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Automatic breast cancer diagnosis is a very important purpose of medical informatics researches. In fact more than 11000 persons die each year, all over the world, by this disease. Some researches has been oriented to make automatic diagnosis at the step of mammographical examination [1], some others treated the problem at the step of cytological diagnosis [2], which take place before the mammography. Recent developments on medical imaging techniques have brought a completely new orientation to medical image processing through segmented cytological images, based on identifying specific structures within an image. The Active Contour methods, is an important technique that allow an adaptability of the model to the desired objects in the image. In this work, a description of the active contour models and an application of snake based method [3] for tracking tumors on breast cancer cytological image.

INTRODUCTION

Medical automatic diagnosis is still, nowadays, considered as a hard task to achieve. In fact, medical diagnosis of a disease requires an expert able to cope with the uncertain cases only by eyeing the visible symptoms. Such performances are difficult to achieve using an automatic system for diagnosis. Breast cancer is a vital problem needing quick handling and treatments. The cytological step of the diagnostic is the first done to make a first approach of the case. It consists of the extraction of some cells of the lesion; the samples are then fixed on a lame and observed by an electronic or an optical microscope. Various tests are performed to make a first appreciation of the case but the ultimate diagnosis may be sometimes difficult to obtain, even for a medical expert.

This work is part of an experiment aiming to make the later process of diagnostic automatic. Many studies had achieved this goal using pattern recognition processes such as template matching [START_REF] Ballard | Generalizing the Hough Transform to Detect Arbitrary Shapes[END_REF], or analyze of mammographical image using in detection of breast opacities [START_REF] Vachier | analyse morphologique des cliches mammo-graphique en vue de la détection des opacités du sein"thèse[END_REF], but the images used in these works weren't in most of the cases similar to the ones obtained in reality but simpler. The point is that the digitizing of the observed samples of lesions and their preprocessing leads to images on which the cells have different shapes and sizes, they are sometimes condensed and the edges and limits of each one can't often be detected. There are also residual cells which hadn't any thing to do with the lesion such blood ones for example [START_REF] Mokni | cytology and anatopathology service[END_REF] (Figure1).

Figure1: Three examples of an observed cytological sample

II-BACKGROUND ON ACTIVE CONTOUR MODELS OR "SNAKE"

Introduction

Kass and al. [START_REF] Kass | Snakes: Active contour models[END_REF] proposed active Contour Models, also called snakes, that since then have been successfully applied in a variety of problems in computer vision and image analysis, such as edge and subjective contours detection, motion tracking and segmentation [START_REF]Active Vision[END_REF].

Basically, there are two types of snake models: the implicit ones and the parametric ones. Implicit models, such as the formulation used by R. Malladi.al [START_REF] Malladi | Shape modeling with front propagation: A level set approach[END_REF], consist basically of embedding the snake as the zero level set of a higher dimensional function and to solve the corresponding equation of motion. Such methodologies are best suited for the recovery of objects with complex shapes and unknown topologies. However, due the higher dimensional formulation, implicit models are not as convenient as the parametric ones, for shape analysis and visualization, and for user interaction. The parametric snake models consist basically of an elastic curve (or surface), which can dynamically conform to object shapes in response to internal forces (elastic forces) and external forces (image and constraint forces). These forces can be the result of a functional global minimization process or based on local information. Such approach is more intuitive than the implicit models. Its mathematical formulation makes easier to integrate image data, an initial estimated, desired contour properties and knowledge-based constraints, in a single extraction process [START_REF]Active Vision[END_REF]. However, parametric models have also their limitations. First, most of these methods can only handle topologically simple objects. The topology of the structures of interest must be known in advance since the mathematical model cannot deal with topological changes without adding extra machinery [START_REF] Mcinerney | Topologically adaptable snakes[END_REF][START_REF] Durikovic | Dynamic contour: a texture approach and contour operations[END_REF]. Second, parametric snakes are too sensible to their initial conditions due to the non-convexity of the energy functional and the contraction force, which arises from the internal energy term [START_REF] Xu | Robust active contours with insensitive parameters[END_REF][START_REF] Gunn | A robust snake implementation; a dual active contour[END_REF].

Several works have been done to address these limitations. The use of simulated annealing for minimization and dynamic programming [START_REF] Jain | Using dynamic programming for solving variational problems in vision[END_REF] has been proposed to reduce problems caused by convergence to local minima. However, the utility of such techniques is limited by performance problems [START_REF] Gunn | A robust snake implementation; a dual active contour[END_REF][START_REF] Bulpitt | An efficient 3d deformable model with self-optimising mesh[END_REF]. Levine. al. [START_REF] Leymarie | Tracking deformable objects in the plane using and active contour model[END_REF] used another approach by applying hierarchical filtering methods, as well as a continuation method based on a discrete scale-space representation. Basically, a scalespace scheme is first used at a coarse scale to get closer to the global energy minimum represented by the desired contour. In further steps, the optimal valley or contour is sought at increasingly finer scales.

These methods address the no convexity problem but not the bad effects of the internal normal force. This force is a contraction force, which makes the curve collapse into a point if the external field is not strong enough. In Cohen.al [START_REF] Cohen | On active contour models and balloons[END_REF] and Gang Xu. al. [START_REF] Xu | Robust active contours with insensitive parameters[END_REF] This problem is addressed by the addition of another internal force term to reduce the bad effects of the contraction force. In both these works the number of parameters are increased and there are some trade-offs between efficiency and performance.

Another way to remove the undesired contraction force of the snake model is to use the idea of invariance, which is well known, in the field of computer vision [START_REF] Gool | Vision and lie's approach to invariance[END_REF]. That idea has been applied for closed contours and consists in designing an internal smoothing energy, biased to ward some prior shape, which has the property of being invariant to scale, rotation and translation. In these models, the snake has no preference to expand or contract but tends to acquire a natural shape.

Parametric Active Contours

A parametric active contour or snake is a curve:
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With parameter s  [0,1]. The curve can move on the image plane under the influence of two types of forces internal and the external forces. The former constrains the snake to be smooth while the latter guides the snake to seek desirable image properties, such as edges. The external forces are computed from the image data. Such an active contour model seeks to minimize the following functional [START_REF] Kass | Snakes: Active contour models[END_REF]:

          ds s v E s v E E image erne snake    1 0 int (2)
Where the first term define the internal energy. The non-negative constants α and β are the resistance to stretching and bending of the active contour, respectively. The image energy term Eimage is usually defined as [START_REF] Kass | Snakes: Active contour models[END_REF]:
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Where I(x,y) is the image intensity at (x,y). The computing of variations [START_REF] Gunn | A robust snake implementation; a dual active contour[END_REF] is applied to minimize (2) to obtain the following Euler or the motion equations [START_REF] Kass | Snakes: Active contour models[END_REF]:
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The Euler equation ( 4) are called snake evolution equations and can be essentially viewed as a force balance equation, where:   Eimage can be thought of as an external force f(x,y) [START_REF] Bulpitt | An efficient 3d deformable model with self-optimising mesh[END_REF]. Then (4) takes the general form of force balance equations:
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Discrete Representation

Unlike the finite element implementation, most implementations of snakes make use of finite differences in space. By sampling the snake at regular intervals into an ellipse curve with n vertices, a discretization of the snake's representation is achieved. This representation is used to approximate the derivatives used by means of central differences. The minimizing of this energy functional gives rise to the following two independent Euler-Lagrange equations:
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When assuming equidistant points, for each snake point (xi,yi) the following equation must hold:
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With f i x is the differential derivation of energy external by xi: Using this approximation, we can write the Euler equations in matrix form as: Ax = fx(x,y) (10) Ay = fy(x,y)

If we deal with a closed snake (which has the advantage that central differences can be evaluated everywhere, since the snake has neither head nor tail), with A is matrix n × n defined by the coefficients α of elasticity and β of bending. Since in practice Eimage(v(s)) is a discrete function, and A is singular and cannot be inverted, neither be solved for x and y directly. Kass et al. (1987) have used a friction force in order to constrain the displacement of the snake setting as following:
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Aytfy(xt-1,yt-1) = -γ (yt-yt-1) [START_REF] Xu | Robust active contours with insensitive parameters[END_REF] Where t is the iteration step (or a viscosity factor)? As a result, the discrete equation of the snake's motion can be written in the form:
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Where 1 is the n × n identity matrix. The solution is found iteratively; in each time step, the image forces of the last position are used. Since A+ γ 1 is constant over time, its inverse can be computed at the beginning using for example a LU-decomposition or Cholesky factorization. Prerequisite for the successful application of snakes is their initialization close to the object to be interpreted. Snakes have the tendency to shrink, since the inner energy is minimized (vanishing) when the active contour is reduced to a single point. We took advantage of the characteristics in [START_REF] Kass | Snakes: Active contour models[END_REF], since at potential causes weak image forces only; the snake shrinks to a size where it meets the edge of the objects. As such, shrinkage is welcome, since it makes the snake move when no image forces exist. On the other hand it causes contours to be rather convex. Serves as parameter for the magnitude of oscillation. The higher, the slower the evolution and the higher the inertia of the snake. If a large value of γ is chosen, then A + γ 1  γ 1 which proves the contour to be quasi stationary (the same considerations are valid with respect to the y-direction).

Experiment results:

In this section, the parametric active contour models are applied to the segmentation of cytological breast cancer images. The application uses cytological images, representing samples of breast cancerous cells, selected from a medical database [START_REF] Mokni | cytology and anatopathology service[END_REF]; with a real size of 1300x1300 pixels (figure 1).

In order to detect the pathology in cytological images, we must proceed initially by an operation of pretreatment; that consists on the application of the Gaussian filter to the initial image. The Gaussian filter blurs the edges, thus increasing the snake's capture range as it spreads the force vectors along the potential field. On the other terms, if some parts of the snake (or all of it) where initialized over homogeneous regions of the image, the contour wouldn't evolve correctly, stalling where the force field vectors have lower magnitude (figure 3). The area of tumors is more or less than detected for parametric active contour models.The key difficulty when working with active contour models is the correct definition of both the external energy term and speed function. Since both are based on the image gradient, one might expect similar behavior to both models. Problems related to bad initialization, local minima, and incorrect convergence may happen when working with either model, unless proper care is taken.

Parametric model was being a more simple way than the geometric or 3D methods of segmentation and tracking, regarding both the contour representation and implementation complexity. The explicit formulation of an evolving closed contour searching for an energy function minimization is far more intuitive. One may question about the Snake's lack of robustness when dealing with sharp corners, topological changes and initialization problems, but as it have been shown, there is no ideal method; only specific procedures to ensure the correct result obtained from specific image sets.

CONCLUSION

The main conclusion from this work is that there is no ideal segmentation method. Both parametric and geometric active contours are driven by forces extracted from the image itself, what makes them extremely dependent on the image quality, that is, lowly noised, fair definition of the structures' edges and absence of local minima. Even if one is able to overcome these problems, there are still further difficulties, like the initialization problem for example, which has a strong impact on the correct contour's convergence. This kind of problem may cause the procedure to be repeated until the result obtained is good enough for the user.

In this paper, the isolation of the cells in a breast cancer cytological image has been achieved, by the use of parametric active contours. The obtained cells will be used to make the classification of the case into benign or malign breast lesion. However, there are some problems related with the method: in fact, both parametric active contours are driven by forces extracted from the image itself, what makes them extremely dependent on the image quality, that is, lowly noised, fair definition of the structures' edges and absence of local minima. Even if one is able to overcome these problems, there are still further difficulties, like the initialization problem for example, which has a strong impact on the correct contour's convergence. This kind of problem may cause the procedure to be repeated until the result obtained is good enough for the user. Besides, the presence of blood cells or residual cells may conduct to false tracking and then false diagnosis.

Finally, it is important to observe that an efficient, precise medical image segmentation system should necessarily add to the model some level of intrinsic knowledge about the problem. Variables like the kind, shape and relative location of the common structures or pathology, and their size compared to some reference system such as an anatomy atlas [START_REF] Sonka | Medical Image Processing and Analysis[END_REF], would improve enormously the model's robustness and autonomy.
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 23 Figure 2: Cytological image segmented with classical parametric active contour modelsAs shown in figure2, the edge map shows higher values where the image gradient is larger, and low values over homogeneous regions. Using a traditional snake model and a fair initial position, we can see that it correctly evolves towards the desired contour, in figure2, we show for adequate choice of snakes parameter α and β. For several experiments, a fixed set of pair (α,β) has been used. The experiments where done for α = 0.0001, and β=0.000125. This pair of (α,β) has drown agree results and isolate correctly the tumors.
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