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PHASE TRANSITION IN THE PEIERLS MODEL FOR POLYACETYLENE

DAVID GONTIER ADECHOLA E. K. KOUANDE ERIC SERE

ABSTRACT. We consider the Peierls model for closed polyactetylene chains with an even number
of carbon atoms as well as infinite chains, in the presence of temperature. We prove the existence
of a critical temperature below which the chain is dimerized, and above which it is 1-periodic.
The chain behaves like an insulator below the critical temperature and like a metal above it.
‘We characterize the critical temperature in the thermodynamic limit model, and prove that it
is exponentially small in the rigidity of the chain. We study the phase transition around this
critical temperature.

(© 2022 by the authors. This paper may be reproduced, in its entirety, for non-commercial
purposes.
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1. INTRODUCTION

It is a well known fact that in closed polyacetylene molecular chains having an even number
of carbon atoms (e.g. benzene), the valence electrons arrange themselves one link in two. This
phenomenon is well understood in the Peierls model, introduced in 1930 (see [9, p.108] and [1]),
which is a simple non-linear functional describing, in particular, polyacetylene chains. This model
is invariant under 1-translations, but there is a symmetry breaking: the minimizers are dimer-
ized, in the sense that they are 2-periodic, but not 1-periodic. This phenomenon is known as
Peierls instability or Peierls distortion and is responsible for the high diamagnetism and low
conductivity of certain materials such as bismuth [3].

In this paper, we study the Peierls model with temperature, and describe the corresponding
phase diagram. We prove the existence of a critical temperature below which the chain is dimerized,
and above which the chain is 1-periodic. We characterize this critical temperature, and study the
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transition around it. In order to state our main results, let us first recall what is known for the
Peierls model without temperature.

1.1. The Peierls model at null temperature. We focus on the case of even chains: We consider
a periodic linear chain with L = 2N classical atoms (for an integer N > 2), together with quantum
non-interacting electrons. We denote by t; the distance between the i-th and (i + 1)-th atoms,
and set {t} := {t1,---,tr}. By periodicity, we mean that the atoms indices are taken modulo
L. The electrons are represented by a one-body density matrix «y, which is a self-adjoint operator
on (2(CF), satisfying the Pauli principle 0 < v < 1. In this simple model, the electrons can hop
between nearest-neighbour atoms, and feel a Hamiltonian of the form

0 t1 O 0 tr
t1 0 tp .- 0 0

ta O t3 0

0 - tr—a 0 tr—1
t, 0 .- 0 tr—1 0
7

The Peierls energy of such system reads [4, 7, 8, 9, 11]

L
EH (w7 ,gz (f; — b)? + 2Tx (T).
=1
The first term is the distortion energy of the atoms. Here, b > 0 is the equilibrium distance
between two atoms and g > 0 is the rigidity of the chain. The second term models the electronic
energy of the valence electrons (the 2 factor stands for the spin). By scaling, setting ¢; = bt; and

= gb, we have g'f(]ﬁl)({f}, v) = bf,'f(lﬁl)({t}7 ), with the energy

L
f(ull) {t} 7

M\t

L
Z (t; — 1)% + 2T (T). (2)

There is only one parameter in the model, which is the strength g > 0. In the so-called half-filled
model, this energy is minimized over all ¢; > 0 and all one-body density matrices (there is no
constraint on the number of electrons):

EW) = min{ff(lﬁl)({t},'y), teRl, 0<y=9"< 1} .

One can perform the minimization in v first. We get

jmin_ 2T (T7) = 2T (TU(T < 0)) = ~Tr (7)) = ~Tr (\/ﬁ) : (3)

where we used here that T is unitarily equivalent to —7', so that its spectrum is symmetric with
respect to the origin. The optimal density matrix in the case is v« = 1(T° < 0), which has
Tr (7.) = N electrons (hence the denomination half-filled). The energy simplifies into

BE® —min {e®({t)), teRE}, with eP({t}) gz (ti —1)* = Tr (VT?).

The energy £) only depends on {t}, and is translationally invariant, in the sense that £(X) ({t}) =
EW ({rpt}) where {73t} := {trs1, - ,trer}. However, the minimizers of this energy are usually
2-periodic, as proved by Kennedy and Lieb [4] and Lieb and Nachtergaele [6]. More specifically,
they proved the following:

Case L =0 mod 4. There are two minimizing configurations for EN)| of the form

ti=W4+ (=1)Sort; =W —(=1)"6,  with ¢ > 0. (4)
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These two configurations are called dimerized configurations [5]: they are 2-periodic but not
1-periodic. In other words, it is energetically favorable for the chain to break the 1-periodicity of
the model. We prove in Appendix A that the corresponding gain of energy is actually exponen-
tially small in the limit 4 — oo.

Case L =2 mod 4. This case is similar, but we may have § = 0 for small values of L, or large
values of p (see also [5]). There is 0 < u.(L) < oo so that, for 0 < pu < p.(L), there are still
two dimerized minimizers, as in (4), while for p > p.(L), there is only one minimizer, which is
1-periodic, that is § = 0.

In all cases (with L even), one can restrict the minimization problem to configurations {t} of
the form ¢t; = W £ (—1)"d, and obtain a minimization problem with only two parameters.

Although L is always even in the present paper, let us mention that molecules with L odd and
very large have been studied at zero temperature by Garcia Arroyo and Séré [2]. In that case one
gets “kink solutions” in the limit L — oc.

1.2. The Peierls model with temperature, main results. In the present article, we extend
the results in the positive temperature case, and consider the Peierls model when the entropy of
the electrons is taken into account. We denote by 6 the temperature (the letter T is reserved for
the matrix in (1)). The free energy is now given by (compare with (2))

Fiano({81,7) %Z (t = 1) + 2 {Tx (1) + 6Tx (S())}

with S(z) := zlog(z) + (1 — z)log(1 — x) the usual entropy function. We consider again the
minimization over all one-body density matrices, and study the minimization problem

FH(L) = min {ff(1ﬁ1),9({t}77)a teRl, 0<y=7"< 1} .

There are now two parameters in the model, namely g and 6. The main goal of the paper is to
study the phase diagram in the (u, #) plane.
As in (3), one can perform the minimization in v first (see Section 2.1 for the proof).

Lemma 1.1. We have

HllIl 2{Tr (Ty) + 0Tx (S(7))} = —Tr (he(T?)), (5)

o<~y
e =20 (2o (5.

The minimization problem in the Lh.s of (5) has the unique minimizer v, = (1 +¢7/%)~1

with the function

The properties of the function hg is given below in Proposition 2.1. The free Peierls energy
therefore simplifies into a minimization problem in {t} only:

L
FyP =it {7 ({t)), teRE}, with FP({t)) *gzm —Tr (ho(T?)) . (6)

Our first theorem states that minimizers are always 2-periodic, and that they become 1-periodic
when the temperature is large enough (phase transition).

Theorem 1.2. Forany L = 2N, with N an integer and N > 2, there exists a critical temperature
G(L) G(L)( ) > 0 such that:
o forf > OéL), the minimizer of ]-"e(L) is unique and 1-periodic;
o forf e (O,GEL)) (this set is empty if ot = 0), there are exactly two minimizers, which
are dimerized, of the form (4).
In addition,
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i) If L =0 mod 4, this critical temperature is positive (9£L)(u) >0 for all u>0).
i) If L =2 mod 4, there is pe := puc(L) > 0 such that for p < p., 0t is positive (9£L> > 0),

(L)

whereas for > pe, 8¢ = 0. Moreover as a function of L we have u.(L) ~ %ln(L) at +oo.

We postpone the proof of Theorem 1.2 until Section 2. The first part uses the concavity of the
function hg on R, while those of ¢) and i) are based on the Euler-Lagrange equations.

As in the null temperature case, minimizers are always 2-periodic, hence the minimization
problem is a minimization over the two variables W and §. Actually, we have

F(ZN) (2N)m1n{g(52N)(VV,5), W >0, 520},

with the energy per unit atom (the following expression is justified below in Eqn. (12))

dPN (W, ) = 2[(W 12 +6%] - ?VZhg <4W2cos (22];7;>+452sin2 @?)) (7)

We recognize a Riemann sum in the last expression. This suggests that we can take the thermo-
dynamic limit L — co. We define the thermodynamic limit free energy (per unit atom) as

fo = liminf NF<2N> : (8)

As expected, we have the following (see Section 3.1 for the proof).
Lemma 1.3. We have fp = min{gg(W,d), W >0, 6 > 0} with

1 27
go(W,0) := g (W —1)%+6°] — > / ho (4W? cos®(s) + 467 sin®(s)) ds.
™ Jo

The next theorem is similar to Theorem 1.2, and shows the existence of a critical temperature
for the thermodynamic model. Its proof is postponed until Section 3.2, and is based on the study
of the Euler-Lagrange equations.

Theorem 1.4. There is a critical (thermodynamic) temperature 0. = 0.(u) > 0, which is always
positive, and so that for all 0 > 0., the minimizer of gy satisfies § = 0, whereas for all 0 < 0., it
satisfies § > 0.

In the large p limit, we have

0.(1) ~ C exp (fgu + 0(1)) . with C ~ 1.6686.

This reflects the fact that for an infinite chain, there is a transition between the dimerized states
(6 > 0), which is insulating (actually, one can show that the gap of the T matrix is of order ¢),
to the 1-periodic state (with § = 0), which is metallic, as the temperature increases. This can
be interpreted as an insulating/metallic transition for polyacetylene. Such a phase transition has
been observed experimentally in the blue bronze in [10]. We display in Figure 1 (left) the map
w— 0.(u) in the (u, @) plane.

Finally, we study the nature of the transition. It is not difficult to see that § — 0 as 8 — 0.
Actually, there is a bifurcation around this critical temperature, see also Figure 1 (right).

Theorem 1.5. There is C > 0, such that 6(0) = C/(0. —0)+ + o ( 0. — 9)+) .

We postpone the proof of Theorem 1.5 until Section 3.3. It mainly uses the implicit function
theorem. The value of C' is explicit and is given in the proof.

2. PROOFS IN THE FINITE CHAIN PEIERLS MODEL WITH TEMPERATURE

We now provide the proofs of our results. We gather in this section the proofs of the finite
L = 2N model, and postpone the ones of the thermodynamic model to the next Section.
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FIGURE 1. Numerical simulations. (Left) the critical temperature p — 6.(p) and
its asymptotic Ce~7#. (Right) The bifurcation of § in the thermodynamic model.
We took = 2, and the critical temperature is found to be 6, = 0.2112.

2.1. Proof of Lemma 1.1, and properties of the i functional. First, we justify the functional
FQ(L) appearing in (6), and provide the proof of Lemma 1.1.

Proof. We study the minimization problem

min 2 (T (T7) + 0Ts (S()}

Any critical point v* of the functional satisfies the Euler-Lagrange equation

T+ 0S'(v.) =0, thatis T—|—01n<1% >:0. (9)

There is therefore only one such critical point, given by
1 e~ T/(20) 1 oT/(26)
= = , hence 1—r,= = .
1+eT/¢  2cosh(T/(26)) 14+e-T/¢  2cosh(T/(26))
By convexity of the functional, this critical point is the minimizer. For this one-body density
matrix, we obtain, using (9)

2 {Tr (Ty,) + 0Tr (S(7.))} = 2Tx (7* [T +0In (1 7*7 )} +0In(l - w)

=20Tr (In(1 — v4)) = 29;‘r ZT/QH) —20Tr (In[2cosh(T/26)]).

Finally, since T is unitary equivalent to —7', we have Tr (T") = 0. This gives as wanted

Ve

Jmin 2 {Tr (T9) +0Te (S(1)} = ~Tr (hg(T%)),  with ho(z) = 20In <2C°Sh (@)

U
Let us gather here some properties of the function hy, that we will use throughout the article.
Proposition 2.1. We have hy(x) = 0h (55z) and hy(z) = 31 (%), with

_ tanh(\/y)
N/
In particular, h (hence hg) is positive, increasing and concave. We have lim, o h'(y) = 1, and

the inequality he(x) > /x, valid for all 6 > 0 and all x > 0. In addition, we have the pointwise
convergence hg(x) — /x as 0 — 0.

h(y) = 2log(2cosh(y/y)), and K (y)
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The last part shows that we recover the model at zero temperature. The concavity of h comes
from the fact that h' is positive and decreasing. Another way to see concavity is that he(t) =
ming<g<i1 2{tg + 05(g)} is the minimum of linear functions (in ¢), hence concave. The inequality
hg(x) > v/ comes from 2 cosh(z) > e®.

2.2. Proof of Theorem 1.2: Existence of a critical temperature. We now study the mini-
mizers of }'éL)({t}) in (6), which we recall is given by

(L) I 2
({t}) 52 (t; —1)> = Tr (ho(T?)).
First, we prove that the minimizers are always 2-periodic. We then study the existence of a critical
temperature. For the first part, our strategy follows closely the argument of Kennedy and Lieb
in [4], and relies on the concavity of hg.

All minimizers are 2-periodic. Recall that if 2 — ¢(x) is concave over R, then A — Tr (¢(A))
is concave over the set of positive matrices. Applying this property to hg which is concave on R,
we have

Tr (ho(T?)) < Tr (he((T?))),

where (T2) is defined as in [4] as the average of T? over all translations:

010 --- 0
001 - 0
(T2 Z@sz k , with O, = @1 and O :=
k ! 0 0 0 1
1 00 0
This implies the lower bound
Fy" > Gy (10)

where
L
Gib ;:inf{ gib ({t}), teRi}, with g9 ({t}) = th—1 — T (ho((T2))).  (11)

In addition, we have equality in (10) iff the optimal {t} for G(e ) satisfies T({t})? = (T({t})?).
Note that

t2 +13 0 tito 0 0
0 2+ 13 0 tats e trty
— tita 0 3+ 3 0 0
tr_1tr 0 0 t2 2+tL L 0
0 trty ce tpatr 0 2+ 13

So we have T({t})* = (T'({t})?) iff t? + ¢7,, and t;t;;1 are independent of i. This happens only
if T is 2-periodic.

Introducing the variables (our notation slightly differ from the ones in [4]: we put 22 instead of
z, so that all quantities (z,y, z) are homogeneous)

1< 1< 1 &
==Y t;, y==) 1 ==t
we obtain (T2) = 2y2]IL + 22Q with Qp := 0, + 0%, and
L
G5" ({8)) = 65" (@,9.2) = B2 (7 = 20 4+ 1) = T (ho(29%0L + 2°00))

The function ééL) is much easier to study, as it only depends on the three variables (z,y, z). Let
us identify the triplets (z,y, z) coming from a 2-periodic or 1-periodic state.
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Lemma 2.2.
o forallte RJLF, the corresponding triplet (x,y, z) belongs to

X = {(x,y,z) € ]Ri, y? > 2%, 2% > max{0,22% — y2}}

o If L = 2N is even, the configuration t is 2-periodic of the form (4) iff the triple (z,y, 2)
belongs to

Xy = {(,y,2) € R3 of the form z =W, y* == W? + 6%, 2> =W? — 52}.
This happens iff 22 = 2x% — 3.
e The configuration t is 1-periodic, of the form t = (W,--- W) iff (z,y, z) belongs to
X1 = {(z,y,2) € R3 of the formz =y =z = wi.
This happens iff 2% = 222 —y? and © = y.

Proof. By Cauchy-Schwarz, we have

(&Y 1
e (Se) =pne-r

which is the first equality. Next, we have,

L L
52 — % ; [(t; +tig1)? =2 — 2] = i ;(ti Ftin)? — o
On the other hand, we have by Cauchy-Schwarz,
2 1 ¢ : 1 ¢ 2
a? = <2L ;(ti+ti+1)> < E;(ti+ti+1) :
This proves that z2 > 222 — y2. The other parts of the Lemma can be easily checked. O

Lemma 2.3. For any integer L > 2 and all § > 0, the minimizers of C;éL) over X belong to Xs.

Proof. Let us fix x and y, and look at the minimization over the variable z only. Setting Z := 22,

we see that
¢ Z— Tr (ho(2y°IL + Z91))
is concave. In addition, the derivative of ¢ at Z = 0 equals
¢'(Z) = Tr (hy(2y*)Qr) = hy(2y*)Tr (1) = 0,
where we used that ; only has null elements on its diagonal. We deduce that ¢ is decreasing
on R.. So the minimizer of ééL) must saturates the lower bound constraint z? = max{0, 2z% —y?}.

We now claim that the optimal triplet (z,v,2) satisfies 222 — y? > 0. Assume otherwise that
222 — y? < 0, hence 22 = 0. We have
~ L
Gy (2,9,0) = B2 (y7 = 20+ 1) = Tr (ho(2y%) = L (52 = 20 4+1) = ho(2?))
This function is decreasing in x, so the optimal x saturates the constraint z? = y?. But in this
case, we have 222 — 32 = y2 > 0, a contradiction. This proves that, for the optimizer, we have
222 — y? > 0, and 2? = 222 — y%. Finally, (x,v, 2) belongs in X,. O

Let (24, Ys, 2+) € X2 be the minimizer of éé”, and let W > 0 and 6 > 0 be so that z, = W,
y2 =W?2+ 6% and z, = W2 — §2. Let t, be one of the the two 2-periodic states W + (—1)%5. We
have T'({t.})? = (T({t.})?), which leads to the chain of inequalities

FP >G> min GY =GP (2., 9., 2) = GV ({6.)) = Fo({t.}) > FP.

(%,y,2)
We therefore have equalities everywhere. Since only the 2-periodic states W 4= (—1)% gives the
optimal triplet (x.,y«, z«), they are the only minimizers. This proves that all minimizer of féL)



8 DAVID GONTIER ADECHOLA E. K. KOUANDE ERIC SERE

are 2-periodic. They are two dimerized minimizers if 4 > 0, and a unique 1-periodic minimizer if
0 =0.

Remark 2.4. In the case of odd chains, we still have the equation FQ(L) > G’éL) in (10). Howewver,
the optimal triplet (x.,y«, z«) does not usually come from a state {t.}: an odd chain cannot be
dimerized. It can however come from such a state if § = 0, that is if t« is actually one-periodic.
One can therefore prove that also for odd chains, minimizers become 1-periodic for large enough
temperature.

Existence of the critical temperature. Since all minimizers are 2-periodic, we can parametrize

QéL) as a function of (W, 0) instead of {t}. So we write (in what follows, we normalize by L to get
the energy per atom)

1
g (W, 6) = g [(W = 1) +6°] = ZTr (ho(2(W? +6)I + (W? —6%)921)) .
To compute the last trace, we compute the spectrum of ;. We have, for all 1 < k< L,

4k , ) )
QOrer = 2cos (Lﬂ—) ey, where e, = (17eQz7rk/L762~2171'1€/L7 L. 7e(L—1)‘2wrk/L)T.

ooy foeos (87, 1ener)

So

This shows that

dB (W, 5) = g (W —1)% +62] - -7 ZL: ( 2(W? 4 6%) 4 2(W? — 6%) cos <4kL7T>>
pst
— g (W —1)2+6%] - EL: (4W2 cos (T) + 462 sin? <2§W)> . (12)

k

which is expression given in (7). The function gy appearing in Lemma 1.3 has a similar expression,
but we replace the last Riemann sum by the corresponding integral.
First, we prove that for @ large enough, the minimizer is 1-periodic (corresponding to 6 = 0).

Lemma 2.5. For all0 > i, the minimizer of géL) satisfies § = 0. The same holds for the function

9o (thermodynamic limit case).

Proof. We prove the result in the thermodynamic limit, but the proof works similarly at fixed L.
Let (W1,0) denotes the minimizer of gy among 1-periodic configurations (that is with the extra
constraint that 6 = 0). Writing that dw ge(W1,0) = 0, we obtain that

p(Wy —1) = 2;1/ ' (W) cos?(s)ds. (13)

For any other configurations (W, §), we write W = W; + €, and obtain that
gQ(Wl +¢, 6) - g9(W17 0) = g [Z(Wl - 1)6 + 52 + 62]
0 m L (W1 + €)? cos?(s) + 62 sin’(s) _h W2 cos?(s) ds
2m 02 02 '

Using that h is concave, we have h(a + b) — h(a) < h'(a)b, so, with a = W¢ cos?(s)/6? and
b= [6%sin?(s) + (2Woe + €2) cos?(s)] /62, we get

go(W1 +¢,6) — go(W1,0) > u(Wy — 1)e + 58 + M(SQ

1 m W cos2 5 .
~ 53 ' (192()) - [6%sin®(s) + (2Wie + £%) cos®(s)] ds.
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Using (13), the term linear in € vanishes. In addition, since h” < 0 on R, we have '(x) < h'(0) = 1.
This gives

po 1Y o P 1Y o
— > = — — - - — .
go(W1 +¢€,8) — go(W1,0) > (2 20) e’ + <2 29> )
The right-hand side is positive whenever 6 > %u which proves the result. O

In what follows, we define the critical temperature 6, = 6.(u) by
0. :=inf{f € R, the minimizer of go has § = 0 for all §' > 6}.
We define similarly 9§L) = 9£L> (u) for the case of finite chains.

Study of the critical temperature in the case L € 2N. We now study 0£L) with L =2N, N > 2,
and prove that it is strictly positive if L =0 mod 4, and that, if L =2 mod 4, there is p. = p.(L)
so that GgL)(,u) > 0iff p < pe(L).

For fixed 6, any minimizing configuration (W,d) satisfies the Euler-Lagrange equations

(Owas"), 055" ) (W, 6) = (0,0).

This gives the set of equations

2W 1, (W2 5
p(W—-1) = < I E I <92 cos?(#1) + 9251112(2’?0 .cos?(2km)

26 1 2 w2 62 (0
) =3I E h' <92 cos?(#1) 4 9281112(212”)> .sin®(2km).

Note that the second equation always admits the trivial solution § = 0. This corresponds to
the critical point among 1-periodic configurations. It is the unique solution if 6 > H,EL), but
for 0 € (079£L))7 there are other critical points, corresponding to the dimerized configurations.
Actually, as 6 varies, we expect two branches of solutions: the branch of 1-periodic configuration,
and the branch of dimerized configurations. These two branches cross only at § = 6. (see Figure 1

(right)).
In order to focus on the branch of dimerized configurations, we factor out the ¢ factor in
the second equation. Now, § = 0 is no longer a solution, unless we are exactly at the critical

temperature ot So, in order to find this critical temperature, we seek the solution, in (W, 8), of
(we multiply the second equation by W for clarity)

L 2
u(W—-1) = %th/ (W 0052(272”)) .cosz(%T’r)

o L2\ o )
L
2W 1 w2 , -
uW = 7ZZh/ (92 0052(22”)) .sin®(2km),
k=1

Lemma 2.6. For all u > 0, there is a unique solution (W,0) of (15) in the case L = 0 mod 4,
whereas if L = 2 mod 4, there is some value p. = puc(L) such that for all p > p., (15) has no
solution, and has a unique one if j < p.. Moreover in the last case p.(L) ~ 21n(L) at 4oc.

Proof. We write L = 2N, and note that the terms k and k + N gives the same contribution.
Taking the difference of the second and first equations of (15), we obtain

N
oW 1 W2 ) )
u= —TN E h/ (02 COSQ(I}:\,)) .COS(%).

Recall that h'(t) = % for t # 0 and h'(0) = 1. The point ¢ = 0 therefore plays a special
role. The argument of h’ equals 0 for k = %, which happens only if N =0 mod 2 (that is L=10



10 DAVID GONTIER ADECHOLA E. K. KOUANDE ERIC SERE

mod 4). In this case, the equation becomes, with z := % (we write L = 2N = 4n)
2n km
1 tanh (z cos(4Z)) & x
=—— ——————= cos(®E) 4+ — =: Jan(2). 16
i D o) = ) (16)
k#n

The function J, is smooth. The first sum is uniformly bounded for € R, while the second
diverges, so Jo, = 0 and Jo,(+00) = +00. We claim that J,, is increasing. The intermediate
value theorem then gives the existence and uniqueness of the solution of Ja, () = p on R4. This
gives % = jQ:Ll (). We then deduce respectively 8 and W from the first and second equations
of (15). This proves that (15) has a unique solution. The corresponding temperature is the critical

temperature 0£L

It remains to prove that Ja, is increasing. Splitting the sum in (16) into 2 sums of size (n — 1),
we get

— anh (z sin (&= anh (z cos (£
Jon () = ; (z — tanh(x %Z (t hsm( ()2 7)) ¢ hc(os(kﬂ()zn))> cos (kz).
k=1 2n 2

His derivative is given by

, 1 < ) 1 n—1 1 .
= — 1 — — — s
Jan () n cosh2 + n kz::l cosh? xsm (%)) cosh? (:c cos (’2‘%)) -c0s( " )

For all s € [0, 1], the function

[cosh72 (zsin (Zs)) — cosh™2 (zcos (5s))] . cos(ms)

is positive (both term are positive if s € [0,1/2], and both are negative if s € [1/2,1]). This shows
that Ja, is increasing as wanted.

In the case N = 1 mod 4 (that is L = 2 mod 4) the argument of A’ is never null, and we
simply have (we write L = 2N = 4n + 2)

1 2ntltanh (:z: cos(2n+1)> (k) = 7. (x)
(K OO gt/ T J2nt1 )
2n +1 =1 COb(2n-7|T-1) '

p=-

We claim again that J,41 is increasing (see below). However, we now have

2n+1 2km
) 1 cos( )
Jim Fonia) =~ o el an
= ‘COS( 5t 1) ‘

If 4w € (0, ue(L)), we can apply again the intermediate value theorem, and deduce that the equation
Jon(x) = p has the unique solution z = \72;1“(;1). We deduce as before that there is unique
solution of system (15) in this case. If instead p > p.(L), then the system (15) has no solution.

Let us prove that Jo,41 is increasing (this will eventually prove that u.(L) > 0. Its derivative
is given by

2n41 cos (227:” ) n cos( 2k )
1 1 2n+1

(2n+ 1) Joppq () = — E 5 . T 2 . :
k—1 cosh (m Cos (27111)) cosh™(x) L—1 cosh (a: Cos (%L))

In the last equality, we isolated the k = 2n+1 term, and use the change of variable ¥’ = 2n+1—k

forn+ 1<k <2n. When 1 < k < n/2, we have cos (227511) > 0, while % < cos( 5 +1) <1. On

the other hand, if n/2 < k < n, we have cos (231@1) <0,and 0 < cos(gff:l) < % In both cases,
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we deduce that

cos (;lkfl) cos (235:1)
Vke{lavn}v - 2 P Zi hQL :
cosh (:c cos (m)) cosh”( \/5)

Summing over k, and using that

() - Eoe () F ) 1

we obtain the lower bound

1 1
(2n+1)Tppiq(2) > = + 520
cosh?(z) coshz(ﬁ)
which proves that Js,41 is increasing.
Finally, we estimate p.(L), defined in (17). We rewrite p.(L) as
2n+1 2n+1
1 1 1 . cos(2ms) 1

pe(L) = f (%) +— —, Wwith f(s):= - .
2n +1 1; 2n+1 n+1 ; 7T|Tk+1_% |cos(ms)|  m|s — &

We recognize a Riemann sum in the first term. Since the function f is integrable on [0, 1] (there
is no singularity at s = %), this term converges to the integral of f. For the second term, we
recognize an harmonic sum. More specifically, we have

1 2n+1 1 2n+1 n 2 2
~ —log(n) ~ —log(L).
e Diewr s TR D D s R I s R .
This proves that zi.(L) ~ 2log(L) at +oo and completes the proof. O

3. PROOFS IN THE THERMODYNAMIC MODEL
We now focus on the thermodynamic model.

3.1. Proof of Lemma 1.3: Justification of the thermodynamic model. First, we show

that this model is indeed the limit of the finite chain model as L — co. We denote by f(gZN) the
minimum of g( N) (so G(QN) 1 F(QN)) and by fg the minimum of gg. Our goal is to prove that
fg fo, where we recall that fg = liminfy f(QN)

We denote by (Way, (52N) the optimizer of 99 2N) , and by (W, d,) the one of gg. First, from the
pointwise convergence 99 (W d) — go(W, ), we obtain

. 2N . 2N
Jo=go(We,8.) = lim gg®(W..8,) > lim ") = fy
For the other equality, we use that hg(z) < +/z, so
g W,8) = (W -1+ 6% - VIV .
(2N)

In particular, g, is lower bounded and coercive, uniformly in N. So if (Way, dan) denotes the
optimizer of gégN), the sequence (Way, d2n ) is bounded in Ri. Up to a not displayed subsequence,

we may assume that
f@ = lim féZN) = lim gé,QN)(WQN,(SQN), and lim (WQN,62N) = (Woo,6oo)
N—o00 N —oc0 N—o0o
We then have
fo= lim gg )(W2N752N) liinoo 99(Wan, dan) + A}gnoo {gém) - 99} (Wan, dan).

N—oc0

The first limit converges to gg(Wao, 000 ), by continuity of the gy functional. For the second limit,

we use that gé2N) — gy is the difference between an integral and a corresponding Riemann sum.

If Zy(s) denotes the integrand, this difference is controlled by 5% sup, [|[Zy(s)[|. In our case,
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In(s) = ho(4W2y cos®(ms) + 402 sin?(7s), whose derivative is uniformly bounded in N, since
(Wan, d2n) is bounded. This proves that the last limit goes to zero, hence

f@ = gG(Woo;(soo) > }79

We conclude that fy = fg. In particular, by uniqueness of the minimizer of gy, we must have
(Weos 000) = (Wi, d4), and the whole sequence (W, dap) converges to (Wi, dy).

3.2. Proof of Theorem 1.4: Estimation of the critical temperature. We now study the
properties of 6., the critical temperature in the thermodynamic limit. Reasoning as in the finite
L case, the critical temperature 6. can be found by solving the equations in (W, ), of (compare
with (15))
%% 27 W2 2
p(W—-1) = ), n (00028(5)) - cos?(s)ds

2 2 2
uWw = g ; I (W/(;c;s@)) -sin?(s)ds.
Using again the expression h/(t) := %, and splitting the integrals between (0, 27) into four
of size 7/2, this is also
4 71'/2
p(W—-1) = f/ tanh (VVCZS(S)> - cos(s)ds
Z O’T/Q W cos(s) ) sin?(s) (18)
uW = 7/ tanh < ) ds
T Jo 0 cos(s)

Let us prove that this system always admit a unique solution. The proof is similar to the

previous L = 0 mod 4 case. Taking the difference of the two equations gives, with x := %,

w/2 2

"= —f/ tanh (x cos(s)) .COS( ) ds =: J (z), (19)
0

™ cos(s)

The function J is derivable on R, with derivative given by

() = i/om (coshQ(; sin(s)) cosh2(:1cl Cos(s))) - cos(2s)ds.

The integrand is positive for all s € [0, s/4], so J is a strictly increasing function on R, and since
J([0,400)) = [0,400), we get = ¥ = 7~ (u). The first equation of (18) gives

/2
w(xd —1) = 4 /0 tanh (z cos(s)) . cos(s)ds.

™

This proves that 6, is well defined and depends only on u.

We now estimate this critical temperature. We are interested in the large p limit. First, since
R > uw — tanh(u) is a bounded function, the first equation shows that p(W — 1) is uniformly
bounded in p, so W =1+ O(u~t) as u — co. Then, we must have # — 0 as y — oo in order to
satisfy the second equation. Using the dominated convergence in the first integral gives
w/2 /2
é/ tanh <W cos(s)> - cos(s)ds — 4 / cos(s)ds = é,
T Jo 0 00 T Jo s

so the first equation gives
4
W=1+—+o0(1).
T

We now evaluate the integral of the right-hand side in the second equation, in the limit 8 — 0.
It is convenient to make the change of variable s — 7/2 — s, so we compute

10) == /0 " o (vg sin(s)) C;’if(f)) ds
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In order to evaluate I(6) as 8 — 0, we write I = I; + I with

I = /0 " o (Wsin(s)) O5(5) 4s and Iy i /0 7 ok (V;/sin(s)> cos(s)(cos(s) = 1) 4

0 sin(s) sin(s)
For the first integral, we make the change of variable u = % sin(s), and get

w
o tanh ! tanh > h(u) —1
Il _ / 0 Mdu = 1n (V;/) +ec1 + 0(1)’ with cy = / M _|_/ Mdu
0 0 1

u u (7

The value of ¢; is computed numerically to be ¢; &~ 0.8188. For the second integral I5, we remark
that the integrand is uniformly bounded in 6 and s, so I = O(1). Actually, since § — 0, we have,
by the dominated convergence theorem that

B /2 cos(s)(cos(s) — 1) B B
I, = /o Sn(s) ds+o(1) =In(2) — 1+ o(1).

Altogether, we obtain that

I(#) =1n (KZ) +cea+o(l), with ¢y =¢ +1In(2) —1~0.512.

Together with the second equation of (18), we obtain

e b (%) o)

which gives, as wanted, in the limit y© — oo

0.(1) ~ C exp (—%u + 0(1)) with C ~ 1.6686.

3.3. Proof of Theorem 1.5: study of the phase transition. In the previous section, we
found the critical temperature. We now study the bifurcation of § around this temperature. The
critical points of gy are given by the Euler-Lagrange equations

27 2 2 2 i 2
p(W—1) = %/ h’(W cos”(s) + 97 sin (S)> - cos?(s)ds
TV Jo

02
W[ W2 cos?(s) + dsin’(s )
uw =3 ; B ( ( 22 ( )) -sin?(s)ds.

Recall that one can remove the 1-periodic minimizers by factoring out ¢ in the second equation.
This gives a set of equation involving § through the variable A := 62 only. In what follows, we fix
i, and set (we multiply the equations by 6/W in order to have simpler computations afterwards)

1 1 [ 2 cos? A'sin®
01— =) - 7/ B (W cos (s)a;i— sin (s)) - cos?(s)ds
T Jo

1 /277 y (W2 cos?(s) + Asin2(s)> - sin%(s)ds.
02
0
Recall that F (6.; (W,,0)) = (0,0), where W, is the optimal W, at the critical temperature.
If F(0;(W,A)) = (0,0) with A > 0, the configurations (W,++/A) are minimizers of gg. If
F (6; (W, A)) = (0,0) with A < 0, it does not correspond to a physical solution.

We want to apply the implicit function theorem for F at the point (6.; (Wi,0)). In order to
do so, we first record all derivatives. We denote by F = (Fj, F2) the components of F. The
derivatives of F, evaluated at A =0, § = 0, and W = W, are given by

uh.  2W. 1 W2
wrr =gy g4 OnF1 =-5B %o F1 :“(1_W%)+293A
Sw. ¢ s f » and 2 )
owFo = — *B oaAFs =——=C OgFo = w2 B

62 02 63

c
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where we set (we split the integral in four parts of size 7/2)

4 w/2 2 2
A= —/ n <W*CO:(S)) -cos*(s)ds
T™Jo 05
/2 2 2
B:= %/0 n" (VV*CGOZS(S)) -sin?(s) cos?(s)ds
4 (™2 W2 cos?(s ,
C = ;/O h” (63()> . Sln4(3)d5.

Since h is concave, A, B and C' are negative. In addition, by Cauchy-Schwarz, we have
B? < AC. (20)
The Jacobian J := (Ow,a)F) (0c; (Ws,0)) is of the form

Jus QW*A _LB 2W.
J=[" o d detJ=—-—H ¢ *(AC — B?).
. A ) e

Since C' < 0 and B2 — AC < 0, we have det J > 0, so .J is invertible. We can therefore apply the
implicit function theorem for F at (6., (W,0)). There is a function § — (W (0), A(9)) so that,
locally around (0., (W,,0)), we have

F(0,(W,A)) =0, iff (W,A)=(W(0),A0)).
The derivatives (W'(6), A’(9)) are given by

W2
W) _ (R _ L (~#C B w(1- L) ot 4
A,(ec> N OpF2 - det J 2;}%/*3 L 23?/1 o+ 2 * B

This gives
v —L (2Wpu uo?
A'0e) = det J ( 62 (B—4)+ 2W3 (21)

We claim that B > A (for the proof see below). This shows that A’(f.) < 0. So, restoring the
variable 62, we have

52(0) ~ —A"(0.)(. — 0)1, and finally, =/=A(0,) /(0 —0) (14 0(1)).

It remains to prove that B > A. This comes from the fact that h” is increasing negative. First,
we notice that |A| and |C| are of the form

w/2

/2
A= 2 [ reeteas, 101=2 [ foat/2 )

with f(s) := |[h" (W2 cos®(s)/62)| and g(s) := cos?(s). The functions f and g are both decreasing
on [0 By re-arrangement, we deduce that |A| > |C|. Actually, we have

4] -1¢] = f;// (F@=1(5-5) (s 9 (5 ~5)) >o0.

Together with Cauchy-Schwarz in (20), this gives |B|*> < |A] - |C| < |A|?, since A and B are
negative, we get B > A, as wanted. This concludes the proof of Theorem 1.5.

5

APPENDIX A. GAIN OF ENERGY IN THE THERMODYNAMIC LIMIT

In this section, we prove that the gain of energy due to Peierls dimerization is exponentially
small in p. We focus on the thermodynamic limit case (although the proof is simililar in the L € 2N
case). We also focus only on the null temperature case § = 0. In this case, the thermodynamic
energy reads

go(W,9) = g((W 24 6% — /W/Q \/W2 sin? (s) + 02 cos? (s)ds (22)
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We introduce
fo:=min{go(W,0), W >0, 6 >0}, and foper :=min{go(W,0), W >0}.

In other words, fo is the minimum of gy over 2—-periodic (and all) configurations, and fo per is the
minimum over 1-periodic configurations. We prove the following

Theorem A.1. There is C > 0 such that, for all p large enough,

0< fO,per - fO < Ce™ 2.

In other words, the energy gained by the Peierls distorsion is exponentially small in the p
parameter. The first inequality states that in the thermodynamic limit at null temperature, the
minimizers are always dimerized, as first proved by Kennedy and Lieb [4].

Proof. Let us first compute W7y, the optimizer of go(W,0). This is simply the minimum of

/2
— K 2 4 2 2 o 12 2 4
gO(VKO)—g(W—l) _;/0 \/W?2sin (s)ds-iu(W—l) —;W

The minimizer satisfies u(Wy — 1) = %, hence Wi =1+ ﬁ. In particular,

4 8
fO,per = _; - @

We now compute the energy gain from the breaking of periodicity. For (W, ¢) a trial pair, we write
W = Wi 4+ . We have

9o(W,0) — go(W1,0) = %(62 +6%) — L} /W/2 l\/(Wl o)’ + o cot?(s) — 1 — E] sin(s)ds.
0

7r W2 W2 Wi

To compute the last integral, we make the change of variable u = cos(s), and get that the integral

equals
Wi +e L au? . ) 2
1+ ——=du—1 th a := .
i (/0 +1_u2u , with a W, T e
1 2
/ au —In(a) 1 9
/0 1+1_u2du:E(1—a)=1+< 1 —4+ln(2))a+0(a),

where F is a complete elliptic integral of the second kind, we get

Using that

w(0¥.6) = o ,0) = £+ - — T (5 ) {4 + 0

2 (W1+€) 2 Wi +e 4
1 2 2 2 2 —1
2u(5 +6%) W1(5 n(6~ ")

We now minimize the right-hand side. For large p, we have Wi ~ 1 and the minimization in ¢
gives € = 0. So

G0 (W, ) — go(W1,0) ~ 62 (g _ 21“;5)) .

We optimize the right-hand side by taking § = e_(%“"‘%)7 and the corresponding energy gain is
equivalent to e~ 2* which completes the proof.
O
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