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SMOOTH CONJUGACY CLASSES OF 3D AXIOM A FLOWS

ANNA FLORIO! AND MARTIN LEGUIL?

ABSTRACT. We show a rigidity result for 3-dimensional contact Aziom A flows:
given two 3D contact Axiom A flows ®1, P2 whose restrictions ®1|a,, P2|a, to
basic sets A1, Ay are orbit equivalent, we prove that if periodic orbits in corre-
spondence have the same length, then the conjugacy is as regular as the flows
and respects the contact structure, extending a previous result due to Feldman-
Ornstein [23]. Some of the ideas are reminiscent of the work of Otal [54]. As an
application, we show that the billiard maps of two open dispersing billiards with-
out eclipse and with the same marked length spectrum are smoothly conjugated.
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The concept of rigidity arises in several ways in dynamics; one of them is the
problem of knowing when two smooth systems which are topologically conjugated
are actually smoothly conjugated. It appears for instance in the framework of dif-
feomorphisms of the circle. In [2] Arnold proved the first C*-linearization result.
More precisely, he showed that an analytic diffeomorphism with Diophantine rota-
tion number « and sufficiently close to the rotation R, is analytically conjugated
to Ry. A global result in the C* category is due to Herman, in [31], where he also
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2 ANNA FLORIO AND MARTIN LEGUIL

proved the optimality of the Diophantine condition in the smooth case; see also [65],
[40] for related works.

For low dimensional Anosov systems, the question of rigidity has been investigated
in many works, see for instance the series of papers by de la Llave, Marco and
Moriyén [44, 17, 45, 20], [19], and [18]. While renormalization is one of the main tools
behind the study of rigidity for circle diffeomorphisms, the approach for hyperbolic
systems is quite different. Indeed, for such systems, periodic orbits are abundant,
and each of them carries with itself an obstruction to smooth conjugacy, namely the
associated eigenvalues of the differential. In the aforementioned works of de la Llave-
Marco-Moriyon, it is shown that those obstructions are actually complete invariants
for smooth conjugacy classes. The Anosov assumption can be relaxed, namely, we
may consider systems where hyperbolicity is only observed on a subset of the phase
space. In particular, when the non-wandering set is hyperbolic, this leads to the
notion of Aziom A systems. In [60], Pinto-Rand showed that Lipschitz conjugacy
classes of hyperbolic basic sets on surfaces, which possess an invariant measure
absolutely continuous with respect to Hausdorff measure, can be characterised in
many ways, in particular, in terms of eigenvalues at periodic points. Let us also
mention the works [59] and [5], where other rigidity results for hyperbolic sets have
been obtained. In the context of expanding maps in any dimension, Gogolev and
Rodriguez-Hertz [26] have shown that, open and densely, smooth conjugacy classes
are determined by the value of the Jacobian of the return maps at periodic points.

Let us now say a few words on rigidity questions in geometric frameworks. A nat-
ural setting is that of hyperbolic geodesic flows. In this case, the general hope is that
periodic data, in particular, the length spectrum, may be sufficient to characterize
not only smooth conjugacy classes, but also to recover some geometric informa-
tion. The question of spectral rigidity asks whether the (marked) length spectrum
is sufficient to determine the metric up to isometry. There exist various instances
of this problem, both local and non-local. Guillemin-Kazhdan [30] have shown that
compact negatively curved surfaces are spectrally rigid in the deformative sense:
a family (gs)sc(o,1) of isospectral negatively curved metrics is isometric, that is,
for each s € (0,1), there exists a diffeomorphism ¢, such that gs = ¢Xgo. Later,
Paternain-Salo-Uhlmann [55] proved that any Anosov surface is spectrally rigid in
the deformative sense. Let us recall that for hyperbolic surfaces, periodic trajectories
can be naturally marked by free homotopy classes. The question of spectral rigidity
for hyperbolic surfaces was addressed by Otal [54] and independently by Croke [15],
who obtained the following global result: two negatively curved metrics gg and g1 on
a closed surface with the same marked length spectrum are isometric (see also [16]
for the multidimensional case). Recently, Guillarmou-Lefeuvre [29] proved that in
all dimensions, the marked length spectrum of a Riemannian manifold with Anosov
geodesic flow and non-positive curvature locally determines the metric. See also the
recent work [27] where a sharpened version of Otal and Croke’s result was obtained.
Other works have also investigated the case where the hyperbolic set is not the whole
manifold. For instance, in [28], Guillarmou considers a smooth one-parameter family
(gs) se(0,1) of metrics on a smooth connected compact manifold with strictly convex
boundary. When the metrics have no conjugate points, and the trapped set is a
hyperbolic set for the geodesic flow, he proved that if all the metrics in the family
are lens equivalent, then they are isometric. Following this work, Lefeuvre [42] stud-
ied the X-ray transform on a smooth compact connected Riemannian manifold with
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hyperbolic trapped set. Other results in this direction have been recently obtained
also by Chen, Erchenko and Gogolev in [9].

Another setting where rigidity questions for the length spectrum have been inves-
tigated is the case of planar billiards, in particular, for convex domains. One of the
first results was obtained by Colin de Verdiere [14], who established dynamical spec-
tral rigidity for convex domains with analytic boundary and a Zo X Zs-symmetry. De
Simoi-Kaloshin-Wei [22] have proved dynamical spectral rigidity for Zo-symmetric
strictly convex domains close to a circle; see also the recent work [3] by Ayub-De
Simoi for ellipses of eccentricity smaller than 0.30. Moreover, recently, for smoothly
conjugate billiard maps of Birkhoff billiards, Kaloshin-Koudjinan [38] study rigidity
in the form of Marvizi-Melrose invariants. Let us also recall that the question of
spectral rigidity for convex billiards can be considered for other kinds of spectra as
well: one of the most famous examples concerns the Dirichlet (or Neumann) spec-
trum, which has been investigated at length, in particular, in a series of works by
Zelditch [66] and Hezari-Zelditch [32, 33, 34, 35]..., but also in many others.

Yet, even more than convex billiards, hyperbolic billiards, in particular, dispers-
ing billiards are the most natural analogue of hyperbolic geodesic flows; indeed,
although convex billiards may exhibit some hyperbolicity, for dispersing billiards,
hyperbolicity is present on the whole phase space. The case of Sinai billiards is very
interesting, due to the abundance of periodic orbits; yet, the complicated structure
of the set of periodic orbits as well as the presence of singularities make them hard to
deal with. Many works have been dedicated to the study of open dispersing billiards
(see [25, 43, 47, 48, 49, 62] for instance). Recall that the dynamics of open dispersing
billiards is of Aziom A type, and that their non-wandering set can be described sym-
bolically (see [47] for instance), which allows to define a marked length spectrum.
The rigidity of scattering lengths and travelling times has been investigated in a se-
ries of works by Noakes, Stoyanov, and Petkov (see [51, 52, 53, 63] and also the book
[57]). In particular, lens rigidity was established by Noakes-Stoyanov [51, 53]: open
dispersing billiards in R%, d > 2, are uniquely determined by the travelling times of
billiard orbits and also by their scattering length spectra. It is interesting to observe
that as in the present work, the conjugacy between the billiard flows of two billiards
with the same spectral data plays an important role: yet, Noakes-Stoyanov consider
the conjugacy between the billiard flows outside the trapped set, while here, we study
the conjugacy precisely on the trapped set; this is due to the fact that these works
deal with different spectra.

Let us conclude this introduction by mentioning recent rigidity results for
hyperbolic billiards in terms of the length spectrum. In [10], Chen-Kaloshin-Zhang
established the dynamical spectral rigidity of piecewise analytic Bunimovich
stadia and squash type stadia. In [21], De Simoi-Kaloshin and the second author
solved the question of marked length spectral determination for non-eclipsing
open dispersing billiards with analytic boundary and two partial symmetries,
under some mild non-degeneracy condition. Observe that in the C* category,
k € N>z U {400}, the marked length spectrum is insufficient to fully determine
the geometry of such tables; indeed, periodic orbits are not dense in the whole
phase space, so it is possible to deform the geometry of the arcs of the table which
are not “seen” by the trapped set, i.e., which come from “gaps” of the projection
on the table of the Cantor set on which we have information through periodic orbits.
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In the present work, we generalize the result of Feldman-Ornstein [23] from con-
tact Anosov flows on 3-manifolds to contact Axiom A flows on 3-manifolds. More
precisely, equality of the length data allows us to upgrade an orbit equivalence to
a flow conjugacy as regular as the flows, see Theorem A. We apply this result to
billiards exhibiting some hyperbolicity, and obtain a dynamical rigidity result: for
k > 3, we show that two C* open dispersing billiards’ whose billiard maps are
topologically conjugated on some horseshoe and have the same length data are ac-
tually smoothlyconjugated, in a canonicalway (see Theorem C and Corollary D). In
a previous version of this work, we were discussing geometric implications of the
smoothness of the conjugacy, in connection with the question of spectral rigidity;
yet, an error was found in this part by Jacopo De Simoi.

1.1. Preliminaries. Let ® = (®!),cg be a continuous flow defined on a manifold
M. For each point z € M, we denote by Og(x) := {®!(x)}1cr the ®-orbit of z.
We denote by Fix(®) := {x € M : ®!(z) = x for all t € R} the set of fized points
of ®, and we denote by Per(®) := {y € M : ®T(y) = y for some T' > 0} the set
of periodic points of ®; for any = € Per(®), we let To(z) = To(Os(x)) > 0 be the
prime period of x. Recall that the non-wandering set Q(®) C M is the set of points
x € M such that for any open set U 3 x, any Ty > 0, there exists T > Tj such that
®T(U)YNU # (). When @ is a differentiable flow on some smooth manifold M, we
denote by Xg(-) := %|t:0®(',t) its flow vector field.

In the following, given an integer n > 1, and 3 € (0, 1), we say that a function f
is of class C™P if f is C", and its n'™® derivative is S-Holder continuous.

Definition 1.1 (Orbit equivalence). For i = 1,2, let ®; = (®!);cr be a flow defined
on a manifold M;, and let A; C M; be a ®;-invariant subset. We say that the flows
D, Py are ordbit equivalent on Ay, Aoif there exists a homeomorphism ¥: Ay — As
such that for some continuous function 8: A1 x R — R, we have for each = € Ay:

e 0(x,0) =0, and #(z,-) is an increasing C"* homeomorphism of R, for some
Be(0,1);
e Vodl(x)= @g(x’t) oW(x), for all t € R.
In other words, ¥ sends ®1-orbits to ®o-orbits:

U (Og, () = Os,(¥(x)), forall x € Ay.

Recall that U is automatically C? for some § € (0,1),if Ay, Ay are compact hyperbolic
sets (see e.g. Katok-Hasselblatt [39, Theorem 19.1.2]).
Moreover, we say that ¥ is iso-length-spectral if

T, (x) = T, (V(x)), Ve Per(®r)NAy,

i.e., the flows @1, 5 have the same periodic length data.

If M7, M5 are smooth, and @1, ®, are differentiable flows, we abbreviate as X; :=
Xo, the flow vector field, for ¢« = 1,2, and we say that W is differentiable along
®;-orbits (in Ap) if the Lie derivative

A3z Ly U(z) o= lim - (0o B} (x) - U(z)) € RXy 0 U(z)
t—0 ¢

is a well-defined continuous function.

lActually, the same result also holds for more general billiards, see Theorem C.
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Definition 1.2 (Adapted contact form). Given a smooth (connected) 3-manifold
M, recall that a contactform is a smooth differential one-form that satisfies the non-
integrability condition o A da # 0; without loss of generality, we may assume that
aAda > 0.

Let £ > 2, and let ® = (®!)cr be a C¥ Axiom A flow defined on a smooth
3-manifold M. Given a basic set A C M for &, we say that a contact form « is
adapted to A if it satisfies the following Reeb conditions:

(a) ixa|p = 1;
(b) X|W$S(A) € ker da‘W(‘if(A) and X|W(%U(A) S kerda|wéu(A).

In the following, we fix a C*° smooth Riemannian manifold M, and we consider
a C% flow ® = (®!)ycg on M.

Definition 1.3 (Hyperbolic set). A ®-invariant compact subset A C M \ Fix(®) is
called a (uniformly) hyperbolic set (for @) if there exists a D®-invariant splitting

T.M = E*(z) ® RX (z) & E*(z), Va e,

where the (strong) stable bundle Ej, resp. the (strong) unstable bundle E§ is uni-
formly contracted, resp. expanded, i.e., there exist C' > 0, A € (0, 1) such that

|D®!(z) - v|| < CAH||v|l,  VYax €A, Vve Ej(x),Vt>0,
|D® 7 (x) - v|| < CA|v]], Voee A Vve Eg(x),Vt>0.

We also denote by Eg’, resp. Eg‘, the weak stable bundle EF := Ej ® RX, resp.
the weak unstable bundle EG' == RX © Eg.

Let us recall the definition of an Aziom A flow:

Definition 1.4 (Axiom A flow). A flow ®: M x R — M is called Aziom A if the
non-wandering set (®) C M can be written as a disjoint union Q(®) = AU F,
where A is a closed hyperbolic set such that periodic orbits are dense in A, and
F C Fix(®) is a finite union of hyperbolic fixed points.

Definition 1.5 (Lamination). Let n > 1, 8 € (0,1). A C™"-lamination of a set
A C M is a disjoint collection of C™# submanifolds of a given same dimension, which
vary continuously in the C™#-topology, and whose union contains the set A.

Let ®: M x R — M be an Axiom A flow with a decomposition Q(®) = AU F
as in Definition 1.4. The stable bundle Ej, resp. the unstable bundle E§, over A
integrates to a continuous lamination W, resp. Wg, called the (strong) stable lam-
ination, resp. the (strong) unstable lamination. Similarly, Eg’, resp. Eg" integrates
to a continuous lamination W$°, resp. W§", called the weak stable lamination, resp.
the weak unstable lamination. For each point x € A, a local orbit segment in Og ()
containing z will also be denoted as Wg 1,.(z) = Wg',.(z) N Wgi,.(2). Each of
these laminations is invariant under the dynamics, i.e., ®'(Wj(z)) = Wi (P (z)),
for all z € M and * = s,u,c,cs,cu. For each subset S C A, we also denote
Wi (S) := UgesWi (), for x = s,u, ¢, cs, cu.

Besides, we have A = Ay U ---U A, for some integer m > 1, where for each i €
{1,...,m}, A; is a hyperbolic set such that ®|,, is transitive, and A; = Nyer®(U;)
for some open set U; D A;. The set A; is called a basic set of ®.
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Remark 1.6. In general, the stable/unstable distributions E;/u at a hyperbolic
invariant set A of some diffeomorphism F are only Hoélder continuous, but according
to Pinto-Rand [58], when the stable, resp. unstable leaves are one-dimensional, and
A has local product structure, then the stable holonomies, resp. unstable holonomies
are of class C'#, B € (0,1). In our case, both distributions are one-dimensional, so
the holonomies will be C'#, for some 3 € (0,1).

Let us recall the following version of the extension theorem due to Whitney [64].
It legitimates the notion of differentiability in Whitney sense.

Theorem 1.7. Fix an integer k > 1. Let A C R"™ be a closed subset, n > 1, and let
fos-ooy fu: A — R be continuous functions such that for some 8 € (0,1), it holds

B i+ 0(ly = aft+%), vayea

k
(L.1) foly) = fola) =)
j=1

Then, there exists a C*P function f: R® — R such that fla = fola, fP)a = fila
forj=1,... k, and flgn\4 is C*. A function fo: A — R which satisfies (1.1) for
some functions fi,..., fr: A — R is said to be C*? in Whitney sense.

1.2. Dynamical spectral rigidity of contact Axiom A flows. Our main dy-
namical result is the following.

Theorem A (Length spectral rigidity on basic sets). Fix k > 2. For i = 1,2, let
D; = (D!)ier be a CF Aziom A flow defined on a 3-manifold M;. Let A; be a basic
set for ®;, and assume that there exists a smooth contact form «; on M; that is
adapted to A;. If there exists an orbit equivalence Uo: Ay — Ay between ®i|p, and
Dy|p, that is differentiable along ®1-orbits and iso-length-spectral, then

1) ®1|p,, Po|a, are CE-conjugate; more precisely, there exists a Holder contin-
1 2
uous homeomorphism ¥: Ay — Ay that is C* in Whitney sense, such that

Uodl(z) =®LoWU(x), forall(z,t) €A xR;
(2) U preserves the contact form, i.e., U*ag|p, = aq]a,-

In other terms, iso-length-spectral orbit equivalence classes between basic sets of
C* Axiom A flows with an adapted contact form are in one-to-one correspondence
with C* flow conjugacy classes between these basic sets, where the conjugacy pre-
serves the contact form. Besides, it will be clear from the proof that the C*-regularity
is actually needed on A; (in Whitney sense).

Remark 1.8. Let &1, ®5, and let A;, As be as in Theorem A. The flow conjugacy
U: A; — A between ®q|p, and Py|p, given by Theorem A is essentially unique.

Indeed, for any other flow conjugacy ¥: A1 — Ao, it holds
(Tl oW)od =@, o (T oW) on A,

that is, U~ o W is in the diffeomorphism centralizer of ®;|4,. By [4, Theorem 1.4],
the centralizer is trivial, hence U="o <I>1T, for some T" € R. In Subsection 3.1, we
explain that in some cases (when the system has a time-reversal symmetry) there is
a natural way to choose T so as to make the conjugacy canonical.
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Since the Hausdorff dimension is preserved by Lipschitz continuous homeomor-
phisms, and since the stable/unstable Hausdorff dimensions are constant on A (see
for instance [56]), we deduce from Theorem A the following result:

Corollary B. Let ® = (®%);cg be a C* Aziom A flow defined on a smooth 3-manifold
M, k> 2. Let A be a basic set for ® with an adapted smooth contact form «. Then,
the Hausdorff dimensions dimg(A), 6®)(A), 6 (A) are invariant under iso-length-
spectral orbit equivalences, where for * = s,u, we let ™) (A) := dimy (A N Wj(x)),
for any x € A.

1.3. Open dispersing billiards. We consider a billiard table D = R? \ Ule O;
obtained by removing from the plane ¢ > 3 obstacles Oq,...,Oy, each O; being
a convex domain with C* boundary 00;, for some k > 3, such that Oy,...,0,
are pairwise disjoint. For each i € {1,...,¢}, we let |00;| be the corresponding
perimeter, and parametrize each O; counterclockwisely in arc-length by some map
Y; € CH(T;,R?), s ++ Y;(s), where T; := R/(|00;]|Z). The set of all such billiard
tables will be denoted by B, and for each ¢ > 3, we let B(¢) C B be the subset of
tables with ¢ obstacles.
Let D = R?\ Ule O, € B, for some ¢ > 3. We denote the collision space by

M= Mi,  Mi={(qv), €00, veR? |v] =1, (v,n) >0},

where n is the unit normal vector to dO; pointing outside O;. For each x = (¢, v) €
M, we have ¢ = Y;(s), for some i € {1,...,¢} and some arc-length parameter
s € Ty; we let ¢ € [~F, 5] be the oriented angle between n and v, and set r := sin .
Therefore, each M; can be seen as a cylinder T; x [—1, 1] endowed with coordinates
(s,r). In the following, given a point z = (s,7) € M, we let Y(s) := ¢ be the
associated point of 0D.

For each pair (s1,71), (s2,72) € M, we denote by

(1.2) h(s1,82) = [[T(s1) = T(s2)]|

the Euclidean length of the segment connecting the associated points of the table.
Let M := {(q,v) € D x S'}/ ~ be the quotient of D x S! by the relation ~:

(q1,v1) ~ (g2,v2) <= @ =¢q € 0D and va = Ry, (v1),

where R, is the reflection in R? with respect to the tangent line T, 0D. An element
of M will be denoted as [(¢,v)]. In the following, we identify a point [(¢,v)] € I,
q € 0D, with the corresponding element (q,v) € M. Let & = (®!);cr be the
associated billiard flow on 9. We can describe this flow with coordinates (z,y,w),
where (x,y) € R? are the Cartesian coordinates of some point ¢ € D on the table
and w € [0,27) denotes the couterclockwise angle between the positive z axis and
the velocity vector v. In the recent paper [41, Section 3] by Kster-Schtte-Weich,
the authors give a detailed description of smooth models for the billiard flow, which
remain of contact type; besides, such smooth models are unique in a strong sense,
hence can be considered as intrinsic to the billiard system.

For each x € M, we let 7(z) € Ry U{+00} be the first return time of the ®-orbit
of x to M, and denote by

F=F([D): MN {1 # 400} =+ M, x> @@ (z)
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the associated billiard map, which we see as a map F: (s,r) — (s',7'), with s =
s'(s,r) and ' =1'(s,r).

7 =sin¢’

r=singp

T, T, LT,

FIGURE 1. An open dispersing billiard and its phase space.

For any point = (s,7) € M with a well-defined image (s',7") = F(s,r), recall
that h = h(s,s’) is the distance between the two points of collision. Note that
h(s,s") = h(s,s'(s,r)) = 7(s,r) is the first return time of (s,r7) € M to M. Let
K = K(s), K' := K(s') be the respective curvatures, and set v = v(r) := 1 — 2,
v :i=v(r') = /1 — (")%2. By the formulas in Chernov-Markarian [12], the differential
of the billiard map is

L(hK +v) 2
(1:3) DI == ekl i + kv 20k 4 )
The map F is exact symplectic for the Liouville form A = —rds:
(1.4) F*A—=A=dr.

Fix a lift 7 of F to R x [—1,1]. We let |9D| := [0O1| 4 - - - + |O,n| be the total
perimeter, and extend the definition of h by letting h(s+p|0D|, s'+q|0D|) = h(s, s'),

for any p,q € Z. Then, h is a generating function® for the dynamics of F (or F):

_  Oh(ss)
T = ) N
aff(s s')
v = =22

os’

Observe that F is a negative twist map, i.e., 8—57;(8, r) < 0, and that —%(5, s') > 0.
Let us also recall that the time-reversal involution Z: (s, ) — (s, —r) conjugates the
billiard map with its inverse, i.e., FoZ =T o F~L.

Due to the strict convexity of the obstacles, the dynamics is of Axiom A type (see

[48, 49] or [62, Subsection 2.1] for more details). In connection with Remark 1.6,

2In the following, we will also refer to the function 7 = 7(s,r) as a generating function.



SMOOTH CONJUGACY CLASSES OF 3D AXIOM A FLOWS 9

let us also recall that several works have been dedicated to the smoothness of sta-
ble/unstable laminations of open dispersing billiards (see Morita [48] and Stoyanov
[62]). Besides, if the non-wandering set

QF) = F (M)
JET
has no tangential collisions, then it is a hyperbolic set; moreover, we have Q(F) =
AUF, ANF = 0, where F is a finite union of periodic points, and A can be written
as a disjoint union A = A; U---UA,,, m > 1, each A; being a horseshoe such
that F|a, is conjugated to a non-trivial subshift of finite type. In the following,
for each point x € Q(F), we denote by W%(x), resp. WH%(x), its stable, resp.
unstable manifold for the map F. The non-wandering set (®) of the billiard flow
® is the set of all points in the orbit of some x € Q(F). Similarly, when speaking
about a basic set for ® in the following, we mean the union of orbits of all the

points in a set A; as above, for some i € {1,...,m}. Let us define the quotient set
AT :={(s,r,t) e iy xR:0<t <7(s,r)}/ ~, where
((s,r),7(s,7)) = (F(s,7),0).
We can identify A7 with the set {(s,r,t) € A; x R:0 <t < 7(s,r)}, and define the
projection IT: AT — 0D as®
(1.5) (s, 7, t) :=s >~ YT(s).
The billiard flow ® restricted to the orbits of points in A; is defined at all times
and can be seen as a special flow induced by the vertical vector field X = % =
(0,0,1) on AT. Actually, the (z,y, w)-coordinates introduced above are slightly more
convenient, as they also allow to describe points which are not in Q(®): for any point
(s,r,t) € AT, with r = singp € (=1,1), t € [0,7(s,r)), we let U(s,r,t) := (z,y,w) €
9 be the corresponding (x,y,w)-coordinates, with x = z(s,r,t), y = y(s,r,t), and
w=w(s7)=Z(R_z1,(1'(5)),(1,0)) = Z(R_z aresinr (T'(5)) (1,0)),
(x(s, T, t),y(s,'r,t)) = Y(s) + t(cosw, sinw),
where Y(s) is the associated point of 9D, and for § € R, Ry is the rotation of angle
6. The map Y is C*, hence the change of coordinates U is of class CF1.
Claim 1.9. The contact form o = XA+ dt is adapted to A] (recall Definition 1.2).

Proof. Let us verify that ixa = 1 and 1xda = 0. Indeed, for any (s,r,t) =
((s,r),t) € M xR, we have

as,rt)(X(s,r, 1)) = (A(s,r) + dt)aat =1,

do(s,r,t)(X(s,r,t)) = d\(s, r)% =0.
Besides, for W: (s,r,t) — (F(s,r),t — 7(s,7)), we have
W*a(s,r,t) = aoW(s,rt) = a(F(s,r),t —71(s,r))
= MNF(s,r))+d(t—7(s,7)) = F N, r) +dt —dr(s,r)

= A(s,r)+dr(s,r) +dt —dr(s,r) = a(s,r,t).

and

3By a slight abuse of notation, we will also denote by II: A; — 9D the projection (s,r) — s.
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Therefore, o descends to an adapted contact form on A7. O

Let us also recall how the contact structure looks like in (z, y, w)-coordinates. For
each point X = (z,y,w) € M, we let

TxIM D T)O(fm := ker ( — sinwdz + cos wdy) N ker (dw),
TxM D TN := ker (coswdx + sinwdy).

The one-dimensional subbundle 799 C 79 and the two-dimensional subbundle
T+ C TN are DP-invariant. More precisely, for any ¢t € R, the differential D®?
acts on T @ T+ as follows (see Chernov-Markarian [12] for more details):

1 0

Do(X) = [0 Do!(X)

} , VX e
In particular, coswdz+sin wdy is the contact form in (x, 3, w)-coordinates, and T+9
is the associated contact distribution.

Definition 1.10. Let Dy, Dy be two billiards with C* boundaries, for some k > 3,
and let @1, @5 be the associated billiard flows. If there exist two basic sets AT C
Q(P1), AF? C Q(P2), and an iso-length-spectral orbit equivalence between @ | AT

and <I>2|A;2, we will simply say that Dy, Dy are iso-length-spectral on AT, AJ2.

Theorem C (Smooth conjugacy of billiard maps of isospectral hyperbolic billiards).
Let D1, Dy be two billiards with C* boundaries, for some k > 3, and let ®1, $o be the
associated billiard flows. Let us consider a basic set A7* for ®;, i = 1,2, and let A;
be the horseshoe? obtained by projecting A" onto the first two coordinates (s;, 7). If
D1, Dy are iso-length-spectral on AT', AJ?, then there exists a map U (s1,71,t1) —
(s2,72,t2) which conjugates ®1,Po on AT', AF? respectively. The map U induces a
conjugacy V: A1 — Ao between the respective billiard maps Fi|a,, Fa|r, which is
CF=1 in Whitney sense, and such that W*(dsy A dry) = dsy A dry on Ag.
Moreover, the respective generating functions 11,1 of F1, Fo satisfy

(1.6) oW —1 =xoF] —x onl,
for some function x: Ay — R which is C*~1 in Whitney sense, such that
(1.7) U*Xo — A =dx on Ay, where \j = —rids;, 1=1,2.

Let Z;: (si,ri) v (si,—7i), © = 1,2, be the respective time-reversal involutions. If
UL oTyoW oy, fizes Fi-orbits, i.e., o o W(x1) and ¥ o Iy(x1) are in the same
Fa-orbit, for all x1 € Ay, and if there exists a 2-periodic point x1 € A1 or a point
x1 € AN {r1 = 0} whose orbit is dense in Ay and such that F3' oW (z1) € {ro = 0},
for some m € Z, then W, resp. x, can be chosen in a unique way such that

(1.8) VoTir, =Zr0 Y|y, resp. x © Zi|a, = —X]A,-
The proof of Theorem C is given in Section 3.

Remark 1.11. Theorem C applies naturally to open dispersing billiards, as those
exhibit uniformly hyperbolic dynamics. Yet, even in the case of convex billiards,
generically, hyperbolic dynamics arises from Aubry-Mather periodic orbits with

ALet us recall that a horseshoe for a diffeomorphism f is a transitive, locally maximal hyperbolic
set that is totally disconnected and not finite.
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transverse heteroclinic intersections (see for instance [1, 36] for more details). Thus,
our result may also be applied to the associated horseshoes.

Remark 1.12. The coboundary x in Theorem C can be interpreted as the difference
between stable (or unstable) actions for the billiard maps F1, F2. Indeed, fix a 2-
periodic point p; € Ay, and let pg := ¥U(p;) € Ay. Let us consider a point x; € A; in
the stable manifold W%, (p1) of p1, and let z2 := W(x1) € W%, (p2) N Ag. Fori = 1,2,
we define the stable action of x; as the sum of the following convergent series:

+oo

As (@) = A5 (i) =D (rio Ff (i) — 750 FF (pi)).

k=0
Since the two billiards have the same periodic length data, and since pi, p2 are 2-
periodic, we have 710 FF (p1) = m0F§ (p2), for each k € Z. Observe that limy_, o x©

Ff(x1) = x(p1) = 0 (as x(p1) = x o Z1(p1) = —x(p1), by (1.8)). By (1.6), we thus
conclude that

+oo
A3 (1) = A3 (z2) = ) (TioFF (1) — 720 F5 (22)) = x(xl)—kgrfooxoff(xl) = x(21),
k=0

i.e., x(z1) is the difference between the stable actions Af(x1) and A5(¥(z1)).

1.4. Open dispersing billiards without eclipse. We now discuss the following
important example (see for instance [47, 21] for more details). Fix an integer ¢ > 3.

We let B,.(f) C B(£) be the set of all billiards D = R\ |J_, ©; € B(¢) which
satisfy the following

NON-ECLIPSE CONDITION: The convex hull of any two obstacles is disjoint from
any other obstacle.

(HO

De B"ﬁ(?)) De B(S) \Bnc(S)

Let F, resp. @ be the associated billiard map, resp. billiard flow. The non-
wandering set Q(F) is reduced to a single basic set A. Moreover, F|, is conjugated
by some Holder homeomorphism to the subshift of finite type associated with the
transition matrix (1 —0d;;)1<i j<¢, where 6; ; = 1, when i = j, and §; ; = 0 otherwise,
when i # j. In other words, any admissible word ¢ € Admy, i.e., such that ¢ =
(sj); € {1,...,0}% with ¢j1 # gj, for all j € Z, can be realized by an orbit, and
by hyperbolicity of the dynamics, this orbit is unique. We denote by x(s) € Q(F)
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the point with symbolic coding ¢. Let Adm C Uj>2{1,...,¢}/ be the set of all finite
words 0 = 01...04, j > 2, such that 0> := ---000--- € Admy. It is the set of
symbolic codings of periodic orbits. In particular, we may thus define the marked
length spectrum MALS(D) as the map

MLS(D): Adm — R, o~ L(o),

where L(0) = Tg(x(0%°)) is the perimeter of the periodic orbit encoded by o.

For any billiards Dy, Dy € By, (¢) with respective billiard maps Fi, Fa, the restric-
tions Filo(r,), Falo(r,) are topologically conjugated in a canonical way, by sending
a point x1 € Q(F7) to the point x9 € Q(F2) with the same coding. The billiard flows
®, ®y are thus orbit equivalent through some Hoélder continuous orbit equivalence.

Corollary D. Fiz ¢ > 3, and let D1,Dy € By.(f) with C* boundaries, for some
k > 3. If D1, D2 have the same marked length spectrum, then the respective billiard
maps F1, Fa are conjugated on Qq := Q(F1), Qg := Q(F2) by a map ¥: Q1 — Qo that
is CF=1 in Whitney sense, such that U*(dso A dry) = dsy Adry and VoI =Tyo W
on Qy, where Z;: (s;,15) — (83, —71i), for i = 1,2, is the time-reversal involution.
Moreover, (1.6)-(1.7)-(1.8) in Theorem C hold for some coboundary x: Ay — R
which is C*=1 in Whitney sense.

Acknowledgements: We thank Péter Bélint, Sylvain Crovisier, Jacques Féjoz,
Andrey Gogolev, Colin Guillarmou, Umberto L. Hryniewicz, Thibault Lefeuvre,
Jean-Pierre Marco, Federico Rodriguez Hertz, Disheng Xu for their encouragement
and several useful discussions. We are especially grateful to Marie-Claude Arnaud,
Jacopo De Simoi, Livio Flaminio, Vadim Kaloshin, and Ke Zhang for many conver-
sations about this work, and for having pointed out a mistake in a previous version
of the paper.

2. SMOOTH CONJUGACY CLASSES FOR 3D AXIOM A FLOWS ON BASIC SETS

2.1. Synchronization of the flows using periodic data. Let us start by recall-
ing the fact that an orbit equivalence between two hyperbolic flows can be upgraded
to a flow conjugacy as long as the lengths of associated periodic orbits coincide.

Proposition 2.1. Let k > 2, and let &1 = (®!);cr, resp. Py = (P})ier be a
CF Aziom A flow defined on a smooth manifold My, resp. Mo, and let Ay, resp.
As be a basic set for &1, resp. ®5. Assume that there exists an orbit equivalence
Wo: Ay — As differentiable along ®1-orbits, and that

(2.1) Te,(x) = Te,(¥(x)), for each x € Per(®1) N A;.

Then the flows ®1, o are topologically conjugate, i.e., there exists a homeomorphism
W: Ay — Ay such that

Vo ®!(x)=0LoW(x), forall (x,t) €A xR.

Proof. The proof is classical but we recall it here for completeness.

We fix an orbit equivalence ¥y: A1 — As that is differentiable along ®1-orbits.
Let X, X2 be the respective flow vector fields of ®1, ®9, and let Ly, ¥( be the Lie
derivative of ¥ along ®;. As ¥q sends ®1-orbits to ®o-orbits, it holds

LX1 \I/()(J,‘) = Uy, (.CC)XQ(\I’U(x)), for all z € Aq,
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for some function vg,: A; — R which measures the “speed” of ¥y along the flow
direction. Observe that vy, (x) = %h:o@(m,t).
By (2.1), for each x € Per(®;) N A; we have

T‘bl (z) T‘bl (z) d ‘ T<I>1 (z) "
[ =T @) = T (vt = [ 0@ o) st = [ (@ e,
0 0 0

hence
1
T<1>1 (‘T )

We deduce from Livsic’s theorem (see [39, Subsection 19.2]) that there exists a
continuous function w: A; — R differentiable along ®;-orbits such that vy, — 1 =

Ty, (z)
/0 1 (vay (P (z)) —1)dt =0, for each x € Per(®1) N A;.

Lx,u. Let us set ¥: x — @;u(x) o Wy(x). Given any = € A, we compute
vy () Xa(W(2)) = L, (5" 0 We) (x)

.1 0(z,t)—u(Pdt (2)) —u(z
:}5%;(‘1’2 J=U@@) o) — @ ()o\Ilo(a:))

= X5(®5"" 0 Wo(a)) lim % (e(x, £) — w(® (z)) + u(x))

= (vg, () — Lx,u(x)) X2 (25" 0 Uy (2)) = Xo(¥(2)),

ie., vg =1 on Aj.
As a result, the homeomorphism WV is a flow conjugacy between ®1 and ®5 on Ay:

Vo ®!(x)=dLoW(x), forall (z,t)c A xR.
(]

2.2. Markov families for Axiom A flows on basic sets. In this part, we recall
some classical facts about Markov families for Axiom A flows on basic sets, following
the presentation given in [11].

Let £ > 2, and let ® = (®!)ycg be a C¥ Axiom A flow defined on a smooth
manifold M.

Definition 2.2 (Rectangle, proper family). A closed subset R C M is called a
rectangle if there is a small closed codimension one smooth disk D C M transverse
to the flow ® such that R C D, and for any z,y € R, the point

[l‘, y]R =Dn Wg's,loc(‘r) N Wg?loc (y)

exists and also belongs to R. A rectangle R is called proper if R = int(R) in the
topology of D. For any rectangle R and any = € R, we let

W}%(LL‘) = megbs,loc(x% WI%((E) = megfloc(x)'
A finite collection of proper rectangles R = {Ry,...,Rn}, m > 1, is called a
proper family of size € > 0 if:
(1) M = {®'(S) :t € [—¢,0]}, where S := Ry U -+ U Ryp;
(2) diam(D;) < e, for each i = 1,...,m, where D; D R; is a disk as above;
(3) for any i # j, D; N {®'(D;) : t € [0,e]} =0 or D; N{®"(D;) : t € [0,¢]} = 0.

The set S is called a cross-section of the flow ®.
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Notation 2.3. Let R = {Ry,..., R,,} be a proper family with m > 1 elements.
The cross-section § := R1U---UR,, is associated with a Poincaré map F: § — S,

where for any z € S, we let F(z) := ®75(*)(z), the function 75: S — R, being the

first return time on S, i.e., 75(x) := inf{t > 0: ®!(z) € S} > 0, for all x € S.
Besides, for x = s,u and z € R;, i € {1,...,m}, we also let Wx(z) := Wj (7).

Definition 2.4 (Markov family). Given some small £ > 0, and some integer m > 1,
a proper family R = {Rj,..., Ry} of size ¢, with Poincaré map F, is called a
Markov family if it satisfies the following Markov property: for any = € int(R;) N
F~Y(int(R;)) N F(int(Rg)), with i,,k € {1,...,m}, it holds

We.(z) C f*l(Wf%j (F(z))) and Wg (v) C FOWg (F~H(x))).

Theorem 2.5 (see Theorem 2.5 in [7], see also Theorem 4.2 in [11]). The restriction
of an Axiom A flow to any basic set has a Markov family of arbitrary small size.

FiGURE 2. Markov family for the flow ®.

2.3. Quadrilaterals and temporal displacements. Let ® = (®!);cg be a C*
Axiom A flow on a smooth manifold M, with & > 2, and fix a basic set A for ®.

Definition 2.6 (Quadrilaterals). A quadrilateral is a quadruple 2 =
(0,21, 29,73) C A* such that x; € W(%,loc(xg), Ty € ngloc(xl) and 3 €
Wa toc(£2) N Wghoe(z0). We let 24 = 24(2) := W 1o0(20) N W5 joc(23). In par-
ticular, z4 = ®!(zy), for some time ¢ = t(2) € R.

Let us consider a proper Markov family R = {Ry,..., Ry} for 5 of size €, for
some integer m > 1 and some small € > 0. Let F be the associated Poincaré map,
and set S := Ry U---UR,,. We denote by A := AN S the trace of A on S.

We say that a quadrilateral 2 = (xg, 21,29, 73) C A* is R-good if 29 € R; for
somei =i(2) € {1,...,m},and z; € Ute(,%,%)@(Ri), for each j € {1,...,4}. Note
that, up to time translation, there is no loss of generality to assume that zg € S. For
any such quadrilateral, and for j € {1,...,4}, we denote by z; the projection along
the flow line of z; on R;, and we let 2 := (Zg, Z1, T2, 73). Note that Zo, ..., 73 € A;
besides, T1 € W} (Z0), T2 € Wk (Z1), and T3 € W (Z2) N W (Zo).
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Definition 2.7 (s/u-holonomies). Fix i € {1,...,m}, and let 29,21 € R; N A be
such that 21 € W (20). We define the stable holonomy Hg(z0,21) € R as the time
t € R with smallest absolute value |t| such that ®(z1) € W3 10c(20). Similarly, for
any zp,z1 € R; N A, z1 € W (20), we define the unstable holonomy Hg(z0,21) € R
as the time ¢t € R with smallest absolute value |¢| such that ®(z1) € W 10c(20)-

Lemma 2.8. For any i € {1,...,m}, and for any 20,21 € Wg_(20), it holds

“+o00
H§(20,21) = »_ 75(F7(21)) — 75(F7 (20))-
j=0
Proof. Fix i € {1,...,m}, and let zp,2; € R; N A be such that z; € Wf%i(zo). We

abbreviate H := H$(zp,z1) and set 22 = ®(z). Fix e > 0 arbitrarily small. As
z1 € Wf%i(zo) and 2o € W§ ..(20), for n > 1 sufficiently large, it holds

d(F"(20), F"(21)) <,

(2.2) d(®tr(2), Bt (20)) < e,

with F"(z0) = ®'"(20) and t, := 3775 75(F7(20)). Set up := Y_1—3 75(F(21)), s0
that F™(z1) = ®"*(z1). The points F™(zp), F"(z1) are exponentially close, and 7s
is Lipschitz, hence the sequence (u, — t,),>1 converges to some limit £ € R. Since
29 = ®H(z1), and by the triangular inequality, (2.2) yields

d(®% (z), @ TH (21)) < 2e.

As we are considering local manifolds, we deduce that |u, —t, — H| < Ce, for some
uniform constant C' > 0. Letting n — +o0o, we get £ = H, i.e.,

“+o00

H =" 7s(Fi(21)) — 7s(F ().

J=0

Using the same ideas as in Lemma 2.8, we have the following
Lemma 2.9. For any i € {1,...,m}, and for any 20,21 € W (20), it holds

—1
Hé(20,21) = Z 78(F (20)) — 75(F7 (21)).

j=—o00
Let 2 = (20, 71,22,23) C A* be a R-good quadrilateral, with zo € R;, i €
{1,. . .,m}. Let x4 = :L‘4(°@), and let 2 := (fo,il,fg,fg). As 1 € W%Z(i’o), To €

Wk, (1), and Z3 € Wg (Z2) N W} (Z0), we may define the temporal displacement
H(2) eRas

(2.3) H(2) := H§(Zo,71) + H$(Z1, T2) + HE (T2, T3) + HS (T3, Zo).
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By Lemma 2.8 and 2.9, we have:

n—1 n—1
ey m@=  dm [- Y ws(FE)+ Y )
j=—m’ j=—m

!

n’'—1 n'—1
CY wF@)r Y Ts<fj<:ﬁ3>>]

j=—m j=—m/

(2.5) = lim [ 78 "(@) + T8 (@) — T (Z2) + T8 ()]
m,n,m’ n’—+oo

where for any point z € S, and for any integers m,n > 0, we let

n—1

(2.6) T 2) = Y Ts(Fi(2).

j=—m

FiGure 3. Quadrilaterals and temporal displacements.

2.4. Periodic approximations of temporal displacements. Let us recall the
following fact.

Lemma 2.10. For each i € {1,...,m}, the stable holonomies H%(yo,y1), resp.
unstable holonomies Hg(29,21), depend continuously on the points yo,y1 € R N A,
Y1 € Wh, (yo), resp. on the points zp,z1 € Ry NA, 21 € Wk, (20).
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Proof. Let us consider the case where yo,y1 € R; N A, y1 € W (yo), the other case
is analogous. By definition, the stable holonomy H$(yo,y1) satisfies

Wi toc(40) N W 1oc(y1) = {23000 (41},

As the invariant manifolds vary continuously, the intersection of the two sets on
the left hand side depends continuously on the pair yo,y1, with y1 € W5 (yo). By
looking at the right hand side, we conclude that the holonomies are continuous. [

The main goal of this section is to show the following proposition, whose content
already appears in the work of Otal [54].

Proposition 2.11. For any R-good quadrilateral 2 = (xg,x1,79,73) € A*, the
quantity H(Z2) is determined by the lengths of periodic orbits.

Proposition 2.11 is a direct outcome of Lemma 2.12 and Proposition 2.13 below.

Lemma 2.12. For any R-good quadrilateral 2 = (xg, 1,22, 13) € A*, there exists
a sequence (2")nen € (AHY of R-good quadrilaterals 2" = (xff, 2}, x%, 2%) with
xg,xy € Per(®) such that lim, oo 2" = 2, i.e., lim, ;o0 z = xj, for each j =
0,...,3. In particular, it holds

H(2)= lim H(2").
n—-+o0o
Proof. Fix a R-good quadrilateral 2 = (xg,z1,22,73) € A*, with z9 € Ry, i €
{1,...,m}, and let 2 := (z¢, Z1,Z2, T3) be the projection of 2 on R; as before.

As periodic points are dense in A, for j = 0,2, there exists a sequence (E;L)neN €
(Per(®) N Ri)N of periodic points such that lim,,, 1o 27 = i‘];Let z} =[xy, TH] R,
and z% := [Z5, Z{|R,, so that the lift 2" := (2, 27, 2%, 2%) of 2" = (zg,zt, x5, z%)
is a R-good quadrilateral, where

n._ =n n._ HZ(ZN,Z")=n
xy = Z(, 2 = TS (7,
S (AN 7N U (HN 7= _ S (N 7N U (7N 7= S (AN Fz=N _
Tl = PHs (5,27 +Hg (7] 7x2)(x721)’ rh = PHs (@527 +Hg (27,25)+ Hg (T3 ,13)(1-3)7

and z(, x4 € Per(®). Clearly, we have lim,, 4+, 2" = 2. By the definition (2.3) of
temporal displacements in terms of holonomies, and by Lemma 2.10, the function
2 — H(2) is continuous. Thus, we conclude that H(2) = lim,_,40 H(Z2"). O

In the following, thanks to Theorem 2.5, we can and will assume that the size of
the Markov family R is chosen suitably small (see Definition 2.4 and Theorem 2.5).

Proposition 2.13. For any R-good quadrilateral 2 = (xq,r1,22,73) € A* such
that xo, o € Per(®), the quantity H(L2) is determined by the lengths of periodic
orbits. More precisely, there exists a sequence (x™)pen € Per(cb)N of periodic points
such that for any € > 0, there exists an integer Nyo(e) € N such that

‘H(o@) — [To(2") — 2nTy(z0) — 2nT¢,(ajg)H <e, Vn>Nye).

Proof. Fix a R-good quadrilateral 2 = (xg,z1,72,23) € A%, with zg € R;, i €
{1,...,m} and x¢, z2 € Per(®), and let 2 := (Zg, T1, T2, T3) be the projection of 2
on R;. Let pg > 1,p2 > 1 be the prime period of T, T2, respectively, with respect
to F. Note that T; = [Zo,Z2]r, and T3 = [T2,%o|r, are heteroclinic intersections
between the invariant manifolds of the periodic points Zg, Zs.
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FIGURE 4. Shadowing periodic orbits with a prescribed combinatorics.

As A is a basic set, the dynamics can be coded symbolically, using some finite
alphabet 7. In the following, for each finite word o in o/, we denote by |o| € N the
length of o.

The periodic points Zy, Ts, correspond to a finite sequence of symbols g, o9
respectively, with |og| = pp and |o2| = pa. In other words, denoting op = o) . .. 05071
and o9 = 09 .. .052_1, for j = 0,2, it holds

Tj— .. .Ujajaga} . U?jflajaj ..
)
The point Z; is a heteroclinic intersection between the local manifolds W} (7o) and
Wi (Z2), hence its symbolic coding is

- -1 -1
1 <—>...020203...(7§2 0805...080 0000 - - .

Similarly, the symbolic coding of Z3 is

_ 1 -1
x3<—>...000008...080 ogaé...ago 0209 . ..
)

For each integer n > 0, we define a periodic point " for F encoded by the finite
word 6, := 0(g...0002...09, i.e.,
—_—

2n 2n
~n Ao 0_1 po—1 PN
T <> ...0p0n00...0002...02000(q...0 gg...0002...020p,0p ...
\W_/\_V_‘/T —— ——~
2n 2n 2n—1 2n

Thus, the point " is 2(pg + p2)n-periodic for F. In the following, we will denote by
" the periodic point for the flow ® corresponding to the point z™.
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Lemma 2.14. For any € > 0, there exists N(g) > 0 such that for each integer
n > N(e), the following inequalities hold:

npo—1

(2.7) > [rs(FrEm) - rs(Fr@)|| <=,
k=—np2
npa—1

(2.8) > [P — rs(Fr (@) | <
k=—npo

where we have set §" := F2"P0 (") = F—2np2(3n).
Remark 2.15. Observe that the two sums in (2.7)-(2.8) involving #", "™ add up to

npo—1 npa—1

(2.9) Yo rsFEEM) Y ms(FHEY) = Tol(a").

k=—np2 k=—npo

Proof of Lemma 2.14. By looking at the symbolic codings of 2" and Z1, we see that
they have the same symbolic past (resp. future) for at least 2npy (resp. 2npg) steps
of iterations under F. In particular, for each k € {—nps,...,npy — 1}, F*(2") and
F*(Z1) have the same symbolic past (resp. future) for at least npy (resp. npg) steps
of iterations. By hyperbolicity of F, for some constant A € (0,1), we thus have

(2.10) d(FF(@™), F*¥(z1)) = O(\"), Vk € {-np,...,npy—1}.

Indeed, without loss of generality (assuming that the size of the Markov family R
is sufficiently small, see Definition 2.4 and Theorem 2.5), we may assume that each
of these points belongs to some small neighborhood of the orbit of Zy (resp. of Z2)
where the dynamics FP° (resp. FP?) is conjugated to the differential DFP° (resp.
DJFP2) calculated at some point of the orbit of Zy (resp. Z2). More precisely, let
R; be the rectangle containing the point g, Z1,Z2,Z3; by Belickii’s linearization
theorem [6], for j = 0,2, there exist a neighborhood U; of z; (which we assume
here to contain R;), a neighborhood V; C R? of (0,0), and a C!-diffeomorphism
X;j: Uj — V;, such that

Xj o FPiox;t = DFPi(x;).

Note that z, tends to Z; as n — +oo: it is a consequence of the fact that the
symbolic codings of %, and Z; match on larger and larger chunks as n — 4o0.
Similarly, g, = F2%0(3") = F~2P2(3") tends to T3 as n — +oo. Thus, considering
the chart o, resp. xo near Zp, and replacing the first n backward iterates under JFP2
with DFP?(Z3), resp. first n forward iterates under FP° with DFP0(Z), we obtain
the estimate (2.10) with A := max(Xg, A2) € (0,1), denoting by \; < 1 < )\j_l the
eigenvalues of DFPi(z;), for j =0,2.

By (2.10), summing over all the indices k € {—npa,...,npo—1}, as 7s is Lipschitz
continuous, and as F is Lipschitz continuous for i = 1,...,pg (resp. i = 1,...,p2)
on some fixed neighborhood of the orbit of Zoy (resp. Z2), the left hand side in (2.7)
is of order at most O(n\"); therefore, for n sufficiently large, this term is smaller
than e. Inequality (2.8) is proved similarly. O
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Let us now conclude the proof of Proposition 2.13. Fix some small ¢ > 0. By
(2.4), there exists N'(¢) > 1 such that for n > N’(g), we have (recall notation (2.6))

‘H(o@) _ [_ Tgpo,npt)( ) 4 T”Pz,npo (1,1) _ Tgpz,npz( ) + Tnpo,npz ) < =

By Lemma 2.14, for any n > N(§), the periodic point #" satisfies 1nequali—
ties (2.7)-(2.8) for § in place of . Thanks to (2.9), we also have 7¢""(2") +
T2 (") = Te(2™); by (2.7)-(2.8) and the above inequality, for any n >
max(N'(e), N(§)), we therefore obtain

|H(2) ~ [To(a") = 757" (50) = 757" (22)]| < &,

which concludes the proof, observing that for j = 0, 2, it holds
np;j—1
TNz = Y Ts(F(E;)) = 2nTe(x;).
J=—np;

O

2.5. Temporal displacements and areas of quadrilaterals. Assume that there
exists a smooth contact form « on M that is adapted to the basic set A in the sense
of Definition 1.2. Recall the following fact:

Lemma 2.16. We have E§(x) C kera(z), for all x € WE(A), and Eg(z) C
ker a(x), for all x € WE(A). In particular, it holds

(2.11) Ej(z) ® Eg(x) =kera(z), VzeA.

Proof. Let I' = {~(t) € t € [0,1]} C W}§ ,,.(x) be an arc in the local stable manifold
of some point x € A. For each T' > 0, we have

Ja- / oa = [ (@7 0 (1)) (DB (4(1)) -+ (1))dt = | o

As a is uniformly bounded, and limp_, oo D®T (y(t)) - 4/(t) — 0, for each ¢ € [0, 1],
we deduce that [ o = 0. Therefore, we have Ej(y) C ker a(y), for any y € Wi (z),
x € A. We argue similarly for the unstable direction.

Let x € A. The identity (2.11) follows from the inclusions E3(z) C ker a(x),
Ef(x) C kera(z), and the equality of the dimensions of the two subspaces. O

Let 2 = (z0, 71,72, 23) € A* be a R-good quadrilateral, with zg € R;, for some
ic{l,...,m}, and let 2 := (Zg, T1, T2, T3) be the projection of 2 on R;. We define
i@A as the set of all points z € R; in the closed region bounded by the arcs Lo, T,
Iy, I'3, where for j = 0,2, I'; C Wf%i(fj) is the stable arc connecting z; to Z;1,
while T'j41 C Wk, (Zj41) is the unstable arc connecting ;1 to Zj42, with 4 := Zo.

The set 2 C R; is transverse to the flow direction, i.e.,
(2.12) X(z) ¢ T,2, for each z € 2,

which ensures that da| 5 is non-degenerate. Let us define

Area(2) = /A dov.
2
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Proposition 2.17. Let 2 = (xq,x1,22,23) € A* be a small quadrilateral, so that
2 is R-good and (2.12) is satisfied. Then
Area(2) = —H(2).

Proof. By Stokes theorem, we have

Area(2) = /Ada = ‘_Z /.a.

By the definition (2.3) of H(Z2) in terms of holonomies, it is sufficient to show
that ffo o = *Hg(fo,fl), ffl o= *Hg("f’li.’fg), ffz o = *Hg(if‘g,.’fg), and ffg o =
—H¥(Z3,T0). Let us prove the formula for I'g, the others are proved similarly.

PHs(@oz1) (Z1)

FIGURE 5. Ty is the closed region bounded by the arcs T, —T'§, T.

Let I'{) be the arc of the stable manifold W(%Joc(xo) connecting zg to z1, and let I'{
be the orbit segment I'f := {®"(21) }ref0,215(70.21)] € Wé joc(21)- We define Ty C M
as the set of all points x € Wg,floc(xo) in the closed region bounded by the arcs
Lo, I'5,T'¢, see Figure 5. By Stokes theorem, we have

/da:/a/a+/a.
To Lo 0 1

Since X|yyes(a) € ker darfyyes(p), it holds that f% da = 0. By Lemma 2.16, we have

ng a = 0, hence,
/a:—/ .
T r

c
1

/g o /OHE(IW) a(X(®(z1)))dt.

Moreover,
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Since 1xa|pn = 1, we also have fOHg(io’il) (X (®4(z1)))dt = HE(Zo, 1), which con-
cludes. 0

As an immediate consequence of Proposition 2.11 and Proposition 2.17, we thus
obtain:

Corollary 2.18. For any small quadrilateral 2 = (xq, 1,2, 73) € A%, the quantity
Area(2) is determined by the lengths of periodic orbits.

Corollary 2.19. Fiz k > 2. Fori = 1,2, let ®; = (®!)cr be a C¥ Aziom A flow
defined on a 3-manifold M;. Let A; be a basic set for ®;, and let «; be a smooth
contact form adapted to A;. If there exists a flow conjugacy ¥: Ay — Ao between
D[, and Po|p,, then, for any point xog € A1, and for any small quadrilateral
2 = (w9, 21,12, 23) € A}, it holds

(2.13) Area(2) = Area(V¥(2)),
where W(2) is the quadrilateral ¥(2) = (V(z0), ¥(x1), ¥(x2), ¥(x3)) € A3.

Remark 2.20. Let us give another proof of Corollary 2.19. As in Corollary 2.19,
let @1, ®2 be two (contact) Axiom A flows whose restrictions ®1]p,, P2|p, to cer-
tain hyperbolic sets A1, Ao are conjugate by ¥: Ay — As. In order to show that
(2.13) holds for any small quadrilateral 2 = (g, ¥1, 72, 73) € A}, instead of invoking
Corollary 2.18, we may argue as follows. By Proposition 2.17, it amounts to show-
ing that the temporal displacements of the quadrilaterals 2, ¥(2) are equal, i.e.,
H(2)=H(V(2)). Let us consider the points x4 := z4(2) and z)) := z4(¥(2)) (re-
call Definition 2.6). Since z4(2), z4(V(2)) are defined dynamically, and ¥ is a flow
conjugacy between @1, , Pa|a,, we have z} = 24(V(2)) = ¥U(x4). In particular,

(2.14) 2y =07 (z)), and U(zy) = ST (@ (zy)).

Since V¥ is a flow conjugacy between ®1|p,, P2|p,, it preserves time, hence the
temporal distance between the points z1, x4 is the same as the one between their
images W (x1), ¥(x4). Therefore, by (2.14), we conclude that H(2) = H(V(2)).

2.6. Smoothness of the conjugacy. In the following, we fix a point g € AN R;,
for some ¢ € {1,...,m}. Let Qo be the set of all sufficiently small quadrilaterals
2 = (z0, 21,72, 23) € A* based at xg. The goal of this part is to show that the set of
areas {Area(2)} 9¢q, determines the “infinitesimal” shape of the set ANW% .. (20),
resp. AN W%, (o).

In particular, given another Axiom A flow whose restriction to some basic set is
conjugate to ®|5 by some homeomorphism ¥, and such that, for any small quadri-
lateral 2, it holds Area(2) = Area(¥(2)), we show that ¥ is differentiable at any
point of A, with Holder continuous differential.

We take a chart R = Ry,: Uy — Vo from a neighborhood Uy C R; of xg to a
neighborhood Vo C R? of {Og2} such that R(W3,..(z0) NUo) C (R x {0}) NV and
RWE 15c(0) NUp) C ({0} x R) N V. In the following, we thus identify W5 (o),
resp. W}é,loc(xo) with the horizontal, resp. vertical coordinate axis of R?. Moreover,
for any point v = R(u) € Vy, we denote by p(v)d§Adn := Ry (doy,) the corresponding
area form. For each point 1y € W}L—_Joc(xo), we see W‘}JOC(yO) as the graph of some
function v,  over the horizontal axis. By an abuse of notation, in the following,
we identify an object and its image in the chart R. For instance, a point z; €
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Wi oe(0)

Y2 = (22,7, (22))

Yo W\},loc(yn)

1 = (21,7, (1))

W}.Ioc(xz)i

D(yo. x1) = (20, T1. 21, Y0) 2(yo. 2) = (20, T2, 22, Y0)

Zo 1 Wloe(20) T2

FIGURE 6. Small quadrilaterals.

W}’loc(wo) will be identified with the point (x1,0) € R?; besides, we will denote by
Vi, := ({£1} x R) NV, the vertical segment in Vy passing through z1 ~ (1,0).

Definition 2.21 (Holonomy maps for W, ). For any points yo € Wi, (20) N A
and x1 € W, (20), we define the point H3 , (yo) € Vi, as

{Hasco,ml(yo)} = W.?—',loc(@/()) N le = (x17750 (‘Tl))

In other words, the map H

S
Z0o,T1

W%loc(xo) NA >~ V, to Vg, . To ease the notation, we also abbreviate y1 = y1(yo) :=
HS . (yo). Note that, a priori, y1 ¢ A.

Z0,T1

is the holonomy map along W%, . from

Lemma 2.22. There exists a continuous function C = Cyy: W, (z0) = R such
that for any x1 € W% .(x0), it holds

(2.15) lim dwr(yo). 1) = lim M = C(x1).

W}_‘-’loc(l‘o)ﬂ/\ayo%xo d(yo, .1,'0) W}_‘-’loc(l‘o)ﬂ/\ayoﬁxo '750 (ZL’O)

Moreover, it holds
lim C(z1) = 1.

W}’IOC(Z‘Q)Bxl—)xO

Proof. According to Remark 1.6, stable holonomy maps are C1?, for some B €
(0,1). For any yo € Wjé’loc(ajo) N A, we let y1 = y1(yo) € Vz, be defined as above.

As H3, 4, (w0) = 71 and H3 . (yo) = y1, the quotient in (2.15) can be written
d(H: HE » ) o

S ( 10’115?23@0)0’ 1(900)). From the definition of v, , this quantity is also equal

to 11;0833 Moreover, it has a limit as yg — xg, which we denote by C(z1) €
Yo

R. We thus get a continuous map C = Cy,: W}’loc(xo) — R. Moreover, the

holonomy map Hj ., converges to the identity in the C! topology as x1 — o,

hence limg, o, C(z1) = C(z0) = 1. O

For any points yy € W}f—’loc(l'o) NA, z1 € W}’IOC(:EO) N A close to g, we also
abbreviate z1 = z1(yo) := [yo, z1]r,. Recall that by local product structure, we have
z1 € A. We denote by 2(yo, 1) := (w0, 21, 21,%0) € A* the associated quadrilateral.
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Lemma 2.23. For any points yo € W, .(xo) NA, £1 € Wx .. (20) NA close to xo,
the area of the quadrilateral 2(yo,x1) is equal to

(2.16) Area(2(yo, 21)) = (Yo — wo)(z1 — 20)[p(0) + o(1)];

where p is the density function of R.(da) introduced above. Therefore, for any points
Yo € valoc(xo) NA, 1,29 € VV]E loc (o) NA close to xq, we have®

Area(2(yo,z2)) w2 — w0
2.17 1).
(2.17) Area(2(yo,z1)) a1 — 0 +oll)
Proof. For any yo € Wi ,.(z0) N A, 21 € Wi, .(z0) N A close to zg, we have

x1 w0 (&)
Area(2(yo, 21)) = / ( /0 T e dn> dé + o((y1 — 1)?).

0

where y1 = y1(yo). Here, we use the fact that the unstable lamination W#%(yo) is ct,
so that the angle between W%,loc(xl) and V;, is going to 0 as 1 — zg, and hence,
the area of the missing “triangle” bounded by Wi, .(v0), W5 j,.(71) and V;, is a
o((y1 — x1)?), noting that p = O(1) on the quadrilateral. Since the argument is a
local one, (2.15) guarantees that y; — x1 = O(yp — x0). In the following, we will
always assume that yo — 29 < 21 — ¢, so that 0((3/1 - 131)2) = O((?/O —x0)(T1 — xo)).
Therefore, we obtain

Area(2(yo, x1)) = /xl 5o (€) (p(€,0) + O(yo — x0)) d& + o((yo — xo)(z1 — 0))

Zo

= /Og1 (C(&)(yo — o) + o(yo — w0)) (p(€,0) + O(yo — x0)) d€

zo

+ o((yo — o) (w1 — 0))
= (Y0 — 20) / 1 (C(&)p(&,0) + 0(1)) d& + o((yo — xo) (21 — 20))

0

= (yo — zo)(x1 — 20)[p(z0) + o(1)],

since C'(§) = C(xg)+o0(1) = 1+0(1), when & — x. Observe now that (2.17) follows
immediately by taking the quotient. U

Fori = 1,2, let ®; = (®!);cr be a C* Axiom A flow defined on a smooth 3-manifold
M;. Let A; be a basic set for ®;, and let a; be a smooth contact form adapted to A;.
Assume that there exists a flow conjugacy ¥: A; — Az between @[5, and Pa|a,.
For any point z¢g € A1, and for * = s, u, without loss of generality, because of Lemma
2.16 and up to translating along the flow direction, we can assume that Wghloc(:cg),

resp. W5 1..(¥(x0)) belongs to some rectangle RW of a Markov family for ®1, resp.

2,loc
to some rectangle R(®) of a Markov family for ®,, so that Wi, 1oc(T0) = Wha) (20),
and Wi, 1,.(¥(20)) = W) (¥(20)). Moreover, by using some chart as above, we

see \IIIW(}; Loe(@0) 85 & MAp from S; C R to Sy C R, with zp ~ 0 ~ ¥U(zg).

5We thank Disheng Xu for the idea to use three points xo, 1,22 in the same leaf and consider
the ratio of areas to get rid of the “width” of quadrilaterals.
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Proposition 2.24. Assume that the flow conjugacy ¥ is iso-length-spectral. Then,
for any point xg € Ay, and for x = s,u, the following limit exists:
) - v
0V (xp) 1= lim M.
W;l,loc(wo)ﬂAleﬁxo r1 — Tg
Moreover, the associated map 0,V is Hélder continuous on Ay. In other words,
for some B € (0,1), the conjugacy ¥ is C*P along W, 1oc» Wé, 10c in the sense of
Whitney.

Joc? Joc

Proof. Let us consider the case where * = s; the other case is analogous. Fix
29 € A1. Take yg € ng,loc(xo) NAL, z1,29 € ng’loc(xo) N A close to zg. Without
loss of generality, we assume that d(xg,z1) < d(xg,x2). By Corollary 2.19, for
i = 1,2, the quadrilaterals 2(yo, ;) = (zo, %, 2i,%0) € AT and U(2)(yo, 7;) =
(U(z0), ¥(z;), ¥(2), ¥(yo)) € A have the same area; hence,

Area(2(yo,xz2))  Area(V(2)(yo,r2))

Area(2(yo, 1))  Area(V(2)(yo,71))

We deduce from formula (2.17) that
W(wo) = Wlzo) _ W(z1) = ¥(z0) , <‘1’($1) - ‘P(fUO)) .

T2 — To T — To Ty — To
For any € Wg, 1..(z0) N Ay close to xg, we denote g(x) := %;Po(wo) Recall that

d(xo,x1) < d(zg,z2); thus, the previous identity can be written as
q(z1) = q(w2) + o( max(q(21), q(22)))-

Now, let us fix a sequence of points (un)nen € (W4, 10c(T0) N A1)N going to zg as
n — 4o00. It is easy to see that that (¢(uy,))nen is bounded. Consequently, for any
n > 0, p > 0, the previous identity gives

q(untp) = q(un) = o(1).
We deduce that (g(uy,))nen is a Cauchy sequence, hence it converges to some limit
¢ € R. Therefore, for any sequence (vn)nen € (Wg, 15c(T0) N A1)N converging to xg,
it holds that g(v,) — ¢ as n — +o0. This shows that U is differentiable at o along
W‘%hloc('xo)’ thus at any point in Ay, along Wg, ..
In order to show that the map 0,V is Holder continuous on A; along Wé, 1oc:

we argue as follows. Fix zo € A; N R, and let x( € WE(l)(xo) N A1 be close to

zo. Let (un)nen € (Wha)(z0) N AN, resp. (u!)nen € ( 2 (20) N AN, be a
sequence of points in Ay converging to xo, resp. zj along Wy, (z0) = Wh (20)-

For any point yo € W3 (z0) N A1 close to zp, and for each integer n € N, we let

gn(yO) = (x07unaznay0) € (Al mR(l))4 and Efn,(y()) = (:L'/O’ufm Z;uyé)) € (Al mR(l))4>
where z, = [yo, Un|p), Yo = [yOaxB]liﬂ> and 2], = [yp, ul)pow . Let 2,(yo), resp.

2! (yo), be the lift of 2, (yo), resp. Q;(yo), as in the proof of Lemma 2.12. We
deduce from (2.16) that

Area(2,(

Zn(y0)) = (Yo — xo)(un — o) [p(z0) + 0o(1)],
Area(2;, (o)) = (v — o) (uy, — 20) [p(5) + o(1)]

= Ciy (x0) (yo — o) (uy, — 20)[p(20) + o(1)],

Yo
Yo
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so that
Area(2; (vo)) sy Un — T
Area(2,(yo)) Co (%)un —

As the images of the quadrilaterals 2,,(yo) and 2/ (yo) by ¥ have the same area,
we deduce that

(1+O0(z( — mo) +o(1)) .

(un) — (o)
= Cuy () =2 (1+O(ach — o) + o(1).

Observe that
Ca?o(x{)) =1+ O(xIO - xo),
Cu(ag) (W(2)) = 14 O (w() — W(z0)) = 1+ Oy — wo|”),
for some € (0,1) since ¥ is Holder continuous. Thus, for y9 — ¢ we obtain

W) = Ble) _ Wn) Z900) (14 (1 — o))

/ /
up, — xg Uy — T

Letting n — +oo, we deduce that [0s¥(zf) — sV (z0)] = O(|zh — 20|?). Thus,
applying Whitney’s theorem, we conclude that ¥ is C'# in the sense of Whitney
along Wy, .., for 8 € (0,1). O

Recall that roughly speaking, Journé’s lemma (see [37]) says that once a function
is regular along the leaves of two transverse foliations, then it is regular globally. It
has been generalized by Nicol-T6rok [50] in the case of laminations on Cantor sets
(see Theorem 1.5 and Remark 1.6 in [50]). In our case, it reads as follows.

Theorem 2.25 (Theorem 1.5 in [50]). Let A C R? be a closed, hyperbolic basic set,
and for B € (0,1), let W, W be two transverse uniformly C*# laminations of A.

Suppose that ©: A — R? is uniformly CYP in the sense of Whitney when restricted
to the leaves of W*, W*. Then © is C*P in the sense of Whitney on A.

From Proposition 2.24 and Theorem 2.25, we then deduce the following

Corollary 2.26. Assume that there exists an iso-length-spectral flow conjugacy
U: Ay — Ay between ®1|p, and ®a|p,. Then W is CYP in the sense of Whitney
on A, for some 5 € (0,1).

Proof. By Proposition 2.24, we know that ¥ is C1# in the sense of Whitney along sta-
ble/unstable leaves. For i = 1,2, let us fix a Markov family R = {Rgi), cee RE:Z)(Z.)}
with a cross-section S@ as given by Theorem 2.5. By projecting A1, Ao along flow
lines on S, 8@ and applying Theorem 2.25 to the projected sets, we deduce that
the map ¥ induced by ¥ between A1 N SM and Ay N S®@ is C1P in the sense of
Whitney, for some $ € (0,1). Since the projection along the flow direction is C*,

and since we can describe ¥ in terms of ¥ and the two projections along X1, Xo, we
conclude that ¥ is C1# in the sense of Whitney. (]
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2.7. Upgraded regularity of the conjugation. As previously, let us fix a home-
omorphism W¥: A; — Ay that is C1# in Whitney sense, for some 8 € (0,1), which
satisfies

(2.18) Vo ®!(x)=dLoW(x), forall (z,t)c A xR.
We will show that the conjugacy map is even more regular:

Proposition 2.27. The conjugacy map V|a, is C¥ in Whitney sense.

Proof. Recall that for i = 1,2 and * = s, u, there exists 6§*) > 0 such that for any
x € A;, we have

(51(*) = dimyg (W§, joc(7) N Ai).

As U is C18 we also have 5§*) = 55*) =: 60,

Fix some small € > 0. By Theorem 2.5, for ¢ = 1, 2, there exists a proper Markov
family R() = {RY), . ,Rf;)(i)} for @;,, of size €, for some integer m(i) > 1. Let
SO =R U...uRY.

1 m(i)’ ~
map. We also denote by A; := A; N S the trace of A; on S@. The map V¥
induced by ¥ between A; and Ay is C'? in the sense of Whitney. Recall that
dimy (A;) = dimg(Az) = 6©) + 5§ (see [46] for a reference).

By [56, Theorem 22.1], for ¢ = 1,2 and x = s, u, there exists a (unique) equilib-
rium state’ p; such that for every @ € A;, the conditional measure my, of pj on

resp. JF;, be the associated cross-section, resp. Poincaré

Wi (z) N A; is equivalent to the §*)-Hausdorff measure H 5 More precisely, pu?
is the equilibrium state for the potential® pgs) = 00 log ||D]-'¢|Ejfi ||, and p} is the

(U) = _5 6

equilibrium state for the potential p; () Jog || DF| g ||; besides, the pressure

() heg _
P(p;”) vanishes, for x = s, u.
By (2.18), for any periodic point = € Aj of period ¢(z) > 1, the differentials
D}'f(x) () and D.ng(w)(‘l/(x)) are conjugate, hence have the same eigenvalues, i.e.,

q(z)—1
3 <1og IDFE@)] ool — Tog ”ng(q,wE(;)H) —0, x=su
k=0 1 2

By Livsic’s Theorem, we deduce that the potentials \T/*pg*) and pg*) are cohomolo-

gous, and by [8, Proposition 4.5], we thus have \T/*ug*)hl = Mg*)’Kl' Consequently,
e
U™, G
In the following we deal with the unstable case; the stable one is analogous. To
case the notation, we abbreviate § := 6. For i = 1,2, and z; € A;, the conditional
measure mf% is equivalent to H®, hence we can introduce the density function
Pz, Wg (i) — R*, so that dm{, = p, dH 9. Recall that the conditional measure
iz, depends only on the leaf W% (7). Our goal in the following paragraph is to

show that the function pi', (-)/pi,, (z:) is Ck=1! in the sense of Whitney.

=mj ,, for x = s,u, and for a.e. x € A;.

m

6See for instance [56] for more details about equilibrium states, potentials, pressure etc.
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As P(p}) = 0, for any integer n > 0, and for any y; € W% (;), we have (see for
instance [13, Section 3.2])

d((]:z‘_ )*mz,ml) (J-T"(yz)) _ eﬂS‘np;*(]-'i”’(yi))7

i,fi_n (IE,L)

(2.19) -

where S,p? is the n'' Birkhoff sum of pY, i.e.,
U T—n - u(T— - — — 4
Sup (F (i) = Y0¥ (F () = = Y log || DF;H(F*(yi)ley |-
k=1 k=1
In terms of densities, (2.19) thus yields:
Piva, i)

(Fi™)sbin, o 6
——(F () = " — _ DFENF )l |-

Let us consider the ratio of the above quantity and the corresponding one at x;. As
the distance d(F~"™(z;), F "(yi)) decays exponentially fast with respect to n, and
assuming that F~"(z;), F " (y;) converge to a point z7° (up to taking subsequences),
letting n — +o00, we obtain

P, (41) +°O(HDf;1<f’f(ymrE;iu)‘s

B\

(2.20) o = p =11

In particular, based on that expression, and arguing as in [18, Lemma 4.3], we deduce
that the function pl(z;,-) is C¥~! in the sense of Whitney.

In the rest of this section, we follow the proof of [18, Lemma 4.5]. Fix a point
x1 € A; and let z9 = \Tl(xl) € Ay. Since the foliations W%, W%, have one di-
mensional leaves, we can parametrize patches of the unstable leaves by Riemannian
length. Recall that \T/*mgm =mf{,, ; we deduce that for any point y1 € W (71), it
holds (taking charts for W% (z1), W%, (72), identifying functions on the leaves and

functions of the coordinates, and seeing the Whitney extension of \I'\W]u: (z1) @S &
1

map from R to R):

wo s U(y1) " 5
[ otaamte = [ o) am ),

1 U(z1)
By (2.20), we have

U v u ") U Yiyr) u )
P () / P (a1, 5) dHO(s) = pl., () /@( P, ) (5.
x1 xr1

For y; very close to x1, we thus obtain

" Y1 5 . U(y1) s
P (1) / (1+ (1)) dHD(s) = pl, () [i( (1 o) dr (o),
1 1
that is B
U(y1) 5
pqltzm (.751) flfl(xl) dH (S)

)

Pay(r2) [ dHO(s)

+o(1).
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Consequently,

log ‘f g(gl)) dHJ’

log (ﬁ“) (1) = log [ (y1) — U(z1)| x

Py, 0V log [V (y1) — (1)
log Iyll dH(S)
og g1 — | x — Ly o(1),
log [y1 — 1]
il |l an

U 1 -
When W% (z1) 2 y1 — 1, both o500l 20 Toglyan tend to the dimen

sion of the measure H%, namely, 6. We deduce that

log ( Pl ~) (1) = dlog (‘T’(yl) - i’(%)) +o(1).

Py, 0V Y1 — 21

As ‘I"E is C1% in the sense of Whitney, letting W5 (1) 3 y1 — z1, we get

Py (0,F ()

Py 0¥

In other words, on Aj, the map U satisfies

~ Pi(.)(‘) ’
2.21 0,0() = [ 207 .

We have seen that the functions pf ()P are C*~1 in Whitney sense. As U is

U

Cch8 on Ay ak)ng W#%,, the right hand side of (2.21) is CY% on A; along Wg . We
deduce that ¥ is C? on A; along W% in Whitney sense. By repeating the argument,
we conclude that U is C* on Ay along Wiz in Whitney sense. The same arguments

applied at stable leaves imply that W restricted to the leaves of W%, is also Ck in
Whitney sense. By using the version of Journé’s Lemma in [50, Theorem 1.5] for
laminations on hyperbolic sets, and arguing as in the proof of Corollary 2.26, we
conclude that the conjugacy map |y, is C¥ in Whitney sense, as desired. (]

2.8. Preservation of contact forms: end of the proof of Theorem A. We
have just seen that the flow conjugacy V¥ is C* in the sense of Whitney on A;. In
this subsection, we show that it implies that ¥ respects the contact structures. See
Feldman-Ornstein [23] for related results in the case of contact Anosov flows on
3-manifolds.

Lemma 2.28. We have ¥*as|p, = aia, -

Proof. By Lemma 2.16, for ¢ = 1,2, and for any z; € A;, it holds
Eg, (x:) © Eg, (i) = ker a(w;).

Recall that ¥ is a flow conjugacy, i.e.,

(2.22) Todl(x))=dLoW(xy), VteR, z; €A
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Therefore, for x = s, u, it holds
DU (z1)Eg, (1) = Eg, (¥(x1)).

In particular, ker ¥*aq(z1) = ker aa(¥(x1)). Moreover, differentiating (2.22) with
respect to ¢, we obtain DV (z1)X1(x1) = Xo(¥(x1)).

Let us show how this implies the result. We want to show that for any € A4, it
holds V*ag(z) = aq(z). For any v € T, M, we decompose it as v = v*+v" +cX;(z),
with v* € Eg (z), v* € Eg (), c € R. We obtain

U as(z)(v) = a2 (¥(2)) (D¥(z)v° + DY (z)v" + cDV(z) X1 (z))
= cag(V(2))(DV(2) X1 (2)) = caz(¥(x))(X2(¥(x)))
= ax,a2(V(z)) = c= ax,a1(z)
= cay(2)(X1(z)) = an(2)(v),

which concludes. ]

~— —

Together with Proposition 2.1 and Corollary 2.26, this concludes the proof of
Theorem A.

3. SMOOTH CONJUGACY OF BILLIARD MAPS OF HYPERBOLIC BILLIARDS

In the following, we give the proof of Theorem C. Let us consider two billiards
D1, Dy with C* boundaries, k& > 3, that are iso-length-spectral on two basic sets
AT, AP, For i = 1,2, we denote by ®;, resp. F;, the associated billiard flow,
resp. billiard map. Recall that ®; preserves the contact form «; := A\; + dt;, where
A := —r;ds; is the Liouville one-form, and that JF; preserves the symplectic form
ds; A dr;. We let A1, Ay be the respective projections of AT, AZ? onto the first two
coordinates, i.e.,

(3.1) Ai = {(ss,7i) : (s4,7m3,t;) € A]" for some t; € R}, i=1,2.

By Proposition 2.1, there exists a flow conjugacy g (s1,71,t1) — (82,72, t2) between
the billiard flows @1 | AT and Do A The map ¥ induces a conjugacy ¥: (s1,71) +—
(s2,72) between the billiard maps Fi|a,, F2|A,-

Lemma 3.1. The conjugacy map ¥ is C*~! in Whitney sense.

Proof. We argue as in Proposition 2.24, Corollary 2.26 and Proposition 2.27. The
main point is that since the flows ®1,®5 have the same periodic data, quadrilat-
erals formed by points in AT', A}? in correspondence have the same areas. Let
us give more details. Given a point x(()l) € AT', we consider a small quadri-
lateral 20 = (z (L) x&l),xé ),xgl)) € (ATH)* and the associated quadrilateral
20) = (x; (2) xg ),xé),x:(f)) € (AR)1, with x§2) \I/( ( )) for j = 0,...,3. For

i=1,2and j =0,. 3wedenoteby((»z) l)tl)

x§ ) ;Z) : (sgi), J( )) be the projection of " on the first two coordinates.

Since the flows @4 AT and ®o| A2 are conjugated, by Corollary 2.19, we have

~—

the coordinates of the point

b/\

and we let T

Area(2W) = Area(2?),



SMOOTH CONJUGACY CLASSES OF 3D AXIOM A FLOWS 31

where for i = 1,2, Area(2(%) is the area of the region bounded by the points
(a‘c(()l), Egz),:fg), 3_5:(31)) € A?. Considering smaller and smaller quadrilaterals, and argu-
ing as in Proposition 2.24, we deduce that the map ¥ is C*# in Whitney sense at
:z:él) along stable and unstable leaves, for some 5 > 0. It follows from Corollary 2.26
that U is C1% in Whitney sense on A;. As Fy, Fo are C*~1, arguing as in Proposition
2.27, we can upgrade the regularity and show that ¥ is actually C¥~! in Whitney

sense on Aj. O

Recall that for i = 1,2, we denote by 7;(s;,7;) = hi(s;, s;) > 0 the length of the

segment between consecutive bounces (s;, ;) € A; and (s;,7)) = Fi(si, 1) € A4, so

that 7'\ — A\; = dr;. By the fact that Dy, Dy have the same periodic length data
on A1 and Ao, it follows from Livsic’s theorem that the restriction of 75 o W — 7 to
A1 is a coboundary, i.e., for some continuous function x: A1 — R, we have

(3.2) oW -7 =yoJF —x onAj.

Actually, as ¥ is C¥~! in Whitney sense, by the results of Nicol-T6rok [50, Theorem
3.2], the function y is also C*¥~! in Whitney sense.

Lemma 3.2. It holds
(33) \IJ*)\Q - )\1 == dX on Al.
In particular, by differentiating (3.3), it holds U*(dsy A dry) = dsy Adry on Ay.

Proof. Since F\j — \j = dr;, for i = 1,2, and as W o Fy|p, = F2 0 VU|y,, we deduce
from (3.2) that on Aq,

fik(\I/*)\Q —)\1 —dX) = \I/*()\Q +d7’2) —)\1 —d7'1 —./—"ikdx
:\I’*)\Q—)\l—i-d(TQo\I/—Tl —Xofl) =T* g — )\ — dx.

Let w be the one-form (¥*\a — A1 —dx)|a,. By the above identity, for any ¢-periodic
point p1 € Ay, ¢ > 2, we have

(3-4) @(p1) = (F1)"@w(p1) = @(p1) o DF{(p1).

By the hyperbolicity, we have a splitting E% (p1) © E%, (p1) of the tangent space
at p1 into stable and unstable spaces. Let us choose a basis (e®(p1),e"(p1)) €
E% (p1) x E% (p1). We denote by (dnf,dn}) the dual basis, i.e., for any tangent
vector v, dm§(v), resp. dr{(v) denotes the component of v along e®(py), resp. e*(p1).
In particular, there exist a®(p1), a"(p1) € R such that

@(p1) = o*(p1) dri + a(p1) dry’.
Letting 0 < pu(p1) < 1 < pu~1(p1) be the eigenvalues of DF{(p1), we thus have
@ (p1) o DF{(p1) = plp1)a’(p1) dri + p~" (p1)a (p1) drf.
We deduce from (3.4) that
(1= p(pr))e®(pr) dmi + (1 — u™" (p1)) @ (p1) dri = 0.

As pu(p1) # 1, and since dnf, dr is a basis of the cotangent space at pi, it follows
that a®(p1) = a*(p1) = 0. In other words, w(p;) = 0, for any periodic point p; € A;.
By the continuity of @ on A1, and since periodic points are dense in A1, we deduce
that w|r, = 0, as desired. O
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In order to complete the proof of Theorem C, we still need to show (1.8), which
is done in the next subsection.

3.1. Image of the time-reversal involution by the conjugacy. We consider
the same framework and keep the same notation as above. The conjugacy ¥ is not
unique, as we may pre-compose, resp. post-compose it with any fixed iterate of Fi,
resp. Fo. Yet, in some cases, there is a canonical way to choose the conjugacy in such
a way that it preserves the time-reversal symmetry of the billiard dynamics; this is
what we discuss in this subsection. Recall that for i = 1,2, Z;: (s;,7;) — (84, —7;) is
the time-reversal involution, so that F;0Z; = I,-o}"i_l. In the following, we investigate
when it is actually possible to normalize the conjugacy such that it conjugates the
time-reversal involutions of F; and Fa, i.e.,

(35) \11011 :IQO\I’ on Al.

Let us denote by Iy =0 1loZyo U|p, the image of 7y after conjugating by W.
Clearly, Z, is involutive, and it conjugates Fp to its inverse F; ! In particular, the
map [ := 7; o Z; belongs to the centralizer of the map F; on the basic set Ay, i.e.,

Pofl :}"101“ OIlAl.

The centralizer of Axiom A diffeomorphisms at basic pieces is typically trivial (see
[24, 61]), hence we expect I' to be an iterate of Fj. It is actually the case, by [61,
Theorem A], as long as the map I fixes the orbits of Fj, i.e., assuming that

(3.6) Vo, € Ay, T(z1) = Fi(z1), for some £ ={(x1) € Z.
Actually, we can prove directly:
Lemma 3.3. If (3.6) holds, then there exists an integer m € Z such that
(3.7) TooW|p, =V oZyoF"a,-
Proof. Let x1 € A1, and take £ = ¢(x1) € Z such that (3.6) holds for z1. We have
D(Fi(z1) =Vt oThoVoTZio Fi(z) =¥ 'oTyo Vo FiloTy(xy) =+ =
=Fi o0 oo UoT(x) =F ol(z1) = Fi(Fi(z1)),

hence the integer ¢ in (3.6) is constant along the orbits. As Fi|p, is transitive,
considering z1 € A1 with a dense orbit, and by continuity, this finishes the proof. [

Besides, in the case where Dy, Dy are open dispersing billiards, after changing the
conjugacy, it is possible to verify (3.5):

Lemma 3.4. If, furthermore, J1, F2 have a periodic point of period 2 (in particular,
when D1, Dy € B), then, based on (3.7), we can redefine ¥ so that (3.5) holds.

Proof. Let us show that the integer m in (3.7) is even. Indeed, let 21 be a periodic
point of period 2 for F;. Thus, both ¥(x;) and Fj"(x1) are 2-periodic, for F2 and
JF1 respectively. In particular, the point ¥(x1), resp. Fi*(x1), is fixed under Zy,
resp. Zi. Therefore, by (3.7), ¥(z1) = ¥(F{"(z1)); by the injectivity of ¥, we
conclude that F{*(z1) = x1, hence m = 2¢, for some ¢ € Z. Let us consider the map
U:="Vo Frt By (3.7), equation (3.5) is satisfied for U in place of U, as

TooW|py, =VoTio F' p, = Wo Fr ™o Ty, = Uo Ty,
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Besides, the map ¥ still conjugates Fila, to Fa|a,, and it is also C*~! in Whitney
sense, which concludes. O

Alternatively, we have:

Lemma 3.5. If there exists x1 € Ay N {r1 = 0} whose orbit is dense in Ay, such
that F3" o W(z1) € {ro = 0}, for m € Z, then we can redefine ¥ so that (3.5) holds.

Proof. Let us assume that there exists a point 1 € A; N {r;y = 0} whose orbit is
dense in Ay, and such that F3" o U(z1) € {ro = 0} for some m € Z. Let us consider

the map W := FJ* o W|y, = ¥ o FI"|5,. For any integer £ € Z, we have
oo W(Fl(x1) =Tao FYtoWo Fl(zy) = = Fy ' oLy o Fy' o W(xy)
= Fylo F o W(xy) = F' o Wo Fyl(zy) = W o Iy (Fi(z)).

In other words, (3.5) is satisfied for T in place of ¥ on the orbit of x1; as the latter
is dense, and by continuity, it is satisfied everywhere on Ay, which concludes. ([l

Remark 3.6. Note that if there exists a conjugacy map ¥ which satisfies (3.5), then
it is unique in the followmg sense: if U is another conjugacy map which satisfies (3. 5)

and such that U= o ¥ fixes Fi-orbits, then U=, Indeed, in this case, ¥~ 1oQ
commutes with F7; arguing as above, we see that it is equal to F7", for some m € Z.

Since 1o W is also in the centralizer of 71, we deduce that F{" commutes with Z;.
But we also have FI" 0 Z; = Z; o F; ™, and hence, 7™ = id on Aj; in other words,
each point in A is 2m-periodic. As Fi|a, is transitive, it is possible only if m = 0,
ie., U =T on A

Assuming that (3.5) holds, we also have the following result.

Lemma 3.7. The function x in (3.2) can be chosen such that x o Z; = —Y, i.e.,

(3.8) x(s1,—71) = —x(s1,71), V(s1,71) € A1.

Proof. For i = 1,2, we have 7, = 7, 0 Z; o F; (see Figure 7) and F;0Z; = Z; 0 ]-"i_l.

Thus, by (3.5), we deduce that on Ay, it holds

xXoFi—x=moV -1 =molyoFe0V —T107)0F

:TQOIQO\IlO.Fl—Tl O.'Z,-lofl = (7’20\1’—7'1) O.'Z,-lofl
=xof10ZlyoF1 —xolioFr=xoly —xolioFy,

hence

(X +xoLi)oFi=x+xoT.
Therefore, the function x + x 0 Z; on A; is Fi-invariant, hence constant, as Fi|a,
is transitive and y is continuous. Since Y is defined up to constant (for any ¢ € R,

(3.2) also holds for x + ¢ in place of x), we can assume that this constant vanishes,
which concludes. O

In particular, for any point z; = (s1,0) € Ay N {ry = 0}, (3.8) gives x(z1) = 0,
while (3.3) gives dx(z1) = 0, as W(A; N {r;1 = 0}) = Aa N {r2 = 0}. The proof of
Theorem C is complete.

Similarly, the conjugacy ¥ between the billiard flows D | AT Dy AR is not unique,

as we can pre-, resp. post-compose it with any ®}, resp. ®%, ¢t € R. Yet, there is



34 ANNA FLORIO AND MARTIN LEGUIL

r; = sin @;

7 = sin @;

FIGURE 7. Time-reversal symmetry and generating functions.

also a canonical way to choose it, which we now explain. For i = 1,2, we denote by
T (i, yi,wi) = (24, y;, wi+7) the time reversal involution in (z;, y;, w;)-coordinates.
Let us for instance assume that for ¢ = 1,2, there exists X; € A" associated to a
point on 9D; with a perpendicular bounce, whose orbit is dense, and such that Xo,
\T/(Xl) are in the same orbit. After time-translation, ‘T/(Xl) = X5, and then,

(3.9) VoTifyn =ThoUyn.
To show this, we argue as in Lemma 3.5: indeed, as \I'(Xl) = Xy, we see that (3.9)

holds on the orbit of X, hence everywhere, by the transitivity of ®| ATI

Although it is not clear a priori that U sends points associated to bounces on 0Dy
to points associated to bounces on 0Dy, we will show that it is indeed the case
when the point on 0D; has a perpendicular bounce. For i = 1,2, we denote by
IL;: (24,95, wi) — (z,y;) the projection on the table D;.

Lemma 3.8. Assume that (3.9) holds. Then, for any Y1 € AT" associated to a point
I1, (Y1) € 0Dy with a perpendicular bounce, its image Ya := V(Y1) € AY? under W is
also associated to a point Ila(Ys) € 0Dy with a perpendicular bounce on an obstacle.

Proof. Let Y7, Ys := \TJ(Yl) be as in the lemma. As Y7 has a perpendicular bounce,
we have Z; o ®/(V]) = &} (Y1), for all t € R. Since ¥ conjugates <I>1|AI1 to <I>2|A;2,

by (3.9), and as ﬁ, ofi = ﬁi, 1= 1,2, we deduce that for any ¢t € R, it holds
Ty 0 ®5'(¥) = Ty 0 Ty 0 ¥ 0 @7 (V1) = Ty 0 ¥ 0 Ty 0 &7(1)

But ﬁz o <I>2_t(Y2) = ﬁQ o ®4(Y3), for all t € R, if and only if Y3 is associated to a
point on D5 with a perpendicular bounce, which concludes. ([l
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3.2. Proof of Corollary D. As in Corollary D, fix £ > 3, and let D1, Dy € B (¥)
with C* boundaries, for some k > 3, such that Dy, Dy have the same marked length
spectrum. Then, according to Theorem C, the respective billiards maps Fi, F2 are
conjugated on Q(F;),Q(F2) by a map ¥: Q(F;) — Q(F2) that is C¥~1 in Whitney
sense and such that U*(dsy A dre) = ds; A dry on Q(F;). In the following, we let
Qi = Q(fl), for i = 1,2.

Let us recall that Fi|q,, F2|q, are conjugated to the same subshift of finite type
on the alphabet o7 = {1,...,/} associated with the transition matrix (1—6; j)1<i j<e,
where §; ; = 1, when ¢ = j, and §; ; = 0 otherwise. We say that a word ¢ = (g;); €
/% is admissible, if Sji+1 # j, for all j € Z. We also let Adm C Uj>2.977 be the
set of all finite words o = 01...0j, j > 2, such that ¢ := ---000--- € Admg.
We normalize the conjugacy ¥ by requiring that for each y; € 1, the points y;
and U(y1) € Qo are coded by the same admissible word. Symbolically, the actions
of 71,7Z> amount to switching the symbolic past and future. In particular, by our
choice that ¥ preserves the symbolic coding, we have W oZ; = 7y o ¥ on {21, where
Z;: (8i,7i) — (si,—r;) is the time-reversal involution, for i = 1, 2.

Due to the equality of the marked length spectra, the respective generating func-
tions 11, 1o of Fi, Fo satisfy

oW —71 =x0F; —x onf,

for some coboundary y: Q; — R. Arguing as above, we see that x is C¥~! in
Whitney sense; moreover, properties (1.7)-(1.8) about x follow from the previous
results (see Lemma 3.2 and Lemma 3.7), which concludes the proof of Corollary D.
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