colors”, see [10]. It is then quite expected that it plays
a prominent role.

We can compute the dimension of the vector space V,(S?,2i,2j,2r —
2,2r — 2) by applying the axiom MF2 along a curve v which separates the
colors 2i,2j from the colors 2r — 2,2r — 2. Due to the constraints (T"), the
color 2k of v can take only the values 0,2, and cannot take the value 2 if
i # 7. This gives

T0,4(w, w, e5,€;5) = 01if 4 # 3.

If i = j, denote by fo, f1 the basis of V, (52, 2i, 24, 2r — 2, 2r — 2) obtained

by assigning the colors 0,2 to v. We compute:
L |[foll? = [2r — 1][2i + 1] = —[2][2i + 1]
2. ||Al12 = [8]712r — 2,2r — 2,2)(2i,2i,2) = — 22

[24][2][3]*
3. T,on = fo, T'yfl = q4f1

Let 0 be a curve separating the colors 2r — 2,27 from 2r — 2,2i. This time,
the possible colors of § in the decomposition are 2r — 2 — 2i and 2r — 2i.
Denoting by gg, g1 the corresponding vectors, we get

1. [lgol|? = (2r — 2,2i,2r — 2 — 20)2[2r — 20 — 1] "2 —[2i 4 2]
2. [|g1]|? = (2r — 2,23, 2r — 20)2[2r — 2 + 1]71 &' _[2i]

3. Tsgo = > "D =0gy, Tsgy = g?r= D=t g,
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These formulas show that 79 4(w, w, e;,e;) = 0 if [24][2¢ + 2] > 0 because the
Hermitian form is definite.

Lemma 13. Let A,B,C € PU(1,1) be three elements satisfying for some
a,b,c>1
A®=B'=C°=ABC =1

and denote by 04,0p,0c € (—m,7) the angles of A, B,C acting on H.
Then, the Toledo invariant associated to this representation of the funda-
mental group of a sphere with three singular points of order a,b, c is

_9A+HB+QC

5 , e=sign(f4) =sign(dp) = sign(fc)
m

T=¢
Proof. We observe that the centers of A, B,C in H"! form a triangle with
angles %0 A, %95, %90. Hence these angles have the same sign and their sum
satisfy |04 + 0 + 0c| < 2m. The result follows from the Gauss-Bonnet
formula and the identification of the Toledo invariant with twice the area of
the triangle divided by 2. O

We observe that if a matrix A is diagonal in an orthogonal basis eg, e1,
such that Aeg = qoeq, Aeq = qieq, sign ||eo]|? = €, sign ||e1]|*> = 1, we have

i0a _ (d1yeo _ (40\e1
e = (=) = (=)
(QO) (fh)
This gives in the case when [2i][2i + 2] < 0:

0

eifa — ei@g _ q4(r7i) sign([24] —4sign([2][2¢41])

), e’ =¢q

To sum up, the explicit formulas we have just written can be plugged into
Lemma 13 to obtain the Toledo invariants 79 4(w,w,e;,e;). In particular,
they belong to (—1,1) N $Z.

This gives an explicit formula for the diagonal matrix A,. Inverting
Equation (13) gives back R}. We observe that this equation is easily solved
in an idempotent basis vy,...,v, € V®C. Let A1,..., A, € C be defined by
wv; = A\v;. In this basis, R} has vanishing diagonal: if r;; are the entries
of R, then the entries of [[R}, M), M,] are (A\; — \;)?r;;. It follows that
the maximal denominator of Ry is £]],;(Ai — Aj)? = (A7, where A,, is the
discriminant of the minimal polynomial of w. This discriminant divides the
discriminant Ay of V, provided that it is a number field.

5.2.4 The computation of r; for SO3-modular functors

As explained in the end of Section 5.2.2, one can recover r; from the data
of R} and 71,1(e;). Unfortunately, these Toledo invariants are harder to
compute for at least two reasons: first the axioms of modular functors are
not sufficient to compute it: we need an explicit formula for the image of T,
and Ty where 7,d are two simple curves on a punctured torus intersecting
once. Secondly, the dimension of the representation V;(S,e;) where S is a
punctured torus might be large: it is equal to r —i. Although Modli’1 is again
a triangle group (up to the elliptic involution), there is no simple formula for
71,1(e;) as in Lemma 13. We need to adapt a formula due to Meyer (see
Appendix A) to provide an effectively computable formula that we give now.

Suppose that we have already explicit formulas for T, T5 € U(p, ¢) where
U(p, q) is the unitary group of V,4(S,e;) where S is a punctured torus. The
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following formulas hold in PU(p, q), yielding a representation of the triangle
group A(2,3,0):

TS =Ty = (T, T5)* = (T, T5T,)° = 1.

In the Meyer formula of Appendix A, we obtain by putting A = T, B =
T(;TW,C = (T,YT(;T,Y)_l:

1. 1 _ -
mLales) = 3 Sign [ =(1 = (B,T) )1 = T,) 7 (1 - T,TT)

+ 0T + SOV Ty) — JO(TTLT,)
In this formula, G(T) is a signed sum of arguments of the eigenvalues of T'
for which we refer to the appendix. We also observe that this formula makes
sense only if 7', has no fixed vectors: this will be the case as soon asi > 0, a
harmless assumption since the Toledo invariant vanishes when ¢ = 0 as the
Hermitian structure is then unitary.

It remains to provide an explicit description of 7, and T5. For that we
will use the curve operators C,: this is a Hermitian operator associated to
any simple curve v satisfying Kauffman rules. We refer to [10] or [30] for
more detail. We will need only two properties for C.,: the first one is that it
has the same diagonalization basis as T,.

Applying the axiom MF2 along « yields a decomposition of V indexed
by 2i € A. The eigenvalue of T, on this subspace is ry; = ¢%"0+1) and the
eigenvalue of Cy is cg; = q¥t2 + 1 + ¢¥*t2. We observe that the spectrum
of C, is simple so that for any 2/-root of unity, there exists a polynomial
Q@ € Q(¢)[X] such that Q(cq;) = ro; for all ¢ € {0,...,r —1}. Hence T, can
be computed from C, by the formula T\, = Q(C5).

Consider now a punctured torus S represented in Figure 2. Applying the
axiom MF2 along v decomposes V(S, e;) into 1-dimensional spaces. Denote
by 1; the basis vector correponding to the color 2j. The conditions (T") yield
i <2j < 2r —igiving dimV(S,e;) = r —i.

Figure 2: A basis for the punctured torus

li+5+1][j =il

TG+ the curve operator Cs satisfies

Proposition 8. Setting u; =

Csj = V1 + (ugjt1 + ugy — 1)y + ugjug;—19j-1.

These complicated formulas yield an explicit algorithm for computing the
R-matrix which we implemented in Sage. We will give explicit examples in
the next section, but we observe (and can indeed prove) that the denomina-
tors of any entry of the R-matrix divide 2-3- £+ A}
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5.3 The example of ¢ = exp(2in/5)

In this case, the colors 0,2 correspond to elements eg,e;. The element eg

is the unit and e; satisfies e2 = —e; — 1. Noting e; = ¢, this gives V =
Q[t]/(t*+t+1). Onehas (1) = 1,&(t) = 0 hence n(1,1) = 1 and n(t,t) = —1.
A simple computation gives a = 33 and Ay = —3.

As explained in Section 5.2, to compute the matrix Ry, it is sufficient to
compute 71,1 and 79 4. The first term vanishes because the modular functor is
1-dimensional in that case. It remains to consider the case of 79 4. The only
non trivial term is 79 4 = 79,4(¢, ¢, ¢, t) which can be computed by Lemma 13.
We find that po.4 : Modg74 = A(5,5,5) — PU(1,1) has Toledo invariant —2.
Indeed, each generator acts by a rotation of angle —2?“. We recognize here

the uniformization of the orbifold ﬂa 4, justifying the equality

—5 2
T0,4 = X(Mo,4) = —g

Let us compute now the matrix R;. It satisfies Rf = R; and from the
fact that 71.1(eg) = 0 we get from Proposition 7 that Tr Ry = 0. Hence we
a —b
b —a)’

Applying Proposition 7 we get

may write R; =

2 = ra = an(Ri(), ) — n(t, R (1) — Bu(Ry(1),) = ~6a + b

Applying it again to compute 7y 1(t) = 0 we obtain

1

1
(Q,R1(t) —tR1(1)) — 3 Tr(Ry M)
which yields after computation 10a = 23b. We get finally
1 /23 —-10
B=3% (10 —23) '

For further use, we write explicitly the Toledo invariants for ¢ = exp(%)
as follows

Tan = ary + bz Yi + Clirr + Z d!h,n15917n1
i=1 g=g1+9g2,n=n1+n2
where
23 1 9 .
— _2—700'9,77, - ﬁag,rﬂ»lv b= _Bag’n7 c= %Ugfl,rH»l (g > 1)
23 1
g1,m1 — —Tm(agl,nlagz,m + Ugl,n1+1092,n2+1) - ﬁ(agl,nﬂrlagz,nz‘f‘

0g1,m19g2,n2+1 )
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5.4 The examples of level 7

5.4.1 The Frobenius algebras

Case 1: ¢ = exp(2in/7)

Denote by eg, e1, e2 the standard basis of V' corresponding to the colors
0,1,2 as explained in Section 5.1.3. We find that e; is the unit and one has
e% =e; + e+ eg,e1e9 = —e; — ey. Noting e; = t, this gives es =2 —t — 1
and V = Q[t]/(t® — t — 1) whose discriminant is Ay = —23.

As g9 = €1 = —&3 = 1, the co-unit € : V — Q satisfies e(1) = ¢(¢?) = 1
and e(t) = 0. This counit can be written e(z) = Try g(ax) for a = 55(9 +
3t — 2t%).

Case 2: ¢o = exp(4in/T)

In this case, the same standard basis eg, e1, e of the previous example
behaves differently. The vector eq is still the unit but this time, e? = —eq —
e1 + es and ejea = —e; — eg. Denoting e; = s we get eg = s> + s+ 1 and
V = QJs]/(s®>+2s%+3s+1). We observe that this number field is isomorphic
to the preceding one by putting s(t + 1) = —1.

This time g9 = —&1 = &3 = 1, hence the co-unit is given by &(1) =
1,e(s) = 0,e(s?) = —1. This gives a = 55(19 + 9s + 8s?) which differs from
the previous one.

Case 3: g3 = exp(6in/7)

Now eg, e1,es satisfy e% = ey + e + ez and ejes = e1 + eo. Writing
t=e gives eg =t2 —t—1and V = Q[t]/(t> — 2t> —t +1). This field is
the subfield of Q(¢) where ¢7 = 1 fixed by the involution ¢ + ¢~!. We have
gg = €1 = &3 = 1, giving e(1) = 1,&(t) = 0,e(t?) = 1. Finally a = 1(3 — 1),
recovering the example at the beginning of Section 5.

5.4.2 The R;-matrix

The Toledo invariants 794 and 711 can be computed by the methods of
Section 5.2 and are collected in the following table.

ot T4 o492 7492 o43 T4

(,«)0’4(61,61,61,61) 1 % 1 % 3 0
WO,4(61,61,€1,62) 0 7% -2 0 2 0
wo,a(e1,e1,€2,€2) 0 % 0 —% 2 0
(JJO74(€1762,€2,62) -1 0 1 0 1 0
wo4(e2, e2, €2, €2) 2 0 0 % 2 0
w1 (o) 30 [ 307370
w171(e1) 0 —é -2 0 2 0
wl’l(eg) -1 0 -1 0 1 0

It is known that the representation of SLo(Z) corresponding to the line
wi,1(eo) factors through PSLy(F7). It corresponds to the automorphism
group of the Klein quartic. The line corresponding to wq 1(e1) contains the
uniformization of the triangle group (2,3, 7). Indeed, its Toledo invariant —
is equal to the Euler characteristic of a sphere with singularities of order 2,3
and 7.

Using these tables, Sage and the formulas of Section 5.2, we get the
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following formulas for the R;-matrix:

1373 1425 —1635
R = — |1425 59 1722
22218 \ 1635 1722 —1432

—3615 1027 1973
RP = 32218 —1027 3719 —36
1973 36 —104

Again, we observe that in both cases the common denominator is 22218 =
2-3-7-23% = 6/A} as expected.

6 Complex hyperbolic structures on moduli
spaces associated to Fibonacci TQFT

6.1 A criterion for uniformization

Recall that V denotes a Hermitian vector space of signature (p, ¢) and HP*? is
the space of orthogonal decompositions V = V7 & V™~ where the restriction
of the Hermitian form to VT,V ™ is respectively positive and negative. The
aim of this section is to give a converse of Corollary 2 in the case when p = 1.
It is a rather direct application of Siu’s rigidity theorem:

Lemma 14. Let X be a compact Kdhler complex orbifold of dimension g > 1.
Assume that it admits a smooth finite orbifold covering, and that

Cl(Kx)q 75 0.

Let p: m(X) — PU(1,q) be a morphism whose Toledo invariant satisfies

7(p) c1(Kx)

g+l
Assume furthermore that there exists a compact complex curve in X in re-
striction to which the Toledo invariant is positive. Then, X admits a H"9-
structure whose holonomy is the representation p.

Proof. Since the Toledo invariant does not vanish, there exists a unique p-
equivariant harmonic map f : X — HY?. With the assumption that _the
top power of the Toledo invariant is not zero, there exists a point in X at
which f is a submersion. Under these circumstances, Siu proved that f is
either a holomorphic or anti-holomorphic map, see [40]. The assumption on
the existence of a compact complex curve in restriction to which the Toledo
invariant of p is positive forces f to be holomorphic.

Let F — X be the vector bundle over X which is defined as the quotient
of f*TH? by the action of the fundamental group of X given by ~(z, &) =
(yx, Dyv(€)). Lemma 10 shows 7(p) = q’Tzlcl(]-" ) hence the main assumption
of the lemma implies

ca(Kx)+a(F)=0.

The map f induces a morphism f* : A? F* — Kx. Denoting by D its
zero divisor, we have A\? F* = D + K, and so

—a(T) = [D] + e (Kx).
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Our assumptions give [D] = 0. This implies D = 0 since D is an effective
divisor and X is Kahler. B
This says that f is a p-equivariant local biholomorphism between X and
H'9. The pull-back of the Hermitian metric on X is complete since X
is compact, so f is a covering, and indeed a biholomorphism from X to
H9 since these spaces are connected and 1-connected respectively. The
conclusion follows.
O

6.2 Deligne-Mostow / Hirzebruch’s example

Proposition 9. The SO(3)-quantum representation of level 5 associated to
a surface of genus 0 with five (non-trivially colored) marked points is the

holonomy of a HY2-structure on ﬂoj.

Proof. Let pj 5 : m (ﬂgi)) — PU(1,2) be the SO(3) quantum representation
of level 5 with colors 1 at the five points and write 73 5 = schi(pg ). The
computations of Subsection 5.3 show that

where v is the sum of the v classes and ¢ is the sum of the boundary divisors.
On M 5, the classes 1, . . ., 15 form a basis of H?(Mo 5, Q), see [4, Theorem
2.2]. First, the class k1 can be expressed as a sum of five boundary divisors,
and since there are ten boundary divisors in total, summing over all the
symmetric expressions when permuting the marked points, we get

1
K1 = 56

We also can express each class 1; as a sum of three boundary divisors, so we
deduce similarly

2
0= =1.
31P
The conclusion is that
5 2
7'075 = Bw

Moreover, Lemma 6 and the aforementioned relations in H? (ﬂog,, Q) show

the equality cq (Kﬂs )= %@/J. Hence we have the correct proportionality
0,5

’7—35 = gCl (Kﬁgﬁ)

Let us now verify that p satisfies the other assumptions of Lemma 14.
Since the product of two distinct v classes is equal to two, and the square of
each equal to 1, see [46], we deduce that ¢)? = 45. Hence

45 9
Cl(KMb,5) 25 5 > 0.

Moreover, denoting by 7 : moyg X Mo,zx — Moﬁ the parametrization of
a boundary divisor, and using the separated gluing axiom of the CohFT (see
Subsection 4.5), we find

x5 _ 5 5 5 _ 5
T To,5 = 00,200,37T0,4 = ~ 70,4
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As the computations of Subsection 5.3 give

5 2
[ Toa = 5
Mo,4

we get that the integral of 735 on any boundary divisor is positive.

The result follows from Lemma 14 and the fact that the orbifold MZ,E)
has a smooth finite orbifold covering, see subsection 2.2.2. O

6.3 Livne’s example

In this section we prove that the elliptic contraction mi? of mi2 carries
a H'2-structure whose holonomy is the quantum representation pf, (see
Proposition 10). This complex hyperbolic structure has been found by Livne
in his PhD dissertation, see [28].

. -—& .

For the next statement, notice that the fundamental group of M, , is

. . -5 . . .
isomorphic to the one of M 5, so we can think of the quantum Fibonacci

. . ——E
representation as being defined on 7 (M, 5).

—£
Proposition 10. The orbifold My 5 admits a H2-structure whose holon-
omy is the SO(3)-quantum representation of level 5, genus one and two
marked points with non-trivial colors.

Proof. In genus one, there are special relations in the second cohomology
group of Deligne-Mumford compactification, see [4, Theorem 2.2]. Specifi-
cally, in M 2, we have

6irr

K1 = *51,(2% 1/)1 = ﬁ +51,€)-

These relations, together with the computations of Subsection 5.3, show that

2 1
7'i2 = 5617@ + %5“1».
—5 —£ e o e
Denote by ¢ : My 5 — M, , the blow-down of the elliptic tail divisor.
Lemma 7 and the aforementioned relations show the expected proportionality

holds:
5 2 *
T2 = 3 c (Cl(Kﬂf,g))'

To end the proof, let us compute

2
3 1 3
* 2 __ e i _
cro(Bye )° = (5517@ 205‘”> 200

since 5%7@ = —i7 01,0 Oirr = % and 512]” =0.

It also happens that the restriction of ’7'15’2 to iy is positive. Indeed, if
T MQA — Ojpr 1s the (degree two) parametrization, we have by the non-
separating CohFT axiom (only the color 1 at the node contributes)

* 5 5
T Ti2= ~T04

1
5
T4 =—=>0.
/a R

The proof follows from the fact that ¢* is injective on the second cohomology
group. O

and so
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6.4 Complex hyperbolic structure on Mi3

The goal of this subsection is to prove that the elliptic contraction ﬂf73 of
ﬂi?, has a H3-structure whose holonomy is the conjugate of the SO(3)
quantum representation of level 5 and three points non-trivially colored.
Recall that the orbifold fundamental group of Mfﬁ is isomorphic to the
one of M?,B so we can view the representation pi”3 as a representation pi”3 :
(M5 ) — PU3, 1).
Proposition 11. The conjugate of the SO(3)-quantum representation pig of
level 5 with the three marked points with non-trivial colors, is the holonomy
of a H'3—structure on ﬂi?,.

Proof. To simplify notation we set X = Mi3. We will make use of the rela-
tions in the second cohomology group of Deligne-Mumford compactification
in genus 1, see [4, Theorem 2.2], which take the following form in the case of
three marked points

~ 1
K1 = —01,9 — 251,{1} and ¢ = idirr + 3019 + 2251,{2'}' (14)

Denote by ¢ : M?S — X the blow-down map. Using Lemma 7 and the
relations (14), we find after some computations

N 2 8 4
c*e1(Kx) = T55irr + 351,(2) ts 251,{2}-
i

Formulae of subsection 5.3 show that we have the right proportionality for
the Toledo invariant of the conjugate of pig:

= c*c1(Kx).

31¢ alEx)

At this point, we shall not use Lemma 14 as such, but rather take a de-
tour which circumvents the painful computation of K g’( First of all, observe
that the pull-back of the conjugate of the representation pf 5 to the moduli

space M 5 parametrizing the boundary divisor d;. is the projectivization
of the direct sum of a rank one representation with a positive negative her-
mitian form, and the representation pj 5. In particular, the p ;-equivariant

pluriharmonic map f : X — H}C’S induces a biholomorphism between any
component of the lift of §;.. in X and a totally geodesic complex subspace
of H(lc’3. Moreover, the image of f is not globally contained in such a sub-
space, since otherwise the representation pig would be reducible, which is
not the case by a result of Roberts [38]. A consequence of this is that the
pluri-harmonic map f has real rank at least 5 somewhere.

The reinforcement of Siu’s rigidity theorem obtained by Carlson-Toledo
[11] shows that f is holomorphic everywhere. Notice that at some point
the differential of f is not zero, and we can follow word by word the last
two paragraphs of the proof of Lemma 14 to deduce that indeed f is a p?,g—

equivariant biholomorphism between X and Hé3. O
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6.5 Complex hyperbolic structure on ﬂ;l

. . . o . -—€
The goal of this subsection is to prove that the elliptic contraction M, ;
has a complex hyperbolic structure whose holonomy is the SO(3)-quantum
representation of level 5 and the color of the marked points equal to 1 (Propo-

sition 12). Recall as before that the orbifold fundamental group of ﬂ;l is

. . -5
isomorphic to the one of Mj ,.

Proposition 12. The orbifold M;l has a HY“*-structure whose holonomy
is the SO(3)-quantum representation p3 ; of level 5 with the marked point
colored by 1 (in particular, its image is an arithmetic lattice in PU(1,4)).

Proof. The proof is analogous to the one in the case of Mj 3. The only thing
which has to be established is the identity

2 *
7'25’1 = 501(0 KH;I) (15)

-5 ——€ .
where ¢ : /\/l;l — M, denotes the contraction. Our formulae for the Toledo
invariants of the Fibonacci representations (see section 5.3) show that

12

2 1
7'5,1 = g’l/) + %(5”7 + %

01,0-

We use here the relation in H? (M;l) (see [4])

~ 1 7
K1 = géirr + 551,0 (16)

(since there is only one marked point the divisor dy in [4] vanishes). Lemma
7 and relation (16) yield
* = ! 0 65
CI(C Kﬂil) =P+ 10 irr T 5 1,0

So (15) holds and the proof follows the same route as the one of Proposition
11. O

6.6 Solution to Siu’s problem: proof of Corollary 1.4

. ——& -—& .
Lemma 5 and its proof shows that the forgetful map M; ; — M, is an
orbifold map, that can be lifted to a surjective holomorphic map X; 3 —
. . . —&
X1,2 between smooth finite connected orbifold coverings X; 3 — ./\/11,3 and

Xi2— M‘f,g. Both X; 5 and X 3 are complex hyperbolic compact manifolds
as orbifold finite coverings of compact complex hyperbolic orbifolds. So the
result follows.

A Meyer formula for the Toledo invariant

A.1 Definition of the Meyer cocycle

Let (V, h) be a Hermitian vector space of signature (p, q): we denote as usual
by U(p, q) its isometry group.
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Let S be a surface and p : 71 (S) — U(p, ¢) a homomorphism: the twisted
homology group H; (S, V) is endowed with a skew-Hermitian form, composed
of the intersection product together with the Hermitian form. We may write
it thg and are interested in this appendix in the signature of hg.

Consider the case of a pair of pants P which retracts on a graph O.
We define a homomorphism 71 (P) — U(p, ¢) by sending the three edges of
O respectively to 1, A, AB where A, B € U(p,q). It is equivalent to send
them to A=1, 1, B respectively. Then we set u(A, B) = sign(hp). Standard
arguments show that it is a cocycle, that is an element of H?(U(p, q),Z), see
for instance [43].

Explicitly, it is supported on the space K = {(u,v) € V2, (A7 — 1)u +
(B—1)v = 0} with a form given by the following formula, where (u,v), (v, v")
are in K:

ihp((u,v), (v, v")) = h(u+v, (1 — B)v').

Consider the case of U(1) = U(1,0). One writes A = €', B = '8, If
A #1ou B # 1, the kernel K is generated by x = (1 — B, A~! — 1) and we
compute

ﬁ)sin(%)sin(g).

ihp(k, k) = h(A™" = B, (1= B)(A™" = 1)) = 8isin( %~

One deduces that in that case, u(e'®, ) = sign(sin(o‘—;rﬁ) sin(§) sm(g))
If A= B =1then K = V? but hp = 0 which gives u(1,1) = 0 and agrees
with the preceding formula. If we had chosen U(0,1) instead of U(1,0), we
would have the opposite result.

Let us observe now what happens when we restrict this cocycle to the
center of U(p,q). The representation V becomes a direct sum and the
contributions of the summand add with a sign, giving p(e’®1d,e” Id) =
(= (e, e?).

A.2 A relation with the Toledo class

We would like to relate this cocycle to two well-known cocycles on U(p, q):
the pull-back by the projection U(p,q) — PU(p,q) of the Toledo invariant
7 € H?(PU(p,q),Q) and the pull-back by the determinant det : U(p,q) —
U(1) of the fundamental class ¢ € H?(U(1),Z). As u is measurable and
H?(U(p, q),Q) = Hom(m1 (71 (U(p,q)), Q) = Q? (see Section 3.5), there exists
z,y € Q such that

p=at +ye e H(U(p,q),Q).

As the composition U(1) — U(p, q) — U(1) is the map z — 219, and the
composition U(1) — U(p, q¢) — PU(p, ¢) is trivial, by pulling back the above
equation to the center one finds y = g;g.

Let us give an explicit formula for 7. We recall that 7 (PU(p,q))
Z?/(p,q)Z and we define ¢ : 71 (PU(p,q)) — Q by the formula ¢(x,y)
g (a7 = py)-

Let @ : PU(p,q) — R be the unique homogeneous quasi-morphism (con-
tinuous) verifying ®(zg) = ¢(z) + ®(g) for z € m (PU(p,q)) and 7(A, B) =
®(AB) — B(A) — O(B).

R
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We can give an explicit formula for ® as in [21]. Suppose that there is an
orthogonal basis ey, ...,e, of V with

Aej = em-fej, h(ej,ej) =g € {:l:l}

We define A to be the path A;(e;) = €@ e; and obtain

Z%

Restricted to diagonal matrices, ® is a morphism, hence 7(A, B) = 0 if
A and B are both diagonal.

The cocycle ¢ is represented by the cyclic ordering. Precisely, ¢(«, ) =
ord(1, a, o) = ord(a~1, 1, 8) = sign(sin(a) + sin(3) — sin(a + ).

As sin(a) + sin(f8) — bm(a +p) = 4sm(o‘+ﬁ) sin(§ )sm(ﬁ) we deduce

n

‘I)(IZ)ZZ Qjej —

et p+q

cla, B) = p(e™™, e'P).

One need to establish the following for all A, B € U(p, q):

1 o(det A, det B) + dF (A, B)

p
A, B) = zr(A, B) +
p(A.B) = ar(4.B) + I

for some function F': U(p,q) — R.
Let us analyse this equation in restriction to diagonal matrices:
p+q

Zsjc(angj) Za.NZBJ + dF(A, B)
j=1
We observe that there exists indeed a map f : R/27Z — R such that

fla+B) = fla) = f(B) = (e, B).

We simply set f(a) =1 — < where a €]0,27[ and f(0) = 0.

To see it geometrically, one observe that 7f(a) is the oriented area of a
hyperbolic triangle with vertices 0, 1, «. The Gauss-Bonnet formula gives an
area equal to m — . This function is not continuous but has a nice Fourier

expansion given by
2 sin(na)
flay == 3" B

n
n>0

p-l—q

We are led to define, for A diagonal with coefficients ¢’ and signature

Ej:
p+q P q p+q
Zs] mf(; ;) = G(A) - mf(det A).

One can give an invariant formula for G(A) in the spirit of the G-signature
theorem. Suppose that A has finite order or more generally, that its orbit
is relatively compact. One can then find a decomposition V = V+ @V~
invariant by A (take the barycenter of the orbit in the symmetric space).
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One defines then sTr(A) = Tr Aly+ — Tr Ay -: it is independent of the de-
composition. If A is diagonal as above, one has sTr(A4) = 3, e;€"* We have

then 1
> —sTr(A4") = Ziajf(aj)
nez* J

hence the nice formula

1 n
G(A) = gzj — sTu(A").

It remains to find the coefficient x. To this aim, we take a Fuchsian
representation 71(S) — SU(1,1) that we send to SU(p,q) in the obvious
way. We found that its Toledo invariant is 2g — 2. Compare with the Meyer
cocyle: we decompose V = E @ F where F has signature (1,1) and carries
the action of m1(S). We have Hi(S,E @ F) = Hy(S,E) ® H.(S, F) and
H,(S,F) = H1(S,C) ® F. As the signature of H;(S,C) vanishes, one sees
that the factor containing F' does not contribute. For what concerns the
factor H1(S, E), one find a positive definite Hermitian space of dimension
4g — 4, which gives yu = 27, hence x = 2.

We sum up the formula that we obtained:

(A, B) = 27(A, B) + dG(A, B)

A.3 Application to triangle groups

For a, b, ¢ three positive integers, we set A(a,b,c) = (A, B,C|ABC = A* =
BY = C° = 1) and consider a representation p : A(a,b,c) — PU(p,q). As
A(a, b, ¢) is the orbifold fundamental group of a sphere S with three singular
points of order a, b, c one can define fs p*1 € Q and the aim of this section is
to give an explicit formula for this rational number using the Meyer cocycle.

We observe that the virtual fundamental class of A(a,b,c) is given by
[ABC] — 1[4%] — 1 [B] — 1[C°] € H3(A(a, b, ¢),Q), see Appendix B. We lift
A,B,Cto A,B,C € ISTJ(p,q) and get

7(p) = ®(ABC) — 2@(2@) - %cp(éb) - %@(50).

Using homogeneity and setting C = (gg)_l, we get
7(p) = ®(AB) — ®(A) — ®(B) = 7(A, B).

Hence one can use Meyer formula which gives

(A, B) = %M(A, B)— %dG(A, B) = ~ (u(A, B) + G(A) + G(B) + G(C)).

N | =

To analyse further p(A, B) let us suppose that A has no fixed point,
so that A=! —Id is invers-tible. It allows to identify K with V by setting
u= (A" —1d)"!(Id — B)v. Hence

ihp(v,v) = h((A™' =1d)""(A™! = B)v,(Id—B)')
= A((B7'=I1d)(A7 = 1)"HB - A v, ).
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To sum up, (A, B) is the signature of the Hermitian matrix
H = —-(B'-I1d)(A'-1d)"'(B-A4"1

~(Id =B~ H(Id —A)"Y1d —C™1)

S S = S|

(B —1d)(CB —1d)"}(C —1d)

It is a nice exercise to show that this matrix is indeed Hermitian: one
way is to use Cayley parametrization: setting B = (iY — 1)(iY + 1)1, C =
(iZ —-1)(iZ+1)~! with Y and Z Hermitian, we find H = 2(Y + Z)~! which
is again Hermitian.

B Toledo invariants from mapping class group
presentations

B.1 Equivariant Hopf formula

Let S, denote a closed oriented surface of genus g with n marked points.
We fix a level ¢ > 1 and recall that we have set Mod » to be the quotient
of Mod(Sy,,,) by the subgroup generated by ¢-th powers of all Dehn twists.
Given colors A = (A1,...,),), we denote by pj , Mod[ n — PUV(S,A))
the quantum representation.

By construction, the invariant 7, , € H 2 (ﬂgm, Q) can be computed from
Py.nschr € H2(M0d§7n, Q). The purpose of this section is to do this compu-
tation in the case ¢ = 5 starting from a presentation of the level ¢ mapping
class group. We did it to double check our formulas for the Toledo invariants:
in particular it is independent on Givental-Teleman classification and could
shed further light on the properties of these invariants.

Let T be the free group generated by Dehn twists along (isotopy classes
of) simple curves v C S\ P. We denote by T, both the formal and the
actual Dehn twist. From the presentation 0 -+ R — I' — Modé,n — 0 and
the Leray-Serre spectral sequence, we get the exact sequence

0 — Hy(Mod’, ., Z) — R/[T, R] — Hy(T,Z) — Hi(Mod’, ,,Z) — 0. (17)

g,n)

As Modgyn is generated by elements of order £, we get after tensoring by
Q the exact sequence:

0 — Hy(Mod’, ,,Q) — R/[T, Rl © Q % H,(I",Q) — 0. (18)

We observe now that there is a natural action of the usual mapping
class group Mod,, on I' given by f.T, = Tj). This also gives an ac-
tion of Mod,,, on R and on R/[I,R]. As f.T, = fT,f~! in Mod, ,, the
action on Hg(Modg,n,Q) is by conjugation, hence trivial. Using the fact
that Hq(Modg n,Q) = 0, we get the same sequence for co-invariants:

0 — Hy(Mod, ,,,Q) = (R/[T, R] ® Q)mod,., — H1(T',Q)noq,,, — 0. (19)

The space Hi(I', Q)mod, ., is the Q-vector space generated by orbits of
simple closed curves. This finite set can be written as the disjoint union of
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Figure 3: Lantern relation

the boundary curves {v1,...,7,} and a set of {v;}ics, where I parametrizes
boundary divisors in M ,,.

To go further, we need to recall a generating set of the subgroup R of
relations. We take it from [29].

oy . . ¢ .
Proposition 13. The group R C I' of relations defining Mod,, ,, is generated
by the following elements:

1. Disjointness. If aNB =10, Do g =ToTs(TsTs) .
2. Braiding. If a N B = {pt}, Bap = ToTsTa(TsToTs) " .

3. 2-chain. If an f = {pt}, Cop = (ToTp)°T;" where ~y is the boundary
of a tubular neighborhood of aU (.

4. Lantern. If ¥ C S is a sphere with boundary components «,3,7,4,
Ly = TCTnTg(TO‘TgT,YTg)*1 where (,n,0 are as in Figure 3.

5. Boundary. If y; is the j-th boundary curve, 9; = T,

5

6. C-th powers. If v € I is represented by v;, we set R; = T,fi.

It remains to give an expression of the classes ¢, A1, d; as linear forms
on R. These formulas are spread out in the literature (mainly [20, 18, 32])
and can be easily guessed, however we did not find it easy to justify them
rigorously. As it would take too much space in this appendix and we used
them only for double checking, we skip this justification here and give here
the result. The table shows the value of each class evaluated on each type of
relation.

D[B|C L] 9 | R
G |0 0] 0 0] 6] 0
MO0 =10 0 0
100 00| 0 [0

B.2 Computation of the Toledo invariant

Let us consider the case of the SO3 modular functor given in Section 5 with
A = ¢"™/5 that we denote simply by V. As the set of colors is A = {0,2} and
because coloring a boundary component with 0 amounts to fill it with a disc,
we can suppose that all marked points are colored with 2.

We fix now a surface S = S, , with marked points (and an immaterial La-
grangian). We denote by (pg.n,qg,n) the signature of V(S ) and sometimes
abbreviate in (p, ). We also set dg.n, = pg.n + Gg,n a0d 0gn = Dg.n — Gg.n-
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Given a simple curve v C Sg,, we set p(T,) = V(T,,0) € UWV(S9)).
By the axiom MF2, there is a decomposition V(S) = V(S)o @ V(S)2. This
decomposition is also a decomposition of eigenspaces for p(Ty). It acts by
multiplication by 1 and ¢~* on each factor, where g = A? = e27/5,

It is natural to lift p(T) to the path p'(T%) € PU(V(S)) of transforma-
tions acting on each factor by 1 and exp(—2int/5) respectively. This gives
an equivariant lift p* : I — PU(V(S)) which, by restriction to R gives the
Toledo class we are looking for. We denote by 7 : R — Q the map defined
by 7(r) = ¢(p'(r)) and compute in the following sections the image of all
generators in R.

B.2.1 The easy relations: D, B,0;, R;

It is not hard to show that 7(D) = 7(B) = 0. We skip it to save space.

Another easy computation is 7(9;). Let v; be a simple curve surrounding
the j-th boundary point. The matrix p*(T) acts on V(S) by ¢~*Id. This is
a trivial path in PU(V(S) giving p*(9;)) = 1 and 7(9,) = 0.

We choose a curve 7 in the class i € I and wish to compute p'(R;). We
compute that p(T%)° acts on V(S)y by exp(—2imt). Denoting by (pi,q:)
the signature of the Hermitian form on V(S'\ v, 2,2) and reminding that as
g1 = —1 this signature is the opposite of the signature of V(5)2 C V(S5), we
find that

P (Ri) = (—=qi, —pi) € ZOZ =mU(V(S, P))

which gives

2
’T(Ri) = m(ﬁip - QiQ)-

B.2.2 2-chain

Take «, 8 two simple cirves intersecting once and denote by v the boundary
of a tubular neighborhood T of a U 8. Using MF2, we can decompose along
~ and write

V(S) = P VT, e) @ V(5?,6,) @ V(S \ T} e).

e€EA

The middle factor just serves for adjusting the sign and the right factor
is inert as Ti, and T only act on the first factor.

Consider first the factor V(T',2) which is 1-dimensional and has negative
sign. We find that T,,, T3 and T, act by ¢~ * hence p*(Cs) acts by e~ 11:2i7t/5,

We cancel this factor by multiplying that action of p?(Cs) on the factor
V(T,O) by ell~2i7rt/5.

As V(T,0) has signature (2,0), it suffices to compute the determinant
det p'((af)8y~ 1) = exp(—12 - 2int/5). With the compensation €?2%'"/> we
get that p'(Cy) = 2 € mU(2). Denoting by (pg—1.n,qg—1,) the signature of
V(S\T,0), we get p'(C2) = (2pg—1,n,2qg—1,n) € mU(V(S)) hence

- 4
Pg,.n + dg,n

7(Cs)

(pg—l,an,n - qg—l,npg,n)
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B.2.3 Lantern

Fix a 4 times punctured sphere ¥ C S\ P: recall that we defined p'(Lx) =
P (TeT, Ty(ToTsT, Ts) ). We first decompose (forgetting the sign factor)

V(S,P) = P V(,2) @ V(S\ &, Pe)

cEN?

Again one can write p(Ly;) = Y. p'(Lx)-®1Id and we are reduced to compute
the terms p'(Ly). individually. We compute directly

p(Ls)oooo = 1, p(Lx)oo02 = 0, p'(Lx o022 = (e~ 27H/5)2 (= 2imt/5)=2 = 1

p'(Ls)o222 = (6—21'7rt/5)3(e—21'7rt/5)_3 1

Hence, the unique non-trivial contribution is

pH(Ls)os = (2,y) € LB Z = mU(L,1).

We have det(p!(Lx)qa) = (e 27t/5)3(e=2imt/5)=8 — ¢2im From this we
get * +y = 1. To compute z — y we analyze p'(Lx)1111 in mPU(1,1).
The boundary factors do not contribute and we can deform the centers of
p(T¢), p(Ty), p(Tp) until they coincide, yielding three time the matrix with
diagonal entries 1,e~27/3, This gives 2 — y = 1 hence (z,y) = (1,0).
Denote by (ps,gs) the signature of the space V(S \ ¥,2%). The inclusion
U(1,1) = U(ps + gz, ps + gs) maps (1,0) to (ps,¢s). Pushing it to U(p, q)
gives

2
T(LE) = m(pzq - CIEP)

B.2.4 Solving the linear system

Let p = (,ui)ie{l _____ nyr be a collection of rational numbers indexed by the
topological types of simple curves in Sy ,,. We can think of p as a Mod (S, )-
invariant linear map Hq(I',Z) — Q, and composing with the natural map
R/IT,R] — H1(I',Z) as amap p : R/[I', R] — Q. This map sends a relation
r to the sum of the signed values of 1 on the Dehn twists contained in r. In
order to compute the cohomology class 7 in terms of the standard generators
of Mg,n, we need to find a, b, ¢, i such that

n
T :a/\1 +Zb151+zcjw] +,U,
i€l j=1
For symmetry reasons, c; is independent of j so that we write it ¢; = c.
We first observe that all classes vanish on the relations D, 3 and B, g so
that they give no information. Next, as the classes A1, d;, 1, vanish on the
lantern relation, we get 7(Lyx) = pu(Lyx). This gives a linear system allowing
to compute p.

Lemma 15. Let o,d : I — 7Z be defined respectively by

o; =signV(S\ 7,2,2) and d; = dim V(S \ 4,2, 2)

where ; 1s a simple curve representing the topological type ¢+ € I. For j €
{1,...,n} we set 0; = —04, and dj = dg . Then,

o(Ls) = 3sign V(S \ X, P,2%) and d(Lx) = —5dim V(S \ &, P, 2%).
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Proof. We skip the proof of this lemma that we obtained by brute force. It
would be interesting to interpret the coefficients 3 and —5 in terms of the
Frobenius algebra structure. O

We write dy, = py + ¢x and oy = py — gx so that 7(Ly) = %dz + oy
The solution for y is then
o d p—gq
= 4.2 =
=375 vy
This already gives the coefficient of the v classes because 7(9,) = 0 =

—Cz + pg- As 0, = q—p and d; = p + ¢ this gives

2
C = _Bag’n.
Next, we compute the boundary divisors: T(éRi) = %ﬁdﬁ—% = b;+
hence
2
bi = 717502_

Finally we compute the coefficient of A\; by evaluating the relation Cs:

g
T(CQ) = 20'971771 — 2dg71,n d97” = —a+ 125, — 1,0
g,n

from which we get

1 o 12 1
a = ( - 209—1,n + 4ojr — go'l,@) + ﬁ(ng—l,n + gdirr - gdl(ﬂ)
Using the axiom MF2 we get the following relations removing n from the
notation:
{dirr + dg—l = dg {_Uirr + Og—1 =0g

Ogn+l = Ogn — 3091,
d10+2dg71:dg —019 +204-1 =0y g,n+ g,n g—Ln

This gives finally

92 4 46 4

@= 5% T 309-1n = 2 0gn = §0gn+1

We invite the reader to check that these formulas are compatible with the
ones given in Section 5.3 using the formula k; = 12A; — d, see Section 2.4.
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